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Abs tract

Let P be a finite poset and 1et x,y e P. Let C be a chain.

Define N(i,j) to be the nucber of strict orderpreserving maps o : P + C

satisfying o(x) = i and ur(y) = j. Various inequalities are proved,

conoleneing with Theorem 3. If rrsrtrurvrw are non-negative integers

then N(r, u+v+w)N(r+s+t, u) ( N(r+t, u+v)N(r+s, u+w). The case v = w = O

is a theorem of Daykin, Daykin and ?aterson, which is an analogue of a

theorem of Stanley for linear extensions.



1. Introduction

Let P be a poset (= partially ordered set) with n elements and C a

chain with eleuents 1 < 2

of P into C are defined as follor^'s.

For (PrC), a map p : P -+ C is order-preserving if , for all x,y e P,

x < y iruplies o(x) < p(y). Let R = R(P,C) be the set of all such p.

(Some authors require lpl = lcl, U"t we do not need this restriction).

For (PrC), a map ur : P -+ C is strict .ta*pt"""t"t"g if , for all x,Y € P,

x < y inrplies o(x) < to(y). Note that u,r need not be 1-1. Let 0 = Q(P,C)

be the set of all such ur.

Amap).:P-r[n]=

is 1-1 and, for all X,y €

of all such tr.

{L12r...,n} is a linear extension of P if tr

P, x ( y irnrplies f (x) < I(y). Let A be the set

A sequenc" .ort1r... of non-negative real numbers is said

1og concave if a.-, "i*r < "i 
for 1 ( i. rn particular, a

sequence is unimodal, i.e. for some j we have to (.1

&: 7 3:,.
J J"I

satisfy the more general inequality,

ar ar+s+t ( ar*" "r*a for non-negative integers rrsrt'

We adopt the following notation. LeE Z+ denote the non-negative

integers. If *1,...r\ is a fixed subset in P and i1,...riUe Z+

**
then define N '-(itr...,\) to be the nurnber of order-preserving maps

p: P +C such that p(x.) = ij forl< j <k; and defineN(ir,...,ik)

to be the nuurber of strict order-preserving maps 0J : P + C such that

or(x;) = ii for 1 < j <k; also defirr" No(i',...,io) to be the number
JJ

of linearextensions ),: P+[n] such that l(xr) = ij for 1 <j <k.

Further, if i. { C tor any j then N(i1, ..,in) = O and similarLy for
***

N ,N . Also we will write x=x1'y=x2, &d we put ILr...,ik, itr...rjU e C

throughout.

to be

1og concave

a. and
J

tAl) ro



A fundamental result is

Theorem 1. (Stanley tsl). Let xr,...,a be a fixed subset in P. If

r,s,t e z+ and in 4 [r,r+s+t] for z ( n (k, then
**-**(1) N (r,iz,...,ik)N (r+s+t,iz,...,ik) s N (r+t,ir,...,ik)N (r+s,iZ,...,io).

Recently Daykin, Daykin and Paterson [OlP] established the analogue

of Stanleyts result for both stricE order-preserving and order-preserving

maps. In other words they proved that (1) holdswiths4sh N* replaced by N,

***
and with each N replaced by N

Their proofs entailed defining an injection. This injection cons-ists

of constructing, for each pair of strict order-preserving maps (or order-

preserving maps) righ or(x) = r and t^tr(x) = r+s+t, a unique pair of maps

with arr(x) = r+t and o.(x) = r+s. That is if two ordered pairs of the

go6r (urrror) are distinct, then their two associate4 (t:rur.) pairs are

distinct, thus ensuring the inequality.

The results in this paper are motivated by these log concave sequences

for partial orders. The reader will find, for exaryle by looking at

Iheorem 3, that we are here basically concerned not with a single elernent

x € P but with a pair of elerents xry e P. However we extended the above

injection technique to this rpre general situation, to obtain many results

of a new kind.



2. Strict Order-Preserving l"laps

We first state a generalization of the theorem of Daykin, Daykin

and Paterson, which is proved in [D].

Theorem 2. Let xr,...,\ be a fixed subset in P. If rrs,t e Z*

and j- ( i-+s for 2 < h < k, then-n n

N (r, ir,. . .,iU)N(r+s+t,i 2,. . ., jt) 
( N(r+t,i2,.. .,ik)N(r+s,j2, . . .,jk) .

