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ABSTRACT

Notions of replaceability and computational equivalence are
defined in an abstract algebraic setting, and investigated in detail
for finite distributive lattices. It is shown that when computing an
element f of a finite distributive lattice D, the elements of D
partition into classes of computationally equivalent elements, and
define a quotient of D in which all intervals of the form [taf,tvf] are
boolean. This quotient is an abstract simplicial complex with
respect to ordering by replaceability. Other results include
generalisations and extensions of known theorems concerning
replacement rules for monotone boolean networks.



Introduction.

The notion of replaceability has proved to be a useful concept in the study
of monotone boolean function complexity. Research in this area has been
concerned with the formulation of general replacement rules (e.g.[P] and [MG]),
the use of replacement techniques in proving bounds on network size (e.g.[P],
[MG], [D1] and [W]), and more recently, the investigation of closed forms for
particular kinds of replacement ([D2]).

If f, g and h are monotone boolean functions, a replacement rule has the
form " when computing f, replacement of g by h is universally valid ". From the
algebraic perspective of this paper, f, g and h are viewed as elements of a free
distributive lattice L; such a rule may then be reformulated " an expression for f
in terms of g and a set of generators of L, still represents f if g is replaced by h"".
In this way, replaceability modulo f defines a relation on the algebra L. It will be
shown that this relation is well-defined not only when a general distributive
lattice is substituted for L, but when L is a general algebra. Indeed, under very
general hypotheses, replaceability modulo an element f defines a pre-order (a
reflexive and transitive relation C;) on an algebra L, and the equivalence
relation O; derived by imposing anti-symmetry is an algebraic congruence
called " computational equivalence modulo f ", The quotient algebra L/0O; is
then ordered by Cy.

Replaceability and computational equivalence in finite distributive lattices
are the main subjects of this paper. Results include generalisations and
extensions of known theorems concerning replacement rules for monotone
boolean networks. Most of the proofs use lattice-theoretic arguments based
upon finiteness and distributivity, and do not require the assumption of
freeness.

The paper is divided into seven sections. §0 and §3 deal with generalities
concerning computational equivalence and replaceability respectively. §'s 1 and
® examine computational equivalence in the context of finite distributive
lattices, and in particular describe how the quotient L/0; can be determined up
to isomorphism from the prime implicants and prime clauses of f (Theorem 1.2)
when L is free. In a finite distributive lattice D, the element A(f) (resp u(f)),
which is the largest (resp. smallest) element computationally equivalent to 0O
(resp. 1) modulo f is significant, and O, is the congruence defined on D by the
relations A(f) = 0, u(f) = 1 (Theorem 2.2). The element w(f) is characterised as
the largest element in D such that [f, u(f)] is boolean, and dually (Cor.2.3).

§4 examines replaceability in finite distributive lattices, and includes new
proofs and extensions of a recent result due to Dunne [D2], which in particular
gives closed forms for z(f) (resp. u(f)), the largest (resp. smallest) element
replaceable by O (resp. 1) when computing f in the free distributive lattice L (c.f.
Cor.4.2). In conjunction, Theorems 1.2 and 4.1 show that in computing a
monotone boolean function f, the computational role which a monotone boolean
function g can play is completely determined by its relation to the prime
implicants and prime clauses of f. Cor.4.5 characterises the set of
computational equivalence classes, ordered by replaceability, as an abstract
simplicial complex; an intriguing fact, in view of the categorical dualities
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explored in [B1], [BR] and [B3], which indicate that abstract simplicial
complexes can be viewed as geometric duals of finite distributive lattices.

There are many properties interrelating the elements wu(f), A(f), u(f) and
z(f) which are sketched in §5. On any finite distributive lattice, the functions z()
and u() define inverse bijections, which (as suggested by Dunne) may be helpful
in classifying monotone boolean functions. The properties of the operators u, A,
u and z are connected with computational equivalence relations (c.f. Theorem
2.2 and Lemma 5.1), and may be related to monotone boolean function
complexity (c.f. Theorem 6.1, Cor.6.2).

The final section of the paper deals specifically with computation of
monotone boolean functions. It includes a proof of a recent theorem of Dunne
[D2], showing that when computing f using a monotone network in which the
inputs are x;,Xg, . . . , X, and their negations, a negated input x' can be replaced
by any monotone function h in the interval [f*=C,f**!]. In this context, a
"pseudo-complement” such as h can replace x' but cannot be computationally
equivalent to x'. Theorem 6.1 and Cor.6.2 show in particular that if h can be
chosen to lie in the interval [A(f)F=0,u(f)*!], then h and x' are mutually
replaceable in a restricted sense.

§0. Computational equivalence.
Suppose that A is an Q-algebra, and that F C A. An equivalence relation Clp
associated with F is defined by gOr h if for all f in F:
" given an (-word w, and elements a;,az ... ,8,; inA:
w(g,a5.8z, .. ..ay) =1 iffl wlha;.8, ...,85) =f"

That is, for each f in F, an (Q-formula over A which represents f in terms of g still
represents f when g is replaced by h, and vice versa. In effect, g and h are
"computationally equivalent” for the purpose of computing the set of elements F
using operations in () over A.

Note that an equivalent definition of [ is obtained if the elements

a,ag . ..,a, are constrained to lie in a particular generating set for A. For this
reason, it will be convenient in the sequel to suppose that a;,a3 ...,8; is a
generating set for A, and let a denote a,,83 ...,a8, Intuitively, Of defines

computational equivalence module F "relative to an input set which generates
A". 1f F={f}, it will be convenient to write O; for O .

Lemma 0.1.
Iff € F CA then O is an Q-congruence on A, and O = N { Oy |[f€F .

