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Abstract

Let P be a finite poset and let x,y € P. Let C be a chain.
Define N(i,j) to be the number of strict order—preserving maps w : P = C
satisfying w(x) = 1 and w(y) = j. Various inequalities are proved,
commencing with Theorem 3. If r,s,t,u,v,w are non-negative integers
then N(r, utv+w)N(r+s+t, u) < N(r+t, utv)N(r+s, utw). The case v =w = 0
is a theorem of Daykin, Daykin and Paterson, which is an analogue of a

theorem of Stanley for linear extensions.



1. Introduction

Let P be a poset (= partially ordered set) with n elements and C a
chain with elements 1 <2 <... <ec. Monotonic mappings from the elements
of P into C are defined as follows.

For (P,C), amap p ¢ P » C is order-preserving if, for all x,y € P,

x <y implies p(x) < p(y). Let R = R(P,C) be the set of all such p.
(Some authors require |P| = |C|, but we do not need this restriction).

For (P,C), amap w : P+ C is strict order-preserving if, for all x,y € P,

x <y implies w(x) < w(y). Note that w need not be 1-1. TLet 0 = Q(P,C)
be the set of all such w.

Amap A : P+ [n] = {1,2,...,n} is a linear extension of P if A

is 1-1 and, for all x,y € P, x <y implies A (x) < A(y). Let A be the set
of all such X.
A sequence a 53y of non-negative real numbers is said to be

log concave if a;_4 @ < a% for 1 < 1. In particular, a log concave

1+1

sequence is unimodal, i.e. for some j we have ag <a  <... < aj and

aj > aj+1 > oee. . Log concave sequences can be proved (see [Al) to

satisfy the more general inequality,

a a < a a for nmon—negative integers r,s,t.
r “rts+t - “r+s r+t & g i

We adopt the following notation. Let Z  denote the non-negative
integers. If XyseensXy is a fixed subset in P and ii""’ik € Z
then define N**(ii""’kk) to be the number of order—preserving maps
p ¢+ P > C such that p(xj) = ij for 1 €< j €k; and define N(i1,...,ik)
to be the number of strict order—preserving maps w : P > C such that
w(xj) = ij for 1 € j €k; also define N*(il"'°’ik) to be the number
of linear extensions A : P -+ [nl] such that k(xj) = ij for 1<j<k.
Further, if ij % C for any j then N(ii"°"ik) = 0 and similarly for
*%

* . » . - . .
N ,N. Also we will write X=X 5Y=%, 5 and we put 11”"’1k’ Jl,...,Jk € C

throughout.



A fundamental result is
Theorem 1. (Stanley [S81). Let XyseresXy be a fixed subset in P. If
r,s,t € 2% and ih ¢ [r,r+s+t] for 2 <h <k, then

(1) N*( . .)N* radt 3 .)<N* bt 4 . * . .
r,i lk (r+s t,12,...,1k (r t,12,...,1k)N (r+s,12,...,1k).

greees

Recently Daykin, Daykin and Paterson [DDP] established the analogue
of Stanley's result for both strict order—preserving and order—-preserving
maps. In other words they proved that (1) holds With each N* replaced by N,
and with each N* replaced by N**.

Their proofs entailed defining an injection. This injection consists
of comstructing, for each pair of strict order-preserving maps (or order-
preserving maps) with wl(x) = r and wz(x) = r+s+t, a unique pair of maps
with w3(x) = r+t and w4(x) = r+s. That is if two ordered pairs of the
form (wl’mz) are distinct, then their two associated (w3,w4) pairs are
distinct, thus ensuring the inequality.

The results in this paper are motivated by these log concave sequences
for partial orders. The reader will find, for example by looking at
Theorem 3, that we are here basically concerned not with a single element
X € P but with a pair of elements x,y € P. However we extended the above

injection technique to this more general situation, to obtain many results

of a new kind.



2. Strict Order-Preserving Maps

We first state a generalization of the theorem of Daykin, Daykin

and Paterson, which is proved in [D].