One of our main results is

Theorem 3. Let x1r...,L be a fixed subset in P. If rrs,t,u,v,w € Z+

and in - v( jn ( in+s for 3 ( h ( k, then

N(rru+v+r+,i3,...,ik)N(r+s+t,urj3,...,jn) ( N(r+t,u*v,i3r...,ik)N(r+s,u+wrj3,...rjk).

Each map t: counted by the function N has ,(A) fixed for 3 < h < k in the

respective factors. From now on we will sinplify such e>pressions to

omit any ih,jh. Hence the stateurent of this theorem abbreviates to

Theorem 3. Tf r,s,t,u,v,w€ Z- and i" - t( j"( ix+s for 3<h(k, then

N(r,u+v+w)N(r+s+t,u) < N(r+tru+v)N(r+s,u+w) .

Proof Suppose that the L.H.S. of the inequality is not zero.

Case rrt,urw ) O. For the time being ignore elements *3r...rxk.

Given any pair of strict order-preserving maps trt1,uJ2 : P + C with

t:a(x) = r, t:r(y) = u+v+w and or(x) = r+s+t, ur(y) = u, we will

construct a unique pair of strict order-preserving maps

,3,r4 : P + c rtrith r,lr(x) - r+t, or(f) = u+v and o.(x) = r+s, o.(l) = u+ar.

Now or,o. will depend on subsets DrE of P. We define

6 : (rrrr rtor) * (r3 roO,D rE) by

or(t) = - s + r,rr(n) if p e D

=v+rr(p) ifpeE

= 'r(o) if P e P\.(DIJE),

and oo(n) 

= _ : :'::ir, ;: : .,
= r,rr(t) if p e P\(DUE).

Initially let D = {x} and E = {y} and then DrE are construeted



iteratively. We stop adjoining elements to D and E as soon as

,3rt4 . 0, and then the construction is complete.

hl:end=xande=ywehave

(3.1) 1 * r1(d) < - s + t:r(d) = r,rr(d),

(3.2) ! * 
^z(e) 

< - v + urr(e) = r,:o(e).

Assume for the moment that (3.1), (3.21 are invariants for any

de D, eeE respecEively. From(3.1) wededuce thatdeDimplies that

or(d), r,r.(d) e C, i.e.

(3.3) 2 < 1 + o1(d) < or(d) and r,r.(d) = s*o1(d) < - 1 + arr(d) ( - 1+c.

Sindlarly from (3.2) we deduce that for e e E,

(3.4) Z(o.(e) and urr(e)(-1+c.

Now suppose we have constructed some D and E but urr,r. 4 n. Also

suppose there exists p e P\(DIIE) for which trl3 or oO loses order between

some d e D and pr or between sorrn e e E and p. Assume the fotmer and then

one of four cases holds.

Case1. p<d and or(n)>or(d).

Bu using t:, e 0, (3.1) and the definition of u:, we get

urr(r) <arr(d) < - s +urr(d) =r,rr(d) <.,rr(n) =r,rr(l).

Since this is irnpossible this case cannot arise.

Case2. p(d and r,r.(l)ir.ta).

By using u7r^Z e f,l and the definition of oO we get

r< orr(r) (or(d) = - s + o4(d) ( - s + r,r+(p) = - s + or(p) ( - s+c.

Hence d forces p to join D, so l-et D' = D U p. NoEice that

(3.1), (3.3) hold for p e D'.

Case3. p)d and r,rr(n)(urr(d).

Sinilarly to Case 2, d forces p to join D with (3.1), (3.11 holding

for p in Dr.

Case4. p)d and ro.(n)<o.(d).

Similarly to Case I this is inpossibl-e.



The latter four cases follow by the symretry d + e, s + v and

,1* ,2, ,3 * 14.

Now we have shown that since (3.1) holds for some d e D then it holds

for any p forced to join D by d. Sirailarly (3.2> is invariant for any e e E.

