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Abstract

Completeness is a semantic non-operational notion of program correctness
suggested (but not pursued) by WWWadge. Program verification can be simpli-
fied using completeness, firstly by removing the approximation relation
from proofs, and secondly by removing partial objects from proofs. The disser-
tation proves the validity of this approach by demonstrating how it can work in
the class of metric domains. We show how the use of Tarski's least fixed point
theorem can be replaced by a non-operational unique fixed point theorem for
many well behaved programs. The proof of this theorem is also non-
operational. After this we consider the problem of deciding what it means for a
function to be “complete”. It is shown that combinators such as function com-
position are not complete, although they are traditionally assumed to be so.
Complete versions for these combinators are given. Absolule functions are pro-
posed as a general model for the notion of a complete function. The theory of

mategories is introduced as a vehicle for studying absolute functions.
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Chapter 1

Introduction

Section 1.1) : Background to the Thesis

Research into reasoning about functional programs forms
the background for this dissertation. While functional languages are the most
appropriate class of languages for developing our ideas on reasoning about pro-
grams it should be possible to apply the ideas presented in this dissertation to
other languages as well. Functional languages are the most appropriate
because they are the languages with the simplest denotational semantics, and
it is this semantics which we use as the basis for judging the correctness of
rules for reasoning about programs. A typical definition in such a language is

the following.

fn) = idn=0
then 0

else f(n-1)+2n —1

It's denotation is the least fixed point Y(F) of the following combinator F,

where for each chain continuous function f over Q, F(f) is the function

if x =0

v zel. F(f)z) flz-1)+2z —1 otheruise

The property which we now wish to prove of this least fixed point is that it is the
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square function Az €.z2 ( () denotes the flat domain of all non-negative
integers with _L , where _L?= _ ). The usual proof consists of showing that
the only fixed point of F is the square function and so must be the least one.
This requires the following inductive proof. For each function f satisfying the

definition show that
M s(L)= L2
(i)  f£(0) = 0%
(i) vn>0. f(n-1) = (n-1)? ==> f(n) = n?

Such a proof manages to reason about the denotations of programs without
direct reference to the theory of least fixed points. This is in contrast to the
following alternative way we could have proved that the denotation of the defin-
ition is the square function. Our second proof consists of showing that Y(F) is

the limit of the chain of partial functions 9,71, where for each fn

z?2 if z<n

vze. fr(z) = L otherwise

It can easily be shown that the limit of this chain is the square function.

The second proof is clearly more tedious and unnatural
than the first, using partial functions, chains and limits. The first proof avoids
using partial orderings by making the assumption that for welldefined defini-
tions the combinator F will have a unique fixed point. And so, our two exam-
ple proofs show that a proof technique which uses a theory of unique fixed
points may be more appropriate than techniques which use a theory of least
fixed points. To establish a theory of the former kind first requires a test to
verify programs "well defined”. With such a test we would construct a proof of

the following kind for the above example definition. Firstly show that the



-3-

; definition passes the test. Secondly, show that the square function is a fixed

point of the definition by proving (using high school algebra) that

\ 0? = 0, and

v n>0 ng = (n-1) + 2n -1
r Then by a theorem of unique fixed points for well defined definitions it can be
. deduced that the denotation of the definition must be the square function.
i
b This proof is (what we shall call) non—operational in the sense that it does not

use the approximation relation L and the theory of least fixed points. That is,

the relation is not used to describe notions such as “computation” or "partially

defined"” which are often used in proofs of program properties.

McCarthy's recursioninduction rule for proving proper-
ties of recursive definitions also uses the idea of "well-definedness”. Unfor-
tunately his rule only works for flat domains. The following formulation is

based upon [].

To prove that two functions f,, f2 :D-Dovera

E flat domain D are the same find a combinator F': (D-»D)-D
;-,r such that
E
F, (i) fi=F(h )
(i) fz = F(J2)

(iii) vz eD . Y(F)z) ne L

Condition (iii) says that the least fixed point of F must be well defined.

The potential for proofs using “well definedness” in this

way depends upon whether or not tests for proving programs "well defined"” can

e X
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be constructed. These tests may be divided into two types, operational tests and
non—operational tests. Operational tests use £ . Recursion induction is such
an operational test as reference is made directly in (iii) to the least fixed point
combinator Y. Languages based on the von-Neumann model [Ba78] tend to be
most ammenable to operational tests due to their reliance upon the notion of
"state transition”. A typical functional programming language will have an
nevaluation” based semantics as well as a semantics of functions. Thus in such
languages it is possible to design non-operational tests for "well definedness"
which use only the properties of functions. Such non-operational tests for a
program in a language are those tests which involve only an analysis of data

structures.

Now that tests for proving programs "well defined” have
been introduced it is time to talk about those tests which inspire the work in
this dissertation. These are the operational tests for proving termination. Ter-
mination has become outdated as a notion of program correctness. This can be
seen by the need for non-terminating software such as operatling systems, and
secondly with the arrival of languages involving the evaluation of infinite data
structures. However, such tests are still needed as is clearly demonstrated in
Hoare's work on communicating sequential processes [HoB83]. In such work,
rules for reasoning about properties of programs tend to have termination as a
precondition. Due to the unsolvability of the Halting Problem [KrB3] [Tu38] it is
impossible to design a test to decide whether or not an arbitrary program ter-
minates. However, restrictive tests can be designed to prove that structurally
simple programs terminate. Unfortunately it does not seem to be possible to
generalise the notion of termination to extend to more recent languages. An
explanation to this problem has been suggested by WW.Wadge [WaB1] based upon

the following fact. The more recent languages have introduced new operational
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ideas, for example, infinite evaluation in functional programming [Mc63]
[FauB3), evaluation with backtracking in logic programming [Ko79], and
deadlock in processor based languages [HoB3]. Thus he has proposed that ter-
mination will not generalise because it is a notion no longer present in many

recent languages.

Wadge has proposed (although not pursued) a format for a
possible solution based upon the following observation. Although operational
notions may have changed, non-operational notions expressed in terms of data
structures have not changed to the same extent. For example, the notion of a
function has survived the test of time. His suggestion is that an extensional
notion of correctness to replace termination would do better with todays
modern languages than termination itself. Completeness is Wadge's candidate

for such a notion. In his own words,

"A complete object (in a domain of data objects)
is, roughly speaking, one which has no holes or
gaps in it, one which cannot be further com-

pleted”

Wadge uses Kahn's model of dataflow networks [Ka74] to show how the notion of
completeness can be used to prove programs well defined. The extensional
"Cycle Sum Test” is constructed to prove that simple networks do not deadlock.
While this test has an extensional formulation it's original proof is not conven-
tional, that is, Wadge presented an operational proof. An extensional proof
would have made his argument for completeness much stronger. It is the prob-
lem over this proof which leads us now to summarise the overall aims and

results of this dissertation.

The thesis of this dissertation is that the notion of
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completeness is a worthy candidate for an extensional replacement to the
notion of termination. Wadge's work has provided a lead, however, before com-
pleteness can be seriously considered operational proofs such as that men-
tioned above must be removed. Also, the notion of completeness must be made
independent of Kahn's dataflow model. These two aims are achieved in this

dissertation by producing a purely extensional general theory of completeness.
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Section 1.2) : Aims of the Dissertation

Section 1.1) has introduced the notion of completeness,
and has described the way in which it has been suggested as a tool for reason-
ing about programs. The overall aim of this dissertation is to show that the
notion of completeness does have a place in denotational semantics. That is we
aim to show that the notion of completeness can be formalised in the theory of
domains. As mentioned in Section 1.1), our principal approach is to generalise
the example given in [WaB1]. The first step in this approach is to choose a class
of structures in which completeness can both be defined, and which generalises
the semantic domain used in Kahn's networks. The class suggested by the
author is the class of Metric Domains. These domains allow a natural distinc-
tion to be made between "complete” and "partial” (non complete) objects.
Metric Don}ains can be used for both Kahn networks [Ka74] and the program-
ming language LUCID [FauB3] [WaB5]. As the name "metric” suggests, metric
domains take their inspiration from the theory of metric spaces [Suth]. The
complete objects of a metric domain form a metric space, while the partial
objects have a very similar structure. Although the structure of metric
domains is a very simple extension of that for metric spaces, it does not involve

any use of the approximation relation C .

Chapter 2 constructs a general theory of completeness for
metric domains. Even without the relation [ it is shown in Section 2.2) that a
theorem of unique fixed points can be constructed to provide a non-operational
semantics for many well behaved programs. This theorem is a direct generali-
sation of The Banach contraction mapping fixed point theorem for metric
spaces. Such a theorem provides much appeal to the philosophy of deriving
tools for domains by generalising tools from the complete objects in the

domains. An interesting implication of the existence of our fixed point theorem
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is that it refutes a suggestion made by Wadge [WaB1] that the cycle sum test

cannot be extended to all metric spaces. Our work has taken his test beyond
metric spaces and into metric domains. The following important question is
raised by our theorem. If we can take Banach’s theorem for complete objects (a
theorem well used in the past by mathematicians) and use it with such ease in
domains, can other “complete” theories be extended similarly. Section 2.3)
applies the fixed point theorem for metric domains by using it to give a non-
operational proof of a generalisation of Wadge's Cycle Sum Test. The fact that
our proof is non-operational is an improvement upon Wadge's operational proof.
Our Cycle Product Test is introduced in this work in order to show how Wadge's
work could have been taken much further in demonstrating the use of com-
pleteness in reasoning non-operationaly about programs. Section 2.5) gives an
example of how the work of Sections 2.2) & 2.3) can be used to define an alter-
native semantics for Kahn's deterministic networks. The example is not given
as an attempt to improve Kahn's original semantics. However, similar but non-
deterministic networks have been used by Park to study the "Fairness” Problem
[PaB4]. Thus our example semantics is presented here to demonstrate that
metric domains provide a very appealing non-operational framework in which
such studies as Park's can be rﬁade. The example has a second purpose. It is
easily noted of the domain used in the example that there are only complete
objects, no partial objects. The example thus shows how metric domains of only

complete objects are useful.

Chapter 3 considers the problem of removing partial
objects from fixed point semantics. It is argued that this is done by "Complete-
ness Rules"”, although the problems are formidable. The explanation of these
problems is really quite simple. Interesting metric domains such as the LUCID

domain of intermittent streams do not have their whole structure described by
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means of a metric. For categories of metric domains to exist with interesting
closure properties our domains will have to have a structure in addition to that
of a metric. To begin an investigation into the nature of such additional struc-
ture is outside the scope of this dissertation. It must be said however, that such
an investigation is the way forward to finding a theory of categories for metric
domains. Even though categories of arbitrary metric domains are beyond this
work there are still interesting domains such as the one used in Section 2 4).
That example demonstrates how metric domains of complete objects (that is,
metric spaces) can still be useful for defining the semantics of a language.
Chapter 3 considers fixed point semantics using only complete objects.
Agreement Spaces have been suggested by Wadge [WaB1] as a class of metric
spaces which could be used to establish a fixed point semantics not involving
partial objects or the approximation relation. The principle aim of Chapter 3 is
to show that it is sufficient to consider only compact agreement spaces for a
conventional fixed point semantics of complete pograms not using higher order
functions. This we do by constructing a theory of recursion equations for

specifying compact agreement spaces.

Chapter 4 considers the problems of formulating a notion
of completeness for functions. It is shown that function composition is not
complete, and so we suggest a complete form of composition to replace it. The
model of domains used for this Chapter is a powerdomain model. This model
can be used to describe both the Kahn and Lucid domains. In fact, if the
universe of the powerdomain is a metric domain then so is the powerdomain
itself. It is shown that a theory of completeness for functions can be formu-
lated. However, combinators such as composition must first be made complete.
Also it is shown that the notion of "function” must first be restricted to "abso-

lute function”.
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A conclusion from Chapter 4 is that absolute functions are

necessary in a higher order theory of domains.

Chapter § considers the problems involved in setting up
categories of absolute functions. It is shown that tight restrictions must be
placed upon the kind of allowed absolute function in order to obtain categorical
products and sums. Finally in Chapter 5 a suggestion is made to weaken the
associativity axiom on composition of morphisms in category theory in order to
obtain what we call mategories. In a mategory equality is replaced by a partial
order. Thus mategories are extensions of categories just as metric domains are
extensions of metric spaces. Accordingly all the usual categorical definitions of

product, sum, and exponentiation are extended.
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Chapter 2

Metric Domains as a

model for Completeness

Section 2.1) : Introduction

This Chapter introduces the notion of Metric Domain in
order to promote the notion of completeness in domain theory. The first
intended application of metric domains is as a unifying model to describe com-
pleteness for two well used domains. These are the Kahn Domain of finite &
infinite sequences [Ka74)], and the Lucid Domain of intermittent infinite
sequences [WaB5]. The second intended application of metric domains is an
alternative approach to defining computability on metric spaces. The approach
taken by Klaus Weihrauch [W&S] is to embed metric spaces into weighted alge-
braic cpos. Instead of adding extra objects as in his approach we reformulate
the notion of "metric space” to get "metric domain"”. It will be pointed out in
this chapter that there is a one to one correspondence between the class of
metric domains and the class of metric spaces. However, a distinction between
complete and partial objects can be made in a metric domain which cannot be
made in a metric space. As will be shown in Chapter 3, there are metric
domains in which a very natural notion of computability can be defined using
completeness. However, in this chapter consideration is given to arbitrary

metric domains. In order to justify our reformulation of metric spaces we show
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how the Banach Contraction Mapping Theorem [Suth] from elementary metric
space theory can be used in metric domain theory as a tool for program verifi-

cation.

The work in this Chapter is divided into two parts. Section
2.2) takes Banach's theorem for complete metric spaces and proves it for com-
plete melric domains. The interesting observation from this section is that
Banach's theorem requires no reformulation even though metric domains have
partial objects. Section 2.3) applies the reformulated theorem by formalising
and proving a technique for verifying simple programs correct. The Cycle Pro-
duct Test is a generalisation of Wadge's Cycle Sum Test for Kahn Dataflow Net-
works [WaB1] to arbitrary metric domains. The interesting observation of this
section is that the correctness proof for the Cycle Product Test requires no use
of the approximation relation C in contrast to Wadge's proof of the Cycle Sum
Test. It is intersting because it shows how metric domains can have a notion of
computability different to that based upon the approximation relation. This
theme of an alternative notion is considered in Chapter 3. Section 2.4) justifies
the work of the previous two sections by means of an example. It is shown how
metric domains and Banach's theorem can be used to construct a fixed point

semantics for Kahn Networks equivalent to Kahn's semantics [Ka74].
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Section 2.2) : A Theorem for

Unique Fixed Points

Notation

The set of all non-negative real numbers is denoted by "R*".