Theorem 2. Let L SERERRE N be a fixed subset in P. If r,s,t ¢ Z+

and jh < ih+s for 2 < h € k, then

N(r,iz,...,ik)N(r+s+t,j2,...,jk) < N(r+t,i2,...,ik)N(r+s,j2,... ).

>y

One of our main results is

. . +
Theorem 3. Let X enesX be a fixed subset in P. If r,s,t,u,v,w € Z
and ih -v< jh < ih+s for 3 < h < k, then
N(r,u+v+w,i3,...,ik)N(r+s+t,u,j3,...,jk) < N(r+t,u+v,13,...,ik)N(r+s,u+w,j3,...,jk).

Each map ®w counted by the function N has w(xh) fixed for 3 < h < k in the
respective factors- From now on we will simplify such expressions to

Hence the statement of this theorem abbreviates to

omit any 1h’Jh' -

+ . . .
Theorem 3. If r,s,t,u,v,w € Z and i, - v < iy < i *s for 3< h < k, then

h

N(r,utv+w)N(r+s+t,u) S N(r+t,u+v)N(r+s,u+w).

Proof Suppose that the L.H.S. of the inequality is not zero.

Case r,t,u,w > 0. For the time being ignore elements KyseeesXK o

Given any pair of strict order-preserving maps Wy, 3 P+ C with

2

wl(x) =r, wl(y) = u+v+w and wz(x) = r+s+t, wz(y) = u, we will

construct a unique pair of strict order-preserving maps

Wysw, P+ C with w3(x) = r+t, w3(y) = u+v and wa(x) = r+s, w4(y) = utw.
Now w3,w4 will depend on subsets D,E of P. We define

§ (wl,wz) g (WB’UJA’D,E) by

]

m3(p) -5 + wz(p) ifpeD

=v + wz(p) if pe E

w, (p) if p € P\(DUE),

and mé(p) =s+uw(p) ifpeD

m
jeo]

-v + ml(p) if p

wz(p) if p € P\(DUE).

Initially let D = {x} and E = {y} and then D,E are constructed
4




iteratively. We stop adjoining elements to D and E as soon as

w, W

3 € 2, and then the construction is complete.

4
When d = X and e = y we have

< - =
(3.1) 1+ w,(d) s + wz(d) w3(d),

(3.2) 1+ mz(e) < -v+ wl(e) = wa(e).

Assume for the moment that (3.1), (3.2) are invariants for any
d € D, e € E respectively. From (3.1) we deduce that d € D implies that
m3(d), ma(d) € C, i.e.
(3.3) 2< 1+ wq (d) < w3(d) and wa(d) = s+w1(d) < -1+ wz(d) < - 1+c.
Similarly from (3.2) we deduce that for e € E,

(3.4) 2 < m4(e) and w3(e) < - 1+c.

Now suppose we have constructed some D and E but w3,m4 % . Also
suppose there exists p € P\(DUE) for which Ly OT w, loses order between
some d € D and p, or between some e € E and p. Assume the former and then
one of four cases holds.

Case 1. p <d and w3(p) = m3(d).
€ 2, (3.1) and the definition of w

Bu using w we get

1 3

w, (p) <w1(_d) < =5+ 0y(d) = uy(d) S uglp) = ().

Since this is impossible this case cannot arise.

Case 2. p <d and m4(p) > wa(d).

By using Wy s, €  and the definition of w, we get

2
1< mi(p) < wi(d) = - g + wa(d) < -5+ w4(p) == 35 + wz(p) < - s+c.

Hence d forces p to join D, so let D' = DU p. Notice that

(3.1), (3.3) hold for p € D'.

Case 3. p >d and m3(p) < w3(d).

Similarly to Case 2, d forces p to join D with (3.1), (3.3) holding

for p in D'.

Case 4. p>d and ma(p) < wA(d).

Similarly to Case 1 this is impossible.



The latter four cases follow by the symmetry d © e, s ©¢ v and
wl9 w2, w3 hid w4.