Lemma 1. Let d e D, e e E and define f,f' : D + C by

f(d) = r,rr(d), f'(d) = ur.(d), and g,g' : E + c by g(e) = urr(e), g'(e) = or.(e),

and h : (D,E) * c2 by h(f ,g) = (or(d),r^rr(e)) and h(f ',g') = (o4(d),o4(e)),

and h',ht' : P\(DUE) -+ C bY h'(p) = trr(n) and h" (p) = r.(l) for p e P\(DUE).

Then frft rgrgt rhrht rhtt are strict order-preserving.

Proof Let d1,dn € D with dn ( d.,. Then or.(dn) ( o"(d") implies
lLLLLLLL

f(d1) = -s*tr2(d1) <- s + ur(dr) = f(dr). Also c,rr(d1) <orr(dr)

implies f'(d1)=s +tLr(d1) {s +or(dr) =f'(d2). Andsimilarly

for g,gr t rht rht' .

To see that h is strict order-preserving 1et d e D, e e E.

Case d ( e. By using u, e fl and (3.1), (3.27 we get

urr(d) = - s + urr(d) (v + or(e) = or(e),

and o.(d) = s +or(d) <tor(d) (o:r(e) (- v+ o1(e) =o.(e).

Case d ) e follows by syrnuretry. n

Leuuna2. DoE=6.

Proof From (3.1) and the definitions of r3rr4 we deduce for d e D that

(2.1) or(d) <orr(d) = - s + t^rr(d) Ktor(d),

(2.2) orr(d) < trO(d) = s * urr(d) <r,rr(d).

SiuLilarly from (3.2) we deduce for e € E that

(2.3) r,rr(e) g orr(e) = v * or(e) < urr(e),

(2.4) or(e) <r,r.(e) = - v + t'a(e) Koa(e).

Corollary 1. If p e Pwithurr(l) (- v+r,:r(n) then Ehis iroplies p 4 o.

Corollary2. If pe Pwithon(l) (-s +r,rr(p) then this iupliesp4 E.



Now suppose d e D, e e E. Sinee h in Lemrna I is strict order-

preserving, this ueans that neither d causes e to join D, nor e causes

d ro join E. tr

From Lerr,rnas Lr2 it follows that if oorul, 4 0 then order must be
J1+

lost between either P\(DUE) and D or P\(DIE) and E, that is Cases 1-4

along with the symretric ones. Since P is finite the iterative eonstruction

of D and E must halt (possibly with DllE = P). When it halts we deduce from

Leuunas Ir2 that r3rr4 e 0. It remains to show

Leuma 3. 6 is injective.

Proof Suppose (ur,,or) # (oa'- rr').

Case 6(on ro^) = (ur.rrrl , rDrE) = 6(o. t ,o.t).

This is clearly contradictory from the definitions.

Case 6(ul, ro.) = (0Joro, rDrE) f (r*l"rt.l ,.rDt rEt) = 6(or t rr.t).LZSqJgtz

Without loss of generality assurrE D I D' and also that there exists p e D\D'.

LetdeDoD'.

Case p ( d. Now we adjoined p only to D and hence,

,r(n) = - s + urr(p) = u:r'(P).

Using this along with urr' e f,l and Case 2 we have

rrrr'(d) = ura(d).(- s + or(t) = r1'(p) S- 1+ urr'(d),

giving a contradiction.

Case p )d follows similarly.

If we no\d assutrE E + E' then this follows by sytrEetry. We conclude

that 6 is injective.

Finally consider elements *3,...,L. For :1 with 3 < h < k we have

,r(1r) = ih ? - s + or(xn) = - s * jh,

tor(xn) = jh )- v + urr(>1) = - v * ih

n



Frorn (2.1), (2.4) we deduce that >1 { n ana \ + E giving or(xn) = ih

and o.(xn) = jn as required, which completes the proof of this case.

Case Not r,trurw)0. If r =O oru=0 the result is trivial

because the L.H.S. is zero. If t = O or w = O the theorem reduces

to Theorem 2.

One rnight think that if u ( v then

N(r,u)N(r+s+t,v) ( N(r+tru)N(r+s,v). However that this is not true

is shown by

Exarryle 1. Let P = {x (p <y}. Then

2.2 = N(1,4)N(5.8) + N(4,4)N(2.8) = 0.5.

From Theorem 2 we have N(rru+w)N(r+tru) S N(r+tru+w)N(rru).

