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Abstract

Completeness is a semantic non-operational notion of program correctness

suggested (but not pursued) by l{.W.\Yadge. Program verification can be simpli-

fied using completeness, firstly by removing the approximation relation E

f rom proof s, and secondly by remonng partial objecls f rom proof s' The disser-

tation proves the valid.ity of tbris approach by demonstrating how it can work in

the class of metric domains, 1{'e show how the use of Tarski's least fixed poinl

theorem can be replaced by a non-operational unique fixed point theorem f or

many well behaved Programs. The proof of this theorem is also non-

operational. AJter this we consider the problem of deciding what it means f or a

function to be "complete". It is shown tbat combinators such as function com-

position are not complete, although they are tradiLionally assumed to be so'

Complete versions for these combinators are given. Absolute functions are Pro-

posed as a general model for the notion of a compleLe function' The lheory of

mategories is introduced as a vehicle f or sLudying absolute functions'
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Chapter 1

Introduction

Section 1 .1) : Background to the Thesis

Research into reasoning about functional programs f orms

the background f or this d.issertation. I{hile functional Ianguages are the most

appropriateclassoflanguagesfordevelopingourideasonreasoningaboutpro.

grams it should be possible to apply tLre ideas presented in this dissertatioir to

other languages as weII. Functional languages are the mos[ appropriate

becausetheyarethelanguageswiththesimplestdenotationalsemantics'and

it is this semantics which we use as the basis f or judging the correctness ol

rules f or reasoning about programs, A |ypical definition in such a language is

the f oilowlng.

r@) iIn=0

then 0

else/(n-1)+2n-L

least fixed point f(.F) of the following combinator

continuous function / over 0 , F(f ) is the function
it's denotation is the

where f or each chain

V z €0
ifz=0

*?z -l othertuiseF(l )(r) = 
{

row wish to

/ (z -t)
0

T

ProvenThe proPertY which we of this least fixed point is that it is the
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square function ), z e O . zz ( O denotes the flat domain of all

integers with -L , where 12 - J- ). The usual proof consists of

the only fixed point of F is the square function and so must be

This requires the following inductive proof . For each function /
definition show that

non-negative

showing that

the least one,

satisfying the

il
f;

T

(i)

(ii )

(iii)

-f (-r-) = a2

.f (o) = oz

Vn)0 f(n-t)=(n-I)z ==> f(n)=nz

Such a proof manages to reason about the denotations of programs without

direcl" ref erence to the theory of Ieast fixed points. This is in contrast to the

f ollowing alternative way we could have proved that the denotation of the defin-

ition is the square f unction. Our second proof consists of showing that I/(.F) is

the limit of the chain of partial functions f o,f ,,,.. where for each /'

v z eo r^@) = { I :r:,#"
t

It can easily be shown that the limit of this chain is the square function.

The second proof is clearly more tedious and unnatural

than the first, using partial functions, chains and limits. The first proof avoids

using partial orderings by rnaking the assumption that f or welldefined defini-

tions the combinator F will have a unique fixed point. And so, our two exam-

ple proofs show that a proof technique which uses a theory of unique fixed

points may be more appropriate than techniques which use a theory of least

fixed points. To establish a theory of the former kind first requires a test to

verify programs "well defined". lfith such a test we would eonstruct a proof of

the following kind for the above example definition. Firstly show that the
c
q

i



definition Passes the

point of the definition

02=0

V n)0
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test. Secondly, show that the square function is a fixed

by proving (using high school algebra) that

and

n2I

E

i
I
u

F

Then by a theorem of unique fixed points f or well defined definitions it can be

ded.uced that the denotation of the definition must be the sguare function.

This proof is (what we shall call) non-operational in the sense that it does not

use the approxirnation relation f and the theory of least fixed points' That is'

the relation is not used to describe notions such as "computation" or "partially

d.efined" which are often used in proof s of program properties'

ties of recursive

tunately his rule

based upon l].

McCarthy's recursionindustiqn l-u1t for proving proper-

definitions also uses the idea of "well-definedness"' Unfor-

onlvworksforflatdomains,Thefollowingformulationis

I

E

rs
I

L

r'
r
I
i;u

r
h

I

l

To prove that two f unctions

fiat domain D are the same

such that

f t,Iz:D-D overa

find a combinator F : (D +D)-+P

(i)

(ii )

/;ii\
\rrr /

f r = F(f t)

Iz = F(fz)

vzeD Y(F)(r)ne I

condition (iii) says that the Ieast f ixed point of .F must be well def ined

The Potenlial

way depends uPon whether or not

for proofs using "well definedress" in this

tests f or proving prograrns "well def ined" can
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be constructed, These tests may be divided into two types, operaUonal tests and

non-operational tests. Operational tests use E , Reeursion induction is such

an operational lest as ref erence is rnade directly in (iii) to the least fixed point

combinator /, Languages based on the von-Neumann model lBa?B] tend to be

most ammenable to operational tests due to lheir reliance upon the notion of

"state transition". A typical functional programming language will have an

,,evaluation" based semantics as well as a semantics of functions. Thus in such

Ianguages it is possible to design non-operational tests for "well definedness"

which use only the properlies of functions. Such non-operational tests for a

program in a language are those tests which involve only an analysis of data

strucLures.

Now that tests for proving programs "well defined" have

been introduced it is time to talk about those tests which inspire the work in

this d.issertation. These are the operational tests f or proving termination' Ter-

mination has become outdated as a notion of program correctness. This can be

seen by the need f or non-terminating software such as operating systems, and

secondly with the arrival of languages involving the evaluation of infinite data

structures. However, such tests are still needed as is clearly demonstrated in

Hoare's work on communicating sequential processes [HoBS]. In such work,

rules f or reasoning about properties of programs tend to have terrnination as a

precondition. Due to the unsolvability of the Halting Problern [XrAS] [Tu36] it is

impossible to design a test to decide whether or not an arbitrary program ter-

minates, However, restrictive tests can be designed to prove that structurally

simple programs lerminaLe. Unf orlunately it does not seem to be possible to

generalise the notion of termination to extend to more recent languages' An

explanation to this problem has been suggested by lt'.l{.Wadge [Yr'aB1] based upon

the f ollowing f act, The more recent languages have introduced nel{ operaLional
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ideas, for example, infinite evaluation in functional programming [Mc63]

IFauB3], evaluation with backtracking in logic prograrnming Il{o?9], and

dead.lock in processor based languages [HoB3], Thus he has proposed that ter-

mination will not generalise because it is a notion no ionger present in many

recent Ianguages.

llhdge has proposed (although not pursued) a f ormat f or a

possible solution based upon the following observation. Although operational

notions may have changed, non-operational notions expressed in terms of data

structures have not changed to the same extent. For example, the notion of a

function has survived the test of tirne. His suggestion is that an extensional

notion of correctness to replace termination would do better with todays

modern languages than termina'-ion itself . Completeness is ll'adge's candidate

f or such a notion, in his own words,

"A complete object (in a domain of data objects)

is, roughly speaking, one which has no holes or

gaps in it, one which cannot be further com-

pleted"

'Il'adge uses Kahn's model of dataf low networks [l{a? ] to show how the notion of

completeness can be used to prove prograrns well defined, The exlensionai

"Cycle Sum Test" is constructed to prove that simple netrvorks do not deadlock'

\'ftrile this test has an exLensional formuiation it's original proof is not conven-

tional, that is, lfadge presented an operational proof. An extensional proof

would have made his argument f or completeness much stronger. lt is the prob-

lem over this proof which leads us now to summarise the overall airns and

results of Lhis dissertation.

k
r-
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The thesis of this dissertation is that the notion of
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completeness is a x-orthy candidate for an extensional replacement to the

notion of termination. lfadge's work has provided a iead, however, before com-

pieteness can be seriously considered operalional proofs such as that men-

tioned above must be removed. Also, the notion of completeness must be made

tndependent of Kahn's dataflow rnodel. These two aims are achieved in this

dissertation by producing a purely extensional general theory of cornpleteness.
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Aims of the Dissertation

Section i.1) has introduced the notion of completeness,

and has described the way in which it has been suggested as a tool for reason-

i.ng about programs. The overall aim of this dissertation is to show that the

notion of eompleteness does have a place in denotational semantics. That is we

aim to show that the notion of completeness can be f ormalised in the theory of

domains. As mentioned in Section 1.i), our principal approach is to generaiise

the example given in [lYaB1]. The first step in this approach is to choose a class

of slructures in which completeness can both be defined, and which generalises

the semantic domain used in Kahn's networks. The class suggested by the

author is the class of ltretric ps6ains. These domains allow a natural distinc-

tion to be made between "complete" and "partial" (non complete) objects,

Metric Domains can be used for both Kahn networks [Ka? ] and the program-

ming Ianguage LUCID [FauBS] lYiaBS]. As the name "metric" suggests, metric

dornains take their inspiration from the theory of metric spaces fsuth]. The

complete objects of a metrie domain form a metric space, while the partial

objects have a very similar structure, Although the structure of metric

domains is a very simple extension of that for metric spaces, it does not involve

any use of the approximation relation F .

Chapter 2 constructs a general theory of completeness for

rnetric domains. Even without lhe relation E it is shown in Section 2.2) that a

theorem of unique fixed points can be constructed to pronde a non-operationai

semantics f or many well behaved programs, This theorern is a direct generali-

sation of The Banach contraction rnapping fixed point theorem for metric

spaces. Such a Lheorem provides much appeal to the philosophy of deriving

tools for domains by generalising tools from the complete objects in the

domains, An interesting implication of the existence of our fixed point theorern

b
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is that it refuLes a suggestion made by lTadge [WaB1] ttrat the cycle sum test

cannot be extended to all metric spaces. Our work has taken his test beyond

metric spaces and into metric domains. The following important question is

raised by our theorem. If we can take Banach's theorem f or complete objects (a

theorem well used in the past by mathematicians) and use it with such ease rn

dornains, can other "complete" theories be extended similarly. Section p.3)

applies the fixed point theorem f or rnetric domains by using it to give a non-

operational proof of a generalisation of Wadge's Cycle Sum Test, The fact that

our proof is non-operational is an improvement upon Wadge's operational proof .

Our Cycle Product Test is introduced in this work in order to show how I{adge's

work could have been taken much further in demonstrating the use of com-

pleteness in reasoning non-operationaly aboul" prograrns. Section 2.5) gives an

example of how the work of SecLions 2.2) & 2.3) can be used to define an alter-

native semantics for Kahn's deterministic networks. The example is not given

as an attempt to improve Kahn's original semantics. However, similar bur non-

deterministic networks have been used by Park to study the "Fairness" Problem

[PaBa]. Thus our example semantics is presented here lo demonstrate that

rnetric domains provide a very appealing non-operational framework in which

such studies as Park's can be made. The exarnple has a second purpose, It is

easily noted of the domain used in the example that there are only complete

objecls, no partial objects. The example thus shows how metric domains of only

complete objects are useful.