Proof:

Suppose that g Of h, and that vis an (Q-word. Then
v(g,a) Oy v(h,a) .
To see this, let w be an (-word, and let W be the Q-word:
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W(e.ejes . ...en) = w(vle,ej,ez ... .en)€1,82 ... .€n)
Then
w(v(g.m),a) =f iff W(g.a) =f
iff W(h,a) =f since gCth
iff w(v(h,a),a) ={.
Thus if w € ( has arity k, and g; O; h; for 1<i<k, an easy induction proves that

w(gl' gai -+ gk) Df f“,(hl' h2» wow gy hk) .

If o is an equivalence relation on a set S, and the equivalence class of s
contains a single element, s will be called solifary under «, or simply solilary
where the equivalence relation is clear from the context.

Lemma 0.2.

Or is the unique maximal (-congruence on A such that each f in F is
solitary.

Proof:
Define the Q-word w(e,e;.es, ... ,ey) = e. Then w(g,a) = f only if g=f, and O
has the stated property.

Let ¥ be an (Q-congruence on A such that f is solitary. By Lemma 0.1, it will
suffice to show that Oy contains 4.

Suppose that (g,h) € 4. Given an Q-word w:
w(g.a) =1 iff (w(ga),f) € ¥
iff (w(h,a),f) € ¥ since (g,h) € ¥
iff w(h,a) =f,
showing that g O; h.

Lemma 0.2 shows that computational equivalence is a trivial relation in the
context of many choices of 0. For instance, if A is a group or ring, a congruence
class will be a coset of a subgroup containing 2 or more elements in a non-trivial
case. In particular, if A is a Boolean algebra (where Q = {~,v'}), then O; is
trivial.

§1. Computational equivalence in distributive lattices.

A distributive lattice is defined by taking Q = {~,v}, where ~ and v are
associative, commutative, and idempotent binary operators, and ~ distributes
over v (and vice versa). In this context, (-words are frequently described as
"monotone boolean functions". The family of monotone boolean functions in
literals X;,X, . . . , Xp, ordered by "implication", form the free distributive lattice
on n generators, which will be denoted by FDL(n).
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Distributive lattices form a class of algebras in which non-trivial
computational equivalences can arise. As a simple example, let A=FDL(8), the
distributive lattice freely generated by {x;, Xz X3} (see Fig.4), and let f =
X;v(Xz~xs). If t = x;~(xgvxg), then the {~,~j-congruence defined by g=h iff
gvt=hvt is non-trivial, and is easily identified as O; using Lemma 0.2. It is
important to observe that computational equivalence is not necessarily
preserved when a quotient is taken; this in particular justifies consideration of
general rather than simply free distributive lattices. As an illustration, let A and
f be as in the example above. Then

xg~X3 Oy TE = (x1~Xe)v (X~ (X1 vXe)),
but there are quotients of A in which f is identified with TS but not with Xp~xs.

The aim of this section is to show how computational equivalence relations
on distributive lattices may be described and computed, and to explain how the
isomorphism type of the resulting quotient may be determined. For instance, it
will be shown that in a free distributive lattice, computational equivalence
modulo a single element leads to a projective lattice which is 1-dimensional, in
that the longest chain of meet-irreducible elements has length 2. Some
preliminary results on finite distributive lattices are required, as summarised
below. For details, see [G] or [B].

An element z in a lattice L is meet-irreducible if z is not the largest
element of L, and z cannot be expressed as a~b where a and b are in L \ {z}.
Dually, z is join-irreducible if z is not the smallest element of L, and cannot be
expressed as avb where a and b are in L \ {z}.

Let D be a finite distributive lattice, and let 2 denote the lattice {0,1§, where
0<1. In D, every element has a unique representation as a join of incomparable
join-irreducibles and dually. If p is a join-irreducible of D, the map : D-2
such that

n(z) = 1 iff z>p

is a lattice homomorphism mapping D onto 2, and all lattice homomorphisms
mapping D onto 2 are of this type. By duality, the complement of pt = {z|z=pj
has the form
By =tz|z<p),

where P is a meet-irreducible. There is a 1-1 correspondence p < P between
meet-irreducibles and join-irreducibles in D; via this correspondence, the
subsets of meet-irreducibles and join-irreducibles are canonically isomorphic as
posets under the ordering of D. If Q is the poset of meet-irreducibles of D, then
D and the lattice 22 comprising decreasing subsets of D (ie. subsets which
contain with d all elements < d), ordered by inclusion, are canonically
isomorphic. In particular, D is determined up to isomorphism by the poset Q.
When the ordering on Q is trivial, D is complemented and will be referred to as a
boolean lattice. Note that this term is used to refer to D as a {~,v}-algebra,
rather than a Boolean algebra.

Meet- and join-irreducibles are prominent throughout this paper, and some
special notation is helpful. If X is a subset of the meet-irreducibles of D, and
g € D, then X[g] will be used to denote

-
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ta|q €Xand g>gj,
and X the set of join-irreducibles of the form @ where q€X. Dually, if Y is a
subset of the join-irreducibles of D, then Y[g] will be used to denote
{p|p €Y and p=g},
and Y the set of meet-irreducibles of the form P wherep €Y.
If S € D the join of all elements in S will be denoted by VS, and dually.

For convenience, the term "congruence' will be used as a synonym for Q-
congruence, where ) = {~, v]. If « is a lattice homomorphism, the kernel of «
(denoted by Ker ), is the congruence defined by

(a,b) € Ker «a iff a(a)=a(b).
Congruences on finite distributive lattices are characterised by the following
lemma:

Lemma 1.1.

Let D be a finite distributive lattice, and let Q be the poset of meet-
irreducibles of D.

If X< Q the equivalence relation defined by g =x h if X[g] = X[h] is a
congruence on D, and

D/ =Y = 2X
where X is regarded as a partially ordered subset of D.

The correspondence X «» =y defines an anti-isomorphism between the
boolean lattice of subsets of @, and the congruence lattice of D.