Now we have shown that since (3.1) holds for some d € D then it holds
for any p forced to join D by d. Similarly (3.2) is invariant for any e ¢ E.
Lemma 1. Let d € D, e € E and define £f,f' : D > C by
F(d) = wy(@), £(d) =u,(d), and g,g" : E>C by gle) = uyle), g'(e) = w,(e),
and h : (D,E) » C2 by h(f,g) = (w3(d),w3(e)) and h(f',g"') = (wa(d),wa(e)),
and h',h'" : P\(DUE) = C by h'(p) = w3(p) and h" (p) = w4(p) for p € P\(DUE).
Then f,f',g,g',h,h',h" are strict order-preserving.

Proof Let d e D with d1 < d,. Then mz(dl) <Iw2(d2) implies

) 2
f(dl) = ‘S'+w2(d1) <-s + wz(dz) = f(dz). Also w,(dy) <'w1(d2)
implies f'(d1)= s + wl(dl) <s + wl(dz) = f'(dz). And similarly
for g,g,',h',h" .

To see that h is strict order-preserving let d ¢ D, e € E.

Case d <e. By using w, € Q and (3.1), (3.2) we get

2
w3(d) =- g + wz(d) <v + wz(e) = w3(e),
and w4(d) =g + wl(d) <iw2(d) <Iw2(e) <= v+ ml(e) = wa(e).
Case d >e follows by symmetry. O

Lemma 2. DNE = ¢.

Proof From (3.1) and the definitions of w3,m4 we deduce for d € D that

(2.1) wl(d) <Zw3(d) - s + wz(d) §£w2(d),

(2.2) wl(d)'< wA(d) s + wi(d) <Zw2(d).

Similarly from (3.2) we deduce for e € E that

(2.3) mz(e).g w3(e) v + wz(e) < wl(e),

i

(2.4) wz(e) <Zw4(e) - v+ u(e) <ule).

pa

Corollary 1. If p e P with wz(p) K= v + wl(p) then this implies p ¢ D.

Corollary 2. If p e P with wl(p) <=5 + wz(p) then this implies p ¢ E.



Now suppose d € D, e ¢ E. Since h in Lemma 1 is strict order-
preserving, this means that neither d causes e to join D, nor e causes
d to join E. O

From Lemmas 1,2 it follows that if WasW, ¢ Q then order must be
lost between either P\(DUE) and D or P\(DUE) and E, that is Cases 1-4
along with the symmetric ones. Since P is finite the iterative construction
of D and E must halt (possibly with DUE = P). When it halts we deduce from

e Q. It remains to show

Lemmas 1,2 that Wqst,

Lemma 3. § is injective.

L L
Proof  Suppose (mi,wz) # (w1 Wy ).

b

Case S(wi,wz) (w3,w4,D,E) é(m1 T ).
This is clearly contradictory from the definitioms.

= . 1Ty o ' '
Case G(wl,wz) (w3,w4,D,E) # (u3,w4,D L,E') 6(m1 S0, ).

Without loss of gemerality assume D # D' and also that there exists p € D\D'.

Let d e DN D'.

Case p < d. Now we adjoined p only to D and hence,

- - = 1
w3(p) s + wz(p) w, ().
Using this along with wl' € Q and Case 2 we have
! = < - = ' < - . 4
w, (D wl(d) s + wz(p) w, (p) S 1+ wy (@,
giving a contradiction.
Case p >d follows similarly.

If we now assume E # E' then this follows by symmetry. We conclude

that 6 is injective. O

Finally consider elements Kyseo e Xy o For X with 3 < h < k we have

0 ) =iy Fos tup() = -84 gy,
wylxg) =3y 2= vt () =-v+i.



From (2.1), (2.4) we deduce that X é D and X, % E giving w3(xh) =i

and w4(xh) = jh as required, which completes the proof of this case.