Chapter 3 considers the problem of removing partial

objeets f rom fixed point semantics. It is argued that this is done by "Complete-

ness Rules", although the problems are forrnidable, The explanation of these

problems is really quite sirnple. interesting rretric domains such as the LUCID

domain of intermittent streams do not have their whole structure described bv
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means of a metric. For categories of metric domains to exist with interesting

closure properties our dornains will have to have a structure in addition to that

of a metric. To begin an investigation into the nature of such additional sLruc-

ture is outside the scope of this dissertation. It must be said however, that such

an investigalion is the way f orward to finding a theory of categories f or meLric

domains. Even though categories of arbitrary metrie domains are beyond this

rvork there are still inLeresting domains such as the one used in Section 2 4),

That example demonstrates how rnetric domains of complete objects (that is,

metric spaces) can still be useful for defining the sernantics of a Ianguage.

Chapter 3 considers f ixed point semantics using only complete objects.

Agreementspaces have been suggested by lYadge [lTaBi] as a class of metric

spaces which could be used to establish a fixed point semantics not involving

partial objecLs or the approximation relation, The principle aim of Chapter 3 is

to show that it is sufficient to consider only compact agreement spaces f or a

conventional fixed point semantics of complete pograms not using higher order

functions, This we do by consLructing a theory of recursion equations for

specifying compact agreement spaces.

Chapter 4 considers the problems of forrnulating a notion

of completeness for functions. lt is shown that function composition is not

complete, and so we suggest a complete f orm of composition to replace it. The

model of domains used for this chapter is a poverdomain model' This model

can be used to describe both the Kahn and Lucid domains. In fact, if the

universe of the powerdomain is a metric domain then so is the powerdomain

itself, It is shown that a theory of completeness for functions can be formu-

Iated, However, combinators such as composition must f irst be made complete.

Aiso it is shown that the notion of "f unction" must first be restricled to "abso-

lute function".
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A conclusion f rom Chapter 4 is that absolute functions are

necessary in a higher order theory of domains.

Chapter 5 considers the problems involved in setting up

categories of absolute functions. lL is shown that tight restrictions must be

placed upon the kind of allowed absolute f unction in order to obtain categorical

products and sums. Finally in Chapler 5 a suggestion is made to weaken the

associativity axiom on composition of morphisms in category theory in order to

obtain what we call mategories. In a mategory equality is replaced by a partial

order. Thus mategories are extensions of categories just as metric dornains are

extensions of metric spaces. Accordingly all the usual categorical definitions of

product, sum, and exponentiation are extended.
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Chapter 2

Metric Dornains as a

model f or Completeness

Section 2.1) : Introduction

This Chapter introduces the notion of Metric Domain in

order to promote the notion of compleleness in domain theory. The first

intended application of metric domains is as a unifying model to describe com-

pleteness f or two weli used domains. These are the Kahn Dornain of finite &

infinite sequences [Ka?a], and the Lucid Domain of intermittent infinite

sequences [WaBs]. The second intended application of rnetric domains is an

alternative approach to def ining computability on metric spaces. The approach

taken by Klaus 'lYeihrauch [W&S] is to embed metric spaces into weighted a]ge-

braic cpos. Instead of adding extra objects as in his approach we ref ormulate

the notion of "meLric space" to get "metric domain". It will be pointed out in

this chapt.er that there is a one to one correspondence between the class of

metric ddmains and the elass of melric spaces, However, a distinction between

complete and partial objects can be made in a metric domain which cannot be

made in a metric space. As will be shown in Chapter 3, there are metric

domains in which a very natural notion of computability can be defined using

cornpleteness. However, in this chapter consideration is given to arbitrary

metric domains. In order to justif y our ref ormulation of metric spaces we show

t
L

{
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how the B^nach Contraction Mapping Theorem fsuth] from elementary metric

space theory can be used in metric dornain theory as a tool f or program verif i-

cation,

The work in this Chapter is divided into two parts. Section

2.2) takes Banach's theorem f or complete metric spaces and proves it f or com-

plete metric domains, The interesting observation frorn this section is that

Banach's theorem requires no ref ormulation even though metric domains have

partial objects. Section 2.3) applies the ref ormulated theorem by f ormalising

and proving a technique f or verifying simple programs correct, The Cycle Pro-

duct Test is a generalisation of 'l'radge's Cycle Sum Test f or Kahn Datafiow Net-

works [WaB1] to arbitrary metric dornains. The interesting observation of this

section is that the correctness proof for the Cycle Product Test requires no use

of the approximation relation E in contrast to Wadge's proof of the Cycle Sum

Test. It is intersting because it shows how metric domains can have a notion of

computability different to that based upon the approximation relation. This

theme of an alternative notion is considered in Chapter 3. Section 2.4) justifies

the work of the previous two sections by means of an exampie. lt is shown how

metric dornains and Banach's theorem can be used to construct a fixed point

semantics f or Kahn Networks eouivaient to Kahn's semantics f Ka?al.
k
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Section Z.Z) : A Theorem for
Unique Fixed Points

Notation

The set of all non-negative real numbers is denoted by '6*'

Definition

A Metric Domain is a pair <D,d> where D is a non-empty set, and d is a func-

tion from DxD Lo r?+ such that

(i) vr,yeD

(ii) vr,y€D

(iii) vz,y,z€D

.f l'a "'\ - f\ --\*\-,yt-w --/ Z=!

d(r .v) = d(V,")

d(z ,z) < d(" ,y) + d(y,z)

The Kahn Domain can be f ormulated as the metric domain 1 Ka ,&d ) where

for all z ,y in Ka d(r,a ) i. 2-"' for n the largest integer (or infinity) such

that

V i <n

rnin[ lrl,lvl] and,

zt=Ui

In other words d(, ,y ) is Z to

ment of x and y.

Lhe minus the length of the common initial seg-

Definition

Jn a metrrc domain <D,d> , D is the set of points. A point z is complete if

d(r,z)=0.

A point in the Kahn Dornain is Lhus complete precisely when it is an infinite
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sequence,

Notation

'c.r' denotes the set of all non-negative integers.

As mentioned in the introduction, the unique fixed point theorem formulated

and proved in this seclion is a generalisation of the Contraction Mapping

Theorem [Suth] used in the theory of metric spaces. The latter Lheorem

involves the use of convergent sequences, and sowe do the same for domains. lt

is interesting to note here that this "metrical" form of convergence is, in eff ect,

replacing Tarski's use of convergent chains in least fixed point semantics

I r arDD t.

Definition

in a metric domain <D,d> X €"D convergesto a point y if

Ve)0 3 n>0 vrn"Zn a(7+",V)

Theorem 1

For each metric domain <D,d.>,it X€uD converges Lo yeD then y is com-

plete.

Proof:

LeL <D,d) be a metric domain.

LeL XeoD , and leL geD .

Suppose X converges to y

Let e)0.
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Then there exists n>0

V nt>tt a(Y,^,V

Thus a( Y'r" ,y )

such that

)< t
t-2

t
2

However, a(V ,A ) d(A ,X") + a(Y," ,y )

'd(h,y)

-2

-L

Thus a(V ,y ) = 0,

thus y is complete.

rf

The next theorem tidies up a smali point which is probably already obvious. A

sequenee can only converge to one point.

Theorem 2

For each metric dornain <Dd>,if. XeaD converges to both yeD and y'eD

then Y=Y'.

Proof:

<D,d> be a metric domain.

XeaD,A€D,A'€D.

Suppose that X converges to both y and gr'

Let e)0.

I

I

I
I

I
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Then there exisLs n>0 and n'>0 suchthat
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V m>rt d(X^,A)

Y nt>n' a(Y*,A')

E

2

t

2

Letl = maxIn,zz

Then, d(Xt ,A )

l-rrrf d(", ",'\ /vuL, e\U,A I >

and d(4 ,a' )
t
2

i

T

=

Tlrus d(V,A')
+L,,^Lrru- c - c

V e>0 3 n

+ d(X,,y')
d( Xt ,a' )

those used in the

domain version of

theory of metric

the contraction

d(v,Xt

a( 4 ,a)
tt

T'2
t

)

+

t:t

The next ferv definitions are analogues of

spaces, They will enable us to establish a

mapping theorem.

Definition

In a metric domain <D,d> , X eaD is Cauchyif

>0 V i,j>n d.(X",X1)<e

Definition

A metric domain is complete if every cauchy sequence converges,
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Notation

For each rr > 0 , a function f composed with itself rL times is denoted by

' rn ',

Definition

A funclion f :D-D is a contraction function if there exists c €R+ such that

0<c < 1 and,

V z ,U €D d(f(,),/(v)) r t ) /- ",\u u \L ,9 l

All constant functions over metric domains returning complete points are con-

tractions, as is Lhe function / over the Kahn Domain such Lhat,

"f(<>) = <o>

f(< r0,,.,, zn )) = ( 0,zo+1,,..,2rr*1 )

I(<20,2r,...)) = (0,se*1,21*1 
,

lYe will be abie to show later that / has the unique fixed point

< 0,1 ,2,...>

Theorem 3

For each conLraction

reD,XnEc'l.I"@)

Proof:

f unction f in a metric domain <D,d> , and f or each

is contraction.

Let <D,d> be a meLric domain
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Suppose f :D-D is a contraction function,

thenthereexists c €R+ suchthaL 0<c< 1 and

v y,y' €- D

Let z eD

Now, V tl>0

a(I(a),/(v')) c ' d(a ,a')

d.( Ii (") , "fi*l(r) )

Fu

1

i'-''

:
F

{
I
I

c2.

cs t

c 'd( "fn-'("),Jn("))

d( li-2(r ) , "f 
t-t(" ) )

d( Ii-s(z ) , "f 
,-2(" ) )

and so on ,..

ci , d(r,/("))thus v i>0 d(fi("),"ft*r("))

Let e)0.

Let n> 0 be such that,
vfl

,t( n f 1-\\ * "*\- 'J \-tt 1_C

and, cn ' d(z ,z )

Let i ,j > n.

There are three cases Lo consider

casel . i=j

d(fi(r),It("))

case2 : i<j

= d(I'@),/i('))
t n( - - \

b=i
d(I'@),Ij@)) d(I'@),It+t(z))



l

F
i;

It
i

l

Theorem 4

Each contraclion function in a

Proof:

Suppose f :D-+D

Then we can f ind

vg,y'eD

- 19 -

i-t
'f.- ^k t i( +
lJ
t=i

nl - f /-\\ ,u\,'J\-tt

,!( * f /-\\ **\*,J\*ll

,/("))

'it".
k=i

r:i t ( 1 - n j-i \- \. " /
1-a

)t - f /-\\s\*,J\&11

rt ( + f 1- \ \*\",J\"tt

E

complete metric domain has a f ixed point

Let <D,d> be a complete metric dornain.

case3 | j>i

similar to case ?.

r --:-
i -c

^71*"
1-n

l:l

is a contraction function.

c € R+ such that 0< c < 1 and,

a(f (v),f (v')) ' d(a ,a' )

LeL r ED.