Proof:

Let o be the map from D to 2% which maps fin D to § g € X | q#f }. Given f,
and fz in D, and q inX:
qf; iz iff gf; or g3y,
and since q is meet-irreducible:
q#f)~fp iff q3f; and gy
Thus ¢ is a lattice homomorphism, and Ker ¢ is =x. Moreover o is onto: if Sis a
decreasing subset of X, then
o( Afq€S)) =8
Suppose that X and Y are subsets of Q. If X CY then =y C =x. Moreover, if
z € X\Y, and y = AY[z], then (y,z) € =y\=x. It follows that X=Y iff =x = =y, and
that X || Y iff =x| =y, so that the correspondence X «» =x is an anti-
isomorphism.
Let D be a finite distributive lattice, and F a subset of D. In view of Lemma
0.1 and Lemma 1.1, a characterisation of Oy can be obtained simply by
identifying, for each f in F, the subset X(f) of meet-irreducibles such that
Or = =xqn.



Theorem 1.2.
Let D and f be as above, and define:

Py = set of maximal elements amongst join-irreducibles < f,

Qr

Then [y is the congruence =x whereX = QU ﬁf.

set of minimal elements amongst meet-irreducibles = f.

Proof:

It suffices to show that =x has the characteristic property of O; stated in
Lemma 0.2.

By definition, all elements of Q; are = f, and all elements of Py are < £. If
pE P, thenf=piff f£ P, sothat { g€ X|q=1f]{ characterises f uniquely. Thus f
is solitary under =y.

Now suppose that g and h are inequivalent modulo =y, There is a meet-
irreducible q in X such that g < q and h < q. Suppose that q = B, where p € Py.
Let u be the join of all elements in Py except p, and (in the notation of Lemma 1)
define w(z,a) = uv(z~p). Then w(g,a) = uvp =1, whilst w{h,a) < f, so that g and h
are inequivalent modulo Oy . A similar argument applies if q € Qx.

Note that when D=FDL(n), the sets P; and Q; defined in Theorem 1.2 are the
“prime implicants” and the '"dual prime implicants" (or "prime clauses') of f
respectively. In particular, if f € FDL[k] € FDL[n], then g and h in FDL[k] are
computationally equivalent modulo f relative to FDL[k] iff they are
computationally equivalent modulo f relative to FDL[n]. In general, if f € D € K,
where D and K are finite distributive lattices, computational equivalence of
elements of D modulo f relative to D and relative to X differ, since embedding D
into K may alter the set of meet-irreducibles. For example, if K is the boolean
closure of D, then O is trivial relative to K (c.f. Lemma 2.1).

Cor.1.3.

Let D be as in Theorem 1.2, and let F be a subset of D, In the notation of the
Theorem, let P= Y{Py|f€F}, and Q= Y{ Q| €F .

If z is an element of D, then the congruence class of z modulo Of is the
interval [z, 2], where

zo = VP[z] v V§[z] and z; = AQ[z] ~ AP[z].

Proof:
An element y in the same class as z must be = p for p in P[z], and <% q for q
in Q\Q[z]. Thus y = zg, since y< qiff y = ¥. Similarly, y < z,.
To complete the proof, it suffices to show that z and zp are in the same
congruence class, or equivalently that
P[z] = P[zo] and Q[z] = Q[z0].
(The proof that z and z, are in the same class uses a dual argument.)
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Clearly, zg>p for p in P[z], and since y=9 iff y£q, zy$q for q in Q\Q[z]. If
p € P\P[z], then p%z,, since ze<z. Finally, if q € Q[z], then zg<z=q.

Suppose that F is a subset of the finite distributive lattice D. A problem
similar to that of "computing all the elements of F” is that of "computing an
element of F, irrespective of which". Computational equivalence in the context
of such a problem is meaningful provided that F can be a congruence class for D
i.e. provided that F is an interval [fo,f;]. The appropriate quotient of D is then
obtained by identifying fo and f; in D and taking computational equivalence
relative to the class of f; and f,, and coincides with the quotient obtained by
identifying fg and f; in D/0;. If Q is the set of meet-irreducibles of D, this
quotient is associated with the subset of

NEQIEJ e FJUnt Q\Q[f] [T € F ]

consisting of elements which are either minimal subject to g=f or maximal
subject to qf for some f in F viz. the set

Qfl U Pfo.

§2. Computational equivalence with respect to one element.

Throughout this section, D will denote a finite distributive lattice, and f an
element of D. A study of O is of special interest in view of Lemma 0.1, and
there are a number of simplifications in this case. In particular, there is a
simple criterion for O; to be trivial, and the quotient D/ is always a retract
of D, whence projective if D is free.

The next results are further corollaries to Theorem 1.2:

Cor.1.4.

Let D, f and X be as in Theorem 1.2.

The meet-irreducibles of D/0Oy form a poset isomorphic with X regarded as
a poset of D, and the only possible order relations between elements of X are of
the form g=P, where p € P, q € @. In particular, the poset X is 1-dimensional
i.e. the longest chain in X has length at most 2.

Proof:

In view of Lemma 1.1, it suffices to observe that if q € Q; and p € P, then
¢=>f>p, whence P=q.

Lemma 1.1, Theorem 1.2 and Cor. 1.4 are expressed in terms of meet-
irreducibles, but may of course be dualised to join-irreducibles. The duality is
based upon the fact that q«—q defines an isomorphism between the posets of
meet-irreducibles and join-irreducibles, and that z<q iff z>q. This is illustrated
in the next proof.



Cor.1.5.

If t is an element of D/0O;, then [taf,tvf] is a boolean lattice.

Proof:

The lattice D/0O; is canonically isomorphic with the lattice of decreasing
subsets of its poset of join-irreducibles viz. P; U Q,. Under this isomorphism, the
element t is associated with

Pilt] U t],
the set of join-irreducibles which it contains.

If p € PAPy[t], then Piftvp] = Pft]uip}, whilst §qt] = Qtvp]. Similarly, if
q € Qi[t]. then Pt~q] = Pylt], whilst Qft~q] = Grlt]\f.