Definilion
A Metric Domain is a pair <[,d> where D isanon-empty set,and d isa func-

tion from DxD to K* such that

(i) YzyeD d(zy)=0 ==> =z =y
(ii) YzyeD dlzy) = dy.z)

(iii) Yz y,z€D d(z,z) = d{zy) + d(y.2)
The Kahn Domain can be formulated as the metric domain < Ka ,kd > where
forall z .y in Ka d{z.y) is 2™ for n the largest integer {or infinity) such
that

n < min{|z|,lyl} and,

vi<n oz =y

In other words d(z,y) is 2 to the minus the length of the common initial seg-

ment of x and y.

Definition
In a metric domain <D.d>, D is the set of points. A point z is complete if

d(z,z)=0.

A point in the Kahn Domain is thus complete precisely when it is an infinite
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seguence,.

Notation

‘w' denotes the setl of all non-negative integers.

As mentioned in the introduction, the unique fixed point theorem formulated
and proved in this section is a generalisation of the Contraction Mapping
Theorem [Suth] used in the theory of metric spaces. The latter theorem
involves the use of convergent sequences, and so we do the same for domains. It
is interesting to note here that this "metrical” form of convergence is, in effect,

replacing Tarski's use of convergent chains in least fixed point semantics

[Tar55].
Definition
In a metric domain <D,d> X €“D convergesto a point y if

ve>0 A n=20 vmaen d(X,.y) < ¢

Theorem 1

For each metric domain <D.,d> ,if X€“D converges to y€D then y is com-

plete.
Proof:

let <D,d> be a metric domain.

Let Xe“D, andlet yel .

Suppose X convergesto y .

Let £>0.
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Then there exists n=0 such that

Y mzn d(X, y) < ;—

IA

Thus d(X, .vy)

However, d(y.y) < d(y.X ) + d(X, .y)

1
(4N
-
Q.
3

@
S~

I\

[Ab]
*
|

Thus d(y.y) = O,

thus y is complete.

The next theorem tidies up a small point which is probably already obvious. A

sequence can only converge to one point.

Theorem 2

For each metric domain <D,d> , if X€“D converges to both y€D and y'€D

then y=y".
Proof:

Let <D,d> be a metric domain.

Llet Xe®D, yeD y' €D,

Suppose that X convergesto both ¥ and v .

Let £¢> 0.

Then there exists n =0 and »' =0 such that
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but, d{y .y ) = d(y.X )+ d(X .v)

d(X .y) + d(X .y)

+

IA

£t £
2 2

= &

Thus d(y .y ) =0,

thus y =y .

The next few definitions are analogues of those used in the theory of metric

spaces. They will enable us to establish a domain version of the contraction

mapping theorem.

Definition

In 2 metric domain <D.d>, X € “D is Cauchy if

v e>0 A n20 Vijen d(X.X)=<e

Definition

A metric domain is complele if every cauchy sequence converges.
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Notation

For each m =0, a function f composed with itself n times is denoted by

e

Definition
A function f:D-D is a contraction function if there exists ¢ €/#* such that

O0<c <1 and,

Vz,yeD . d(flz).fly)) = c *dizy)

All constant functions over metric domains returning complete points are con-

tractions, as is the function f over the Kahn Domain such that,
F(<>) = <0>
f(<zg,...2,>) = <0,zg+1,..,2,+1>
F(<zg,2zy....>) = <0,zo+1,2,+1,...>

Ye will be able to show later that f has the unique fixed point

<0,1,2...>

Theorem 3

For each contraction function f in a metric domain <D,d>, and for each

ze€D, An €w. f*(z) is contraction.
Proof:

Let <D,d> be a metric doemain.
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Suppose f:D-D isacontraction function,

then there exists ¢ € F* suchthat 0<c< 1 and

vy.y €D d(fly).f)) = ¢ *dly.y)

let z €D.

Now, ¥ 120 d(f¥z), [ z)) = ¢ * d(f* (). fi(z))

< ¢? v d(f3(z). M z))

< c® +d(f¥z) . fR(z)

and soon ...

thus v i20 d(f¥z).f*"*(=z)) < c* *d(z.f(z))

let £> 0.

Let n=0 be suchthat, d(z ., f(z)) *

¢ < &
1-c

and, ¢™ *d(z,z) < ¢
let 1,5 =2 n .

There are three cases to consider.

casel : 1=j
d(fiz). fi(z)) = d(fi(=z).7=))
< ¢tV *d(z , x)

< £

case2 : 1<]

—

d(fi(z). Ji(z)) = % d(fE@E),FENE))

k=i



gy

.

h
8
)

“~4
Tq\
S
S~—

«

i
R

y
L
0)
g
S
*

IA
™

case3 : j>1

similar to case 2.

Theorem 4

Bach contraction function in a complete metric domain has a fixed point.

Proof:

Let <D,@> be a complete metric domain.

Suppose f:D-D isa contraction function.

Then we can find ¢ € Y such that 0<¢ <1 and,

Yy y €D d{fly).f¥)) = ¢ *d(y.y)

let z € D,

Then by Theorem 3 An €w. f™(z) isacauchysequence.

Butas <D.d> iscomplete An €w.f"(z) convergestoapoint Il €D .

We will show that An € w. f™(z) also convergesto f(l).
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let £>0.

Then we can find m =0 such that

v iz=m d(fi(z).l) <

thus, vV i=m+1 d(fYz). 7)) < ¢ * d(fi"Yz), 1)

A
™

Thus An €w. f*(z) convergesto f(I).
But by Theorem 2 @ = f(I).

Thus f has afixed point.

Theorem 5

Each contraction function in a complete metric domain has a unique fixed
point, and this point is complete.

Proof:
Let <D.d> be acomplete metric domain.

Suppose f:D-D isacontraction function,

then we can find ¢ € K* suchthat 0<c <1 and,
YVy.yeD d(fy).fy)) £ ¢ *dly.y)
By Theorem 4, f hasafixedpoint L € D .

Suppose that I' € D isafixed pointof f suchthat I #1'.
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As f isacontraction function,
d(f@).f@)) = ¢ *d(l.l')
thus,
d(L., ') = ¢ *d(L.l)
but ¢ <1, andso d({ll')=0.

thus ¢ =1 , a contradiction, andso [l =1 .

Also, d(l,1)=0, andso I iscomplete.

Theorem 5 gives us a metric domain version of the contracticn mapping
theorem for metric spaces. However, for domains there is a more interesting

generalisation of this result concerning the following type of function.

Definition
In a metric domain <D.d>, a function f:D-D is a virtual contraction func-

tion if there exists n > 0 such that f» is a contraction function.

Theorem 6
Each virtual contraction function in a complete metric domain has a complete
fixed point.

Proof:

Let <D.,d> be a complete metric domain.

Suppose that f:D-D is avirtual contraction functien,
then we can find n >0 such that f™ s

a contraction function.
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By Theorem 5 f™ has a unique complete fixed point 1 .

Thus, fn() =1

thus  7(f»(1)) = Q)

thus  f»(7 (1)) = f(1)

"

thus f(l) is also a fixed point of f7
thus by Theorem 5 L = f (1)

thus f has a complete fixed point.

The following theorem is the unique fixed point theorem needed in the next

section to prove the Cycle Product Theorem.

Theorem 7

Each virtual contraction function in a complete metric domain has a unique

fixed point, and this point is complete.
Proof:
Let <D, d> beacomplete metric domain.

Let f:D-D be avirtual contraction function,

then by Theorem 6 f hasa complete fixed point I say.
Suppose that !' isafixed pointof f .
Then I =f() and I =f().

thus v i=0 [fi(l) = fi*I(1) and - fFi(l') = Fi91(1)




-

-23.

thus ¥ i>20 1 = fi(l) and I = Fi)

As f is avirtual contraction function we can find = >0

such that f™ isa contraction function.
But f™ hasfixed points [ and [,
thus by Theorem 5 1 =1

thus f hasaunique fixed point 1.
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Section 2.3) : The Cycle Product Test

Theorem 7 of the previous section is the required unique
fixed point result for proving the Cycle Product Test. The Cycle Product Test is
essentially Wadge's Cycle Sum Test [WaB1] generalised to all metric domains, The
latter test was constructed to prove that certain well behaved Kahn Networks
would not deadlock. A Kahn Network is a directed graph, the arcs of which are
communication channels down which "tokens" travel, and the nodes of which
are processing stations. The simplest nodes are those like "+" which
correspond to ordinary operations on data items. The "+" node repeatedly
awaits the arrival of tokens on it's two input arcs. As soon as there are tokens
on both arcs, the two tokens are removed and a token representing their sum is
sent out along the output arc. Input on different arcs need not arrive simul-

taneously or even at the same rate, and tokens awaiting processing queue on

the ares.

Some networks have cycles, that is, there are networks in
which the tokens output by a node will (directly or via other nodes) be pro-
cessed to become input tokens for that node. In such networks the possibility
occurs that a node may be waiting for itself to produce a token which it needs
for input. Such a situation is called deadlock. The Cycle Sum Test is a test
which can be applied to Kahn Networks, such that every network passing the
test is guaranteed not to deadlock. The work of Kahn [Ka74] and Faustini
[FauB?] has shown an equivalence between Kahn Networks and sets of equa-
tions over the domain Ka . Wadge formulates his test both in terms of networks
and equations, however, his justification of the test is described in terms of @
"loose" gerdional stmeifice, This justification cannot be taken as a proof, as a proof
requires a mathematical formulation of the operational semantics (e.g. that of

Faustini [FauB2]) semantics for networks introduced above. Also, a proof of the
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validity of the equational formulation of the Cycle Sum Test has not been pro-

duced in the literature, and so we can say that the Cycle Sum Test has not yet

been proved.

This Chapter introduces the Cycle Product Test as a gen-
eralisation of the Cycle Sum Test. Our formulation is solely in terms of equa-
tions over metric domains. Theorem 7 is used to show that any set of equations
passing the Cycle Product Test has a unique fixed point, and that this point is
complete. This Cycle Product Theorem and its proof make no use of the approx-
imation relation . A result from this Chapter will thus be the first proof of not

only the Cycle Sum Test, but also a test which can be applied to languages such

as Lucid {WaB5].

Our notion of "sets of equations” will first be formalised

using systems.

Definition
For each =n >0, the n'thproduct of a metric domain <D.d> (denoted

'<D,d>"")is the metric domain <D™ ,d"> where,

VvV oz.yeDlr d*(z.y) = max{d(z;y):i<n |

Definition
A system (of equations) over a metric domain <D.d> is atriple <n,f ,c >

such that
(i) n>0

(i) s € (Dr-D)
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(iii) ¢ € {0,1, - - n—~1J® » R+
(iv) Yi<n Vv z, yehn
d( filz). fi(y)) = max{ cy *d(z;.y;)  j<n |
An example of a system over the Kahn Domain is < 2.f .c > where

folz ,<>) = <1.,2>

1]

Jolz . <yo. o yn >) <1.2.9g.... .Y, >

Jolz  <yo.yy...>) <l.2.9%0.y,.,..>
Fi(<>y) = <>

Ji(<zg, iz >, y)

i

<Zy,., 2y >
fil<zp.zy,...>,y) = <z,.25,..>
and
Coo=0, 0y =27%, ¢1,=0, cp=2
This example will be used later in this section.

By "solution” to a system of equations we mean a fixed point of the "key" of the

system.

Definition

The key of a system <7 ,f ,c > in a metric domain <D.d> is the function

s : D% » D" such that,

Vid<n ¥V zeD* s(z) = fiz)
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Kahn takes the least solution of the key of a system in his work over Ka, how-

ever, in a system passing the Cycle Product Test there will only be one solution

to choose from.

Theorem 1

For each system <n ,f ,c > in a metric domain <D,d> ,

v x,yeDr

d"(s(z).s(y)) < max{ c; *d(z; . y;) : i.j<n 3

Proof: N
Suppose <n ,f ,c > isasystemin a metric domain <D.d> .
Then forall z ,y € D*
dn(s(z).s(y)) = max{ d(s(z).slyk) : i<n ]
= max{ d(fi(z).fily)) : i<n |
< max{ max{ ¢y *d(z;,y;) : j<n { : i<n |
= max} éij vd(z;,y;) @ 1.j<n }
I

Theorem 2

For each system <n , f ,c > in a metric domain <J,d> ,andforeach k£ >0

vz,yeD* d"(sk(z),sk(y)) <=

max{ ¢y * d(s"‘l(z)j,s"’l(y)j) Ci,j<n |

Proof:
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Suppose <n ,f ,c > isasystemnin a metric domain.

let ¥k >0.

Then, Vv z ,yeD* d"(sk(z),sk(y))

= max{ d(s*(z);.s¥(y)) : i<n |

= max{ d(s(sk¥Yz)); . s(s¥y)))

= max{ d(fi(s¥7=z)). fi(s*¥ M (y))) -

A

= max{ cy * d((s*7Mz)); . (s¥(y));)

Theorem 3

For each system <n , f ,¢ > in a metric domain <D,d>, and foreach k >0

Proof:

The following definition of a "path” is used in the proof of the Cycle Product

Theorem.

vz, ,yeDt dr(sk(z).sk(y)) =

max{ cy :1,7<n { * max{ d(z;,y;)

by induction using Theorem 2

max { max{ cy * d((s¥"Uz));, (s~

pi<n

i<n |

i) s i<n

s 1,7 <n

ri,j<n |

i

i

i<n

;



TEi

ke |

-20-

Definition
A path over n >0 is a sequence <py, - ,p > of integers such that k& >0,

and

¥ i<k 0s=p, <n

When we talk of a path <pgy, - ,p, >, what we are really talking about are

the cycle product constants

popy ' v 0 Cprsmg

What is particularly interesting (as we shall see later) is the product of all these

constants.