Then byTheorern3 An ea. fn(r) is a cauchysequence.

But as <D,d> is cornplete trn € a .ln (z) converges to a point I € D

\1'e will show that trn e e .f n (z) also converges to / (t)
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Let e)0.

Then we can find m > 0 such

v i>nt d(fr(r),2) .

thus, v x>rn+1 d(fi(r)

that

t
n+1

,/(z)) d( |i-t(r) , t )

r ----:-. +i

Thus trn e a,fn (z) converges to

ButbyTheoremZ l=f(l)

Thus / hasafixedpoint

Theorem 5

Each contraction function in a complete metric

point, and this poinl is complete.

Proof:

domain has a unioue fixed

f (t)

rf

Let <D,d> be a

Suppose f :D-+D

then we can find

v y,y'€D

By Theorem 4, f

complete metric domain,

is a contraction function,

c €-R+ suchthat 0<c < 1 and,

hasafixedpoint IeD

fSuppose that I' E D is a f ixed point of suchthat I *l'
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As .f is a contraction function,

d(f(t),/(2,))

thus,

d(I ,L') < c td( ,,t')

but c <1, andso d(l,t')=9.

thus L=L', acontradiction, andso l=l'

Also, d(L J) = 0 , and so I is cornPlete

r:l

Theorem 5 gives us a metric domain version of the contraction rnapping

theorem for metric spaces. However, for domains there is a more interesting

generalisation of this result concerning the f ollowing Lype of f unction.

Definition

In a metric domain <D,d>, a function f :D-'D is avirtualcontractionfunc-

tion if there exisls n ) 0 such that f n is a contraction function.

Theorem 6

Each nrtual contraction function in a complele rnetric domain has a complete

fixed point.

Proof:

Lel <D,d) be a complete metric domain.

Suppose thaL / :D-D is a virtual contraction f unctton,

then we can find n ) 0 such thal f n is

a eontraction f unction.
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By Theorem 5 .f " has a unique complete fixed point t

Thus, f"(I)=t

thus f (I^ (L))

Lhus f"(I(t))

= f(I)

= f(t)
I
ln
ES

F
t

thus / (l) is also a fixed poinl of I"

thusbyTheorems L=f (I)

thus / has a cornplete f ixed point.

rl

The following lheorem is the unique fixed point theorem needed in the nexl

section to prove the Cycle Product Theorem.

Theorem 7

Each virtual contraction function in a complete metric domain has a unique

fixed point, and this point is cornpleLe.

Proof:

Let <D,d> be a cornplete metric domain.

Let f :D-D be a virtual contraction f unction,

then by Theorem 6 / has a complete f ixed point Z say,

Suppose that /' is a f ixed point of /

I
l+,
:ii

Then

thus

t={Q) and t'=f(r)

v i > 0 .f 
i(l) = /i+r(I) and |r(l) = Jri+r(U')



thus V i>0
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L=fi(t) and | - Ii+t(t)

As ,f is a r,rrtual contraction f unction we can find

suchthat f" isaeontractionfunction.

But f " has fixed points I and I,

LhusbyTheorems L=l

t.hus f has a unique f ixed point I

n)0

lf
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The Cycle Product Test

Theorem 7 of the previous section is the required unique

f ixed point result f or proving the Cycle Product Test, The Cycie product Test is

essentially Wadge's Cycle Sun Test [Wa81] generalised to all metric domains, The

latter test was constructed to prove that certain well behaved Kahn Networks

would not deadlock. A Kahn Network is a directed graph, the arcs of which are

communication channels down which "tokens" travel, and the nodes of which

are processing stations, The simplest nodes are those like ,,*,,, which

correspond to ordinary operations on data items. The ,,+', node repeatedly

awaits the arrival of tokens on it's two input arcs. As soon as there are tokens

on both arcs, the two tokens are removed and a token representing their sum is

sent out along the output arc. Input on different arcs need not arrive simul-

taneousiy or even at the same rate, and tokens awaiting processing queue on

the arcs.

Some networks have cycles, that is, there are networks in

which the tokens output by a node will (directly or via other nodes) be pro-

eessed to become input tokens for that node. In such networks the possibility

occurs that a node rnay be waiting f or itself to produce a token which it needs

for input' Such a sltuaLion is called deadlock. The Cycle Sum Test is a test

which can be applied to Kahn Networks, such that every network passing the

test is guaranteed not to deadlock. The work of Kahn [l{a?a] and Faustini

[FauBz] has shown an equivalence between Kahn Networks and sets of equa-

tions over the domain Ko . l{adge formulates his test both in terms of networks

and equations, however, his justification of the test is described in terrns of (1

"loose"Cgtallol\o,l 5trrcnliqs,This justification cannot be taken as a proof, as a proof

requires a mathernatieal formulation of the operational semantics (e.g. that of

Faustini [FauBZ]) sernantics f or networks introduced above. AIso, a proof of the

I
IF

{-

;
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validity of the equational formulation

duced in the literature, and so we can

been proved.

of the Cycle Sum Test has not been pro-

say that the Cycle Sum Test has not vet

triple <n,I ,c >

This chapter introduces the cycre produet rest as a gen-

eralisation of the Cycle Sum Test. Our formulation is solely in terms of equa-

tions over metric domains. Theorem 7 is used to show that any set of equations

passing the Cycle Product Test has a unique fixed point, and that this point is
complete. This Cycle Product Theorem and its proof make no use of the approx-

irnation relation E . A result from this Chapter will thus be the first proof of not

only the Cyele Sum Test, but also a test which can be applied to languages such

as Lucid [lTa8s].

our notion of "sets of equations" will first be formalised

using syrstems,

Definition

For each n ) o, the n'th produet of a metric d.omain <D,d> (denoted

'<D ,d >t' ) is the metric domain <Dn dn > where,

V z ,y eDn d"(z ,y) = maxf d(zi,y;) : i <n I

Definition

A s5rstem (of equations) over a metric domain <D,d.> rs a

such that

1i \ n)0

(ii) | e(Dn-p)n
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(iii) c € [0,1,"',n-tJz.+p+

(iv) v i < n v r ,V €D"

d(ft(z),"fr(v)) < maxI cii , a(21 ,ai) : j <n I

Anexampleof asystemovertheKahnDomainis <z,f ,c ) where

Io(, '<>) = <r,2>

fo(r,(vo,,.,an>) = <1 ,2,a0,...,an)

'2,ao,ut,...)

.f r( < Es,..,,2n ) ,U ) =

.ft(<2s,2r,...>,V) =

1zt,'.,,2n)

( rr ,zz,...)

and

coo = 0, cot=2-?, Cll = O, cn=2

This example will be used later in this section.

By "solution" to a system of equations we mean a fixed point of the ,'key" of the

system.

Definition

The key of a system (. n

s : Dn -+ Dn such that,

Vi<ttVz

, f ,c > in a metric domain <D,d.> is the function

eDn s(z)t =.ft(z)
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Kahn takes the least solution of the key of a system in his work over Ka, how-

ever, in a system passing the Cycle Product Test there will only be one solution

to choose from.

Theorem 1

Foreachsystem <n,f ,c > inametricdomain <D,d>

V x,y€Dn

d"(s("),"(v)) maxf c;i ' a(zi ,Ai) : i., j Kn l

Proof

Suppose ( n ,f ,c > is a svstem in a metrie domain <D,d>

Then for all z ,y € Dn

d'(s(r),"(V)) rnax[ d(s(z)t,s(y)t) : i<n ]

max[ d(Ii@),/t(v)) : i(n I

rnax[ max[ ctj td(25,!5): j(n f :i<n

rnax[ cij , a(zi,V5) : i,jcn I

Theorem 2

Foreachsystem <n, f ,c ) in ametric domain <D,d>,andforeach k > 0

v z,V €Dn 4n(5t(r),"t(y))

maxf cU'd(sr-t(")i,s&-t(V)i) : i,j(n I

ll

Proof:
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Suppose <n,f ,c ) isasysteminametricdomain.

Let,L >0.

Then, v z,y€D"

= max[ d(st(r)1

4n(5t("),"e(v))

,"*(y)t) , i<n

rf

= max[ d(s(sr-1(r))i,s(st-t(g))t): i<n i

= max[ d("ft("]-t(")) ,.ft("t-t(v)) ) ' i 1n I

j: i.<n 
J

= max[ c;i'd((st-t("))r,(st-t(v))i) : i,jcn I

Theorem 3

For each system <n, J, c ) in a metric domain <D,d>, andfor each,L ) 0

rnax[ cii : i, j <n J r max[ d(\,Ai) : i, j <n J

Proof:

by induction using Theorem 2

E]

The following detinition

Theorem.

of a "nath" is used in the proof of the Cvcle Product

k

t

;

r

I

16

i"

f'
*
t

B;
t
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Definition

A path over rL ) 0 is a sequenee (po,

and

v i<k 0.pr(n

lfl:en we talk of a path (po

the cycle product constants

cpopr 'cPb-rp*

l1hat is particularly interesting (as we

constants.

Definition

A cycle over rr > 0 is a path ( ps

,pr ) of integers such that ,t > 0,

,p* ) , what we are really talking about are

shall see later) is the product of all these

,pr) suchthat po=pr,and ft <rr

"' ,pr ) is a sub-sequence of the forrn

also a cycle. The remainder of

extracting (p; ,pt+r , .. . ,pi > is

Definition

A sub cycle

1Pi , Pr+r ,

(Po'Pt"'

(Po'Pt"'

of a path

" 'Pi>
',Pr>.

' ,Pi,P j+r

(Po,Pr,

which is

afLer

'"' ,Pr)

Notation

The length

integer zu

of a sequence z

is denoted by' lr, I

Definition

A cycle set for a path p over

is denoted by ' lr I The absolute value of an

n >0 isa sequence A = <,4o, A 111-1) of.
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cvcles such that

(i)

Theorem 4

Each path in a system has a cycle-set

Proof:

hl
q€A

+7L

(ii) l/l

(iii) There exists asequence <. Bs,Br, "', Btnt>.

of paths suchthat Bo= P, andforeach 0.i < lAl

.{ is a sub cycle ol Bi, and B;a1 is the

remainder of Bi after extracting , .

Suppose zr ) 0 , and let p be a path over rt

ConsLruct a cycle set .4 using the f ollowing algorithm

Step 1 : Let X be the path p

Step ? : If the length of X is more than n then 1re can choose a

cycle <4,, .Xi >withlengthnotmorethanrr+1 .

Append the cycle lo A . LeL X now be

( Xo, .,, X,Xi+t,...,Xtxl-r >. RepeaL Step 2.