An easy induction then shows that the interval [tftvf] in D/0O; is
associated with the family of decreasing subsets of the form X UY, where
Pt] X cP; and Y € §t]. It is thus a boolean lattice with [PAP{[t]] + [Qt]]
atoms.

Lernma 2.1.

The congruence O; on D is trivial iff both ¢ and fJ are boolean.

Proof:

In view of Cor.1.5, it is enough to show that Oy is trivial if both f* and fi are
boolean. Suppose that (g,h) is a pair of distinct elements in D which are
equivalent modulo ;. Then one of the pairs (f~g,f~h) and (fvg,fvh) must also
be distinct and equivalent modulo O;. Thus if Of is non-trivial, it defines a
non-trivial congruence on one of the boolean lattices ft and fi. By Lemma 0.2, it
is then enough to observe that in a boolean lattice every (~, v)-congruence
respects complements.

If g is an element of D, there are sets P, and Q; associated with g as in
Theorem 1.2. Amap A: D - D is defined by

Mg) = Vip~D|p € Py .
Dually, a map p: D - D is defined by

u(g) = Nigv g € Q).

Note that g lies in the interval [A(g).u(g)]; in some sense, A(g) is the largest
element < g which contributes trivially towards a computation of g, and dually

(c.f. §5).

Theorem 2.2.
Let D and f be as above, and define e;: D = D by ey(z) = (zvA(f))~u(f).

The map e; is a retract of D onto the interval [A(f),u(f)]. The kernel of e; is
O, whence the image is isomorphic to D/0; .
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In particular, O; is the quotient of D defined by the relations
A(f) =0, u(f) = 1.

Proof:
That ey is a retract onto [A(f),u(f)] is trivial.

To show that Ker ¢; C O; it is enough (by duality) to prove for z in D that
(z,zvA(f)) € Oy,

Given p in Py, it follows from join-irreducibility that

Af) = Vis~¥|s €Pd *p,
so that zvA(f) = p iff z= p. Moreover, given q in Q.
q=f=A(f), so that g = zvA(f) iff g = z.
Thus (z, zvA(f)) € Of by Theorem 1.2.

To complete the proof, it suffices to show that the interval [fu(f)] is
boolean; by Lemma 2.1, and duality, there can then be no non-trivial congruence
on [A(f),u(f)] in which f is solitary, proving that Ker e; = Oy .

Suppose that X € Qr; then

BV = AQvVE = Algr V| qe Q.
If g and t are distinct meet-irreducibles, then gt = q, whence

fo VX = ApX)AAQNX) = u(f)AA (QINX)

Let f<y=u(f) and X=Q;\Qs[y]. It is evident that
fv VX <y = A>QNX)~ARX),
whence y has a canonical representation of the form

AQLy D~ (QN\Qi[y])-
It is then easy to deduce that [f,u(f)] is boolean.

Cor.2.3.
wu(f) is the largest element of D for which [f,u(f)] is boolean, and dually.

Proof:

Suppose that ¢=f in D, and that [f,c] is boolean. Then
f<c~u(f)<c and c~u(f) O;f c.
But since f is solitary under O, the congruence [y must be trivial on the
boolean lattice [f,c], whence c<u(f).

A distributive lattice L is projective if, given distributive lattices A and B,
and lattice homomorphisms
oA-L and 8:B~L
such that « is onto, there is a map p:B-A such that ap=g. It is well-known (see
[G] p.144) that a finite distributive lattice is projective iff it is a retract of FDL(n)
for some n iff the join of any pair of meet-irreducible elements is either a meet-
irreducible or the greatest element.
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Theorem 2.2 shows directly that if f € FDL(n) then FDL(n)/ O; is projective.
It follows that lattices of the form FDL(n)/ O; are a proper subclass of finite
distributive lattices with a 1-dimensional poset of meet-irreducibles; for
instance, the lattice E=2%, where

X = {a,b,c,d} subject to a=c, b>c, a=d, b=d

is not projective. It can also be seen that Theorem 2.2 does not generalise to
[F|>1; if D=FDL(6), and F =§ x;v(Xa~Xs) , X4v(Xs5~Xg) }, then FDL(8)/O; is
isomorphic to EXE, which is not projective, and cannot be a retract of FDL(6).

§3. Computational equivalence and replaceability.

Computational equivalence is closely related to a more traditional concept
of "computational strength' which is usually expressed in terms of replacement
rules. For monotone boolean functions, a complete description of all functional
replacements which are valid when computing a fixed function f are described in
[D2]. In this section, the preorder (i.e. reflexive, transitive) relation defined by
" g is replaceable by h when computing f " is considered abstractly, and the
results of [D2] are proved in greater generality.

Suppose that A is an Q-algebra, and that F C A A preorder relation Cg
associated with F is defined by h Cp g (also written g Of h) if for all f in F:
" given an (Q-word w, and elements a;,ag, ...,8, inA:
if w(g,a;,8g,...,an) =f then w,aag, ...,ay) =1".
That is, for each f in F, an Q-formula over A which represents f in terms of g still
represents f when g is replaced by h.

It is clear that g and h are computationally equivalent modulo F iff
g drhand h Op g; '
in particular, the relation Iy defines a partial order on the computational
equivalence classes of Op.

As in the case of Op, an equivalent definition of Iy is obtained if the
elements a;,ag, . . . , 8, are constrained to lie in a particular generating set for A,
so that the conventions of §0 can be used. If F={f}, it will be convenient to write
= for g,

The following lemmas are analogues of Lemmas 0.1 and 0.2:

Lemma 3.1.

Iff € F CA, then J; respects the operations in 2 on A:
if o € Qhas arity k, and g; 3 h; for 1<i<k, then

o(gy gz - - &x) Cp wlhy, hy, ..., by,
and Cp =N { Cy |[fEF].
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Proof:

The proof is very similar to the proof of Lemma 0.1, and is left to the
reader.