Definition

Acycleover n >0 isapath <pg, - ,p, > suchthat py=p, .and k <n .
Definition

A sub cycle of a path <py.p,., ' .p, > is a sub-sequence of the form
<Pi Pi+ys " P> which is also a cyclee The remainder of
<Po.P1., " " Pr> after extracting <Pi . Pisr. " P; > is
<Po:P1. """ «Pj.Pjs1. " Pr >

Notation

The length of a sequence =z is denoted by ' |z |’ The absolute value of an

integer n isdenotedby’' |n |’

Definition

A cycle set for a path p over m >0 is a sequence A4 = < Ag, - VA1 > of
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cycles such that

@ Ip

A

(L (lgl=1))+n

gEA

@) 4] = 2L

n

(iii) There exists a sequence < By, B,, - . B4 >
of paths such that By =p ,andforeach 0<1i < |4}
A; isasubcycleof B, and B;,, isthe

remainder of B; after extracting 4; .

Theorem 4

Each path in a system has a cycle-set

Proof:

Suppose n >0, andlet p be apathover n .
Construct a cycle set A using the following algorithm.

Stepl : Let X bethepath p

Step2 : 1f thelength of X ismorethan n then we can choose a
cycle < X;. - ,X >withlength not more than n+1.
Append the cycleto A . Let X now be

<Xp..... X X1 X|xj-1 > . Repeat Step 2.

Now, each time step 2 is executed thelength of X isreduced by
<X .....X>]-1.
Thus the final length of X is,

el - ¥ C(igi-1)

ged
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But the algorithm finishes when the length of X isatmost n ,thus

bl - ¥ (lgl-1) = n

gEeEA

and so,

pl = ¥ (lgi-1) +n

gEA

Now, in each execution of step 2 the length of X isreduced

by at most n , thus

Y (lgl-1) = Yn

gE4 geA
< n * 4]
Thus from above,
Pl = (n*l4]) +n

thus,

The product of a path p inasystem <n ,f .,c > is

lp1-2

H CP{P(H

1=0

and is denoted by ('prod(p)’).
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Theorem 5

For each path p in asystem <n .J ¢ > ,andfor each cycle-set 4 for p,

prod(p ) = ( HAprod(q)) * M
gE

1 if {prod(g):lgl<sni=0
where M = max{prod(g): |g|<n ] otherwise

Proof:

@S 10 Theorem 4.
13
Definition

A system is cycle product complete if the product of each cycle is less than 1.

The example system given on p.24 is cycle product complete.

This then is our generalisation of the Cycle Sum Test. A system is said to pass

the Cycle Product Test if it is cycle product complete.

Theorem 8
For each cycle product complete system <n ,f ,c > there exists m =2 such

that for any path p of length m

(-L&L_l)
(N 7 ) * M < 1

where N = max{ prod(g) : g isacycle, and |g|<n+1 {

1 if {prod(g):|g|=sni] =0
max{prod(g):|g|sn | otheruwise
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The product of each cycle in a cycle product complete system
<n .,f .c > islessthan 1, and so as there are only

a finite number of cycles with length at most n+1,

max{ prod(g) : g isacycle, and |gj<s n+1 § < 1

Theorem 7

For each cycle product complete system there exists m =2 such that for any

path p of length m ,

Proof:

prod(p) < 1

Suppose <n , f ,c > isacycle product complete system.

Let N = max{ prod(g) : g isacycle, and |g|< n+1 |

Let M=1 if {prod(g):lgl<n {=0,and otherwise

max{ prod(g) : g isacycle, and |[g|<n+1 |

By Theorem 6 we can choose m > 2 such that for any path

p oflengthm

(.!_LL_I)
(N ™ ) * M <

fay

By Theorem 4 we can choose a cycle-set 4 for p, thus

by Theorem 5
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prod(p ) = (HA prod(g)) * M
gE

thus,

IA

prod{p ) (NIAL) * M

But N<1 as <n,f .c > iscycle product complete,

and so as A is a cycle set,

ol
nial o« UV

thus,

prod(p) = (N 7 ) * M

Theorem 8

The key of a cycle product complete system is a virtual contraction function.

Proof:

Suppose <n , f ,c > isacycle product complete system

in a metric domain <D ., d >.

Then by Theorem 7 we can choose m =2 such that for any

path p of length m,

prod(p) < 1

Thus by Theorem 3, forall z ,y € D"
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dn(s™mHz) . s™mMy)) =

max{ prod(p) *d(z,__ Yo _, ) Ipl=m |

i - < mex{ (max{prod(g):lgl=m {)*d(z, .y, ) :lpl=m |

(max{prod(g):lgl=m }) * (max{d(z, .y, _ :lpl=m})

(max{prod(g):lgl=m {) * (max{d(z; .y ) i<n {)

( max{prod(g):lgl=mj) * d»(z .y)

o Thus s™-! is a contraction function.

Thus s is a virtual contraction function.

Theorem 9 (The Cycle Product Theorem)
The key of a cycle product complete system in a complete metric domain has a

unique fixed point, and this point is complete.

: Proof:
|
Suppose <n , f ,c > isacycle product complete system
g in a complete metric domain < D ,d > .
E
E Then <D ,d >™ isacomplete metric domain.
E Thus by Theorem 7 of Section 2.2), and by Theorem 8,
thekeyof <m ,f .c > hasaunique
E‘ fixed point, and this point is complete.
1
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Section 2.4) : Convergence in Metric Domains

The previous sections have introduced the notion of com-
pleteness using metric domains. In particular, Banach's theorem from metric
topology has been applied to metric domains, thus providing a verification rule
for proving programs complete. As was noted at the time, the theorem required
no reformulation in its transfer from metric spaces to metric domains. The aim
of that work was to demonstrate how theorems such as Banach's can be
extended from a metric space of complete objects to a metric domain which
included partial objects. This was relatively easy as we were only interested in
establishing a fixed point theorem for the complete objects in metric domains.
That is, a theorem to prove that certain recursive definitions have unique com-
plete solutions. However, Banach's theorem is not scolely restricted to the verif-
ication of complete programs. It can easily be generalised to produce a
theorem which verifies that a program has a unique fixed point, a point which
may be either partial or complete. This section will show how Banach's theorem
can be made to work in metric domains for both complete and partial objects.
The first result of this is a theorem which allows us to give a unique fixed point
semantics to a larger class of programs than before. The second result is a
clearer demonstration than before of how Banach's original theorem for metric

spaces can be reformulated to accomodate partial objects.

In Section 2.2) the notion of completeness was introduced
into metric spaces by reformulating the notion of a metric. Other notions such
as "convergence' and "cauchy sequence” remained unaltered in our work on
Banach's theorem. Such notions do not have to be altered if all convergent
sequences of interest converge to complete objects. However, what about

sequences converging to a partial object? The definition of convergence used
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for metric domains was the following definition usually used for metric spaces.

Xe€e®D ‘converges” to yeD if

vYe>0 In=0 vYm=n d(X, vy) < ¢

This definition is satisfactory when y is complete. However, what if y is par-
tial and each X, is equalto y ? In this case X does not converge according to
this definition. To allow sequences to converge to partial objects the following

reformulated definition of convergence is needed.

Definition
A sequence X €D is K-convergent in a metric domain <D,d> if there exists

an object ¥y € D such that

ve>0 dn=0 vmen

d{X, .y) < ¢ or X, = vy

If <D,@> is a metric space then K-convergence is equivalent to the usual
notion of convergence for metric spaces. K-convergence captures precisely the
intuitive notion of convergence in the Kahn metric domain of finite & infinite
sequences, however, it will be shown later in this section that there are other
interesting domains for which K-convergence is not good enough. As the Kahn
Domain is an important domain we will first show how K-convergence can be
used to formulate a new version of Banach's theorem. A sequence in a metric
domain is K-convergent if and only if it is convergent in one (or both) of the fol-

lowing two ways.

Definition

A sequence X €“D is completely K—convergent in a metric domain <D.d> if
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there exists a complete object ¥ € D such that

ve>0 dn=20 Yme=n  d(X,.y) < ¢

Definition
A sequence X €“D is partially K—convergent in a metric domain <D.d> if

there exists a partial object y € D such that

dn=0 ¥Ym=n X, = vy

In metric spaces each convergent sequence is a cauchy sequence. In order that
this result should hold in metric domains the notion of a cauchy sequence must

be reformulated as follows.
Definition
A sequence X € “D is K-cauchy if

ve>0 dn=0 vim=n

d(X% Xn) <& or X = X,

Similarly, we have a notions of K-complete domain, and of K-contraction func-

tion.

Definition

A metric domain is K—complete if every K-cauchy sequence is K-convergent.

Definition

A function f:D-D in a metric domain <D.,d> is a K-contraction function if
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there exists ¢ € #* such that

vzyeD d(f(z).fly)) = c .d(z.y)

or f(z) = f(y)

Theorem 1 (The K-Banach Theorem )

Each K-contraction function over a K-complete metric domain has a unique

fixed point, and for each z €D this point is the limit of the sequence

An€w . frn(z)

Proof:

The proof of this theorem is a simple generalisation

of Theorems 3, 4, & 5 from Section 2.2) .

The generalisation of notions such as convergence is not
as easy as the past few definitions may have suggested. This chapter concludes
with an example of how K-convergence is not a good enough notion of conver-
gence for arbitrary metric domains, although it is exactly what is wanted for
the Kahn Domain. Our example is the problem of how to construct product
domains in the category of all metric domains with K-continuous functions.
Such domains are needed in the first instance to define multi-argument func-

tions, and later for domain equations.

Definition
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A function f:D-D is K-continuous if for each K-convergent sequence X €D

the sequence

An€w . f(X,)

convergesto f(limX).

This category is different from the contrasting category of all metric spaces
and continuous functions. The category for spaces is closed under finite pro-
ducts, while the category for domains is not. In the former category, the pro-

duct of two spaces <D.d> and <D ,d'> is <DxD ,dxd' > where,

v <z.x'>,<yy' > € DxD

dxd' (<z.z'> ,<yy>) = supidzy),d(=zy) ]}
Let po:DxD -»D and p,;:DxD -D be the continuous functions such that,

YV <z,x'> € DxD  po(<z.z'>) = z, and

Pz ,z'>) = =

Then the product is shown to exist by proving that for arbitary continuous

functions f:4-D and g:A-D ,there exists a unique function h:4-DxD such

that the following diagram commutes.

h isthe function such that,
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vzeD h(z) = <f(z).glz)>

while py and p,; are the usual projection functions. The projection functions
are easily shown to be continuous, When <D.d> and <D .d'> are spaces h is |
easily shown to be continuous. However, when they are domains A is not in
general K-continuous. For example, suppose X €¢D is a completely K-
convergent sequence. Also, suppose that f(X) is partially K-convergent, and
that g(X) is completely K-convergent. Then h(X) is neither partially nor
completely K-convergent, and so h is not K-continuous. The conclusion from
this example is that K-convergence is not an adequate notion of convergence

for metric domains which are to have any decent closure properties.
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Section 2.5) : An Alternative Semantics

for Kahn Networks

This section constructs an alternative denotational seman-
tics for deterministic Kahn Networks in order to show how the results of the
previous sections can be used to define a fixed point semantics for languages
using metric domains. The correctness of the alternative semantics is proven.
Our alternative semantics for deterministic networks is an obvious overkill in
comparison to the simplicity and elegance of Kahn's semantics [Ka74]. This
fact does not trivialise the value of our semantics however, as the approach
used in our deterministic semantics is that used by Park [Pa84] in his study of
nondeterministic networks. This section thus shows how an approach to non-
determinism such as Park's can be formalised using metric domains and

Banach's theorem.

In Kahn Networks processes communicate via “first in, first
out” queues. Inevitably processes sometimes have to wait if their input queues
become empty. For deterministic networks these delays do not affect the final
result of the network computation, and so do not occur in Kahn's semantics.
However, for nondeterministic networks such delays may be the very cause of
the nondeterminism. Our alternative semantics is in essence a Kahnian seman-
tics which does take account of delays. Although we only consider determinis-

tic networks, it is a necessary first step in Park's approach to non-determinism.

The Kahn Domain Ka is the set of all finite & infinite
sequences under the "initial segment" partial ordering, taken over some
universe of discourse such as ». The complete objects in Ka are the infinite

sequences, while the partial objects are the finite sequences. A new object 7 is
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added to the universe of discourse to represent a delay. This object called a
hiaton was originally suggested (but as of yet unpublished) by WWWadge for
the treatment of nondeterministic networks (The notation "7 is from Park's

use of hiatons in the "Fairness Problem” [PaB4]). For example, the sequence of

factorials
<1.2,6,24,120, .. >

might be "hiatonised"” to get
<l.7,2,7.7.284,7,7,7,120, ... >

In this example sequence the hiatons represent increasing delays. More pre-

cisely we have the following definitions.

Definition

Suppose I is the universe of discourse for the Kahn Domain. Then the Hiatonic
Kahn Domain "HKa" is the metric domain of all finite & infinite seguences over
ZU{T] where if n isthe length of the common initial segment between z & Y

then the distance between z & y is 2™ .

Definition
HKa is retracted onto Ka by the essence function £:HKa-+kKa where for each u

in HKa , e(u) isthe sequence u with all it's hiatons removed.

(The notation "essence” and "s" are taken from [PaB4]) The equivalence relation

upon HKa induced by epsilon is such that

v u,v € HKa u ~v iff  e(u) = £v)
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Chain continuous functions used by Kahn in his least fixed point semantics
have analogues over HKa which are contraction functions. A technique for con-
structing analogues over a hiatonised Kahn Domain with partial objects has
been used by Park [PaB4] in his studies of "fair parallelism”. In our language,
Park’'s technique is to add hiatons to sequences so that all continuous func-
tions over Ka become contraction functions over HKa. We require functions
over HKa to be contractions in order that Theorem 7 of Section 2.1) may be used
to construct a unique fixed point semantics. A good example of how the hiaton-
isation of Kahn's functions works is the "whenever"” function. wvr:Xa?-+Ka can
be turned into a contraction function (this is based on the Lucid "whenever"
function [FauB3]). wwr filters out a subsequence of z according to a

sequence of booleans y . Thus for example,

wr( <ebede,fghij> . <1,01,1,000,1> )

= <a,c.dh>

The contraction function wwrT™:HKa*?-+HKa can be defined by placing hiatons
into wwr(z,y). First one 7 is placed at the begining, and then one 7 is added

for each 0 in vy . Thus,

wor™( <abcde.fghij> . <1,01,1,000,1> )

= <tau,a.fou.c . d tou tfou . tow h>

Hiatons occuring in the arguments to wwr”™ are propagated through to the
result. The correctness of a function such as wwr is expressed by the by the

following "commutativity” equation.