Case Not r,t,u,w > O. If r = 0 or u = 0 the result is trivial

because the L.H.S. is zero. If t = 0 or w = O the theorem reduces
to Theorem 2. O
One might think that if u < v then
N(r,u)N(r+s+t,v) < N(r+t,u)N(r+s,v). However that this 1is not true
is shown by
Example 1. Let P = {x <p <y}. Then
2.2 = N(1,4)N(5.8) € N(4,4)N(2.8) = 0.5.
From Theorem 2 we have N(r,u+w)N(r+t,u) < N(r+t,utw)N(r,u).
It would seem possible for such an inequality to be bijective.
Nevertheless we give
Example 2. Let P = {x <p, y <pl. Then
(c-2)2 = N(1,2)N(2,1) <N(2,2)N(1,1) = (c-2)(c-1).
We now consider extending each of the elements x,y € P in Theorem 3
to subsets of P.
Theorem 4. Let k', k" € 7" with k' < k" < k. If S’v’tl""’tk" c z¥
+ s for k" < h « k, then

and i, -~ v i <1

h h h

N(ii” .. ,ik, ,ik,+1+v+t.k,+1,. .. ,ik"+v+tk,,)N(i1+s+t1,. . ',’ik'+S+tk' ’ik'+1’ - ,ik..) <
N(i1+t1”"’ik'+tk"ik'+‘1+v’°"’ik"+v)N(i1+S"“’ik' +s’ik'+1+tk'+1""’ik"+t'k") .

Proof  Suppose that the L.H.S. of the inequality is not zero.  Assume

that not 311 of ti,..., are zero for otherwise the result is obvious.

tld'

If only t1 >0ort > 0 then this follows by Theorem 2 or Theorem 3.

k'+4

Hence without loss of generality assume k' 2 2 and tl’tZ > 0.

Consider first the elements x ,...,xk‘. We follow the proof of

Theorem 3, except that we define 6:(w1,w2) > (w3,w4,D) by



w3(p) = -5 + mz(p) if peD

wl(p) otherwise,

and wé(p) =s +uw (p) ifpeD

wz(p) otherwise.

Initially let D = {x}. Then w3(x) =i, +t, and wa(x) =i +s as

required. Now consider y.

Case y € D implies w3(y) =i, +t and w4(y) =i, +s.

2
Case y é D. Now define 6':(w3,w4) +'(w5,w6,D') by
ws(p) = -3 + w4(p) if p e D'
= m3(p) otherwise,
and w6(p) =5 + w3(p) if p e D'
= m4(p) otherwise.

And initially let D' = {y}. Now we must show that x ¢ D'. If there
is no path of elements between x and y then clearly x ¢ D'. So suppose
there exists a path of elements X = ql,qz,...,qh =y. Then for some

1e {2,...,n}, q ¢ D with 4., € D.

Firstly suppose by (3.1) that wl(qz) > - s + w2(qz), which
implies 7 # h.  And hence w3(qz) > - s + wa(qz), which implies q7 ¢ D'.
Thus q; Prevents x from being adjoined to D' via this path, and similarly
for any path.

Otherwise suppose that wl(qz) <=-s + wz(qz), and that qj € D'.

Case qZ_1 <9qz- Then we have

w3(qz_1) =- s + wz(qz_l) <= s +tuw,(qp) =gy,

and w4(qz_1) =s + wi(ql-l) < s * wi(qz) me(ql)'
Therefore q, does not foce 974 to join D'.

Case 474 >9g follows similarly.



We may conclude that x ¢ D'.  Further, since this analysis holds for
any d € D, d' e D' we deduce that DM D' = ¢. Also for x with k' <h < k"
we have ml(xh) = ih tvE and wZ(Xh) = ih. By (2.1) we know that
X e% D, xh % D'.
This process is iterated for elements XgseeesX g €XCEPL when 3 < h < k'
and t, = 0. By (2.1) for any integer 7 > 1, w21+1(xh) = wi(xh) = ih and
w21+2(xh) = wz(xh) = ih + s.
By repeatedly using 6, depending on which cases apply, we are using
Theorem 2 consecutively some number of times, thus resulting in an injection.
Now consider the elements ESIPFEEER ST As with the previous
subset, we repeatedly apply &§ but with s = - v and D = E,.
Let&? = D,D',...,D" be the set of disjoint subsets of P generated
by & for XiseeerXs and similarly'£?== {E,E',...,E"} for LRPPPTPEPE gt
By Lemma 2 we have thatdg,éi are pairwise disjoint sets.
Also by the proof of Lemma 2 we deduce that X é D, X ¢ E for
k" <h <k, and any D g};, E eéz. So if we used the injection a total
of L times say, then m22+1(xh) = wl(xh) = ih and w21+2(xh) = wz(xh) = jh
as required. O
One may hope that if s # v then
N(r,u)N(r+s+t,utv+w) < N(r+t,utw)N(r+s,utv). However we have
Example 3. Let P = {x<p, y < p}l.
(c-1) (c=8) = N(1,1)N(8,8) ¥ N(6,5)N(3,4) = (c=6) (c-4).
Further by Theorem 2, N(3,5)N(6,4) < N(6,5)N(3,4).
Under certain conditions one may have s # v in this context, as
shown by
Theorem 5. If r,s,t,u,v,w € Z+ satisfy t < s € v w and