It would seern possible for sueh an inequality to be bijective.

Nevertheless we give

Exaryle 2. Let P = {x (p, } (p}. Then

(c-2)2 = N(1,2)N(2,1) < N(2,2)N(1,1) = (c-2) (c-1).

We now consider extending each of the elements xry e P in Theorem 3

to sr:bsets of P.

Theorem 4. Let kf , k" € Z+ with kr g k" g k. If srvrtrr...,t1,r, e Z+

and in - v< jf, * in + s for k" <h qk, then

N(iir... rik, ,ik,*1*r*tr.r*tr...,io,,+v+t*,,)tl(ir+s+g rr...,iofs+to, ri1,+1,... riu,,) <

tr

N(i1+t1r...rikr*tr.rrik,*1*rr...riu,,+v)N(ir+sr...rik,+srior+1*tkr+1r...,io,,+1,,) .

Proof Suppose that the L.H.S. of the inequality is not zero. Assume

that4otall of t1r...rtOrare zero for otherrsise the result is obvious.

If on1-y a, t O or tUr*l > 0 then this fol-lows by Theorem 2 or Theorem 3.

Hence without loss of generality assume kt > 2 and tr rrr, O.

Considerfirst the elements xrr...r\r. We follow the proof of

Theorem 3, except that we define 6:(r,lrrr2) (r3rr4rD) by



r,rr(n) = - s + 02(p) if p e D

= or(n) otherwise,

and o.(l)=s+urr(n) if pe D

= ul, (f ) otherwise.

InitiallyletD={x}. Thenurr(x) =i1* t, ando,(x) =i1*" "t
required. Now eonsider y.

Case y € D inplies or(f) = iZ * tZ and tr.(f) = i2 * ".

Case y 4 D. Now define 6' : (o:rro.) * (o5ro'rD') by

or(n)=-"+ur.(t) if pe Dr

' o, (n) o therwise ,

and o.(n)=".urr(l) if peD'

' u.t,(l) othe::wise.

And initially let Df = {yi. Now we must show that x 4 ot. If there

is no path of elernents between x and y then clearly * + Dt. So suppose

there exists a path of elements x = 91r92r...196 = Y. Then for some

L e {2,...,h}, l7 4 o wirh gr_, e D.

Firstly suppose by (3.1) that a'r(t1) > - s + wr(t7), which

implies L + n. And hence urr(07) 7 - s + uO(17), which irnplies c7 { o'.

Ihus qZ prevents x fron being adjoined to D? via this path, and similarly

for any path.

Otherwise suppose that arr(CX) < - s * wr(l), and that q1 e D'.

Case q. ( q.. Then we have
u-I

urr(c7_a) = - s + uz(e1-l < - s + or(c7) = r5(qz),

and o.k-T_r) = s + urGT_)

Therefore e7 does not foce q1-t to join D'.

Case il_t ) 97 follows sinilarly.



We may conclude that x { O'. Further, since this analysis holds for

any de D, dt e Dt we deduce thatDfiDf =0. Also for\rithkr <h<k"

we have or(:1) = ih *.r * h and urr(xn) = ih. By (2.1) we know that

\ + o, \ + D'.

This process is iterated for el-ements x3,... rar except when 3 < h < k'

and tr = o. By (2.1) for any inreger L> 7, rZZ*r(\) = or(xo) = ih and

'zr*zkt) = r'rr(1) = ih * "'
By repeatedly using 6, depending on which cases apply' we are using

Theorem 2 consecutively some number of times, thus resulting in an injection.

Now consider the elerents *kr*tr... r\rr . As r,rith the previous

subset, we repeatedly apply 6 but with s = - v and D = E.

Let$ = D,Dt,...rDtt be the set of disjoint subsets of P generated

by 6 for x1,...,]1, and sinil^rry$= {E,E'r...,E"} for *k,*t,...r\rr

By Lemma 2 we have thatsB, { ^r" pairsrise disjoint sets.

Also by the proof of Lenma 2 we deduce that "h + D, \ 4 E for

k''<h<k, and any ott, t.€. So if we used the injection atotal

of L rines say, then u27+1(\) = or(xn) = io and 
^U,*zGn) = or(>1) = jh

as required. D

One may hope that if s * v then

N(r,u)N(r+s+tru+v+w) ( N(r+tru+w)N(r+sru+v). However we have

Exaryle 3. Let ? = {x < p, y ( p}.