Vv z .,y € HKa e(wr(zy)) = wur(elz),ely))

Having demonstrated that the chain continuous functions over Ka used by
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Kahn have correct contraction analogues over HKa we now have to show that

the fixed point theory of Section 2.2) is a correct analogue for Kahn's least
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fixed point theory. That is, the following theorem has to be proved.

Theorem 1

For each chain continuous function f over Ka with least fixed point Y(f) and

with a correct contraction analogue f7 over HKa, the unique fixed point u(fm)

of f7 is such that

Proof:

eCu(r7)) = Y(f)

First it is shown that e(u(f 7)) is a fixed point of f .

Now, wu(f7) = s u(f7))
thus, e(u(fm ) = e f(uirn))
FCe(u(r7)))

as f7is a correct analogue of f

Thus e(u(f7)) is a fixed point of f .

Now it is shown that this is the least fixed point.

Suppose that p isa fixed point of f ,then we will show that
e(u(f7) € p

Let u € (Z¥)® be such that
ug = h{(p), and

Y n >0 Uy = fT(un—l>

(the function h gives p a "tail” of hiatons )

Then as f7 isacontraction mapping, u convergesto u(f7).
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Also, it can be shown inductively that

Yn=0 s(u,) = p

But as u is convergent,

Ynz0 gl limu ) C e(u,)

Thus,

e(u(f7)) £ p

Thus,

e(u(r7)) = Y(5)

Thus the domain HKa can be used to reformulate Kahn's semantics for deter-
ministic networks. A reformulation which uses Banach's fixed point theorem,
and no partial ordering. It is admitedly an "overkill” for deterministic networks,
however there are reasons why the example is not trivial. The hiaton has
proved useful in the analysis of nondeterministic networks. As Park [PaB4]
shows, non-determinism and least fixed points do not always go together. His
use of hiatons enables him to use a "unique fixed point” theorem to overcome
this problem. There is thus a reason for considering hiatons in non-
deterministic Kahn Networks. It is now a natural question to ask whether or
not the notion of a hiaton can be generalised to more interesting domains. Our
contribution towards giving a positive answer to this question is as follows.
Using the powerdomain operator P() introduced in Chapter 3, we can construct
our own theory of hiatonic nondeterminism using metric domains. Due to our
restriction in Chapter 3 to compact spaces, it would be a theory of "unfair non-
determinism”. This is in contrast to Park who is interested in "fair nondeter-

minism".
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Chapter 3

Fixed Point Semantics

without Partial Objects

Section 3.1) : Introduction

The previous Chapter has shown how the fixed point
semantics of many correct recursive programs can be given without using the
usual theory of approximation. This was done by firstly using Wadge's notion of
completeness as a notion of correctness, and secondly by working in our own
specially constructed metric domains. The result of that work has been to

refute the following suggestion of Wadge [WaB1],

It is not possible (as far as we know) to formulate
the cycle sum theorem purely in terms of func-

tions on an abstract metric space.

We have not only formulated it (as the Cycle Product Theorem) for metric
spaces, but for metric domains as well. Also, our proof is extensional, that is, it
does not use the approximation relation . However, being able to reason
about correct programs without C is not the main reason for extending the
Cycle Sum Theorem to metric spaces. The main reason is that it is the first step
in realising Wadge's dream of being able to define the fixed point semantics of

correct programs without using partial objects at all. In his own words,
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..... a fixed point semantics for a large class of
“"obviously terminating” recursive programs
which would be mathematically conventional in

k i that it could completely avoid reference to partial

l ; objects and approximation.
”' First let us describe how this idea of removing partial

objects works in our theory of metric domains. Supposethat <n ,f ,¢ > isa

e cycle product complete system of equations over a domain 2 . Then the func-
P tions f; map complete objects in D™ to complete objects in D . (For non-

recursive f; this is ensured by the existence of the constants cy; . the recur-

sive case is covered by the Cycle Product Theorem) Let f'; be the functions f;

restricted to the complete objects, then the system <n ,f' ¢> is cycle pro-

duct complete. Also, the keys of the two systems have the same unique fixed
point. This means that the following rule can be developed for proving the com-

pleteness of programs.

l Suppose that f € (D*-D)" is a set of equations
we wish to prove has a unique fixed point which is
complete. Suppose first that we can find a cycle

product complete system <n ,f' ,c¢' > overthe

SN

complete objects of D such that each f;' is the

4
g__ restriction of f; to the complete objects. Sup-
E pose that from such a system we can deduce the

existence of a cycle product complete system

<n ,f .c > . Then we can conclude that the set

of equations f has a unique fixed point, and that

this point is complete.
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Agreement spaces are then shown to be topologically equivalent to the class of
ultrametric spaces. Next it is shown in Section 3.2) that agreements are more
appropriate than are ultrametrics for reasoning about completeness. Finally in
that Section, in preparation for constructing our categorical theory of equa-
tions, other topological properties of agreement spaces are considered. The
most important of these is the proof of the equivalence between separable com-
plete agreement spaces and closed subspaces of the Baire Null Space. Section
3.3) constructs the category CAS of compact agreement spaces., while Section
3.4) proves the above mentioned closure properties. Section 3.5) shows how we
solve recursive equations over compact agreement spaces using initial fixed

points. Finally, Section 3.6) gives some brief example solutions to recrusive

equations.
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Section 3.2) : Agreement Spaces

This section begins by introducing Wadge's notion of an
agreement. We will use it later as an alternative to a metric in the construction
of a category of metric spaces. Firstly we show the topological equivalence
between agreement spaces and ultrametric spaces. The main aim of this sec-
tion is to introduce agreement spaces in preparation for the categorical con-
struction of the next section. The following notions are all shown to be

equivalent in the sense of uniform homeomorphism.

compact agreement space
compact ultrametric space
compact subspace of the Baire Null Space

compact totally disconnected metric space

The proofs of these equivalences have all been completed by the author, how-
ever, some are lengthy and technically uninteresting. Thus their inclusion
would not benefit the theme of completeness in the dissertation. For this rea-

son the proofs have not been included. For background topology see [Suth] or

[Sim].

The notion of an agreement was introduced by Wadge

[WaB1]in the concluding paragraph to his paper.

It is not possible (as far as we know) to formulate
the cycle sum theorem purely in terms of func-
tions on an abstract metric space. But it is possi-
ble, however, if we use instead of a metric a dual
notion which we call an agreement: a function

which assigns to any two points a nonnegative
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element of w J{~] which measures how close
together the points are, yielding = if they coin-
cide. This approach could allow a fixed point
semantics for a large class of "obviously ter-
minating” recursive programs which would be
mathematically conventional in that it could
completely avoid reference to partial objects and

approximation.

This suggestion has neither been formalised nor developed
until the work in this dissertation. We have formalised it in so far as we regard
it as a first step in establishing Completeness Rules. Also, we develop the notion
of agreement in three different ways. Firstly, we relate agreement spaces to the
more general notion of a metric. Secondly, other interesting topological pro-
perties of agreement spaces are established. Thirdly, we later construct a

category of agreement spaces for use in Completeness Rules.

Definition
An agreement space is an ordered pair <D,a> where D is a non-empty set, and
the agreement « is a function from DxD to w{f{=] such that for all z.y.z in

D

z=y iff alzy) = =
and, «a(z,y) = aly.z)

and, a{z.z) = inf{ alzy) . aly.2) }

An example of an agreement space is the Baire Null Space <w®,a> of all infinite

sequences of non-negative integers. The agreement between any two
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sequences is the length of their common initial segment.

Definition
An Ultrametric Space is an ordered pair <J,d> where D is a non-empty set,
and the ultrametric d is a function from DxD to the non-negative reals such

that forall z,y.z in D

dzy) =0 iff z =y

d(y.z)

and, d(z,2z) < sup{d(zy) . d(y,z)}

and, d(z.y)

Each agreement space <D,a> is topologically equivalent to the ultrametric

space <D .d> where,
vz,yeD. dzy) = 2y

In fact, each agreement space is uniformly homeomorphic to an ultrametric
space. The reverse uniform homeomorphism is constructed as follows. Sup-
pose that <D.,d> is an ultrametric space. Let <D,0> be the agreement space

such that forall z,y in D

dzy)=21 ==> afzy) =20

]
1l
V

vn>0 27" sd(zy) < 2mt! alzy) =n

Thus all metrical and topological notions associated with ultrametric spaces
can be carried over to agreement spaces. Wadge did not prove the equivalence
between ultrametric and agreement spaces, however, his belief was that partial
objects could be avoided by a device such as this in a fixed point semantics for
"obviously terminating recursive programs"”. His notion of a partial object

[private communication] is embodied in the following idea of an agreement
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domain.

Definition

An agreement domain is an ordered pair <D,a> where D is a non-empty set,

and a:DxD-wlJ{={is such thatforall z,y,z in D

a(:z: ,y) = oo ==> x =y
and, alzy) = aly.x)
and, a(z .z) = inf§{ alz.y) ., aly.z) }

As in the case of agreement spaces above, each agreement domain can be
mapped onto an ultrametric domain by the identity function which is bicon-
tinuous. An agreement domain appears to be more useful for reasoning about
programs than Wadge's suggestion of agreement spaces. For example, in the
agreement domain formulation of the Kahn Domain the agreement between two
sequences is the length of their common initial segment. In this domain the

following rule holds.
vzyeD (VvzeD «lz.2)=alyz)) ==> z =y
In such domains the usual partial ordering C can be defined as follows
vzyeD =zCy iff vzeD al(z.z) < aly.z)

Thus in principle anything approximation theory can do in these domains so
can agreements. A second example of how agreements are more useful for rea-
soning about programs than ultrametrics is in inductive proofs. Induction over
© is clearly easier than induction over the reals, and so rules such as

(remember = > ),

z is complete if
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JyeDs vn>0 a(z.yny) > olz .y )
are simpler than the ultrametric analogue,

z is complete if

Jc=0 JyeD® c<1 and,

va>0 d(z,ypy) < c.d(z,y,)

Now that agreements have been introduced we return to
the topology of agreements. The remainder of this section establishes the
equivalent formulations of agreement spaces, thus justifying the use of agree-

ments in the category theory of Section 3.3).

Definition

A topological space is separable if its set of points has a countable dense subset.

Theorem 1
Each separable agreement space is uniformly homeomorphic to a subspace of

the Baire Null Space (Two spaces are said to be uniformly homeomorphic if both

the homeomeorphism and it's inverse are uniformly continuous).

Proof:

Let <D ,a> be aseparable agreement space.

For each z € D andfor each n € wlet D,%(z) denote
{v |yeD and alzy)>n }

Let D% denote
{ D,*(z) |z €D and new |

Let C be an injective function from a subset of w onto a
countable dense subset of D.
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Let f : D% - w besuchthat

z € D2 ==> (yiz) €z
Such a function exists as the range of C isdensein D .
Let g : D » w® be such that

vzeD vnew gl(z), = f( D.%x))

Then it can be shown that g is a uniform homeomorphism.

Theorem 2
Each subspace of the Baire Null Space is uniformly homeomorphic to a separ-

able agreement space.
Proof:

Let D be a subset of the Baire Null Space.

Then as there are a countable number of {inite seqL;ences
of non-negative integers, we can for each n >0
construct a countable subset D™ of D
such that,

wvzeD dyeD* alzy)>n

Thus, (J D™ isacountable dense subset of D.
n>0

Definition

A metric space is complete if each cauchy sequence converges.

Theorem 3
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Each separable complete agreement space is uniformly homeomorphic to a

closed subspace of the Baire Null Space.

Theorem 4
Each closed subspace of the Baire Null Space is uniformly homeomorphic to a

separable complete agreement space.

The proofs of Theorems 3 & 4 reduce to the proof of showing that a subset of a
complete metric space is complete precisely when it is closed. Such a proof can

be found in [Sim].

Definition
A metric space is compact if each sequence of points has a convergent subse-

quence.

By [Suth] p.B2, each compact subspace of a metric space is closed, thus a com-
pact subspace of the Baire Null Space is a closed subspace. By [Sim] p.111, the
continuous image of a compact space is compact, thus by Theorem 4, each com-
pact subspace of the Baire Null Space is uniformly homeomorphic to a compact
agreement space. Now for the reverse equivalence. By [Sim] p.125 if a metric
space is compact then it is complete and totally bounded. Also, by [Suth] p.111
if a metric space is totally bounded then it is separable. Thus each compact
agreement space is a compact complete separable agreement space. Thus by
Theorem 3 (and as by [Sim] p.111 the continuous image of a compact space is
compact), each compact agreement space is uniformly homeomorphic to a

compact subspace of the Baire Null Space.

Definition
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A disconnection of a topological space is a pair of disjoint non-empty open sets
whose union is the whole space. A space is totally disconnected if each pair of

distinct points can be separated by a disconnection.

Theorem 5
Each compact totally disconnected metric space is uniformly homeomorphic to

a compact agreement space.

Theorem 6
Each compact agreement space is uniformly homeomorphic to a compact

totally disconnected metric space.

To recap, in a compact world the following notlions are all equivalent,

agreement space
ultrametric space
subspace of the Baire Null Space

totally disconnected metric space
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Section 3.3) : A Category of Agreement Spaces

Results from Section 3.2) show that the compact agree-
ment spaces are equivalent to the compact ultrametric spaces, which are
equivalent to the compact subspaces of the Baire Null Space. This section
defines the category CAS of compact agreement spaces which we use for giving

a semantics to metric space equations such as
D = 4 + P(B)xD

Such equations use the operators disjoint sum + , cartesian product X, and a
powerdomain operator P(). There are two steps in constructing the semantics.

Firstly each equation is translated into the form
D = F(D)

where F is a finite continuous functor over CAS. Thus the above example

becomes
D = (FA+ (FBxFI) WD)

where FA, FB,and FJ are all finite continuous functors over CAS . In Section
3.5) we show that each finite continuous functor F has an initial fixed point,
which is taken to be the semantics. The approach is similar to that used by
D.Lehmann in his Ph.D. dissertation (University of Jerusalem), and involves

many lengthy proofs of closure properties.