Now, each time step 2 is executed the lenglh of X is reduced by

l<X",.,Xi>l-t.
Thus the final length of X is,

hl - t (iqi-t)
qeA



ffi

L

F
I

But the algorithm f inishes when the length of X is at most n , thus

hl - X |ql-t)
qeA

and so,

t (lql-i) + rL
qeA

Now, in each execution of step ? the length of X is reduced

bv at most n , thus

X (lql-t)
q€A

XrL
qeA

Thus from above,

hl

thus,

l/l

(n*lAl) + 
",

lpl

TLIF
r' -i'

r1

t,.
f-,

rf

Definition

Theproductof apath p inasystem <n 'f ,c ) is

'oil 
t 

.o,r..*,

and is denoted bY ('Prod(P)'),

$i
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Theorem 5

For each path p in a system 1n,f ,c ) , and for each cycle-set ,4 lor p ,

prod(p ) ( lf proa.G) ) + M
q€A

uhere Il if [prod(q)' lq l<n j = 0
:lql-nl othertuise

Dr^ ^f.

cr's ro Theorem4.

Definition

A syslem is cycle product complete if the product of each cycle is less than I

The example system given on p,p4 is cycle product complete.

This then is our generalisation of the Cycle Sum Test. A system is said to pass

the Cycle Product Test if it is cycle product complete.

Theorem 6

Foreachcycleproductcompietesystem 1n,f ,c ) thereexists rn)z such

that f or any path p of length m ,

17g{#-'); - M

where N = maxl prod(q) :g is a cycle, and lg l< n +1 
J

if fprod(q ), lq | <n i = 0
othertui-se

(",
lr

-lmaxl prod]o\
t'

rf

I

ht
;.d

{tr,"*, prod.(q):
IT _

lql<n
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Proof;

The product of each cycle in a cycle product complete system

<n , f , c ) is less than 1, and so as there are only

a finite number of cycles itit.h length at most n*i ,

max[ prod(q) : g is a cycle, and lg l. n+t 
J

Theorem 7

For each cycle product complete sysLern there exists rtt > 2 such that f or any

path p of length rn ,

prod(p ) <

Proof:

Suppose <n, f , c ) is a cycle product cornplete system.

Let N = maxl prod(g);q isacycle, and lgl< n+1 j

Let Ir{ = 1 if I prod(q), lql< n l= o, andotherwi.se

max[ prod(g) ; g isacycle, and lgl.n+i j

By Theorem 6 we can choose rn > 2 such that for any path

p of length nz

t-l
( J-c--L- t \

/ At' n r It

By Theorem 4 we can choose a cycle-set I forp, thus

by Theorem 5

I
R,

i

!1-
!l
$r&.

E
t
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prod( p

thus,

/f l/ I

thus,

prod(p )

But /f ( 1 as <n, t, c ) is cycleproduct complete,

and so as / is a cvcle set,

) . ( n prod(q)) r M
geA

rJ2-L-1 1

, lP l-,.,
prod( p )

rf

h
lrit
F"L-

F
H-

t

Theorem B

The key of a cycle product complete

Proof:

system is a virtual contraction f unction.

cycle product complete system

,d > ,

can choose m" > 2 such that f or any

lb a

<D

Suppose <n,f ,c )

in a metric domain

Then by Theorern 7 we

path p of length m,

prod( p )

Thus by Theorem 3, for all z , y € Dn



sgsg

:

er
I

I

k
Efr

F
ft

F€
&
8..

I

tf

-35-

dn( sm-r(r) , "-*t(v) )

max[ prod(p), a(ro*_, ,ap^_t ) , lp l= rn I

= (maxf prod(g),lql=r, l) . (max[ d(ro^_r,ap^_r:lpl=rnJ

< (max[ prod(g),lql="rr' ]) ' (max[ d(zi,y;):i<n ])
- ( rnax[ prod(q)' lg l="rr i ) ] dn(" 'a )

Thus s^-1 is a contraction function.

Thus s is a virtual contraction f unction.

Theorem 9 ( The Cycle Product Theorem )

The key of a cycle product complete system in a compleLe metric domain has

unique fixed point, and this point is complete.

Proof:

Suppose <n, f , c ) is a cycle produc! complete system

in a complete metric domain < D, d > .

Then < D,d >" is a compiete metric domain.

Thus by Theorem ? of Section 2.2), and by Theorem B,

thekeyof (n,f ,c ) hasaunique

f ixed point, and this point is complete.

tl
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Convergence in Metric Domains

The previous sections have introduced the notion of com-

pleteness using metric domains. ln particular, Banach's Lheorem from metric

topology has been applied to metric domains, thus providing a verification rule

f or provtng programs complete, As was noted at the time, the theorem required

no ref ormulation in its transf er frorn metric spaces to metric domains. The aim

of that work was to demonstrate how theorems such as Banach's can be

extended from a metric space of complete objects to a metric domain which

included partial objects. This was relatively easy as we \{ere only interesled in

establishing a fixed point theorem for the complete objeets in metric domains,

That is, a theorem to prove that certain recursive definitions have unique com-

plete solutions, However, Banach's theorem is not solely restricted to the verif-

ication of complete programs. It can easily be generalised to produce a

theorem which verifies that a prograrn has a unique fixed point, a point which

may be either partial or complete. This section will show how Banach's theoreur

can be made to work in metric domains for both complete and partial objects.

The first result of this is a theorem which allows us to give a unique fixed point

semantics lo a larger class of programs than before. The second result is a

clearer demonstration than bef ore of how Banach's original theorem f or metric

spaces can be ref ormulated to accomodate partial objects.

ln Section ?.2) the notion of completeness was introduced

into metric spaces by reformulating the notion of a metric. Other notions such

as "convergence" and "cauchy sequence" remained unaltered in our work on

Banach's theorem, Such notions do not have to be altered if all convergent

seguences of interest converge Lo complete objects, However, what aboul

sequences converging lo a partial object? The definition of convergence used

tE
R

L.

r
!r:
ti6

I
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f or metric dornains was the f ollowing definition usually used f or metric spaces.

X €"D "converges" to V € D if

Vc)O Il n>0.Vrn">tt a(X,^,V)

This definltion is satisf actory when g is complele. However, n'hat if y is par-

tial and each X". is equal to y ? In this case X does not converge according to

this definition. To allow sequences to converge to partial objects the following

ref ormulated definition of conversence is needed,

Definition

A sequence X e oD is K-convergentin a metric domain <Dd> if there exists

anobject y €D suchthat

h

F

ve 3

x^,

n>0

a)

>0

,l(

V rrl>TL

X^=Y

t

ii
h,
Er

I
I

;

If <Dd> is a metric space then K-convergence is equivalent to the usual

notion of convergence f or metric spaces. K-convergence captures precisely the

intuitive notion of convergence in the Kahn metric domain of finite & infinite

sequences, however, it will be shown later in this section that there are other

interesting domains f or which K-convergence is not good enough. As the Kahn

Domain is an important domain we will first show how K-convergence can be

used to formulate a new version of Banach's theorem, A sequence in a metric

dornain is K-convergent if and only ii it is convergent in one (or both) of the f oI-

lowing two ways.

Definition

A sequence X EoD is completely K-convergent in a metric domain <Dd> if
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there exists a complete object A e D such that

ve)O Jn>0 \dm.2rt d(X*,A)

Definition

A sequence x eaD is partially K-convergent in a metric domain <D,d.> if

there exists a partial object y € D such that

f n >0 Vrr,>rL X" = V

ln metric sPaces each convergent sequence is a cauchy sequence. In ord"er that

this result should hold in rnetric domains the notion of a cauchy sequence musl

be ref ormulated as f ollows.

Definition

A sequence X e "D is K-cauchy if

Vc)0 f n>0 Vk,m>n

d,( xk , x," )

Similarly, we have a notions of K-complete domain, and of K-contraclion func-

tion.

Definition

A metric domain is K-complete if every K-cauchy sequence is K-convergent.

Definition

A function f :D.D in a metric domain <D,d> is a K-conLraction function if

i

II
K

'*bI
L-

v
F.L
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there exists c € B+ such that

c<

,u€D
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1, and

a(f@),

or I@)

0<

Theorem 1 (The K-Banach

Each K-contraction function over

fixed point, and f or each z €-D this

d(z ,v )

Theorem )
a K-cornplete rnetric domain has a unique

point is the lirnit of the sequence

rf

X n ec.r I"(r )

Proof:

The proof of this theorem is a simple generalisation

of Theorems 3, 4, & 5 from Section 2.2) .

The generalisation of notions such as convergence is not

as easy as the past f ew definitions may have suggested. This chapter concludes

with an example of how K-convergence is not a good enough notion of conver-

gence f or arbitrary metric domains, although it is exactly what is wanted f or

the Kahn Domain. Our example is the problem of how to construct product

dornains in the category of all metric domains with K-continuous functions.

Such domains are needed in the f irst instance to define multi-areument func-

tions, and Iater f or domain equations.

Definition



B

A function f :D-D

the sequence
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is K-continuous if f or each K-convergent sequence X €uD

Xrr e u . J(X*)

convergesto f(limX)

This category is different from the contrasting category of all metric spaces

and continuous functions. The category for spaces is closed under finite pro-

ducts, whtle the category f or domains is not. In the f orrner category, the pro-

duct of two spaces <D,d) and <D,d') is (DxD,dxd,> where,

V <z ,2,) , KU ,y') € DxD

dxd' ( <z,x'>,<A,U'>) = szpI d(r,V), d' (r',V') ]

Let p s:DxD -D and p;,DxD -D be the continuous functions such that,

V <z,z'> € DxD po( <z,r'>) = z, and

Pt(<z'r'>) = x'

Then the product is shown to exist by proving that for arbitary continuous

functions f :A-D and g:A.D , there exists a unique funetion h:A-+DxD such

that the f ollowing diagram commutes,

,/N
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h is the f unetion such that,
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v z eD h(' ) <I@),g(r)>

while po and pt are the usual projection funetions. The projection functions

are easily shown to be continuous, when <D,d> and <D,d') are spaces h is

easily shown to be continuous. Horvever, when they are domains h is not in

general K-continuous. For example, suppose XeaD is a completely K-

convergent sequence. Also, suppose that /(X) is partially K-convergent, and

that g(X) is completely K-convergent. Then h(X) is neither partially nor

completely K-convergent, and so h is not K-continuous. The conclusion from

this example is that K-convergence is not an adequate notion of convergence

f or rnetric dornains which are to have any decent closure properties.



Section 2.5) : An Alternative Semantics

for Kahn Networks

This section constructs an alternative denotationai seman-

tics for deterministic Kahn Networks in order to show how the results of the

previous sections can be used to define a fixed point semantics f or languages

using metric domains. The correctness of the alternative semantics is proven.

Our alternative semantics for deterministic networks is an obvious overkill in

comparison to the simplicity and elegance of Kahn's semantics [l{aza]. This

fact does not trivialise the value of our semantics however, as the approaeh

used in our deterministic semantics is that used by Park [PaB+] in tris study of

nondeterministic networks. This section thus shows how an approach to non-

determinism such as Park's can be formalised using metric domains and

Banach's theorern.