(c-1) (c-8) = N(1,1)N(B,B) + N(6,5)N(3,4) = (c-6) (c-4).

Further by Theorem 2, N(3,5)N(6'4) ( N(6,5)N(3,4).

Under certain conditions one may have s # v in this context' as

shown by

Theorem5. If r,srtrurvrwe Z+ satisfy t<s<v<wand

ina jn ( ir, * s for 3 < h q k, then

N(r,u)N(r+s+tru+v+w) < N(r+t,u+v)N(r+s ru+w) .

l_0



Proof Suppose that the L.H.S. of the inequality is not zero. Assuue

s ( v for othensise this follows by Theorems 41 2.

Case rrs, trurvrw ) o. Define 6 : (ullrrrrr) * (o3rrrl.rD) as in Theorem 4.

Initially letD={x}. Thenor(x) =r+ tandu:O(f) =r+s as required.

Case y€ Diryliesror(V) =-s *u*v+wandur.(f) =s +u.

By s (vwe have s + u(v- t * r4(y) <- (v- s) + o3(y) <- s + u * v *w.

This ueans we can define 6t : (t:rrrrr.) * (rs,o'rE) bY

urr(e) =o*oO(e) if pe E

= urr(l) othenoise,

tr.(n) =-ct+or(l) if pe E

= o,(n) otherwise,

where c =v- sr andinitial"ly letu ={y}. Thenolr(v) =u+v

ando.(v) =u*w. Froms<v, o4(y) <-q,+urr(f) andhencebv (2.3)

for e < E we have oO(e) < or(e) and therefore x { tr.

Case y 4 D. Define r5,r5 as above with o = - vr resulting in

tur(V) = u * w and r^l.(f) = u + v. Assume for the moment that x { E,

and then we apply Theorem 2 to t,l5'trl6. The argurnent for " { E r.-s

very similarly as in the Case y { D in Theorem 4.

To see that the construction is injeetive notice that in either case

we are making several appl-ieations of Theorem 2.

For \ with 3 ( tr ( k we have rf(\) = ih, rZh) = jh.

Now in - v + s(inajn*ih * 
"(iO 

+ v andhenceby (2.1), (2.4) for any

of the applications of Theorem 2 tt.e rnappings of 1, remain fixed as

required.

Case Not rrsrtrurvrw)0. If r=Ooru=O the result is trivial

because the L.H.S. is zero. If s = 0 then t = 0 and the theorem

reduces toTheorem2. Ifv=Oorw=O thens =0. If t =O then

1 + r)-w+ r+ s and again this reduces to Theorem2, via (3.1). tr

ar
r. .l-



We now give examples to show that the condition t ( s ( v ( w in

Theorem 5 is necessary.

With t(s(v)wwehave

Example 4. Let P = {x ( p, y ( p}. Then

(c-1) (c-5) = N(1,1)N(5,4) + N(3,4)N(3,1) = (c-4) (c-3) .

i,Iitht(s)v(wwehave

Exarnple 5. Let P = {x ( p < y}. Then

2.2 = N(1,4)N(5,8) * U(:,5)N(3,7) = 1.3.

Swopping x and y in the last exanryle'shows the necessity for t ( s.

Special cases of Theorem 2 along with Theorems 3, 5 can be stated

AS

Theorem6. If rrsrtrurvrw e Z+ satisfy s(t(v(w and

if, " 
jn ( in + s for 3 < h < k, then

N(rru)N(r+s+tru+v+w) ( N(r+s ru+v)N(r+t,u+w)

N(r, u+v+w)N(r+s+t,u) ( N(r+t, u+v)N(rts ,u+w) .

A different kind of result for a subset in P is

Theorem 7. Let kt e Z+ with k' < k. Suppose s1,...,sLr e Z+ satisfy

(7.1) 0(sr*s2<... (sk, ed

(1.21 in - B* jn*ih* o forkr <h<k,

where a = min{sh - sh_1 : 1 ( h <k', h odd}'

B = min{sh - sh_t : 2 ( h < k', h even}.