CAS is defined to be the category whose objects are the
non-empty compact agreement spaces, and whose arrows are the continuous
functions over those spaces. The identity arrows in CAS are the identity func-
tions, while the isomorphisms are the bicontinuous functions. Sums and pro-

ducts exist in CAS. A sum of two compact spaces <D.,a> & <D'.«a'> is the
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compact space <D+D'a+a'> where D+D' denotes the disjoint sum of D & D'

+and a+a' denotes the agreement on D+D' such that

YzyeD+D' (o+a’)(zy) =0 if zeD & ye’
=0 if zeD' & yepD
= alzy)+1 if zeD & yeD
= a'lzy)+1 if zeD' & yeD:

A product of <D,a> and <D'.a'> is the compact space <DxD axx'> where
DxD denotes the cartesian product of D & D', and axa' denotes the agree-

ment on UxID such that

VzyeD. vz yeD.

axa'(<z,x'>,<yy'>) = inf} a(zy) (=) )

Definition

A chain in CAS is a sequence of objects and arrows of the
form

So T Sz
<Ag.p> €E—— <AL8> €—— <Ap0p> €—m

CAS is a chain complete catlegory, that is, each chain has a “limit". The notion
of a "limit" is formalised in category theory by means of a cone which we now
introduce. For each sequence o (called a chain)

Xo & Xz
0y € a, € Qp, €——

of objects & arrows in CAS, and for each object D, a cone with base o and ver-

tex D is a commutative diagram



Qp xy oz

ao( ‘11( ‘12(—'

and is denoted AJ. The limit of a chain « (denoted lim «) may or may not
exist, but if it does then it is unique up to isomorphism. lim « is an object for
which there exists a cone AJ (called a limiting cone) with vertex lim. o having
the following property. For each object D, and for each cone Af with vertex

D, there exists a unique arrow g from D to lima such that
vnz0. 6, = T, .8

(more precise definitions of cone and limit are given in [Ma71] p68). The first

aim of this section is to show that the chain

Jo Ja Sz
<A0.a°> L S <A1.a1> < <A2,a2> L m—

has the limit <L 8> where

L = { <zgpxy,..> | Yn=0.2z, €4, and Frn(Zns) =2 3

vzyel. Blzy) = inf{ n+ 0, (ZTpYn) | H =04

It is easy to see that f isin fact an agreement. L is a subspace of the cartesian
product of a countable number of metric spaces ([Kur1] pp.212-3). The product
topology is a topology of infinite sequences Z such that for each n=0
z, € A, . Each sequence X of pointsin the product converges to a point L if

and only if for each n =0 the sequence

(Xo)n ' (Xl)n ' (Xz)n '
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converges to l, . The following theorem shows that g induces the product

topologyon L.

Theorem 1
For each n =0 let <4, a,> be a compact agreement space. Let <PA.f> be

the agreement space such that

PA = { <zpzy,..> | Y202, €4, }

vzyePA. Blzy) = infln+a,(z,¥,) | n=0}

Then <PA.B> is a cartesian product. More precisely we will show that a
sequence X of points in P4 converges to a point ! if and only if for each

n = 0 the sequence
(Xo)n -(Xl)n ' (XZ)H ’
converges to 1, .

Proof:
Suppose firstly that X convergesto . Let n =0 . Then for each

k =0 there exists m =0 such that

Thus

viem. il itoa((Gk.L)]i204 = k+n
Thus

vizm. n+a (X ln) = k+n

Thus



Thus

(Xo)n »(Xl)n -(XZ)n '

convergesto [, .

Now for the converse argument. Suppose that X is a sequence of
points in P4 such that for some ! € P4 and for each n =0 the

sequence

(Xodn « (Xn » (Xodn
converges to I, . Let k =0 . Let m =0 be such that

vi<k.vji=zm. (5. L) =k
Then

vizm. infl i +a;((X) L) |izk | =2k
Thus

vizm. B(X;.l) = k

Thus X convergesto L.

To see that L is compact we firstly appeal to Tychonov's theorem, which states
that the cartesian product of a countable number of compact spaces is com-
pact ([Kur?2] p.17). We show L to be compact by showing it to be complete.
Suppose that X is a cauchy sequence of pointsin L, then foreach n =0 sois

the sequence
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(X0>n ' (Xl)n ' (XZ)'n '

As L is a subspace of a compact product space, there exists a peint I in the

product such that for each n =0 [, is a limit for the above sequence. Thus

lim X, = <lgl, ..>

Y7L e
To show that I € L it must be shown that
v on 20 . f'n(l'n+]) = ln

Foreach n=0
f(ln+l) = fn( &%(Xm)nﬂ )

= &I_&fn( (Xm)n+1 )

(as f, is continuous)

= lim(Xm)n
m =

(as X, €L)

Thus ! €L, and in consequence L is complete and so compact. Now we can

complete our proof that L is a limit of of the chain

Jo I S

<Ao,a0> e <A1.a1> € <A2,CX2> Cee

More precisely we will construct a limiting cone AF with vertex L. For each

n =0 let 7,:L-4, bethe function such that

vzel. 7,(z) = z,

Each 7, Is continuous as for every convergent sequence X of peintsin L
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(EmX, ) = Hm O

m «e= n

We now show that A7 is limiting. Suppose that Aj is a cone with a vertex D .

Then there is a unique function g:J0-L such that
vYnz=0. 6, = 7,.9

that is, the function g such that
vdaeD.vn=20. (g(@)), = 6,(d)

It just remains to show that g is continuous. Let dgyd,... be a convergent

sequence of pointsin D . Then as each §, iscontinuous

vn=0. 6,(limd, ) = lim d,(d,)

7L ~>o me=

Thus

vn=0. (g(limd, ), = lm (g{dn)n

m = M -

That is, for each n =0 the sequence

(g(do))n . (g(d1))n . (gld2)n .

converges to

(g( limd,, ))

™m e n
Thus the sequence

gldo) . g(dy) . g(de) .
converges to

g( limd, )

m =
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Thus

g(limd, )

m —»w=

Thus g iscontinuous.
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lim g(d,)

Y7L >
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Section 3.4) : The Category FCAS

Now that CAS has been introduced we must consider the
category FCAS of finite continuous functors over CAS. A functor F over
CAS is a function which assigns to each object D in CAS an object F(D),and

to each arrow f:D-D an arrow F(f).F(D)-F(D) such that,

v D € CAS F(ip) = 1pwm

v f:D»D g:DsD"  F(g.f) = Flg).F(J)

An example of a functor is the powerspace functor P() now described. The
space <D,a> is a subspace of the space <D'«'> if DCD', andif «a is «'res-
tricted to D . The compact subspaces of a compact space are the closed sub-
sets, as each subset of a compact space is compact precisely when it is closed.
[Kur1] (p.214) describes the metric space (2P),, of all closed and bounded sub-
sets of a space D with a metric m . If m is a compact metric induced by an
agreement o then (27),-{{}} is the space induced by the powerspace of com-
pact subspaces of <D,a> (denoted <P{D).P(x)> ). The agreement P(a) for

this powerspace is such that

v A,B € P(D) (Pa))(A,B) =
inf§ supla(z.y)|z€d i | yeB |

U tsupta{zy)lyeB ]| zch |
The following theorem shows that P(a) isindeed an agreement.
Theorem 1
For each compact agreement space <D,a>, P(a) is an agreement.

Proof:

Let <D.a> be a compact agreement space. Clearly P(a) is
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symmetric, also it is easy to see that

v A.B. A=B ==> (Pla))(4.B)==

As compact subspaces are complete the reverse implication is also

clear. It only remains to prove the "triangle inequality”

v A4 ,B,C . (P{a))(A.C) = min{ (P(a))(4.B), (P{c))B.C)}

Now,
vyeB. supl a(y.z) | zeC}] = (P()B.C)
and,
Y r€A. Y yeB. v zelC . of(z,z) = minfalz y), a{y.z) |
thus,
Vv z€A .V yeB . supla(z.z)|2zeC }
> min{a(z y) . supla(y.z)|z€C §}
= min{a(z y), (P(«))(B.C) ]}
Thus,
v z€A . sup{alz z)|zeC
= min{supla{z y) [y eB |, (P(a))(B.C)}
but,
v zehd . suplalzy)lyeB ] = (P(x))4.5)
thus,

v ze€Ad . suplalz,z)|zeC
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= min{ (P(a))(4.8) . (P(e))(B.C) |
By similar argument,

v 2€C . suploalz.z)|z€l ]

= min{ (P(a))(C.B) . (P{a))(B.A)}

thus,

(P(e))(4.C) = min{ (P(«))(4,B) , (P(«))(B.C)}

Thus we have proved that P(a) is an agreement.

To see that P(D) is compact we consider the exponential topology 22 of all
closed subsets of D, As D is a compact metric space, 27 is the same as
(P} ([Kur2] p.47). Also, 22 is compact as D is compact ([Kur2] p.45), thus
(2%)m is compact. Thus as {} is an isolated point in (22),, , (22),, — {{}] is
compact. That is, P(D) is compact. P() can be made a functor over CAS as
follows. For each continuous function f:D-D ,let P(f).P(D)-P(D) be the

continuous function such that for each compact subspace 4 of D
(PUENA) = (1) ]ze4d]y

(P(f))(A) is compact as the image of a compact space under a continuous
function is compact ([Kur2] p.11). f is a closed mapping as it is continuous
and as D is compact ([Kur2] p.11), thus P(f) is continuous ([Kuri] p.185).
P() is a finite functor, that is, for each finite space A P(A) is also finite. P()
is an example of a continuous functor as it maps each limiting cone to a limit-
ing cone. A continuous functor is a generalisation of chain complete function

as used by [Tar55] in his least fixed point theorem over partial orders. As an
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example, the following theorem shows that the powerspace functor P() is con-

tinuous.

Theorem 2

P() is a continuous functor.,

Proof:

Let f be achain

Jo i Je
<Ao,a0> e—_— <A1.0(1> €— <A2,az> é__

in CAS. It has been shown earlier that f has a limit <B,L> where

L = { <zgz),.> | Vn201zx,€4, & Tn(Zns) =2, |

vzyel. flzy) = inf{ n+oa,(z,9,) | 20}

P(f) is the chain

P(fo) P(f1) P(fe)
P(Ay) €——— P(4,) é——— P(4;) €

Similarly P(f) hasalimit <L',8'> where

L' = { <Bg.B),..> | Yn=0 B, € P(4,)
& (P(fa))(Bns)) = B, |

Vryel flzy) = inffn+ (Plon))(Eym) [ n=0 |
Let i:P(L)~L bethe function such that
v CeP(L) Yn20 (i(C)), = {z, |zeC ]

To show that the functor P() is continuous in CAS it is sufficient
to show that the function i is an isomorphism. That is, it must be

shown that 1 is a homeomorphism. But by [Kur2] (pp.11-12) each
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injective continuous mapping of a compact agreement space into
an agreement space is a homeomorphism. Thus as P(L) is com-
pact, it is sufficient to show that 7 is an injective surjective con-
tinuous function. We begin firstly by showing that 7 is injective.
Suppose that C.C € P(L). Let z €C. Then there exists a

sequence Y, Y,... in C such that

vn=0 =z, = (%),
Thus

Ynz0 vYmsn z, = (%),
Thus

vYnz=0 B(z.,%,)=n
Thus

r = ygl};

Therefore z € C as each ¥, € C andas C is complete. Hence

CcC . By similar argument C CC, thus C= C . Thus 1 is

injective.
We now show that i is surjective. Suppose that Be L' . Let C be
{ <zoxy,..> | Vn20 z, €8, & InlZns) =2, )

Then CcL. To show that € € P(L) we must show that C is
compact. As L is compact it is sufficient to show that C is com-
plete. Suppose that Xg.X,... is a cauchy sequence in C . Then as

L iscompact, X convergestoa point | € L . We need to show that
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l € C,thatis we need to show that

v n=0 fn(ln+l) = ln

This is easily seen as for each n 20

fn(ln+1) = fn( lim (Kn)n'kl )

m —w=

= }ég}o f'n((Xm)n+l)

.

— (as f, iscontinuous)
= um (%),
b mee
| (as X, €L )
. = (lim X, )
! =

i Thus C is complete, and so compact. Thus C € P(L). Thus 1 is

surjective, as by inspection i(C) = B .

Next we show that i is continuous. To do this it is sufficient to

show that

i v C,CepP(L) p(i(C),i(C)) = (P(BN(C.C)

S

Now, forall C, C € P(L)

(PEN(C.C)

inf{ sup{Blzy)lzecCi|yeC |

1]

Ut suptplzy)lyeCi|zeC }

f

inf{ sup{inf{n + a,(z, y,) | n=0 |z € C|ly € C |

! U tsuplinfin + a,(z, yn) I n=20y € C |z € C}

t Thusforall C,C € P(L),andforall n >0
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inf{ sup{n + ap(z, )z €C)ly € C }
Ut supln + an(Znyn) ly € C {z €C}

= (P(B)(C.C)

Butforall C,C € P(L)

p(i(C).i(C))
= inf{ n + (P(an))((2(C)n . (A(C ) ) I n 20 4

inf{n +inf{ supl e, (uw) [u € (I(C))s v € (E(C )

U tsuplog(uv) v e(@(C )y lu € (@(C)p}ln=0]
= inf{n +inf{ supl o (z, Yn) |z €C |y € C §
U tsuplon(Znyn) [y €C {2 €Cy [n=0 ]

inf{ inf{ sup{n + a,(z, ¥n) |z €C iy €C }

Ulsuptn +oq (@ yn) vy €C iz €eCi|n =0}
Thus
g (i(C).i(C)) = (PB)(C,.C)

Thus i is continuous. We have now proved that i is an injective
surjective continuous function, and thus that P() is a continuous

functorin CAS .