In Kahn Networks processes communicate via ,,first in, first

out" queues. Inevitably processes sometimes have to wait if their input queues

become empty. For deterministic networks these delays do not affect the final

result of the network computation, and so do not occur in Kahn's semantics.

However, f or nondeterministic networks such delays may be the very cause of

the nondeterminism. Our alternative semantics is in essence a Kahnian seman-

tics which does take account of delays. Although we only consider determinis-

tic networks, it is a neeessary f irst step in Park's approach to non-determinism.

The Kahn Domain Ka is the set of ail finite & infinite

sequences under the "initial segment" partial ordering, taken over some

universe of discourse such as o , The complete objects in ffo are the infinite

sequences, while the partial objects are the finite sequences. A new object r is
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added to the universe of discourse to represent a deiay. This object called a

b-iaton was originally suggested (but as of yet unpublished) by ly.W.Ifadge for

the treatrnent of nondeterministic networks (The notation "7" is frorn park,s

use of hiatons in the "Fairness Problem" [pa84]). For example, the sequence of

factorials

< 1 ,2 ,6 ,24 ,72A

might be "hiatonised" to get

1 I,r,2,r,r.24,7,7,r,I20

In this example sequence the hiatons represent increasing delays. More pre-

cisely we have the f ollowing def initions.

Definition

Suppose I is the uni.verse of discourse f or the Kahn Domain. Then the Hiatonic

Kahn Dornnin "IlTf,a, is the metric domain of all finite & infinite sequences over

XU[rJ where if n is the length of the common initial segment between z & y

then the distance between z & y is !-n .

Definition

HKa is retracted onto Ka by the essence f unction t:HKa-ffo where f or each

in HKa, e(u) is the sequence z wiLh all it's hiatons removed.

(The notation "essence" and "r" are taken from [PaBa]) The equivalence relation

upon HKa induced by epsilon is such that

V u,u E HKa u-u iff e(u) - e(u)
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Chain continuous functions used by Kahn in his least fixed point semantics

have analogues over HKa which are contraction functions, A technique f or con-

structing analogues over a hiatonised Kahn Domain with partial objects has

been used by Park [PaB+] in his studies of "f air parallelisrn". In our language,

Park's technique is to add hiaLons to sequences so that all continuous func-

tions over Ka become contraction functions over HKa. We require functions

over HKa to be contractions in order that Theorem ? of Seetion 2.1) rnay be used

to construct a unique fixed point semanLics. A good example of how the hiaton-

isation of Kahn's functions works is the "whenever" function. u)ur..Ko.z-Ka ean

be turned into a contraction function (this is based on the Lucid "whenever"

function [Fau83]). uilr filters out a subsequence of z aecording to a

seguence of booleans y . Thus f or example,

<1,0,1,1,0,0,0,i> )

The contraction function

inLo unsr (, ,y) . First one

foreach 0 in y. Thus,

utwr(

tntr':HKaz-+HKa

r is placed at the

can be defined by

begining, and then

placing hiatons

one r is added

to the

by the

I

E

s
!
l.
i&

ltr
3'

t

E

I

<a,b,c ,d,e,I ,g,h,i,j> , <1,0,i,1,0,0,0,1> )

= 1.tau,aiau,c,d,tauJau,tau,h)

Hiatons occuring in the argumenLs Lo 1rur7

result, The correctness of a funcLion such as

f ollowing "commutativity" equation.

are propagated through

lrur is expressed by the

v x,y€HKo t(uur'(z,y)) = unr(t(r),c(g))

Having demonstrated that the chain continuous functions over Ka used by
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Kahn have correct contraction analogues over HKa we now have to show that

the fixed point theory of Section 2.2) is a corect analogue for Kahn's least

fixed point theory. That is, the f ollowing theorem has to be proved.

T

f'

I

&

:

:

F

I

Theorem 1

For each chain continuous function

with a correct contraction analogue

of f is such that

Proof:

First it is

Now,

thus,

over Ka with least fixed poinL YU ) and

over HKa, the unique fixed point p(Ir)

e( p( f") ) Y(t )

shown that o(p(/')) is a fixed point of /

p(f") = I"( p(f") )

e( p("f ') ) = E( "r'( p(f ') ) )

= /( e( p(1") ) )

as .f " is a correct analogue of /

Thus t(tt(f ")) is a fixed point of f .

Now it is shown that this is the least fixed point.

Suppose thal p is a f ixed point of "f , then we will show that

e(p(f")) E p

Let u e (X")" be such that

us = h(p), and

vn>O un = I"(u,-t)

( the f unction h gives p a "tail" of hiatons )

Then as l" is a contraction mapping, u converges to p,(Ir)
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Also, it can be shown

vn>0 e(2,)

inductively bhat

=P

But as z is convergent,

Vn20 e( hrnu ) tr t(un )

Thus,

E(p(t" ) )

Thus,

t(p(1")) Y(f )

Thus the domain HKa can be used to reformuiate Kahn's semantics for deter-

ministic networks. A ref ormulation which uses Banach's fixed point theorem,

and no partial ordering. It is admitedly an "overkill" f or deterministic networks,

however there are reasons why the example is not trivial. The hialon has

proved useful in the analysis of nondeterministic networks, As Park lPaB+]

shows, non-determinism and least fixed points do not always go together. His

use of hiatons enables him to use a "unique fixed point" theorem to overcome

this problern. There is thus a reason f or considering hiatons in non-

deterministic Kahn Networks. It is now a natural question to ask whether or

not the notion of a hiaton can be generalised to more interesting domains, Our

contribuLion towards giving a positive answer to this question is as follows.

Using the powerdomain operator P0 introduced in Chapter 3, we can construct

our own theory of hiatonic nondeterminism using metric domains. Due to our

restriction in Chapter 3 to compact spaces, it would be a theory of "unf air non-

determinism". This is in contrast to Park who is interested in "fair nondeter-

minism".
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Chapter

Fixed Point Semantics

without Partial Objects

Section 3.1) : hrtroduction

The previous Chapter has shown how the fixed point

semantics of many correct recursive programs can be given without using the

usual theory of approximation. This was done by firstly using Wadge's notion of

completeness as a notion of correctDess, and secondly by working in our own

specially constructed metric domains. The result of that work has been to

refute the f ollowing suggestion of lYadge []YaB1],

It is not possible (as f ar as we know) to f ormulate

the cycle sum theorem purely in terms of func-

tions on an abstract metric space.

We have not oniy formulated it (as the Cycle Product Theorem) for metric

spaces, but f or metric domains as well. Also, our proof is extensional, that is, it

does not use the approximation relation E . However, being able to reason

about correct programs without E is not the main reason for extending the

Cycle Sum Theorem to metric spaces. The main reason is that it is the first step

in realising lTadge's dream of being able to define the fixed point semantics of

correct programs without using partial objects at all. In his own words,
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.,... a fixed point semanties for a large class of

"obviously terminating" recursive programs

which would be rnathernatieally conventional in

that it could completely avoid ref erence to partial

objects and approximation.

First let us describe how this idea of removing partial

objectsworksinourtheoryof metricdomains. Supposethat <n,I ,c > isa

cycle product complete system of equations over a domain D . Then the func-

tions fi map complete objects in DrL to complete objects in D , (For non-

reeursive /i this is ensured by the existence of the constants cg ; the recur-

sive case is covered by the Cyele Product Theorem) Let /'i be the f unctions f;

restricted to the complete objects, then the system 1.n , f' ,c) is cycle pro-

duct complete. Also, the keys of the two systems have the same unique fixed

point. This rneans that the f ollowing rule can be developed f or proving the com-

pieteness of programs.

Suppose that f €(Dn-+D)t' is a set of equations

we wish to prove has a unique fixed point which is

complete. Suppose first that we can find a cycle

product complete system < n, f', c' > over Lhe

complete objects of D such that each /i' is the

restriction of f i to Lhe complete objects. Sup-

pose that frorn such a system we can deduce the

existence of a cycle product complete system

< n , f , c ) Then we can conciude that the set

of equations / has a unique f ixed point, and that

this point is complete.
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Agreemenl spaces are then shown to be topologically equivalent to the class of

ultrarnetric spaces. Next it is shown in Section 3.2) that agreements are more

appropriate than are ultrametrics f or reasoning about completeness, Finally in

that Section, in preparation for constructing our categorical theory of equa-

tions, other topological properties of agreement spaces are considered. The

most important of these is the proof of the equivalence between separable com-

plete agreement spaces and closed subspaces of the Baire N rtl Space. Section

3.3) constructs the category CAS of eompact agreement spaces., while Section

3.4) proves the above mentioned closure properties. Section 3.5) shows how we

solve recursive equalions over compact agreement spaces using initial fixed

points. Finally, Section 3,6) gives some brief example solutions to recrusive

eouations.
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Section 3.2) : Agreement Spaces

This section begins by introducing 'fyadge's notion of an

agreem.ent, We will use it later as an alternative to a metric in the construction

of a category of metric spaces. Firstly we show the topological equivalence

between agreement spaces and ultrametric spaces. The main aim of this sec-

tion is to introduce agreement spaces in preparation for the categorical con-

struetion of the next section, The following notions are all shown to be

equivalent in the sense of unif orm homeomorphism.

compact agreement space

compact ultrametric space

compact subspace of the Baire Null Space

compact totally disconnected metric spaee

The proofs of these equivalences have aII been completed by the author, how-

ever' some are lengthy and technically uninteresting. Thus their inclusion

would not benefit the theme of completeness in the dissertation. For this rea-

son the proofs have not been included. For background topology see fSuth] or

Isim].

The notion of an agreement was introduced by lfadge

[WaB1] in the eoncluding paragraph to his paper,

It is not possible (as f ar as we know) to formulate

the cycle sum theorem purely in terms of func-

tions on an abstract rnetric space. But it is possi-

ble, however, if we use instead of a metric a dual

notion which we call an agreement: a function

which assigns to any two points a nonnegative
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element of ar U l-J which measures how close

together the points are, yieldirrg - if they coin-

cide, This approach could allow a fixed point

semantics for a iarge class of ,,obviously ter_

minating" recursive programs rlhich u,ould be

mathematically conventional in that it could

eompletely avoid ref erence to partial objects and

approximation.

This suggestion has neither been f ormalised nor deveioped

until the work in this dissertation. Yr'e have f orrnalised it in so f ar as we regard

it as a first step in establishing Completeness Rules. Also, we develop the notion

of agreernent in three diff erent ways. Firstly, we relate agreement spaces to the

more general notion of a metric, Secondly, other interesting topological pro-

perties of agreement spaces are established. Thirdly, we iater construct a

category of agreement spaces f or use in Completeness Rules.