Then

N(i1,...,ik,)I.r(i1+2s1,...,ik,+2sur) < Nlir+"1,...,{,+su,)N(ir+s1,...,ik,*so,).

Proof Suppose that the L.H.S. of the inequality is not zero and that

sorrn sh ) 0 with 1< h < kr for otherwise the result clearly holds.

We make kr applicaiions of Theorem 4 to the fixed subset X1r...rl., in P.

\//ul

L2



Putting " = "1 
we get

N(i1, i2,...,ik,)N(ir+2s r,ir+zsr,...,io,+2so,) (

N(ir+s' Lr+2s r-s1, . . ., io r +2so, -sa)N (it*rt,i2*"1, . . ., io, +sr), when

all sn ) 0. If sn = o for any h then by the proof of Lemma 2

,g(\) =urr(a) =urr(:1) =o,(>tr).

Subsequently if kt > 2 put s = "Z- "1, "3 - s2r...rsk, - sk,_1.

This produces the sequence of nappings 01 ,r2 * ,3rr4rD1* ... -+ ,2k,*1 ,o2k,+2rDL,

By (7.1) forl( h,Z < k' if h is odd then

( 7. 3) ,2h*1 G) > i L 
* 

" L) ,z]n*zG 
r) ,

and if h is even then

(7.4) ,2h*t(xr) < iL* "L4^2l.*2(x1 .

Equality in (7.3) ar (7.4) iuplies by the proof of Lersna 2 rhar ", { Dl

r-'ith 1( 7 < Z' < k'.

For elements )tr with k' < h < k and 1 < Z ( k', frorn (7.2),Lf L is

odd then or(xn) = jh * orr(>1) + e = ih * o ( in + 
"L - "L_t, and if. L is

even thenrz(\) = jh)rr(1,) - g -in- 9"in GL "L_1. Hence

by (2.1), (2.4) in either case \ 1 DZ. tr

We now give a higher order inequality.

Theorem 8. Let h e Z+ with h > 1. Let r.0,...rth,.1 ,...,\ b" integers

and i = i1,j= jr. Suppose

(8.1) X (i+r-) = hi and f (j + u.) = hj, rhen
KZ<h t t*zqr- L.

(8.2) N(i+rf j*r1) ... N(i+rn, j*\) < N(i,j)h,

with rrr(xr),..,ur(1) = i3,...,ik in every factor.

13



Proof Suppose that the L.H.S. of the inequality is not zero. Suppose

also that h> 2 and not all of .1 ,...rrhru1 ,...ruh equal zero for

othensise the result elearly holds.

Without loss of generality assune that some tL) O with 1 < Z < h.

Then by (8.1) there exists a distinct pair N(L*rL,j+ua)N(i+r7t,J+utr),

t 4 LrL' ,trt' ( h, on the L.H.S. of (8.2) wher" tL is negative and rrr

is positive. And in view of (3.1), 1 + 17 1 17, .

Now by applying Theorem 2 to this pair we obtain

(8. 3) N(i+rZ,j*nr)ll(i+r7,,j+rr,) < N(i+rt,-a,o)N(i+r7+a,r),

where a =min{lttl,lrTrl}. Hence rL, - c =O or 17+ c =O, and

tL' - aT rL* o .

Noweither o=j+ut and r=j*.a,,

or o = j * ra, - cr and T = j * ta * o.

The latter ease i4lies tt * o a ta, by (3.1), and therefore

j*rt(ort(j+ut,

We make the substitution of (8.3) in the I-H.S. of (8.2) and

note that (8.1) still ho1ds.

Repeated substitutions of this kind result in all of the x components

of (8.2) being equal to i. If at this stage some y cotrPonents of (8.2)

are not equal to j then we make analagous applications of Theorem 2.

And by (2.1) the images of x remain equal to i under the injection.

Also by (2.1) the image of x7 remains equal to L, for 3 < Z < k

under any injection. tr

Using the ideas developed here other results are proved in [D] '

.for example

Theorem 9. If rrs'u'v'r'rs'rtt e Z+ satisfy s ( v ( st ( tt and

ina jn * in * s for 4 <h <k' then

N(rrurrt+st+tt)N(r+2s, u*2v, rt) < N(r+s, u*V, rt+st)N(r+s, u*v, rt+tt)'

11.r.t



In the following inequality we let each of the elements x,y e P

map to intervals in C. Hence define N(tif,i.l, tjf,jZl) to be rhe

number of strict order-preserving maps o : P + C such that rrr(x) e lilrirf

and o(y) . ljr,j2).