ih < jh < ih + s for 3 < h < k, then

N(r,u)N(r+s+t,utv+w) < N(r+t,u+v)N(r+s,utw).

10



Proof Suppose that the L.H.S. of the inequality is not zero. Assume

s < v for otherwise this follows by Theorems 4, 2.

Case r,s,t,u,v,w > O. Define § : (wl,wz) > (w3,w4,D) as in Theorem 4.
Initially let D = {x}. Then w3(x) = r + t and w4(y) = r + 5 as required.
Case y €D implies m3(y) =-85 +u+v+w and w4(y) =5 + u.

By s <vwe have s + u<v - s + w4(y) < - (v-3s)+ w3(y) <~-s+u+v+w.

This means we can define §' : (w3,w4) - (wS,mG,E) by

ws(p) =q + w4(p) if peE

w3(p) otherwise,

n

w6(p) - o+ w3(p) if p e E

n

w4(P) otherwise,

il

where o = v — s, and initially let E = {y}. Then w5(y) =u+v
and wﬁ(y) = u + w. From s < v, wa(y) <-a+ w3(y) and hence by (2.3)

for e € E we have wa(e) < w3(e) and therefore x ¢ E.

Case y ¢ D. Define w as above with o = — v, resulting in

5°Y%
ws(y) = u + w and w6(y) =u + V. Assume for the moment that x & E,
and then we apply Theorem 2 to WeyWee The argument for x é E runs
very similarly as in the Case y ¢ D in Theoren 4.
To see that the construction is injective notice that in either case

we are making several applications of Theorem 2.

For X with 3 < h € k we have wl(xh) = ih’ wz(xh) = jh'

Now ih - v+s< ih < jh < ih +8< ih + v and hence by (2.1), (2.4) for any
of the applications of Theorem 2 the mappings of X remain fixed as
required.

0 or u = 0 the result is trivial

Case Not r,s,t,u,v,w > 0. Ifr

0 then t = 0 and the theorem

because the L.H.S. is zero. If s
reduces to Theorem 2. If v =0orw =0 then s = 0. If t =0 then

1+ r>-w+r+ s and again this reduces to Theorem 2, via (3.1). O

11



We now give examples to show that the condition t € s € v<w in
Theorem 5 is necessary.
With t < s < v > w we have
Example 4. Let P = {x<p, y <pl}. Then
(c=1) (e=5) = N(1,1)N(5,4) $ N(3,4)N(3,1) = (c=4)(c=3)-

With t € s > v < w we have

Example 5. Let P = {x <p <y}. Then
2.2 = N(1,4)N(5,8) € N(3,5)N(3,7) = 1.3.

Swopping x and y in the last example shows the necessity for t < s.

Special cases of Theorem 2 along with Theorems 3, 5 can be stated

as

+ .
Theorem 6. If r,s,t,u,v,w ¢ Z satisfy s < t € v < vy and
ih<jh<ih + s for 3 < h < k, then

N(r,u)N(r+s+t,ut+vtw) < N(r+s,u+v)N(r+t,utw)

) \'

N(r,u+v+w)N(r+s+t,u) < N(r+t,u+v)N(r+s,utw).