To conclude this section we show that all sums and pro-
ducts of continuous functors over CAS are continuous. First we look at sums.
Suppose that F & G are continuous functors over CAS, and suppose that A7 is
a limiting cone with verltex V. Then as F & G are continuous the cones
F(AZ) and G(A]) are both limiting. Suppose we have a cone Aff. ¢y With ver-

tex D. As D is compact, and as §; is a continuous function, there exists a
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unique partition of D into compact spaces D & D” such that the restrictions
801D & 6g|D” are continuous and have the ranges F(a,) & G{ag) (where ag
is the first object in « ). Thus there exist unique cones Bfay & A,y with ver-
tices U & D" respectively which are restrictions of the cones F(A) & G(A]) .
But, as F(A7) and G(AJ) are limiting, there exist unique continuous functions

9D -F(V) & g"D”-G(V) such that
vn=0 6, = F(r,).9 and 6, = G(1,).g9"
Thus there exists a unique continuous function g:D-+(F+G){V) such that
Ynz0 6, = (F+G)7,).9
Thus F + G isacontinuous functor over CAS.
We now show that the product F X G is continuous. Let AJ be a cone with ver-
tex V as above. Then as F & G are continuous the cones F(A7) and G(A7)
are both limiting. Suppose we have a cone Afpye),) With vertex D . For each
n >0 let 6,:D-F(a,) and 6,:D-G(a,) be the left and right components of
6, (where a, isthe n'th objectin a). Then there exist cones Afj,) & A,

both with vertex D . But, as F(AJ) & G(AZ) are both limiting, there exist

unique continuous functions g':D-+F(V) & g":D-»G(V) such that
vnz0 6, = F(r,).g' and 6, = G(1,).g"

Thus there exists a unique continuous function g:D-+(FxG)(V) such that
vYn=0 6, = (FXG)(1,).g

Thus F x & is a continuous functor over CAS.
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Section 3.5) : Recursive Equations over CAS

Now an initial fixed point semantics over CAS is given to

equations of the form
D = F(D)

for the class of continuous functors F. To formalise the notion of a "fixed
point” for a continuous functor F we introduce below the category ICAS(F) of
all isomorphisms i:D-F(D) (fixed points) of F. The aim of this section is to
show that an object is initjal (see below) in JCAS(F) precisely when it is iso-
morphic to the fixed point constructed by the inverse limit method (see
below). This method for solving recursive equations in category theory is a gen-
eralisation of Tarski's method for cpos [Tar55]. The approach is similar to that
envisaged by, among others, Daniel Lehmann in this Ph.D. dissertation (Univer-
sity of Jerusalem). This section thus has two parts. The first part constructs a
fixed point to the above equation using the inverse limit method. The second
part defines the category ICAS(F), and then shows that an object is initial pre-

cisely when it is isomorphic to our constructed fixed point.

We begin the first part of this section by describing the
inverse limit method for continuous functors. A continuous functor F maps
each limiting cone to a limiting cone. Thus for each such F, if the cone

r F(r) F(F(r))
] G F(]) Qe F(F(1)) o .

T"o ™ 2
D

is limiting, then so is the cone



v
e
oo

-76 -

Fer) F(F(r)) F(F(F(r)))
F(I) € F(F(I)) € F(F(F(]))) € .,

T F(ry) TF(‘H) F(7p)

= F(D) = F(D) =

Thus this cone with the object / added to the base is a limiting cone. However,

as the vertices of any two limiting cones with the same base must be unique (up

to isomorphism), we have that

Consequently we can use limits to find a fixed point of a continuous functor F
if we can prove that the chain (denoted wF)

T F(r) F(F(r))
] o [(]) € [(F(])) e

has a limit. In the vemainder of the first part of this section we will show that

if F isfinite continuous then oF doesin fact have a limit.

First let us look at the "retraction” properties of the arrows

in wF . Aretraction for the arrow f:A-F in CASisan arrow r:F-»4 such that

Such an arrow f is always monic (see [Ma71]p19), thusin CAS f is a topologi-

cal embedding of 4 into B. The arrows in wF are all retractions, as for any

arrow e :[-F(I)

T . e = 11
F(r) . Fle) = 1py

FF(r)) - F(Fe)) = lrgay
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Consequently the objects in wF form an increasing sequence of finite sub-
spaces of CAS. This enables us to use the usual inverse limit construction to

find a limit. Let S be the agreement space of all infinite sequences z such

that
Yn=0 z,ef () and z, = (F*(r))(Zn4,)

S is clearly complete, and can be shown to be totally bounded as follows. A

basis for S is
flyeS|alzy)z2n{ | €S and n=0 |

Thus by [Suth] (p.111) S is totally bounded. Thus by [Sim] (p.125) S is com-

pact, and so it is shown that S € CAS .
Foreach n 20 let 7,:S~F"(J]) be such that
vzeS T,(z) =z,
Then for each m <n
T = F(r) . Fntir) o oo F";l('r) . Tn

Then the diagram

commutes, and is thus the cone AJr. To show that this cone is limiting, we
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must show that for each cone ASp with base D, there exists a unique continu-

ous map g:D-S such that
vYynz=0 6, = 7, . 9

We will show that such a g exists. The only g satisfying the above equation is

the g such that
vzeD vn=0 (g(z)), = 6,(z)
It only remains to prove that g is continuous.
Suppose that ¥y is a convergent sequencein D, then foreach n >0

(9(limy ))p, = 6,(limy)

im 6y, (Ym)
m -
(as 6, iscontinuous)

lim (9 (YmDn

T —-™

But for each n =0, as F* (/) is finite there exists an integer ., =0 such that
v mz2 7‘n (g (ym ))n = (g (yin))n

and

lim (g (ym>)n = (g (yin))n

e

thus there exists lim g (y,,).and
m -s+co
vn20 (limgym)n = (gy,))
therefore

Lim g(ym) = g(limyn)

™m —ew
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Thus g is continuous. We conclude the first part of this section by summaris-
ing its results. For each finite continuous functor F over CAS, it has been

shown that the chain

T F(r) F(F(r))
| G [([) G [( () o .

(denoted wF ) has a limit which is a fixed point of F .

Now we go on to define the category ICAS(F),and to show
that an object is initial in this category precisely when it is the limit con-
structed above. The objects of ICAS(F) are the isomorphisms i:4-F(4) in
CAS . For all such isomorphisms i:4-F(4) & j:B-»F(B). and for each arrow

J:A-B in CAS ,thetriple <j.f i> is an arrow in ICAS(F) iff
Fry.i = 7 .f

that is, if the following diagram commutes.

N

J F(f)

Composition in JCAS(F) is similar to that in CAS . The composition of any two
arrows <k.g,j> & <j,f.,i1> isthe arrow <k.g.f.i>. For each isomorphism
1:A-F(A) in CAS, an identity in ICAS(F) is an arrow of the form <i, 14,1>.

The isomorphisms in JCAS(F) are those arrows <j, f,i> for which f is an
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isomorphism in CAS . Although ICAS(F) is not a subcategory of CAS , there is
a forgetful functor which reduces JCAS(F) to a fixed point subcategory of
CAS . This is the functor which maps each object i:4-F(4) in ICAS(F) to 4,

and maps each arrow <j, f,i> of JCAS(F) to f .

In the remainder of this section il is shown that for any
object B in CAS, an object j:B-F(B) is initial in /CAS(F) iff there exists a

limiting cone AJp with vertex B such that
Yyun>0 7, = F(th_1)-J

The following has been shown for each finite continuous functor F over CAS.
There exists an isomorphism j:B-F{(B) such that B is the vertex of a limiting
cone AZr. In the second part of this section it will first be shown (in Lemma 1)
that j is an initial object in JCAS(F). Secondly (Lemmas 2 & 3), it will be
shown that for any object B in CAS, an isomorphism j:F-F(F) is initial in

ICAS(F) if and only if there exists a limiting cone AJp with vertex B such that

Y>>0 T, = F(th-) . ]

Lemma 1

From above there exists an object B which is the vertex of
a limiting cone AJr. Then there exists an isomorphism j:B-F(B) which is an

initial object in ICAS(F) .

Proof:

As F is continuous, the cone
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T F(r) F(F(r))
] s (]) s F'(F(])) Gt ..

\ Ts

is limiting. Thus B and F(B) are vertices of limiting cones with the same

F(ry)

F(1o)
= F(B) = F(B) =
_ base. Thus there exists an isomorphism j:B-F(B) such that

and, Y >0 7, = F(Th-) .7

To show that j isinitial in JCAS(F).we must show that for each isomorphism
1:4-F(4) in CAS, there exists precisely one arrow f:A-B in CAS such that
<j.Ji> is an arrow in ICAS(F). First we will prove that such an arrow

<j.f.i> exists, and then that it is unique.

Let 1:A-F(A) be an isomorphism in CAS. Let Afr be the unique cone with ver-

l tex A such that
vYn>0 6, = F(b,_) .1

As Alpr is alimiting cone thér'e exists a unique arrow f:4-5 such that
vn=0 6, = T, .S

Similarly for the above diagram, there exists a unique arrow g:A-F(B) such

that

But,

e
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6 = s .(j.7)
and, 8 = s . (F(f).4i)
and, Yn >0 6, = Flrn-y) . {(j.F)
(as. 6, = Tn . f
and, 7, = F(Tn1).7)
and, Yn >0 6, = F(Tn-y) - (F(f).4)
(as, 6, = F{(6,_,).%

and, 6,y = Tpoy oS )

Thus as g is unique,

Thus <j.fi> is an arrowin JCAS(F). We must now show that there is no other
arrow f':A-F in CAS such that <j,f'.i> is an arrow in ICAS(F). Remember-

ing from above that f isthe unique arrow with the property

vn=0 6, = 7, . f

we will show that j' has this property if <j,f'.i> is an arrowin /CAS(F), and

thusthat f = f'. The proof is by induction on n .

Trivially, &y, = 75 . f
Suppose we have shown that 6,_; = 7,_,.f . then
6, = F(b,-) .1
. ( by definition of 6, )
= FlTpy.f) .14
( by induction hypothesis )

= (Flrp-) FUf1)) -4

= Flraa) . (F() 1)

= F(tn-y) - (7.1)



= B

=

- 83 -

(as <j.f'i> isanarrowin JCAS(F) )
(Flrn-1)-7) - I
Tn - J'

( by definition of 7, )

Thus,

Therefore f = f' , completing the proof of Lemma 1.

Lemma 2

For each initial object 1:4-F(A) of JCAS(F) there exists a

limiting cone Afp with vertex A such that

vYn>0 6, = F(b,_y) .1

Proof:

Let ©:A-F(A) be an initial object in ICAS(F) .

Let j:B-F(B) and Alr be constructed as in the proof of Lemma 1.

Then B isalimitof wF, j isan initial object of JCAS(F),and

Y>>0 1, = Flr,_) .J

Initial objects in any category are isomorphic, thus there exists an arrow
J:A-FB in CAS such that <j,f 7> isan isomorphism in /CAS(F). Therefore f

is an isomorphism in CAS.

Let Alr be the unique cone such that



-84 -

vYn>0 6, = 71, .f

This cone is limiting as AJr sois, and as f is an isomorphism (limits of chains

are unique up to isomorphism). Then for each n =0

(F(taa) 7). f
( by definition of 7, )
= Flth) - (5-1)
= F(7no) - (F(F) 1)
(as <j.f.> isanarrowin JCAS(F) )

= (Flrno) F(F)) -
= P(Tphy.f) .1

= F(‘Sn—l) -1
Thus
vYn>0 6, = F(6,.,) .1

This completes the proof of Lemma 2.

Lemma 3

Each isomorphism i:4-F(4) in CAS with a limiting cone

A%r such that

vn>0 6, = F(é,.) .1
is an initial object in JCAS(F) .
Proof:

Let ©:A-+F(A) be an isomorphism in CAS.
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Suppose that Afr is a limiting cone such that
vn>0 6, = F(6,.) -1
Let j:B-F(F) and AJr be constructed as in the proof of Lemma 1.

As ASp and AJp are both limiting, there exists an isomorphism f:4A-B such

that
vnx=0 6, = T, .f

By an argument similar to that in the proof of Lemma ! we can show that
j-fF = F(5) .1

Thus as f is an isomorphism in CAS, <j.f.i> is an isomorphism in JCAS(F).
Thus as j isinitial in JCAS(F), and as initial objects in a category are unique

up to isomorphism, 1 isinitial.

This completes the proof of Lemma 3, and thus completes our proof that initial
objects exist in JCAS(F), and thal they are precisely the isomorphisms

j:B~F(B) for which there exists a limiting cone AJr with vertex B such that

VTL>D Tn = F(Tn——l)'j
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Section 3.6) : Solutions to Example Equations

In this section we give some example equations together

with their solutions constructed via the inverse limit method.

The first example is an equation to generate the natural

numbers with infinity.
X =1+ X
The solution is the compact space < INT , apr > where
INT = {0,1,2, {1 {=}
Y zy € INT. z<y ==> aprlzy) ==z
Topologically, INT isthe denumerable space with precisely one limit point.

The second example is one to generate the space SEQ of all

finite & infinite sequences over an arbitrary space <B,g>.
X = I + BxX
The solution generated by the inverse limit method is < SEQ , aspg > where
VvV zy € SEQ. asglzy) =
inft n +B(znyn) | n <z} if |z]=lyl
inft 7 + B(znyn) | n <z JULIRIS if |x]<ly]
For each z € SEQ |z|denotes thelengthof z i.e.
I<>] = 0

|<zozy, .. Zqqy>| = n
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l<zo,21, e l = oo

Also note that by convention inf{} = = . When B is a flat (that is a domain such
that 8(z .y)=0 precisely when z #y ) agzp becomes the Baire agreement. In this

case for all distinct z & y in SEQ asgg (z.y) isthe length of the common ini-

tial segment of z and y .
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Chapter 4

Function Domains for Completeness Rules

Section 4.1) : Introduction

Section 3.1) described the problem of choosing the right
domain of functions in order to establish a Completeness Rule. The first prob-
lem in constructing any domain in this dissertation is deciding which objects in
the domain deserve to be called "complete”. A satisfactory answer to this ques-
tion for function domains will take us half way to establishing a theory of Com-
pleteness Rules. This is because Completeness Rules are used to prove func-
tions complete, just as the Cycle Prcduct Test is used to show that equations
have a complete (unique) solution. We propose here a simple function domain
for investigating the completeness properties of functions. A function f is
defined to be complete in this Chapter if for each complete object ¢ , f(c) is
complete. This definition is unfortunately too simple, as we will see it needs
refinement when discussing agreements upon functions. The function applica-
tion combinator is shown to be complete, while the usual function composition
combinator is shown to be partial. The failure of this composition to be com-
plete appears to be the main stumbling block in constructing domains of func-
tions. A new complete composition combinator is introduced. This discussion is
carried out using a set theoretic model for domains. This model includes both
the Kahn & Lucid Domains. A consequence of this Chapter will be that functions

in a higher order theory of completeness should be absolute. The Conclusion of
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this Chapter discusses the implications of absolute functions and the problems

with composition.