Theorem 10. If rrr'rsrtrtt rurvrwrwt e Z+ arrd wt ( v, then

(10.1) N([rt,rJ,Iu,vJ)N([r+s+t,t'],Iu+s+w,wr]) (

N ([ r+t, t' -s J, I u+w, vJ )tt ([ r' *s, r+s ], Iu+s,w' ] ) .

Proof Suppose that the L.H.S. of the inequality is not zero. Thus we

assume that the int.ervals on the L.H. S. are non-empty, i. e.

rt ( r, u ( v, r+s+t ( tr and u+s+w ( wt. Clearly on the R.H.S. we

then have r+t ( tt-s, rt+s ( r*sr u+s ( wr and also u+w ( u+s+w ( wr ( v.

Suppose rt ( h ( r and r+s+t ( Z( tt, then we must show that

(10.2) (N(h,u)+...+N(h,v)) (N(7,u+s+w)+...+N(Z,w')) (

(N( Z-s,u+w)+. . .+N( /-s,v) ) (N(h+s,u+s)+. ..+N(h+s,w') ) .

first we will establish that

(10.3) N(h,j')N( z,j") < N( z-s,j "-s)N(h+s,j'+s)

when u ( jt ( u+w and u+s+w ( j" ( tt.

In view of (3.f1 we have jr * 
" 

( j". Also h+s ( Z except

when t = O and urr(x) = r and tlr(x) = r+s+t. Hence (10.3) follows

by Theoreu 4, where r+t ( Z-s ( tt-s and rt+s ( h+s ( r+s.

When h+s ) Z then or(x) = urr(x) = r and r,rO(x) = tlr(x) = r+s, since

here we in effeet use Theorem 2 on y.

!ile will prove that

(10. 4) N(h, Iu+w,v])ll( Z, Iu+s+w,w' ]) < N( Z-s, Iu+w,v])N(h+s, Iu+s+w,wr ]) .

Suming (10.3) over j',j" and adding (1O.4) gives (10.2).

Then sunrming (10.2) over h,Z gives (10.1) as required-

We prove (1o.4) as follows. Given any ordered pair (orrtlr) of

maps counted by the L.H.S. we construct a unique pair (orrrur.) counted

by the R.H.S. So we have

15



ur,(x) = h, o,(x) = L,

ol, (x) = L-s, ro. (x) = h*s r

u+w ( ur, (V) ,ur, (Y) ( v,

u+s+w < urr(f),urO(y) ( w'

If t = O and or(x) = r,urr(x) = 1*s*! then 1et ula(x) = ulr(x),

ar.(x) = u:,(x), also let ur,(y) = ur,(r),oO(v) = tr,(y).

Otherr,rise with h+s 17, by (3.1) we may apply Theorem 2 to the L.H.S.

of (10.4) , giving trr(x) = L-s and ti, (x) = h+s.

Consider the element y.

Case 1. urr(v) ( s + urr(f). Now by (2.f) we deduce that y { I ana

thus urr(v) = ur, (l) and u:O(v) = urr(l). In other words for

(1O.5) u+w ( j' ( v, u+s+\.{ < j" < s+j',

N(h,j' )N(2,j") ( N(Z-s,j')tr'(h+s,j").

case 2. o.(y) > s + on(y). Now if y + D then for
LL

(10.6) u+w ( j' ( v, "*j' 
( j" ( t',

N(h, j')N(2, j") ( N(z-s, j')N(h+s,j").

However if y e D then for (10.6) we have

N(h, j')N(2, j") ( N(Z-s, j"-s)N(h+s, j'+s).

We must show that or(f),or.(l) belong to the specified intervalse namely

u+w ( -s+q,r(y) = t:r(l) ( -s+wf ( -s+v ( vr

u+s+w E e+o1(y) = ur.(f) < arr(f) ={ wr.

Also we can deduce that ur.(f) = j t+s < s+j"-s = s+ or(y).