Definition

An agreement space is an ordered pair <.D,a) where D is a non-empty set, and

the agreement a is a function f rom DxD to r,ry[-f such that f or ali z ,y ,z in

1)

r =A

and,

and,

iff a(z ,y) = €

a(z ,y) = a(V,z)

a{z,z) > inf Ia(z,g) a(a,") |

An example

sequences

an agreement

non-negative

space is the Baire

integers. The

of

of

Null Space (aro,a> of alI inf intLe

agreement between any Lwo
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sequences is the length of their common initial segment.

Definition

!n fJlfpametrie Space is

and the ultrernetric d is

that f or all z ,y,z Ln D

d(r ,y) = g

and, d(z

and, d(,

an ordered pair <D d> where .D is a non-empty set,

a f unction from DxD Lo the non-negative reals such

iff z =y

= d(v 'r),v)

,z)

Each agreement space (D,a) is topologically equivalent to the ultrametric

space <D,d> where,

Vz,g€D d(, ,A) = Z-a(z 'u)

In fact, each agreement space is uniformly homeomorphic to an ultrametric

space. The reverse uniforrn homeomorphisrn is constructed as follows. Sup-

pose that <Dd> is an ultrametric space. Let (D,a) be the agreement space

such that f or all z ,y in D

d(z,y) > I ==> a(z ,y) - O

v n > 0 2-n . d(, ,A) < Z--rl+r ==> a(z,y) - n

d(z,y)=g ==> a(z,y)=*

Thus all metrical and topological notions associated with ultrametric spaces

can be carried over to agreement spaces. Wadge did not prove the equivalence

between ultrametric and agreement spaces, however, his belief was that parliai

objects could be avoided by a device such as this in a fixed point semantics for

"obviously terminating recursive programs", His notion of a partial object

[private communication] is embodied in the following idea of an agreement
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domain.

Definition

An agreement domain is an ordered pair (D,a) where D is a non-empty set,

and a:DxD-c,rU[-J is such that f or aIL z,y,z in D

a(z ,v)

and,

and, a(y,z) l

As in the case of agreement spaees above, each agreement domain can be

mapped onto an ultrametric domain by the identity function whieh is bicon-

tinuous. An agreement domain appears to be more usef ul f or reasoning about

programs than lTadge's suggestion of agreement spaces. For example, in the

agreement domain f ormulation of the Kahn Domain the agreement betlveen two

sequences is the iength of their common initial segment. In this domain the

following rule holds.

v z,y €D ( v z eD a(z,z) = a(y,z\ ) ==> z =y

In such domains the usual partial ordering E can be def ined as f ollows

v z,y €D rEV iff vz€D a(z,z).a(V,.)

Thus in principle anything approximation theory can do in these domains so

can agreements. A second example of how agreements are more useful f or rea-

soning about programs than ultrametrics is in inductive proofs. Induction over

e is clearly easier than induction over the reals, and so rules such as

(remember -) -),

a(z

a(t

==> z =a

'v) = a(Y,z)

,z) > inf I a(z,y)

j

i

I

I

I

z is complete if
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Vn)0 a(z,Vn+r) ) a(r,Vn)

are simpler than the ultrametric analogue,

z is cornplete if

f c>0 f y€D" and,

d(, , gr,+r )

Now that agreements have been introduced we return to

the topology of agreements, The remainder of this section establishes the

equivalent formulations of agreement spaces, thus justifying the use of agree-

ments in the category theory of Section 3.3),

Definition

A topological space is separable if its set of points has a countable dense subset,

Theorem 1

Each separable agreement space is uniformly homeomorphic to a subspace of

the Baire Null Space (Two spaces are said to be unif ormly homeomorphic if both

the homeomorphism and it's inverse are unif ormly continuous).

Proof:

Let ( D, a) be a separable agreernent space.

Foreach s €D andforeach n er.rlet Dno(z) denote

ly lV e D and a(zg)>n i

LeL Da denote

I Dn"(x) | " eD and n€u I

Let C be an injective function from a subset of c.r onto a
countable dense subset of. D.

c(1

Vn)0
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Let / : Da + cu be such that

u E Da ==> C7p1€z

Such a function exists as the range of C is dense in D .

Let g '. D -+ ua be such that

vz€D vrL€c) g(z)n = f(D""(r))

Then it can be shown that g is a unif orm homeomorphism.

Theorern 2

Each subspace of the Baire Null Space is unif ormly horneomorphic to a separ-

able agreement space,

Proof:

r:l

LeL D be a subset of the Baire Null Space'

Then as there are a countable number of finite

of non-negative integers, we can f or each n

construct a countable subset Dn of. D

such that,

v r €D )y eD" a(r,y)>n

Thus, \) Dn is a countable dense subset of D'
n)0

Definition

A metric space is complete if each cauchy sequence converges

sequences

>0

tl

Theorem 3
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Each separable complete agreement space is uniformly homeomorphic to a

closed subspace of the Baire Null Space.

Theorem 4

Each closed subspace of the Baire Null Space is unif ormly homeomorphic to a

separable complete agreement space.

The proofs of Theorerns 3 & 4 reduce to the proof of showing that a subset of a

complete metric space is complete preciseiy when it is elosed. Such a proof can

be found in ISim].

Definition

A metric space is compact if each sequence of points has a convergent subse-

quence,

By fsuth] p.82, each compact subspace of a metric space is closed, thus a com-

pact subspace of the Baire Null Space is a closed subspace. By ISim] p.iii, the

continuous image of a cornpact space is compact, thus by Theorern 4, each com-

pact subspace of the Baire Null Space is unif ormly homeomorphic to a compact

agreement space, Now for the reverse equivalence. By [Sim] p.125 if a metric

space is compact then it is complete and totally bounded. AIso, by ISuth] p.111

if a metric space is totally bounded then it is separable. Thus each compact

agreement space is a compact complete separable agreement space, Thus by

Theorem 3 (and as by [Sim] p.111 the continuous image of a compact space is

compact), each compact agreement space is uniforrnly homeomorphic to a

compact subspace of the Baire Null Space.

Definition



h'
s.

r "il

i-fl
I

-58-

A disconnection of a topological space is a pair of disjoint non-empty open sets

whose union is the whole space. A space is totally disconnected if each pair of

distinct points can be separated by a disconnection.

Theorem 5

Each compact totally disconnected metric space is unif ormly homeomorphic to

a compact agreement space.

Theorem 6

Each compact agreement space is uniformly homeornorphic to a compact

totally disconnected metric space.

To recap, in a compact world the f ollowing notions are all equivalenL,

agreemenl space

ultrametric space

subspace of the Baire Null Space

totally disconneeted metric space

i

i

;

i
I

i
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section 3-3) : A category of Agreement spaces

Results from Section B.Z) show that the eompact agree_

ment spaces are equivalent to the compact ultrametric spaces, whieh are

equivalent to the compact subspaces of the Baire Null Space, This section

defines the category CAS of compact agreement spaces which r,ye use f or giving

a semantics to metric space equations such as

D = A + P(B)xD

such equations use the operators disjoint sum + , cartesian product x, and a

powerdornain operator P0 . There are two steps in constructing the semantics.

Firstly each equation is translated into the f orm

D F(D)

where .F is a finite continuous functor over CAS

becomes

Thus the above example

D (FA+(FBxFr)Xr)

where FA, FB , and 1'l are all finite continuous functors over C4S , In Section

3'5) we show that each finite continuous functor F has an initial fixed point,

which is taken to be the semantics. The approach is similar to that used by

D.Lehmann in his Ph.D. dissertation (University of Jerusalem), and involves

many lengthy proof s of closure properties.

CAS is defined to be the category whose objects are the

non-empty compact agreement spaces, and whose arrows are the continuous

functions over those spaces. The identity arrows in C,4^S are the identity func-

tions, while the isomorphisms are the bicontinuous funclions. Sums and pro-

ducts exist in c/4.s . A surn of two compact spaees 1.D,a) &. <D',o-'> is the

h
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compactspace <D+D',a+a'> where D+D' denotesthedisjointsum of D &. D,

, and a+a' denotes the agreement on D+D' such that

I
t

t*
,J

r,.

*:;.

tIi.

,' z,U €D+D'. (a+a,)(z,U) = 0

= a(z,A)+1

= a'(z ,A) + 1

it zED & yeD'

if zeD'k yeD

if z<D & yeD

if z eD' &. y eD'

A product of (D,a) and (.D',a,) is the

DxD denotes the carLesian product of D

ment on DxD such that

compact space

& D' , and axa

<DxD,axa'> where

denoles the agree-

V z,A €D. V z

oxa'( (.2,2') "v'€D',.
, <a,g'> )

Definition

form

inf I u(z,y) , a'(r' ,V')

A chain in C.4.9 is a sequence of objects and arrows of the

F'

?r

l

I

:. ,
ft'&

i
I

fo ft fz(r4o,ao) €-- (11,a1) (Az,c.z)

c4s is n g[ain complete category, that is, each chain has a "limit". The notion

of a "limit" is f ormalised in category lheory by means of a cone which we now

introduce. For each sequence d (called a chain)

dg al 0.2
o0 e- ol e-- a2 (--

of objects & arrows in CAS, and for each objecL D , a cone with base a and ver-

tex D is a commutative diagram

I
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d1 d2
or az?tt

and is denoled A[ . The limit of a chain a (denoted Lirn a ) rnuy or may not

exist, but if it does then it is unique up to isomorphism. Iirrta is an objecl for

which there exists a cone A[ (catled n lirnitinS cone) with vertex Lim a having

the following property. For each object D , and for each cone Aj with verLex

D , there exists a unique arrow g from D Lo Lirn a such that

Vn>0. d,, Tn

d.g

oo €-

f
l"

(more precise definitions of

aim of tLris section is to show

,fo
(.As,a6) <-

has the limit <.[,B> where

- [ <r0,r1,.,.> lvn>0.2n€4 and /r,(",,*,)=t' J

z,y€L. F@,v) = inf[ n+an(zn,u")lrl>oi

It is easy to see that p is in f act an agreement. .[ is a subspace of the cartestan

prod.uct of a countable number of metric spaces ([Kurl] pp'z1?-3). The product

topology is a topology of infinite sequences z such that for each n>0

zn € 4r. Each sequence x of points in the product converges to a point I if

and only if f or each n > 0 the sequence

Duu

eone and limit

that the chain

are given in [Ma?1] P6B). The first

fz
(A2,o.2) (-f,

(Ar,ar) 

-

L

V

(xo),,,(x,)",(Xr)'.
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The following theorem shows that F induces the productconverges to I^

Lopology on tr .