A different kind of result for a subset in P is

+ . :
Theorem 7. Let k' € Z with k' < k. Suppose SqseecsSyt € z* satisfy

(7.1) 0<s,<s,<...<s and

. i - < 3 <1 ' ch <k
(7.2) i B iy S i + o for k h <k,
where @ = min{s - _, : 1<h<k', hodd},
= mi - : 2<h<k' .
B mln{sh Spo1 P 2Sh<k', h even}

Then

N(il"" ,ik,)N(i1+251,... ,ik,+23k.) < N(il+81"'° ’ik'+sk')N(il+Si""’ik'+sk')'

Proof Suppose that the L.H.S. of the inequality is not zero and that

some s, > 0 with 1 € h < k' for otherwise the result clearly holds.

h
We make k' applications of Theorem 4 to the fixed subset  SETERRE in P.

12



Putting s = s, we get

1

N(i ,ik,)N(i1+231,12+252,...,ik,+25k,) <

1,12,...
N(i1+sl’i2+282_81""’ik'

all s >0. 1If sy, = O for any h then by the proof of Lemma 2

+2$k,—sl)N(11+s +Sl)’ when

1’i2+sl"'°’ik'

walx) = w, (x) =w,(x) =w,(x).
. 'S _ _ _ _
Subsequently if k 2 put s s, 8> s3 sz,...,sk, Sy roq"
This produces the sequence of mappings Wy 50y > w3,w4,D1+ cee > ka'+1’w2k'+2’Dk'

By (7.1) for1< h,l< k' if h is odd then

(7.3) wypaa (¥ Z i+ 5,2 0y hG0),

and if h is even then
< i < .

(7.4) w2h+1(xz) i, + s, w2h+2(XZ)

Equality in (7.3) or (7.4) implies by the proof of Lemma 2 that X, ¢ DZ’

with 1€ 7< 7' <K',

For elements X with k' <h <k and 1 < 7 <k', from (7.2),if 7 is

= < - = 1 < 3 - . .

odd then wz(xh) 3y wl(kh) + a 1h + Q 1h + sZ Sz—l’ and if 7 is
= 7 = - =1 =-f=21i - - .

even then wz(xh) iy wl(xh) B i B i (sZ Sz—l) Bence

by (2.1), (2.4) in either case X 4 DZ. O

We now give a higher order imequality.

+ .
Theorem 8. Let h ¢ Z with h = 1. Let r .,rh,ul,...,uh be integers

g0

and 1 = il’j= ji' Suppose

(8.1) £ (i+r ) = hi and I (j +u)) =hj, then
<¥n ¢ 1<7<h i

(8.2)  N(i+rj,j+w) ... N(i+r,j+u) < N(Gi,HP,

with m(x3),..,m(xk) = 13,...,1k in every factor.

13



Proof  Suppose that the L.H.S. of the inequality is not zero. Suppose
also that h 2 2 and not all of TyseresTysUyseee sty equal zero for
otherwise the result clearly holds.

Without loss of generality assume that some r, > O with 1 € 7 < h.

A
Then by (8.1) there exists a distinct pair N(i+rz,j+ut)N(i+rZ,,j+ut,),
1<7,7',t,t' < h, on the L.H.S. of (8.2) where X is negative and 2%

is positive. And in view of (3.1), 1 + ry < I7r.

Now by applying Theorem 2 to this pair we obtain

(8.3) N(i+rZ,j+ut)N(i+rZ,,j+ut.) < N(i+rz,—a,U)N(i+rZ+a,T),
where o = min{IrZ[,|rZ,]}. Hence ryy —a =0orry; +a =0, and
rZ' -a = r; v a.

Now either ¢ = j + u and T = j + Upr s

or c =3+ U, T @ and T = j + u, + a.
The latter case implies u, +a < U by (3.1), and therefore

j o+ u <g,1 <3+ u s

We make the substitution of (8.3) in the L.H.S. of (8.2) and
note that (8.1) still holds.
Repeated substitutions of this kind result in all of the x components
of (8.2) being equal to i. If at this stage some y components of (8.2)
are not equal to j then we make analagous applications of Theorem 2.
And by (2.1) the images of x remain equal to i under the iﬁjection.
Also by (2.1) the image of x; remains equal to i; for 3 <1<k
under any injection. O
Using the ideas developed here other results are proved in [D],
-for example
Theorem 9. If r,s,u,v,r',s',t' € z* satisfy s S v<s' < t' and
ih < jh < ih + s for 4 < h € k, then

N(r,u,r'+s'+t")N(r+2s, u+2v, r') < N(r+s, utv, r'+s')N(r+s, utv, r'+t').