This means that when y e D we are mapping into the area given by

(10.5). Hence we require

Leuraa 4. If i, + s ( in and j" + s ( j., then
!L!L

a
N (i 

1, 
j 

r) 
tttir j 

2) 
N ( i 

1, 
j 
r-s )ll 

(i z, ir+s ) =< (N(ir-s, i r-s)N 
(ir+s, j 

r+s; ; 
- .
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Proof Apply Theorem 4 to the first pair and Theorem 2 to the second

pair.

Suppose in Case l that 6(urr,urr) - (ol,ur.,D) with y { D and

Case 2 that 6{urrt,trrt) = (o3t,o4 ,Dt) with y € Dt. Then Lenma

ensures that (ur'trr) * (u1t,r2') implies (orroO) * (o3t,r4 ).

We remark that similarly to the previous theorems we may extend

this result to a fixed subset *1,...,1 in P. For 3 < h < k

1et on,Bh,yh,6n e Z+. Then in (10.1) we put,r("fr) e [on,Bnl in the

first and third factors, and o(:1) . [yhrdnJ in the second and fourth

factors. With 6h ( on*" this follows using Theorems 2,4. tr

The following shows the necessity for the condition w' ( v in

Theorem 10.

Exarnple 6. Let P = {x ( p, y ( p}. Then

(2c-3) (2e-7) = N(1,[1, 2])N(3,[3,4]) *N(2,2)N(2,12,4); = (c-2) (3c-9) .

D

ln

.+

t7



3. Order-Preserving Maps

I{e will employ a eorresponding injection to 6 in order to show that

the preceding inequalities also hold for order-preserving naps.
**

Theorem 11. Theorems 2-10 hold with U replaced by N

Proof The proofs fo11ow a parallel course to those for strict

order-preserving maps. For example, Cases 1 and 2 of Theorem 3 are

nodified as fo11ows.

Casel. p(d and or(n)>p3(d).

By using p1 € R, (3.1) and the definition of p3 we get

or(l) < p1(d) ( -s+pr(d) = p3(d) < or(l) = or(l). Since this is

irnpossible this case cannot arise.

Case2. p(d and o.(l)>p4(d).

By using p7,p2 e R and the definition of p4 we get

1 < p1(p) < p1(d) - -s+p4(d) < -s+p4(p) - -s+eZ(p) < -s+c.

Henee d forces p to join D, so let Dr = D U p. Notice that (3.f), (3.3)

- ntNOId IOT D € U'.

(See [lnp] for the analogue of Theorem 1 for order-preserving maps). n

Notice that Examples 1-6 serve the sane purpose in this section as

for strict order-preserving maps because the result in each exanple is

the same although soure numerical values are different.

I6



LIe would not expecE an irnnediate analogue of Theorern 3 for linear

extensions and the following example supports this view.

Example 7. Let P - {p1 ( x, Y < pZ}. Then

L.2 = No(2,:)u*(+,1) + No(3,2)2 = 12.

The following theorems appear in [D].
**

Theorem 12. Let x,y e P. If N (i fiZ) # o and N (ir+Z,i'*2) * O

rL

thenN(ir+1,i2*1)lO.
?t

Theorem 13. Let x,y e P. If il * L, ar'd N (i, ,ir+z) I 0 and
! L 1' L

t(*x'.(ir+2,ir) I o then N (ir+1 ,i2*1) # o.

*,
Theorem 14. Let v be the total number of order-preserving injections

from P into C. Then vr:V2:... is log eoncave and strict increasing.

The next example shows Ehat the speeial case

N(r,u+w)N(r+t,u) ( N(r+t,u+w)N(rru) of Theorem 2 does not hold for

linear extensions.

Exanple 8. Let P = {x ( p, y}. Then

1.1 = No(1,2)n*(2.1) + No(2,2)N*(t,t) = e.

We also mention

Example 9. Let P = {y ( P1( *, p2 < p3}. Then

1.3 = No(4,2)N*(5,1) < tto(5,2)N*(a,t) = 2.2.

Corresponding examples for linear extensions to Examples 1-6 are

given in [D].

Question 1. Does Theorem 10 hold for linear extensions?

4. Linear Extensions
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