1
1

=
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Section 4.2) : A Model For Domains

The examples of complete functions given so far have been
all first order. Also they have been restricted to either the Kahn & Lucid
Domains, or else domains of the like kind. It is possible to talk about the com-
pleteness of higher order functions such as function application, function com-
position, and fixed point functions. For example, function application is imple-
mented in programming languages by a variety of "eager" and "lazy" techniques
[He78]. These different techniques can be described by a variety of partial &
complete objects in a function domain. To illustrate this we construet a simple
theory of domains. A domain D in this theory is a collection of subsets of a set
L partially ordered by the set inclusion relation >. The complele objects in
these domains are the singletons, while the partial objects are the non-
singletons. A more precise definition is given below. In this theory "eagerness"
and "laziness" can be expressed in terms of completeness. Another interesting
example for these domains is function composition. This corresponds to the
way in which modules are "plugged” together. The way in which the plugging is
done determines the efficiency of the resulting program, this efficency can be
described using completeness. The final example for this theory of domains will
be an examination of various fixed point combinators with respect to their

completeness.

The construction of the domains themselves is straightforward.
Definition

A domain D with universe D is a partial order of subsets of 2 such that,

(i) Theorder C on D is setinclusion 2

(ii) ReD
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(iii) ¢ ¢ D
(iv) Y ceD fcleD
(v)  All non-emply meets exist

(vi) D ischain complete

The operations LI and I are not necessarily set union and set intersection,
this is because domains do not have to include all nen-empty sets. The Kahn
Domain can be formalised as a domain D by letting D be the set of all infinite
sequences in Ka , and by letting each non-singleton 4 in D be as follows. 4
corresponds to a finite sequence z in Ka , where A is the set of all infinite
sequences having z as an initial segment. The Lucid Domain can be defined

similarly in terms of these set theoretic domains.

Definition
The complete members of a domain are the singletons, while the partial objects

are the non-singletons.

The following properties of a domain may be noted.

(i) Each member of a domain is either complete or else
has a complete member above it. This is because

each and every singleton is in the domain.

(ii) Each member of a domain is the meet of the maximal
members above it. This is because,

VAED A= Ullallaca)]

These domains are examples of posets which we shall consider later called
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acpos, however, for the moment the only domains to be considered are these set
theoretic ones. The notion of "set" quite naturally models the idea that a par-
tial object should correspond to a collection of complete objects. Simple opera-
tions such as the cartesian product 2XE of two universes can quite easily be

exlended to a product D*E of two domains.
Definition
The product of domains D & £ isthe domain

D*F = { AxB|A€D and Be £ |

D*E is a domain with universe DXE . The complete objects in D*E are the sin-
gletons {<d.e>{ for de€D and e €F . This fits with the intuition that the com-
plete objects of a product should be formed from the complete objects of the

component domains. The meet of a set of members
{ AAXB; i€ )

of D*F is
< Mi4:iery N{p:ier}y >

Also there is a one-one correspondence between D*E and DxE given by the

interpretation function i € ((D*E-~(DxFE)) where

VAeD VBeE AxB) = <A,B>

At this point we can justify the omission of the emply set ¢ from domains. If ¢
was allowed in domains then ¢ could not be defined as, for example, {¢{ would

be a doemain, and so
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ted v tiBl) = {18y * 18

This omission is desirable as we do not want "overdefined” (i.e. "overcomplete")
objects in domains. The claim that * is an extension of X is justified by the

fact that DxE is always a member of D*E .

The disjoint sum LD+E of universes can also be extended easily to a sum D#F

of domains.

Definition

The disjoint sum of sets 4 & B isthe set

A+B = {<a0>|ae€d | U | <b,1>|beB]

Definition

The sum of domains D & F isthe set

DFE = §{<a0>|lacd] | AeD-{D] i U
{ §<b,1>|b€eB} | BeEE-{E] | U

f D+E

This sum is the so called coalesced sum, where the bottorn elements 2 and &
are "merged” into the new bottom LD+E . The universe of D#E is D+FE . The
claim that # is an extension of + is justified by the fact that D+£ isalwaysa

member of D#E .

ey TP TE 2 TR e > > Tore
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Section 4.3) : Function Domains

The final operator on universes which we wish to extend is the following

Definition
The function space A-~F5 is the space of all functions from the set 4 to the set

B.

As with the previous domain constructions of product & sum, we conform to the
Intuition that a partial object should be the meet of the complete objects above
it. A complete object in a function domain will be a singleton {f} for f in a
function space LJ»K . In general, an object in the domain will thus be a non-

empty set of such functions f .

Definition
The function domain D= F is the set of all non-empty subsets 4 of D-E such

that
(i) YecelDd {fl(c)|fed} € F

(ii) 4 = IfE.D*.E'|»

veel f(c)efglc)lgedsy

Using (i) we can map each complete member {c{ of D into an element of F .
(ii) implies the following property. If two members of D= E agree on the com-

plete points of D then they are identical.

1t still has to be shown that = £ isin general a domain.

Theorem 1
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For all domains D & E, D+E € D= F
Proof:

( proof technically uninteresting )

Theorem 2

For all domains D & E, D= FE is chain complete.

Proof:

( proof technically uninteresting )

The previous two theorems show that in general D= F is a domain. As with
product and sum, there is the following property to show that = is an exten-

sion of - .

VYD, E (D= {E] = {D]+{E]

A function domain is no good unless its members can actually be interpreted as

functions. This we can do via an inlerpretation function.

Definition
For all domains D & £, the interpretation function for D= E is the function

L€ ((D=E)+(D-FE)) such that

vAe Dw F Y BeD
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(4)B) = TIitse)lrealicen |

Absolute functions occur in languages using lazy evaluation [He76]. In such
languages calls are made for only the minimum amount of input needed to pro-
duce the required output. Absolute functions embody the ultimate (or abso-
lute) notion of laziness. This notion turns out Lo be lazier than that employed
by present users of lazy evaluation. In other words, absolute functions can be

regarded as specifications for current lazy implementations.

The interpretation function gives a one-one correspondence between the funec-
tion domain D= E and the set of all absolute functions in D-F .

Definition

Afunction Fe(D-E) over domains D & E is absolute if

Y A€D F(A) = TI{ F({c}) |ced

The one-one correspondence between each domain D= F and the set of all

absolute functions from D to E isestablished by the next theorem:.

Theorem 3

For all domains D & E , the interpretation function ¢ for D=FE is injective.

Also, the range of ¢ isthe set of all absolute functions in D-F.

Proof:

Suppose {:((D= E)-(D-E))

is an interpretation function.
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Then ! isinjective as for each 4 € D= F

A = { feD-E | vYecel. f(c)e(A)({cl) ]
Also ¢ is surjective as for each absolute function F e D-E

WWtfeDsE|veeld. fle)eF(le})} ) = F

The complete objects in a function domain D= E are, of course, the singletons
{f} for any f in (D-E). However, the interpretation ! for D= E puts them
in one-one correspondence with the set of absolute functions in (D-£) which
maps each complete object in D to a complete object in E. Thus a
complete function in our theory is an absolute function which maps complete
objects to complete objects. The product & function interpretations can be

combined to obtain interpretation functions such as
€ (D (D=E))™ E » (DXx(D-E))~E
For example, when the set
tapp} € (D*(D—E))= E
is interpreted, where app is the usual function application
app € (Dx(D-E))~F
we get the function { fapp} wherefor each 4 in D and absoulute F in D-F
(¢lapp} M <A.F>) = F(4)

That is, {app] is interpreted as the usual function application. By similar argu-

ment we can interprel members of domains such as
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(D= E) * (B F)) = (D= F)
as members of
((D=E)(E-F)) » (D-F)
Thus if comp is the usual function composition in
(2-E)X(E-L)) » (2-E)

then the interpretation of {comp} in the above domain is such that for all abso-

lute functions F & &G in D-E & E-F respectively
v BeD ( ilcomp))(<F.G>))XB) = TI1{G(F({c])) | ce€B |

This is not the following definition of function composition that one would

expect
decomp(<F.G>) = XN A€D . G(F(4))
dcomp will not in general be absolute, but a weaker function as,
v A€eD (deomp(<F,G>))A) C ({comp})(<F.G>))(A)

An example of when this relation is not an equality is included in the proof of
Theorem 1 of Section 5.2. However, the two functions ({compi{)(<F,G>) and

dcomp(<F,G>) do agree on the complete members of D .

This suggests that ¢({comp]) is to be regarded as a specification of the usual

composition dcomp.

{({comp{) does not share all the properties of dcomp, for example, dcomp is

associative while {({comp}) is not.
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Section 4.4) : Conclusions

The first conclusion from this Chapter is that the usual
function composition combinator cannot be easily extended from the complete
objects to the remainder of the domain. We can in this model show what com-
plete composition is, as well as complete application, as opposed to just specu-
lating what they might be. Our version of composition can be regarded as a
specification for all other forms of composition, an upper bound for which the
usual form of composition is an approximation. Our specification does not have
nice properties such as associativity. Is there a reason though why composition
goes wrong? It is this question which needs an answer before completeness for

function domains can really be understood.

A second conclusion from this Chapter is that absolute
functions are the most natural functions to consider for complete objects in a
function domain. While this claim is justified in our model it is not justified in
functions used by many programming languages. This is firstly because the
normal composition of absolute functions is not in general absolute. Secondly,
it is because our complete composition is (to say the least) not easy to imple-
ment when the complete objects used by the functions are infinite data struc-
tures. However, having made these negative points about absolute functions we
should remember that such functions are used in programming languages hav-
ing lazy evaluation. Thus absolute functions, however difficult they may seem
from the point of view of function composition, are used by programmers as
specifications for the functions which they aclually write. Hence this Chapter
has provided an argument in support of Completeness Rules for lazy program-
ming languages. By consequence, we have provided an argument in support of

completeness in general.
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Chapter 5

Absolute Functions

Section 5.1) : Introduction

Previous discussions in Chapter 4 lead to a conclusion that
a theory of function domains for Completeness Rules using the naive set-
theoretic approach necessitates a restriction to absolute functioné. This sec-
tion discusses the possibility of setting up categories of such functions, and
thus considers the feasability of the naive approach. 1t is shown that categories
of absolute functions (using o for morphism composition) do not have the
basic categorical properties required for a theory of domains. This is achieved
by restricting the allowed absolute functions, firstly in Section 5.2) to super
absolute functions, and secondly in Section 5.3) to meet preserving functions.
This is more difficult than the work of Chapter 3, as there we did not consider
functions over domains, but only functions over complete objects. The conclu-
sion of Sections 5.2 and 5.3 is that a reappraisal of the role of function compo-
sition is necessary to generalise completeness (note that this is consistent with
the conclusion of Chapter 4). It is this conclusion which in Section 5.4 leads us
to weaken the fundamental categorical axiom of composition associativity, the
result being a category-like structure which we call a mategory, and which in

its definition incorporates the notion of completeness.

Definition
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A cpois a chain-complete partially ordered set with a least element.

Definition

An absolute cpo (acpo) is a cpo such that

(i) the meet of each set of points exists.
(ii) each point has a maximal element above it.

(iii) each pointis the meet of the maximal points above it.

Definition

For all acpos A & B ,afunction f:A-F5 is absoluteif for each point z in A

f(z) = T1{ fm)| zCm and m is maximal }

This then is the world we are interested in. This Chapter looks at categories of
absolute functions over acpos. Do there exist products, sums or exponentia-
tions in such categories? First it must be established as to whether or not any

category of absolute functions exists at all.
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Section 5.2) : Super Absolute Functions

Theorem 1

There exist two absolute functions whose composition is not absolute.
Proof:

let A, B,& C bethe acpos with
functions f:4A-B and g:B-C

given by the following diagrams.

fm) fm') m"  g(f(m)) g(f(m)) g(m")
/ \ C
o\
F(L) g(f(L))

f and g are absolute, however

g(F (L) = Tig(fm)) . grm)) 3

Hence gof isnot absolute.

Theorem 1 appears Lo down any hopes of setting up a category of cpos and
absolute functions. This is not the case if a more restrictive notion of "absolute

function" is used.

Definition
For all acpos A & B, an absolute function f:4-B is super absolute if for each

z in A,
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for each maximal m in B ,if f{(z)Cm then
there exists a maximal m' in A such that z Cm'

and f(m')Cm

The identity function is always super absolute as are many other absolute func-

tions. The following function f isan example of a super absolute function.

F(<>) = <
f(<zp,...2,>) = <z,,..., 2, >
F(<zg,zy,..>) = <z,,25,..>

The next theorem will be needed to show that super absolute functions are

closed under function composition.

Theorem 2

Each absolute function is monotonic.
Proof:

trivial.

Theorem 3

For each set A of subsets of an acpo

M(UA) = TM{TA|Ach]

Proof:
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Let A be a set of subsets of an acpo, and let

z bein that acpo. Then,

z CTiI(yUA) <==> VvyeUA. zCy
<==> 7 A EA Yy cA .z Cy
<==> VY AeA  zCT14

<==> :z:_l____r|§r|AIA€Ag

thus, M (UA) = TI{TM4A | AcA

Theorem 4

Super absolute functions are closed under function composition.

Proof:

let A, B,& C beacpos.

Suppose that” f:4A-8B and g:F-C are super absolute.

Now,foreachz in A,

9(f(=z))
= [l {g(m)| mismaximal,and f(z)Cm |

(as g is absolute )

M §{ g(m)| mismaximal, and there exists m' such that
zEm & f(m')Cm

(as f is super absolute)

Mg MY gim)| mismaximaland f (m')Cm }

| m' is maximal andz Cm' }
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(by Theorem 3)

= T1{g(f(m)) | m ismaximal and z Cm' |

(as g is absolute)

Thus for each z in 4,

g(f(z)) = T{g(f(m)) | m is maximal, and zCm | (%
Let z bein 4, and suppose m € Cissuch that g(f(z))Cm .