I

k
ffi

Theorem 1

For each n >0 let (4,an> be a compacl agreement space. LeL <PA,B> be

the agreement space such that

PA = l<"0,"r,,..> lVr,>A,zne\ i

vzAePA. F@,V) = rnf[ n*an(rn,A")l n>0J

Then <PA,P> is a cartesian product. trlore preciseiy we will show that a

sequence X of points in PA eonverges to a point i if and only if for each

n >0 thesequence

(xo),,, (xr)",(xz)"

converges to lr,

Proof:

".;lirw
I

I
FS
l!-*,

ra-
ii. .
rie'i
rl;t

Suppose firstly thal X converges to

/c > 0 there exists rn > 0 such that

Thus

Thus

Let n>0. Thenforeach

v jrrn, F(Xi,L) +rL

v j >m . inf I i + ai((X,)t ,4) li>0 f

i

I.L

Thus

V j -rr. rL + an( (Xj)" ,1" )



"E
1

Thus

(xo)" , (xr)" ,(x)"

converges to lr. .

Now f or the converse argument. Suppose

points in PA such that f or some I e PA

sequence

that X is a sequence of

andforeach n>0 the

i.s
I

b

(xo)" ,(xr)" ,(X)"

converges to Ir, . Let ,t > 0 . Let nt > A be such that.

v i < k . v j >m. ar( (X1)t , tt )

Then

v j.m. inf[ i+ai((xi)t,li) li>e I > k

Thus

v jrm. F(Xi,I)

Thus X converges Lo L .

ll

To see that tr is eompact we f irstly appeal to Tychonov's theorem, which states

that the cartesian product of a countable number of compact spaces is com-

pact ([Kur2] p i?), We show L to be compact by showing it to be complete.

Suppose that X is a cauchy sequence of points in .[, then for each n > 0 so is

the seouence

F,-l

FE

I

I



lry

As -[ is a subspace of a compact product space, there exists a point I in the

product such that f or each n > 0 1,, is a limit f or the above sequence. Thus

lim )r
^-- '^

To show that I e l,

(Lo,l t, ...)

it must be shown that

I

I

ril
l{

a -1,

i
r

il&
i

I

i

I

ifr

\/rL

Foreach n >0

f ( t \r\'ra+l ,,

Thus I EI, and in

complete our proof

>0. fn(In*r) = 1,,

/"( lim(X^),,, )m-@

ii*/"((X-),,*r )

( as ,fr. is continuous

Iim(X-;,
m+E

(as,f,eI)

In

so comDact. Now we can

fa fr fz(,4s,ae) * (11,a,) €- <.A2,a2) e-

More precisely we will construct a limiting cone A/ with vertex .L

n ) 0 let rrr:Lu/o be the function such that

For each

consequence .L

that .[ is a limit

is complete and

of of the chain
i
{

i'l

tr
t'
!

t."

1..,l3

I v z e L - /-\ - -tr.\& ) - Ln

Each rr. is continuous as f or every convergent sequence x of points in .L
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( lim X^ ) = lim (X-),,
m-6 n m*F

'We now show that A/ is lirniting. Suppose that AJ

Then there is a unique function g:D'+L such that

Vn>0, 6n = Tn.g

that is, the f unction g such that

it just remains to show

sequence of points in D

is a cone with a vertex D

vdED.v n>0. (g(a))" = d"(d)

that g is continuous. Let do,dt,.,. be a convergent

Then as each dr. is continuous

Vn>0. d,,( lima^ )
m+q

6"(d^)

Vn >0. (g(limd^ )),, = Iim (g(d^))"

That is. for each rr > 0 the sequence

(g (do))"' (g (d'))"' (g (d.))"

converges to

(g( lim d^ ))m{o n

Thus the sequence

liFrIIII!
m-4

i

I
I

I
IF

:a

"*

H
Lt

I

Thus

converges to

g( limdn )



I
tnl
?,4

iat ,,

I
I

i

i

Ls

i

t!"

'

Ft
E
l&

l

Thus

g ( Iim d,n
m-6

Thus g is continuous.
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) - Iims(d^)
mrF



iq
t;

:':

fl
I
I
I

I

k
i: 11

LJ

,

ii
i.
it.
L*

E..

r
i

Section 3.4):

-67-

The Category FCAS

Now that CC^9 has been introduced we must consider the

category FCAS of finite continuous functors over CAS . A functor F over

C,AS is a function rvhich assigns to each object D in CAS an object F(D) , and

to each arrow f :D-D an arrow f(I):f@)-F(D ) such that,

vD€CAS l.( ir) = Ip@)

v f :D-D g:D -D" F( S .f ) = r(g) .f U)

An example of a functor is the powerspace functor P0 now described, The

space 1D,a) is a subspace of the space 1D',a'> if. DCD', andif q is a'res-

tricted to D . The compact subspaces of a eompact space are the closed sub-

sets, as each subset of a compact space is compact precisely when it is closed,

[Kur1] (p.el+) describes the metric space (?D)^ of all closed and bounded sub-

sets of a space D with a metric rn , lf m. is a compact metric induced by an

agreement a then (ZD)^-[[Jl is the space induced by the PowersPace of corn-

pact subspaces of <D.a> (denoted <P(D),P(a)> ), ffre agreement P(a) for

this powerspace is such that

v A,B e P(D) (P(a))( A,B) =

inf Isup[ a(z,y)lzeAllyeB J

U I supl a(r,v)lveB ] | zeA J

The following theorem shows that P(a) is indeed an agreement,

Theorem 1

For each compact agreernent space (D,a), P(a) is an agreernent

Proof:

Let (D,a) be a eompaeL agreement spaee. Clearly P(a) is
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I

:T.q
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t
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I
I

I

t
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F:
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symmetric, also it is easy to see that

A = B ==> (p(a))(A ,B) = *V A,8,

As compact subspaces

clear. It only remains

Now,

and,

thus,

Thus,

but,

are complete the reverse implication is also

Lo prove the "triangle inequaiity"

v A,B ,c (,p(a))(,q,c) > min[ (P(a))(l,B), (,p(a))(s,c) i

v y €8, sup[ a(v,z) | z e C J >- (p(a))(g,C)

v z€A. v y€8. v z€C . a(z,z) t minl a(z,A),o(A,z)l

V r€A . v y eB. supl a(z,z)lzec J

v s€A. supl a(r,z)lzec I

v zeA supl a(z,y)lyeB I > (P("))(A,B)

thus,

v z€A. supl a(z,z)lzeC I
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By similar argument,

> min[ (,P(a)X,q,B), (.P(a))(B,C) |

) lze,a J

rnin[ (P(a))(c,B), (,P(a))(s,a) ]

V zeC. supl a(z,z

rl

i

I
ttltI

I

thus,

t"
t,,

:

r-
!.
E

(p(a))(a,c) > min[ (P(a))(A,B), (p(a))(;,c) ]

Thus we have proved that P(a) is an agreement

To see that P(D) is compact we consider the exponential topology p, of all

closed subsets of D , As D is a compact metric space, 2D is the same as

(ZD)^ ([i{urz] p,47). Also, 2, is compacr as D is compact (lKur2l p,4D), thus

(2D)^ is compact. Thus as Ij is an isotated point in (ZD)^, (Zr),,. - t[Jj is

compact. That is, P(r) is compact. P0 can be made a functor over c,4^s as

follows. For each continuous function f :D-+D , Iet P(/):p(D)-,p(2t1 be the

continuous f unction such that f or each compact subspace A of D

(P(/ ))(,4 ) I f (") lz e I J

(P(f))(A) is cornpact as the image of a compact space under a eontinuous

function is compact ([Kur2] p 11) / is a closed mapping as it is continuous

and as D is compact ([liur?] p.11), thus P(/) is continuous (fKurl] p,iOS).

P0 is a finite functor, that is, for each finite space .4 P(,4) is also finite. P0

is an example of a conlinuous I rnctor as it maps each lirniting cone to a limit-

ing cone. A continuous functor is a generalisation sf sfunin complete function

as used by [Tar55] in his Ieast f ixed point theorem over partial orders. As an
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example, the f ollowing theorem shows that the powerspace f unctor p0 is con-

tinuou s.

Theorem 2

P0 is a continuous functor

Proof;

LeL f beachatn

Io ft fz(/o,ao) (lr,a,) (Az,o.z) €

in CAS. It has been shoryn earlier that / has a limit <g,1,) ,where

L = [ (s0,2r,...> | v"r >0 zn €An & fn(r,.*t)=rn
v zy eL. F@g) = inf{ n * an(zn,A) | nt0 i

P(/) is the chain

Similarly P(I) has alimit <L',6') where

L' = | <8o,8,...> lVn>0 Bn€p(A.)

e (P(l"D@",t) = Bn J

v z g e L' F'@,v) = inf{ n + (p(a"))(r^,a^) | "r' 0

Let i:P(L)-tr' be the function such Lhat

v C€P(L) Vn>0 (i(C))" = lrnlreCJ

To show Lhat the funetor P0 is continuous in cAS it is sufficrent

to show that the f unctron i is an isomorphism. That is, it must be

shown that i is a homeomorphism. But by []<ur2] (pp 11-1Z) each

I

I
I
f,

I
\,

I
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injective continuous mapping of a compact agreement space into
an agreement space is a horneomorphism. Thus as p(r) is com_

pacL, it is suffieient to show that i is an injective surjective con_

tinuous function. l{e begin firsily by showing that i is injective

suppose that c,c e p(L) Let r E c. Then there exists a

sequence Ys,Yr,... in C such that

vrL>O zn = (Y")^

Thus

VrL>0 vrrL<rL zm = (yn)^

Thus

Vn>0 p( z,Yn) > rL

Thus

= lirn Y

try
:j

:*l

gq

I

I

i

Therefore z e C as each yn e C and as C

CCC. By similar argument C cC, thus

inj e ctive.

is complete. Hence

C=C. Thus i is

we now show that z is surjective, suppose that B e L, , Let c be

[<r0,"1,...) lvn>0 r, €f'- & fn(zn*,)=",. I

Then CCL, To show that Cep(L) we must show that C rs

compact. As -L is cornpact it is sufficient to show that c is com-

plete. Suppose that Xs,Xr,... is a cauchy sequence in C. Then as

-L is compact, x converges to a point I e L . we need to show that
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I e C , that is we need to show that

Vn>0 fn(Ir,*,) = ln

This is easily seen as f or each n > 0

InQn*) = /"( jig1 (4,)"*' )

= jig f "((x^),,*, )

(as -fr. is continuous )

irg (i-)"

(as X^ e .L )

( Iim x^ )"m-o

In

Thus C is complete, and so cornpact. Thus C € P(L). Thus rl is

surjective, as by inspection i(C) = p 
,

Next we show that i is continuous. To do this it is sufficient to

show that

v c ,c eP(L) p'(i(c),i(c)) > (p(p)X c ,c )

Now,forall C,C €P(L)

l

i

I
ht
E,!

t.

f*

j

(P(p)x c,c )

= inf[ sup{ F@,y)lze CllaeC j

UIsupl F@,u)lve c Jlze c I

= inf[ sup[ inf[ n+a,r(r,.,Vr,)ln>0 lreCl
UIsupl inff n *a,,(2,,,y")ln>C jg e

Thusforall C, C e P(L),andforall n >0

lve
cl

cl
le c f



rl

L

r
t

H
F

-73-

inf{ sup[ n + d.n(z,,,An) l, e C ]ly € C I

U I supf rL + s.n(rn,Vn) lV e C llz eC ]

Butforall C,C e P(L)

p'(i.(c), i(c ) )

= inf { n + (P(a,.))( (',(c))" ,(i.(C ))" ) | n >0 j

= inf[n + infl sup[ a,,(u,u)lu e(i(c))" llu e (d(c))",

U Isupl an(ul)lu e(i(C ))" Jlu e (t(C)),, I| "0
inff n +infl sup{ a,,(rn,gn)lr e C llA €C 

J

U I supl dn(zn,yn)lV €C Jlz eC I l rr>0 I

infl infl sup[ n * an(z,,a")1, € C j I A € C ]

UIsupl rL+d.n(rn,An)lg E C Jl, €Clln>01

Thus

p'(i(c),i(c)) > (P(p)x c, c )

Thus i is continuous. lYe have now proved that i is an injective

surjective continuous function, and thus that P0 is a continuous

functor in C,4S .