Lemma 3.2.

Cr is the unique maximal preorder relation on A respecting the operations
in 0 such that all elements in F are minimal (i.e: if f € F and g C¢ f, then g=f.)

Proof:

Define the Q-word w(e,e;.eg, . . ., e,) = e. Then w(g,a) = f only if g=f, and Cp
has the stated property.

Let < be a preorder on A with the stated properties. By Lemma 1, it will
suffice to show that [C; contains <.

Suppose that g<h. Then w(h,a) = f iff w(h,a) <f But w(g,a)<w(h,a), since
g<h and < respects (). Thus w(h,a) = f entails w(g,a)<w(h,a)<f, which proves that
w(g,a) = f.

In many types of algebra, computational equivalence is a trivial notion, but
the preorder by replaceability may still be of interest. For instance, in a boolean
lattice B, it is easy to verify by Lemma 3.2 (c.f. Cor.4.4) that:

given f,g.h € B: gC;hiff g+i<h+i,
where '+' denotes boolean addition. Thus Ty is an order relation in this case,
and (B, C;) is a boolean lattice isomorphic to (B,<). Replaceability as a relation
on finite distributive lattices is considered below. The main result (Theorem 4.1)
is based on [D2], but appears here in a more general context.

§4. Replaceability in distributive lattices.

Let D be a finite distributive lattice, and let f € D. (Only replacement with
respect to computing a single element is considered below, but the
generalisation to a subset F is easy.) The sets P; and Q are defined as in
Theorem 1.2.

The following theorem generalises [D2] Theorems R and 3, which prove the
result for D=FDL(n). It may be used to give an alternative proof of Cor.1.3.

Theorem 4.1. gC;hiff g € [\Pi[h], AQ[h]]iff h e [\Vv&g] AP{e]]

Proof:

By Lemma 3.1, { g| gC¢h { is closed under ~ and v, and is necessarily an
interval in D.

By duality, it suffices to show that s=V Py[h] is the least element of D such
that sCy¢ h.

Suppose then that g C; h. Certainly f=h~f=s, so that
(h*f)v vV Pf\Pj’[h] =1,
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and hence (g~f)v\VPAP;j[h] = f, If now p € Pfh], then p<f but p<£\V P\Pi[h],
whence p<g~f<g since p is join-irreducible. This proves that g=s.

Suppose that w(h,a) = f. Then

f < w(svh,avh) = w(s,a)vh,
and if p € P\Py[h], then p<w(s,a) since p is join-irreducible. Also
w(s,a) = w(s~h,a) = w(h,a)~s = fas = s,
proving that
f= w(h,a) > w(s,a) = f.
To prove the second equivalence stated in the Theorem, note that
g = VP([h]ifl P[h] c Pfe] iff Pe] < Ph].
But for pin Py
L B < Pile] iffl pe iff g=<B,

so that Py[g] € Pf[h]iff h< APy[g].

A dual argument completes the proof.

Cor.4.2.
If hisin D, then

0C;hiffhe[ 0, z(f) ], where z(f) = A P,
and 1Cyhiffh e[ u(f), 1], where u(f) = Vv G

(These are generalisations of a replacement rule due to Mehlhorn c.f. [M]
and [D2].)

The rest of this section deals with characterising the poset (D/0;,Cy). It
is a familiar fact that in any computation of a monotone boolean function f, a
function g is replaceable by any function between g~f and gvf. The next
corollary to Theorem 4.1 shows that these are the only valid replacements in
D/0y.

Cor.4.3.
For a in D/C;, let B(a) denote the interval [a~f,avf] in D/0y .

The map Bis a 1-1 map from D/0; to intervals in D/0y, and
given a,b in D/0;: aC; b iff a € B(b) iff B(a) € B(b).

Proof:
In any distributive lattice, the element a is determined by a~f and a-f,
whence Bis 1-1.

To see that a; b iff a € B(b), it will suffice (by Theorem 4.1, and duality) to
show that if h is a representative in D for the class b in D/0;, then
s = VPi[h] Oy haf.
This follows from Theorem 1.2, since it is easy to verify that

Py[s] = Pf[h~f] = Py[h] and Qs] = Q[h~f] = Q.
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Cor.4.4.

If D is a boolean lattice, and f,g,h € D, then
gl hiff g+i<h+f.
Thus (D, C; ) is a boolean lattice isomorphic with (D,<).

Proof:

Since D is boolean, D and D/0; are isomorphic, and Cor.4.3 applies. It will
suffice to show that
f+g<f+h iff fvh>fvg and f~g=f~h.
If fvh=>fvg and f~g=f~h, then
t+g = (fvg)(f~g) = (fvh)~(f~h) = f+h.
Conversely, if f+g < f+h, then
fvh = f+h = f+g = (f~g)v(f'~g) = f'~g.
Thus fvh > (f'~g)v(f~g) = g, proving that fvh> fvg. Since f+g = f'+g', a dual
argument shows that f~g = f~h.

The 1-1 correspondence g <« f+g then defines an isomorphism between
(D,<) and (D, Cy).

Cor.4.4 shows that the relation C; is non-trivial on a boolean lattice B even
though O is trivial (c.f. Lemma 2.1). Viewing B as a Boolean algebra, both Oy
and [y are trivial: if € is an order on B respecting {~,~,'{, and g < h, then

1 =gvg' €gvh' <hvh' =1,
whence h'vg = 1; similarly h'~g = 0, and h=g.

Cor.'s 1.5, 4.3 and 4.4 together show that (D/0O;,Cy) is a decreasing subset
of a boolean lattice, or "abstract simplicial complex.” The maximal simplices in
this complex are associated with elements g in D/0; such that [gafgvf] is
maximal amongst intervals of this type.