14



In the following inequality we let each of the elements x,y € P
map to intervals in C. Hence define N([il,izj, [jl,jzj) to be the
number of strict order-preserving maps w : P -+ C such that w(x) € [il,izj

and w(y) € [jl,jz].

Theorem 10. If r,r',s,t,t",u,v,w,w' € z¥ and w' < v, then

(10.1) N(r',r],[u,v])N([r+s+t,t' ], [utstw,w']) <
N({r+t,t'-s],lutw,vN({[x"+s,r+s]1,[u+s,w']).

Proof  Suppose that the L.H.S. of the inequality is not zero. Thus we

assume that the intervals on the L.H.S. are non-empty, i.e.

| 1 |

r' <r, u<v, rts+t < t' and uts+w < w'. Clearly on the R.H.S. we

' and also utw < uts+w < w' < v.

then have r+t < t'-s, r'+s < r+s, uts < w
Suppose r' < h < r and r+s+t < 7 < t', then we must show that
(10.2) (N(h,u)+...+N(h,v)) (N(Z,uts+w)+...+N(Z,w')) <
(N(I~-s,utw)+...+N(I~s,v)) (N(h+s,u+s)+...+N(h+s,w')).
First we will establish that
(10.3) N(h,i")N(Z,3") < N(I-s,j"-s)N(h+s,j'+s)

when u< j' < utw and uts+w < "< w'.

In view of (3.1) we have j' + s < j". Also h+s < I except

fi

when t = 0 and wl(x) = r and mz(x) r+s+t. Hence (10.3) follows
by Theorem 4, where r+t < I~s < t'-s and r'+s < h+s < r+s.
When h+s = 1 then w3(x) = wi(x) = r and w4(x) = wz(x) = r+s, since
here we in effect use Theorem 2 on y.
We will prove that
(10.4) N(h,lutw,vI))N(Z,[uts+w,w']) < N(I-s,[utw,v])N(h+s,[uts+w,w']).
Summing (10.3) over j',j" and adding (10.4) gives (10.2).
Then summing (10.2) over h, 7 gives (10.1) as required.
We prove (10.4) as follows. Given any ordered pair (ml,wz) of

maps counted by the L.H.S. we construct a unique pair (w3,m4) counted

by the R.H.S. So we have

15



wl(x) = h, mz(x) =1,
w3(X) = l-s, NA(X) = h+s,

utw < wl(y),wB(y) < v,

4
£

utstw < wz(y),wa(y) <

If t =0 and w, (%) = r,u,(x) = r+s+t then let w (x) = w, (x),

wA(X) = wz(X), also let wB(Y) = wl(y),wA(Y) = wZ(Y)-

Otherwise with h+s < Z, by (3.1) we may apply Theorem 2 to the L.H.S.

of (10.4), giving m3(x) = {-s and w4(x) = h+s.

Consider the element y.
Case 1. wz(y) < s + wl(y). Now by (2.1) we deduce that y % D and

thus w3(y) = wl(y) and wa(y) = wz(y). In other words for

(10.5) utw < j' < v, uts+w < " < g+j’t,
N(h,j'IN(Z,i") < N(I-s,j')N(h+s,3i").

Case 2. wz(y) > s + wi(y). Now if vy é D then for

(10.6) utw < j' < v, s+3' < "< ',
N(h,3")IN(Z,i") < N(Z-s,j")N(h+s,3i").

However if vy € D then for (10.6) we have
N¢h,i"ON(Z,3") < N(l-s,j"~s)N(h+s,j"+s).