Suppose m' is maximal in B, and is such that
J(z)Em and g(m')Cm

(m' exists as g is super absolute)

Suppose m." is maximal in 4 , and is such that
zCm” and f(m")Cm'

(m" exists as f is super absolute, and as f(z)C m')

thus g(f(m”) C g(m)

(g is monotonic by Theorem 2)
thus g(f(m") C m
thus zCm" and g(f(mNCm  (as g(f (z))Cm)

thus by (*) g o f is absolute.

Using Theorem 4 a calegory of absolute functions can now be built. The objects

of the category are precisely the acpos, while the arrows are precisely the super
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absolute functions (Theorem 5 proves that the identity morphisms exist in the

category).

Theorem 5

The identity function on each acpo is super absolute.

Proof:

trivial

If this category is to be useful for solving domain equations then it must have,
among other things, preducts. The following definition defines the notion of a

categorical product.

Definition
A product of objects 4 & B in a categoryisa triple <c ,pg.p; > where C is
an object, and py:C~A4 & p,:C-+F5 are morphisms such that for any morphisms

J X-4 & g:X-F for some object X there exists a unique morphism h:X-C

for which the following diagram commutes

X

G
P/\jl
A B
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Notation

For all posets 4 & B ,'AxB'denotes the poset with universe
{ <ab>|ae€4 and b €B |

under the peintwise ordering.

Definition

The cartesian product of posets 4 & B is the triple < AxXE ,py,.p, > where

podxB-A and p,.AxB~F are the obvious projection functions.

The following theorem suggests that carlesian products are categorical pro-

ducts.

Theorem 6
For any acpos A & B, AxB 1is an acpo. Also the projection functions

poAXB-A and p:AXB~B are super absolute.
Proof:

trivial

Unfortunately the following theorem rules out the cartesian product as a

categorical product.

Theoremm 7

There exist two acpos whose carlesian product is not a categorical product in

the category of all acpos and super absolute functions.
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Let X, A, & B betheacpos andlet f:X-24 & g:X-B
bethe super absolute functions given by the following

diagrams.

m m mD Fm) g(m) m1
\ <m>
L

Suppose that the cartesian product <AxXBpgyp,;> of A & Fisa

product in the category of all acpos & super absolute functions.

Then there exists a unique super absolute function A:X-AXF
such that pyoh = f and p,oh =g and

vzeX hiz)=<f(z)gl(z)>

Thus from the definition of super absolute function,
as <mg,m,;> is maximal in AxB, and as
h( L )C <mgym ;> we have that either,

h(m)E <mgym,> or h(m')C <mgm >

However, this is a contradiction as both

h{m)< <mgm,> and h(m') < <mgym,>

Hence <AXB pgyp,> is not a categorical product.

Theorem 7 does not deny the existence of categorical products in the category

of acpos & super absolute functions. However, it does confirm that if they do
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exist then they are not what they are expected to be. This fact should be com-
bined with the fact that there are interesting non super absolute functions

such as check : (KaxKa)-»Ka

check (<>) = <>

Y non empty x check(z ) = <1>

This function outputs precisely one daton as soon as an input daton has
arrived. Analysis of the proof of Theorem 4 reveals that the tightening up of
absolute functions to super absclute functions is unnecessarily tight. The

tightening is to ensure the following in that proof.
{ m | mismaximal,and f(z)Cm |

= { m | m is maximal, and 3m' .m' is maximal, and

zCm & f(m)Cm
Now we try loosening the tightening to just ensuring that the meets of these

sets are equal.

Definition
A function f:A-B over acpos A & B is meet preserving if for each pair 4' &

A" of sets of pointsin A
A CA" and Tl14" =T14 ==>

M f@)a'ed"y = M f@)|acd ]

The aim is now to see whether a category of acpos & absolute meet preserving

functions can be defined. Such a category should have al least products in

order to improve on super absolute functions.




-110-

Section 5.3) : Meet Preserving Functions

This section shows that the category of all meet preserving functions over

acpos has finite products. However, it is also shown that none of the popular

"disjoint", "coalesced", or "separated” sums [St77] are categorical.
Theorem 1
Each meet preserving function is monotonic

i Proof:

F Let A and B be acpos.

: Suppose that f:4-FB is meet preserving.
Suppose thata ,a' € A aresuch that alZa'.
Then, [llfal = lMfa, a3
thus as f is meet preserving, T1{f(a)} = [{f(a),f(a")}

i thus f(a) C f(a')

£

Theorem 2

"

FEach meet preserving function is absolute

Proof:

! let A and 5 be acpos.

Suppose that f:A-F is meet preserving.

let a € A .




o .___;44
F o

P

e g

-111-

Now, Tl{ m | m is maximal,and aCm |
= [M§{§{m | mismaximal,end eCm { U {a} |

(as a is the meet of the maximal objects above it)

Thus as f is meet preserving,
M§{ f(m) | m ismaximal,and a Em }

= M {{f(m) | mismaximal,and aCm § U {f(a)]}
Thus, 1§ f(m) | m ismaximal,and aCm | E f(a)
But as f is monotonic by Theorem 1, the reverse implication holds.
Thus f(a) = T1§{ f(m) | m ismaximal,and aEm |

Thus J is absolute.

Theorem 3

The class of meet preserving functions is closed under function composition.

Proof:

let A, B, & C be acpos.

Suppose f:A-B and g:B-C are meet preserving.

Suppose that A" & A" are subsets of A such that,

A CA" and T[1A =T1A4"
Then as f is meet preserving,
M{f@)laveary = M{f@)|aecd ]

thus as g is meet preserving,
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Mig(f@)) levea”y = Mig(fa)) |a el
hence g o f is meetl preserving.

(|

o
£ dn i

Noting that each identity function and constant funclion is meet preserving,
Theorem 3 shows that a category of meet preserving functions can be built.

Now to the question of whether this category has products.

Theorem 4

:

For all acpos A & B, and for each CNE¢ C AXE,
Mec = < TM{acd|3beB <ab>eCy,
M{beB|dacd <ab>eC} >
Proof:

trivial.

Theorem 5
For all acpos A & B with cartesian product < AXEB ,pg,p:>. Po &P, are

both meet preserving.

Proof:

! trivial (using Theorem 4)
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Theorem 6

In the category of meet preserving functions the cartesian product of each pair

of acpos is a product.

Proof:

Let A, B, & C be acpos.

Let <AXxEF ,py.p, > bethecartesian product of 4 & B.

Then by Theorem 6 of Section 5.2), & Theorem 10, AXB is

an acpo, also pg & p; are absolute & meet preserving. (i)

Let X be an acpo.

Suppose f:X-A & g:X-F are meet preserving.

let A:X-AxB be the unique function such that

pooh = f and p,oh =g (ii)

Then, VzeX h(z) = <f(z)glz)>

Now to show that h is meet preserving.

Suppose that X' € X" C X aresuchthat 1 X" = M X

then, T1§{h(z") |z X"}

"

M <fzMglz")> | z"eX"}

1l

< Tlpf")zvexy , Miglz") |z eX"§ >

I

< Mif)jzex }, Migx)lz'ex | >

(as f & g are meet preserving)

Mi <flz)glz)> |z eXx |
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(by Theorem 9)

= M{h(z) |z eX |

thus 2 is meet preserving.

Thus by (i) & (ii), < AXB ,pg.p, > isa product

in the category of all acpos and meet preserving functions.

To summarise the results so far in this chapter. We now have a category of all
acpos with a subclass of absolute functions that has at least finite products,.
The only absolute functions allowed are those which are meet preserving. The
next interesting question for this category is whether or not it has sums (co-
products). There are three potential sums, disjoint, coalesced, and separated.
The discoint sum of two acpos is not an acpo as it does not have a least member.
Coalesced sums involve "joining"” the two least members, something which
would have worked if all functions in the category had the same value on the
least member 1 . The remainder of this section shows that separated sums

will not work either.

Definition

A sum of objects 4 & B in a category is a triple < C ,1ip,7; > where C is an
object, and ig:A-+C and 7,:B-C are morphisms satisfying the following condi-
tion. For any object X and morphism f:A-X & g:B-X there exists a unique

morphism A :C-X for which the following diagram commutes.
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X

C is denoted by A+F ,while h isdenotedby f+g .

Definition

The separated sum of acpos A & B is the triple < A+F ,igy,1; > where A+F

denotes A+F with a new least member, and where ig:A~»A+B & i,:B-»A+HF are

the usual injections.

Theorem 7
The injection functions of each separated sum are absolute and meet preserv-

ing.

Proof:

trivial.

Unfortunately separated sums are not going to be categoical.

Theorem 8
There exist acpos whose separated sum in the category of all acpos & absolute

meet preserving functionsis not categorical.
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Let A be the acpo
0\ 0
o
Then A+A =
o 0 o 0
o) /0
0
Let id:4 -4 be the identity function on 4.

Let h:(A+A4)-4 be the unique absolute function such that

the following diagram commutes.

A A
ig i,
id AtA id
h

Then it can be verified that h is not meet preserving.

Hence < A+A 15,7, > isnotasum
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in the category of all acpos & meet preserving functions.

The overall conclusion from this chapter is that categories of meet preserving
functions are worth considering because products do exist. However the lack of
a suitable sum is a source of major concern. A category of strict meet preserv-
ing functions would make the coalesced sum categorical. This would rule out
many necessary functions though, such as the constant valued functions. For
this reason we are reluctant to consider meet preserving functions until other

avenues such as that in Section 5.4) have been investigated.
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Section 5.4) : Mategories

The previous two sections have throughly examined the
possibility of constructing categories of absolute functions over acpos. The
conclusion from those results is that absolute functions and category theory
will not provide a general theory of domains which use the notion of complete-
ness. However, the efforts of Chapter 4 to define the notion of a "complete
function” forced our researches to consider absolute functions. The only
parameter left open to us for reconsideration in that work is a change in the
morphism composition operator. Instead of using o, we now suggest the abso-

lule composition operator |, where for absolute functions f and g,
vz (glf)z) = TM{g(f(m)): zEm, and m is maximal }

The trouble with o is that it is not complete, this is because the {ollowing is not

in general an egquality.

gof & glirf

We choose absolute composition because it is complete, that is, it is the best
operator consistent with the value of o on complete objects. This secticn con-
siders category theory using |, and shows that if it is to be successful then the
notion of completeness must be incorporated in the very definition of a
"category”. Presented in this section is a category-like structure called a
mategory which the author has defined, and is currently working on and which
incorporates completeness. Hopefully mategories will in the future help gen-

eralise completeness.

The first problem with absolute composition is that it is

non-associative, and thus cannot be used for categorical composition. To see

this consider the following example. Let 4, B ,and C be the following acpos
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Mg m, ma mg My Mg mg mo,

c

AN

A A L

Let f:A~A, g:A-»B ,and h:B-C be the absolute functions such that

flmg) = L f(my) = L
g(mg) = my, glm,) = mg
h(mg) = mg h(mg) = mg h{m,) = m,

Then | is non-associative as,

and

|
}_

(h 1 (g 1£))mo)

!
0

((R g )lsXmo)

However, | is partial associative, that is,

hl(glr) © (hilg)lrs

While the lack of associativity is fatal from the point of view of constructing
categories with | it is not totally unexpected. For example, it was seen in Sec-
tion 4.3) that o is not complele, the source of the problems in constructing
categories of absolute functions. Due to historical reasons categories were not
intended to take account of a distinction between partial and complete objects
[Ma71]. | can however be regarded as a form of "partial composition”. This is
in contrast to category theory where the only composition is (what may be

termed) "complete”. Our structures called mategories are still under investiga-
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tion. The complete objects and concepts are taken straight from category
theory. However, extending notions such as "morphism"” is more difficult. This
problem cannot be separated from the redefinition of "product”, "sum", and
"exponentiation”. Such definitions in category theory are used to define con-
cepts up to isomorphism. Bul what is "partial isomorphism"” in mategory
theory. When such problems have been worked out we can begin to think about

using mategories of absolute functions to construct higher theories of domains

which have a built-in notion of completeness.
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Chapter 6

Conclusions and Further Work

Section 6.1) : Conclusions

There are a number of conclusions from this work. The
first is that the notion of completeness can be used to reason about some "obvi-
ously correct” programs. This is justified by the work in Chapter 2 on the Cycle
Product Theorem. The second conclusion is that a theory of Domains which use
completeness is compatible with traditional least fixed point semantics. This is
justified by the reformulation of Kahn's Semantics in Section 3.2) where unique
and least fixed fixed points are compared. Also from this example, our third
conclusion is that domains of complete objects are worth considering whenever
devices such as the hiaton can be used to turn partial objects into complete
ones. The fourth conclusion is that the complete objects in a domain should
form an ultrametric space. This is because in such domains the completeness
of objects can be proved, as the degree of completeness of an object is defin-

able.

Our main conclusion from this work concerns the problems
of extending completeness from simple domains such as Kahn's to more
interesting structured domains. Our experience is that completeness is a
natural (but uncomputable) concept, and that a general semantics cannot be

constructed until all the semantic tools such as category theory include com-
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pleteness in their definitions. In other words, completeness cannot be another
theory building on top of someone else’s theory, but has to be thought out from

the very bottom.

The final conclusion is that this study has tried to go too
far too quickly. The natural way in which completeness can be formalised in
the Kahn and Lucid Domains has encouraged the author to leap forward into
category theory. Thus our last conclusion is that completeness has first to be
formalised in other simple domains before the above mentioned rethink of

semantic tools can take place.
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Section 6.2) : Further Work

There are several directions in which the work started in
this dissertation can be continued. The first direction is to consider lazy
languages such as Lucid whose complete objects form an agreement space. As
mentioned in the text, these languages provide the best hope for realising Com-
pleteness Rules in programming languages. This direction probably has the
most potential of all possible directions. The second direction is to consider
other interpretations of agreement spaces in existing languages. One such
example is the consideration of sequences of state transitions. In this interpre-
tation an intentionally non-terminating program such as an operating system
is complete if it does not "“crash”. It is felt by the author that pursuit in this
direction would shed a lot of badly needed computational light upon the notion

of completeness.

Other directions for further work are more abstract,
Mategories are a good example. In such work we believe that "static”
mathematical notions such as category theory have to be extended to meet the
challenge of partial objects. This is precisely what we did in replacing metric

spaces by metric domains in Chapter 2.
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