Since [y respects ~ and v, it is easy to verify that if b lies between a and ¢
in (D/0¢ <), and aCyrc, then b also lies between a and ¢ in (D/0;,C¢). In
particular, there are simplices in the complex (D/O;,C;) corresponding
directly to the boolean intervals ft and fi in (D/0;,<). It also follows that
{y|yCy2z(f)}] is a maximal simplex; if g=z(f) then g J; 0, whence 0<g=z(f), and
g Ty 2(D).

An alternative characterisation of the complex (D/0O;,C) is provided by
Cor.4.5.

Cor.4.5.

The simplicial complex (D/C0y, Cy) is isomorphic with the family of trivially
ordered subsets of Py U @ ordered by inclusion.
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Proof:

The lattice D/C; is isomorphic with the family of decreasing subsets of
P; U @ via the map which associates Py[g] U §i[g] with the element g in D/0Oy
(c.f. Cor.1.5). Since the only possible order relations are of the form ¥=p, it
follows that if X and Y are subsets of Py and 'Q} respectively, then
X UY is trivially ordered iff (P/\X) UY is decreasing.
Let x be the map which associates with g in D/0; the trivially ordered
subset x(g) = (PAPf{g]) U Q[g]. As in the proof of Theorem 4.1,

g Cy hiff Py[h] € Pylg] and Qig] c Qh] iff x(g) < x(h).
The map x thus defines the stated isomorphism.

§5. Properties of the maps u. A, z and u.

Given an element f in a finite distributive lattice D, the element u(f) (resp.
u(f)) is the smallest element of D computationally equivalent to (resp.
replaceable by) 1 modulo f; the elements A(f) and z(f) are defined dually. Some
simple properties of the maps A, &, z and u are described in this section. Details
of proofs, and dualisation of results will be left to the reader.

If q is a meet-irreducible in D, then u(q) is the element which covers q in D,
viz. q~q. It is clear that if q; and gz are meet-irreducibles and q; < gz, then
1(q,)<u(az), whence u(f) = Au(Qr) = Au(Q) for any set of meet-irreducibles Q
containing Q. It is easy to deduce that u is a ~-homomorphism D-D; its image is
then a closure lattice in D. In general, u is not a v-homomorphism.

There is a relationship between x and A which can be most easily expressed
as a Galois connection between D and D°, the dual of D. For this purpose, A and u
are considered as maps D-»D' and D*»D respectively. 1f d;<d, in D, then
Ad;)=A(dz) in D°. From the characterisation of & and X in Cor.2.3, it is clear that
uA(d)=d for all d in D. By the standard theory of Galois connections uA is thus a
closure operator on D, and AuX = A. Moreover, uA(D) and Au(D*) are closure
lattices in D and D* respectively, and are dually isomorphic via the maps

wANL(D¥)- uA(D) and A:uA(D)-+Au(D*).
There is also a relationship between the intervals of the form [A(f),u(f)] and
the congruences of the form O;, as expressed by the following lemma:

Lemma 5.1.
Using the notation of Theorem 2.2, the following are equivalent.

(i) Dg - Dl’
(ii) f is solitary under O,
(iii) A(f) = A(g) and p(f) < u(g)

(iv) ere; = ey
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Proof:

(i) and (ii) are equivalent by Lemma 0.2.

(ii) implies (iii): a necessary condition for f to be solitary under O, is that
all elements of [A(f),u(f)] should be in distinct classes modulo 0, (Lemma 2.1).
By Theorem 2.2, this is only possible if A(f) = A(g) and u(f) < u(g).

(iii) implies (iv): Let

A=Xg)=a=A(f)=b=uf) <B=ug).
Then, by distributivity:
er.eg(z) = (((zvA)~B)va)ab = (zva)~b = efz).
(iv) implies (i): if y O, z, then e,(y) = e,(2), whence
er(y) = er.eg(y) = ereg(z) = exz).

Some general relations between A(f), w(f), z(f) and u(f) will now be
established; these are sumnmarised in Fig's.1la and 1b.

If XC Q. then (as in the proof of Theorem 2.2) fv\VX = A(QAX)~Au(X).
This proves in particular that u(f) = fv\V&; = fvu(f). Since u(f) Or 1, the relation
fv\VvX O; A(QN\X) is another consequence.

The map u is such that if Q is a trivially ordered subset of meet-
irreducibles, then u{(A(Q)) = Vv (u(Q)). If q, and gz are meet-irreducibles, then
q:=qg iff §,=q;, whence Q is trivially ordered iff Q is trivially ordered. Duality
shows at once that u and z are inverse bijections.

From the relation fvu(f) = u(f) proved above, it follows that by duality that
a(f) = u(f)azu(f) = u(f)~f. Since A is a v-homomorphism, A(f)vAu(f) = Au(f),
whence Au(f) O Au(f).

Consider the map uA. For general f in D:
uA(D) = W(APRAQ) = w(AP)u(A@AQ2(D]) = 1V Brz(D)],

since Q\Q[z(f)] = { q € Q; | g&P for any p in Py }. In the particular case in which
D/0O; is boolean, ui = u. Indeed, the condition is necessary and sufficient, since
un(f)=p(f) entails uA(F)=uA(f)~A(f)=wu(f), proving [A(f).ur(f)=u(f)] boolean.

It will be convenient to denote the equivalence classes of A(f), u(f), z(f) and
u(f) in D/0; by N, a4 7 and w respectively. There is a distinction between
relations between computational equivalence classes modulo f, and relations in
D. For instance, if D = FDL(5), and f = (x;~Xz~Xg)v(X;~X,~X5), then z(f)£u(f), and
ur(f)<uz(f). General relations between classes analogous to the relations
between elements in Fig.'s 1a and 1b are summarised in Fig.2.

Relationships in D/0; can be most easily understood by representing D/0¢
as the set of decreasing subsets of the poset P = Py UG (c.f. Cor.1.5). In this
representation, z; is the largest decreasing subset which does not contain an
element of P; viz. the decreasing subset whose maximal elements are those
elements of @ which are minimal in P. Since u is the decreasing subset
generated by Q. the relation z;<y; holds in D/0y .