We must show that w3(y),w4(y) belong to the specified intervals, namely

utw < —s+w2(y) = wB(y) < -stw' < —s+v < v,

utstw < s+w1(y) = w4(y) < wz(y) <w'.
Also we can deduce that ma(y) = j'4+s < s+j'"-s = s+ w3(y).

This means that when y € D we are mapping into the area given by
(10.5). Hence we require

Lemma 4. If i1 + s <1, and j1 + 5 < j2 then

2
.. _ < (N(i -5 4 — , .
N(ll,Jl)N(lz,Jz)N(lngz S)N(12,31+S) (N(i, $53, S)N(11+s,31+5))
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Proof  Apply Theorem 4 to the first pair and Theorem 2 to the second

pair. O
Suppose in Case 1 that 6(w1,w2) = (w3,w4,D) with y $ D and in

Case 2 that 6(w1',w2') = (w3',w4',D') with y € D'. Then Lemma 4

ensures that (wi,wz) # (wi',wz') implies (w3,w4) # (w3',w4'\.

We remark that similarly to the previous theorems we may extend
this result to a fixed subset Xy e in P. For 3€h<k

+ ) .
let o ,B zZ . Then in (10.1) we put w(xh) € [ah,Bh] in the

0 Yh%h €
first and third factors, and w(xh) € [Yh,éh] in the second and fourth

factors. With Gh < ah+s this follows using Theorems 2,4. 0

The following shows the necessity for the condition w' < v in
Theorem 10.
Example 6. Let P = {x < p, v < p}. Then

(2¢-3)(2c-7) = N(1,[1, 2D)N(3,[3,41) £N(2,2)N(2,[2,4]) = (c-2)(3c-9).
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3. Order-Preserving Maps

We will employ a corresponding injection to § in order to show that
the preceding inequalities also hold for order—preserving maps.
Theorem 11. Theorems 2-10 hold with N replaced by N**.
Proof The proofs follow a parallel course to those for strict
order—-preserving maps. For example, Cases 1 and 2 of Theorem 3 are
modified as follows.
Case 1. p<d and p3(p) > 93(d).
By using Py € R, (3.1) and the definition of Py We get
p,(P) < p (d) < -stp,(d) = p,(d) <p, (p) =p,(p). Since this is
impossible this case cannot arise.
Case 2. p < d and pa(p) > p4(d).
By using PysPy € R and the definition of p, ve get
1<o,( <p,d) = -s+r>4(d) < -S+pa(p) = -s+c>2(p) < -s+tc.
Hence d forces p to join D, so let D' = DU p. Notice that (3.1), (3.3)
hold for p € D'.
(See [DDP] for the analogue of Theorem 1 for order-preserving maps).
Notice that Examples 1-6 serve the same purpose in this section as
for strict order—-preserving maps because the result in each example is

the same although some numerical values are different.
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4. Linear Extensions

We would not expect an immediate analogue of Theorem 3 for linear
extensions and the following example supports this view.
Example 7. Let P = {pl <x, y< p2}. Then

1.2 = N (2, (4,1 €8 3,07 = 17,

The following theorems appear in [D].
Theorem 12. Let x,y € P. 1f N*(ii’iZ) # 0 and N* (i1+2’i2+2) # 0
then N (i +1,i,+1) # O.
Theorem 13. Let X,y ¢ P. If i1 # iz and N*(il,i2+2) # 0 and
N'(i,+2,1,) # O then N (i +1,i,+1) # O.
Theorem 14. Let v:’be the total number of order-preserving injections

from P into C. Then VsV is log concave and strict increasing.

PEEEE
The next example shows that the special case
N(r,utw)N(r+t,u) < N(r+t,u+w)N(r,u) of Theorem 2 does not hold for

linear extensions.

Example 8. Let P = {x < p, y}. Then

* * ® *
1.1 = N (1,2)N (2.1) £ N (2,2)N (1,1) = 0.
We also mention
Example 9. Let P = {y < Py < x, P, < p3}. Then
* % * %
1.3 = N (4,2)N (5,1) < N (5,2)N (4,1) = 2.2.

Corresponding examples for linear extensions to Examples 1-6 are
given in [DI].

Question 1. Does Theorem 10 hold for linear extensions?
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