From the representation, it is obvious that z=u; iff D/O; is boolean. Since
u(f) and z(f) are respectively greatest and least representatives in D for their



-18 -

respective computational equivalence classes, z(f)=u(f) iff D/0; is boolean. The
subcase u(f)=z(f) is interesting. In this case:

Q(n = ﬁf and Q = FP‘u(i’) = i'j‘z(f):
so that by Theorem 4.1: g Cyhiff hC,q) g Thus Oy = Oy, but the orderings on
the equivalence complexes associated with f and z(f) are dual. As an example,
let f=(x;~Xg)v(Xg~Xg)v(Xg~Xy) in FDL(4).

Another special case occurs if z; is the least element of D/0; ; this arises iff
no element of @ is minimal in P. Because fz(f) = A(f), and A(f) is the maximal
representative in D for the least element of D/, an equivalent condition is
f>z(f). This is also equivalent to f = uA(f); the condition for f to be "closed"
under uA.

For obvious reasons, the study of free distributive lattices, or equivalently
monotone boolean functions, has a special interest. The fact that most of the
results and proofs concerning computational equivalence and replacement rules
do not require the assumption of freeness may indicate that a deeper
understanding of the particular structure of free distributive lattices is
important.

The structure of the semi-lattice w{FDL(n)) seems to be difficult to analyse
completely. It may be regarded as a closure lattice in FDL(n); the case n=4 is
depicted in Fig.3. As Fig.3 illustrates, the closure lattice is in general non-
modular, but has some curious properties. For instance, the sublattice K
generated by the n-1 elements

p(x)u(xe), o (o)
is isomorphic with FDL(n-1). To see this, consider the homomorphism from
FDL(n-1) onto K which maps %; to u(x) for each i, and observe that the map
K-FDL(n—1) mapping w to Wlx‘iz0 is its inverse,

When n=4, the lattice w(FDL(n)) also has the property that each element
w(t) is contained in one of the n distributive sublattices analogous to K, but this
is not the case in general. For example, take n=6, and define

t = (X1vXevXg)~(XyvKs5vXe)~(XgvXs)~ (X1 vXgvX5vXg).

The closure lattice u{FDL(n)) is also self-dual: to see this, define a map £:
M(FDL(n)) - u(FDL(n)) via
B(u(f)) = pA(t"),
where f* is the dual of f in FDL(n). Certainly B is well-defined, since
A(E) = ( ()" moreover, if B(u(f)) = 8(1(g)), then
ME) = MAA(E) = Aun(eg?) = Ag").
whence u(f) = u(g).

In the above context, it may be worth remarking that the algebraic
properties of monotone boolean functions in n variables viewed as degenerate
functions of n+1 variables are considerably simpler than those of non-
degenerate functions. For such functions, computational equivalence always
leads to a boolean quotient, in view of Theorem 1.2, and accordingly the
relations uA = 4 and zu = A apply. As noted above, the closure lattices defined
by A and u on this subclass are free distributive lattices, whose structure may
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prove to be more tractable.

§6. Complements and monotone v non-monotone networks.

Recent work of Berkowitz, Wegener [W] and Dunne [D2] has shown that there
are sometimes useful ways of simulating non-monotone networks for computing
a monotone function without using negation.

In this section, this problem is studied using an algebraic approach, and
new proofs of results of [D2] and [W] are given.

Suppose that f is a monotone boolean function in n variables i.e. an

element of L=FDL(n). The lattice L, freely generated by x;,Xz, . .. , X, can be
embedded into FDL(Rn), freely generated by x;,Xz, . . . ,Xp,¥1.¥2, - - - . Yo, and into
the free boolean algebra FBA(n) freely generated by x;,Xz, . . . ,Xn. There is then

a projection 7 : FDL(2n)-»FBA(n) which maps y; to %' for each i, and acts as the
identity on L.

A monotone network for computing f in which the inputs are x;,Xz, . . .\ Xp
and their negations is associated with an element v in FDL(2n) such that n(v) = f.
If V is the set of such elements v (that is, the inverse image of f under ), an
element h; in FDL(2n) is a pseudo-complement of x; (see [D2]) if y; is replaceable
by b, for purposes of computing an element of V, irrespective of which. (This
definition differs from that of [D2], in that h; is not required to lie in L.)

As explained in §2, the relevant notion of computational equivalence in
FDL(2n) in this context corresponds to first identifying the elements of V to form
a class {V}, then evaluating computational equivalence relative to {V{ in this
quotient. By Lemma 0.2, it is evident that the projection 7 defines the required
quotient; all the elements of V are identified under m, and no further
identification of elements in the boolean image FBA(n) can leave {V} solitary.

By Cor.4.3, the pseudo-complements of x; in FDL(2n) are the inverse images
under 7 of elements in the interval [y;~f,y,vf] of FBA(n). Since m acts as the
identity on L, there is at most one pre-image in L under m for each element in
FBA(n). But n(y;~f) = f]xl:o = ﬂ(f!xl:o), and similarly m(y,~f) = ﬂ(flxl:l), proving
Theorem 6 in [D2].

To characterise pseudo-complements of x; in FDL(2n) rather than in L, the
principles explained in §2 will be used. The elements of V define an interval
[fo.f;]. Since Ker 7 is the smallest congruence containing all pairs of the form

(xivyi,1) and (x;~y;0), it follows that fg = fA\nl/(xivyj) and f, = fv/]:\(xi»«yi). Hence
the set P (resp. Q) of prime implicants (resp. prime clauses) of f; (resp. f;) are
the terms in the non-monotone DNF (resp. CNF) of f with y; substituted for x;' for
each i. (Via the correspondence of Lemma 1.1, Ker 7 is associated with the
subset Q U P of the meet-irreducibles of FDL(2n), which of course - being the set
of clauses of the form e;+ez+ : - - +e,, where g = x;or y; - is independent of f,
but P and Q are semantically useful.)

By Theorem 4.1, the pseudo-complements of x; define the interval

= — n
[\VP[fo], AQ[f;]]. which is easily identified as [flxl—onyl,flx‘_lvyl]. Since Ax; is in
P\P[y,]. it is also clear that there can be no element computationally equivalent
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toy;in L

The above discussion indicates that there are many monotone functions
which can replace a negated input in a monotone network computing a
monotone function f from the inputs x;,%s, . . . , X, and their negations, but it is
never possible to find a monotone function h; which simulates a negated input
X;' so precisely that a monotone network computing f from the inputs
X1,Xz, - . . Xp Dy, X', Xy still computes f when x;' replaces h;. Even so, it will be
shown that for certain functions f there may be pseudo-complements h,; for x;
for which the replacement of h; by x;' in such a context still "very nearly"
computes f. This resull is proved as a corollary to a more general theorem:

Theorem 6.1.

In the notation introduced above, the boolean closure of L/[; and
FBA(n) /{A(f)=0,u(f)=13 are isomorphic.

If V(eyez ....en) is an arbitrary boolean expression such that
V(x,,Xz, . . ., Xq) is well-defined in L/0O; and evaluates to f, then
P=(V(xuXe . . %) v A(E) ) ~ u(f)

in the free boolean algebra FBA(n).

Proof:

Let Py and Q; be the set of prime implicants and the set of prime clauses of f
respectively, and let P and @ be as defined above. If S* denotes the set of
possible conjunctions of literals in a set S, define

0‘:EXLXZ- R an;."EXI-XZI cooaXn s YuYe oo -Yn; by O((/\X,) = /\ Xl 1/¢\IYI

Then « is 1-1, and identifies P; with a subset Py of P. The set @ can be identified
with a subset Qg of Q via a map f defined in a dual manner.

Since P\Pg = a(Pyg) and Q\Qp = B(Quqy). the quotient of FDL(Zn) which
corresponds (c.f. Lemma 1.1) to the set of meet-irreducibles Po U Qg CP U Q is a
quotient of FBA(n), which can be readily identified as FBA(n) /{\(f)=0,u(f)=1}. By
Theorem 1.2, the elements g and h in L are equivalent under O; relative to L iff
Pi{g] = P¢[h] and Qf{g] = Q[h]. But for ginL:

a(Pi{g]) = Polg] and B(Qile]) = Qole]
Thus the projection of FDL(2n) onto FBA(n)/{A(f)=0,u(f)=1} associated with the
set of meet-irreducible's Py Urﬁo induces an embedding p of L/0; into the
image. It follows that FBA(n)/{\(f)=0,u(f)=1} is the boolean closure of L/0Oy,
since both lattices have the same number of meet-irreducibles.

Suppose that V(e;,ez, . . . ,e,) is a boolean word, and that V(x;,Xg, . . . , Xq) is
well-defined in L./O; and evaluates to f. As above, let m denote the projection of
FDL(2n) onto FBA(n) which maps x; to x; and y; to x;'. In view of the embedding p
described above, the function v=V(x,,%z, . . . , %) in FBA(n) will satisfy v[m(Pg)] =
f[m(Pg)] and v[m(Qo)] = f{m(Qo)]. But

u(f) = A(f) = p for all p in P\Pg
and q = u(f) = A(f) for all q in Q\Qp, whence
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t=m(to) = Vn(P) < (vwA(D))~u(f) = An(Q) = n(fy) = 1.

In the theorem, the condition for V(x;,Xz, . . . ,X,) to be well-defined is that
all necessary complements of sub-expressions of V exist in L/0Oy ; this condition
is redundant if L/O; is boolean, that is if each x; has a complement in L/0; .

Let x denote one of the free generators of FDL(n). The element h in L
serves as a complement for x in L/0; iff xvh = u(f) and x~h < A(f).

lLemma 6.2.
If a and b are arbitrary elements of L, then the inequalities
xvh>aand x~h=b
can be satisfied simultaneously by some h iff a*=? < b[*~!. When this condition is
satisfied, the solution set is the interval [ a*=° , b=! ]. In particular:

x is complemented in L iff u(f)[*=0 < A(£)[F=! iff u(f)F=° < z(f)[=1.

Proof:

If xvh>a and x~h<b, then bF!>h[f!>hfC>a*°  Moreover
Xvaf%=a, and x ~ b < b.

Taking a=u(f) and b=A(f) proves that

X is complemented in L iff u(f)|*=° < A(f)F=1.
The latter condition entails u(f)=° < z(f)[*=!, since
u(b)=0 < w(f)F=0 = A(F)F=! < z(f)F.

For the converse, since A(f) = f~z(f) and wu(f) = fvu(f), it suffices (by duality)

to prove that
2Ot 17

Now z(f)**! = AS and f*=° = VT, where S = PA\P{[x] and T =PAP{x]. If p is
meet-irreducible, p < x iff B # x, whence P; is the disjoint union of S and T. But if
s€SandteT, then t}s so that ¥=t.

The following corollary follows directly from Theorem 6.1 and Lemma 6.2:

Cor.6.3.
Let f and L be as above.

If x; has a complement in L./O;, and h; is a representative in L for x;' in
L/0O;, then h, is a monotone pseudo-complement for x;.

Moreover, if w 1is a monotone boolean expression such that
w(X;. Xz, . . ., X hy) =fin L, then f = (w(x.%g, . . ., X, X1 YV A()) ~pe( ).
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p(t) = toult) pa(t) = tz()

EN(E) = pz(f)~u(f) z(f)

A(f) = Au(f)vA(f) u(f)

Af) = faz(f) B Au(f) = fau(f)

Fig.1a: The general case.

pz(t)
u(t) = WA(H) = JA(D) 2(t)
f
NE) = (f) = M) u(f)
oA

Fig.1b: D/0O; is boolean.
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