To conclude this section we show that all sums and pro-

ducts of continuous functors over CAS are continuous. First we look at sums,

Suppose that F & G are continuous functors over CAS, and suppose that A[ is

a limiting cone with vertex V . Then as F & G are continuous Lhe cones

.F(A;) and G(A[) are both limiting. Suppose we have a cone Aft*c)(a) withver-

tex D . As D is cornpact, and as dn is a continuous function, there exists a
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unique partition of D into compact spaces D & D" such that the restricLions

6olD & do I D" are continuous and have the ranges F("0) & G(a6) (where o6

is the first object in q ), Thus there exist unique cones Afi"l & A$i"y with ver-

tices / & D" respectively which are restrictions of the cones f(A;) & G(A;) ,

But, as f(A;) and G(A[) are limiting, there exist unique continuous functions

g':D -F(V) e S":D"-G(lf such that

vn20 d; = F(rn).g and 6" = C(rn) .g"

Thus there exists a unique continuous function g:D-t(F+G)(n sueh that

vn )0 d,. - (F+c)(r").g

Thus F + G is a continuous functor over CAS.

We now show that the product F x G is continuous. Let A[ be a cone with ver-

tex I/ as above. Then as lr & G are continuous the cones f(AI) and G(A[)

are both limiting, Suppose we have a cone Aftrcy1o1 with vertex D . For each

n > 0 let 6,-:D-+F(an) and 6i'D-C(o-) be the left and right components of

6n (where ar. is the n'th object in a ), Then there exist coner Afirl A A86l

both with vertex D. But, as I'(A;) & G(A;) are both limiting, there exist

unique continuous functions g':D-F('/) & g":D.G(lf such that

V n L0 d; = P(rr.).9' and 6n = G(rn).g"

Thus there exists a unique continuous function g:D-+(FxG)(iz) such that

V tz 2 0 d,, = (/xG)(r") .g

i

I

I

L

ii

k.

Thus F x G is a continuous functor over CAS.
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Section 3.5) : Recursive Equations over CAS

C,4^S is given toNow an iniUal fixed point semantics over

equations of the form

D = F(D)

for the class of continuous funetors F . To formalise the notion of a ,,fixed

point" for a continuous functor F we introduce below the category ICAS(F) of

all isomorphisms i:D-F(D) (fixed points) of F. The aim of this section is to

show that an object is initial (see below) in fCrlS(f') precisely when it is iso-

morphic to the fixed point eonstructed by the inverse tirnit method (see

below). This rnethod f or solving recursive equations in category theory is a gen-

eralisation of Tarski's method f or cpos [Tar55]. The approach is similar to that

envisaged by, among others, Daniel Lehmann in this Ph.D. d.issertation (Univer-

sity of Jerusalem). This seetion thus has two parts. The first part construcLs a

fixed point to the above equation using the inverse limit rnethod. The second.

part defines the category ICAS(F), and then shows that an object is initial pre-

cisely when it is isornorphic to our constructed fixed point.

We begin the first part of this section by describing the

inverse limit method for continuous functors. A continuous functor .F maps

each limiting cone to a limiting cone. Thus f or each such F , if the cone

h,.

D

is lirniting, then so

l,I
D

Iil4-

is the cone



i#
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r(r) F(F(r))
jr'(/) <-- F(F(r)) (

tf
lo,'ol lo,"',

F(D) = F(D)

F

Thus this cone with the object .I added to the base is a limiting cone. Horyever,

as the vertices of any two limiting cones with the sarne base must be unique (up

to isomorphism), we have that

D = F(D)

Consequently we can use lirnits to find a fixed point of a continuous functor I'
if we can prove that the chain (denoted r.rI )

bas a limit. In the re.mainder of the first part of this seetionwe will show that

if .F is f inite continuous then raf' does in f act have a limit.

First let us look at the "retraction" properties of the arrows

in c;F. A retraction for the arrow f :A-B in cAS is an arrow r:B.A such that

r.f=Ia

Such an anow / is always monic (see [Mazt]ptg), thus in cAS / is a topologi-

cal embedding of .4 into L The arrows in r.rF are all retractions, as for any

arrow e :l.F(l)

i
L-

s
t

T e = I7

F(r) . F(e) =

r@ft )) . f(r(e ))

1r(r)

= 1r(r(r))



r
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Consequently the objects in r..rF form an increasing sequence of finite sub-

spaces of CAS, This enables us to use the usual inverse limit construction to

find a limit. Let ^S be the agreement space of all infinite sequences ,r such

that

v n > 0 ,n E Fn(I) and 2,, = (Fn (r))(r"*,)

^S is clearly complete, and can be shown to be totaiiy bounded as follows. A

basis for S is

t tye ^Sla(r,y)>n lls€,Sandn>0 I

Thus by fsuth] (p,111) S is totaily bounded. Thus by [Sim] (p,1Zb) -s is com-

pact, and so it is shown that .S e. CAS .

For each n > 0 let zr,:S-ln (/) be such that

V.r g,S

Then f or each rn < rL

- /-\ - -ttt\- | - &n

Fr

Tm = F*(r)./-*t(r)

Then the diagram

F(r)<--

f--t(r) ,7r

F(F(r))
/)) <--r(r(

/1\

li'a

s

g,!r

I

T

I (- P111

AAtll- l''
S=S

commutes, and is thus the cone Ajp. To show that this cone is limiLing, we
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Ajp with base D , there exists a unique continu-must show that for each cone

ous map g:D-+S such that

hie will show

the g such

Vn>0

that such

that

V z €D

dn=Tn

a g exists. The onlY g satisfying the above equation is

I

h;;

lj.'

er

V 11. >0 /^/-\\ A 1-\\Y \* lln u? \n I

is continuous,Il only remains to prove that g

Suppose that y is a convergent sequence in D , then for each n > 0

(g(limv ))" = d,( Iimg )

Iill d" (v^)

(as d' is continuous)

lim (g (A*))"

Butforeach n)0,as F"(I) isfinitethereexistsaninteger '. 
)0 suchthat

v m >tn (g (v^))" = (v (vh))"

and

lig: k (v",))" = (o (v"))"

thus there exists lig g (y-) , and

Vn>0 (lim g(y^))"
mrE

}igo(v",) = o(|Tv^)

therefore
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Thus g is continuous, We

ing its results. For each

shown that the chain
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conclude the first part of this

finite continuous functor .F

section by summaris-

over CAS, it has been

h

-'g
I

(denoted c..rF ) has a limit which is a fixed point of f'

Now we go on to define the category ICAS(F) , and to show

that an object is initial in this category precisely when it is the limit con-

structed above. The objects of ICAS(F) are the isomorphisrns z:A-'F(l) in

CAS . For all such isomorphisms i.:A-F(A) e. j:B-tF(B), and for each arrow

f :A-B in C.45 , the triple <j,f ,i> is an arrow in 1C,4,S(.r') iff

F(f ) ?,

that is, if the f ollowing diagram commutes.

= j.f

j
B+F(B)

k

:

F'

&

I

I

F(f )

-r+ 

r(/)
't

Composition in ICAS(F) is sirnilar to that in C,4S . The

arrows <k,9, j> e. <j,f ,i> isthearrow <k,g.I ,i>.

i:,4*.P(A) in C.,{S, an identity in /C,4S(F) is an arrow

The isomorphisms in ICAS(F) are those arrows <j , | ,

{

A

composition of any two

For each isornorphisrn

of the form <z ,Lt,i) .

i> f or which / is an
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isomorphism in CAS . Although ICAS(F) is not a subcategory of CAS , there is

a f orgetf ul f unctor which reduces ICAS(F) to a fixed point subcategory of

CAS . This is the functor which maps each objecL i:A-F(A) in 1ClS(f) to ,,1 ,

and maps each arrow <j, f ,n> of ICAS(F) to 
"f

In the remainder of this section it is shown that for any

object B in CAS , an object j:B-F(B) is initial in /CA,S(.F) iti tfrere exists a

Iimiting cone A,lp with vertex B such that

Vn)0 Tn F(r^ -r) . j

The following has been shown for each finite continuous functor F over CAS.

There exists an isomorphism j:B-F(B) such that B is the vertex of a limiting

cone Ajp. ln the second parL of this section it will first be shown (in Lemma 1)

that 7 is an initial object in ICAS(F). Secondly (Lernmas 2 & 3), it will be

shown that for any object .B in CAS, an isomorphism j:B-F(B) is initial in

ICAS(F) if and only if there exists a limiting cone Ajp with verlex -B such that

vn>0 rn = F(rn-r)

Lernma 1Ii
From above there exists an object .B

a iimiting cone A[p. Then there exisLs an isomorphism

initial object in ICAS(F) .

Proof:

As ,E is continuous, the cone

which is the vertex

j:B-F(B) which is

of

an
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F(B) =

is limiting. Thus B and

base. Thus there exists an
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F(")
,F'(/) <l--
,l
I

ltt"''
F(B) = F(B) =

F(B) are vertices of limiting cones with

isomorphism j:B -F(.8) such that

l',',,

k

F

the same

ti
&

:

E'
Eirr

I
I

I

Tg = s ',

and, Vn)0 rn = F(r"-r)

To show that j is initial in ICAS(F) ,lne must show that f or each isomorphism

i:A.I-(A) in CRS, there exists precisely one arrow f :A'B in CAS such that

<j ,f ,i> is an arrow in ICAS(F), First we will prove that such an arrow

<j ,f ,i) exists, and then that it is unique.

Let i:A-F(A) be an isomorphism in CAS. Let Ais Ue the unique cone with ver-

tex / such that

Vn) 0 dr. = F.(d,.-t).i

As Ads is a limiting cone there exists a unique arrow f :A-B such that

Vn20 dr, = Tn .I

Similarly for the above diagram, there exists a unique arrow g:A.F(B) such

that

u0

and, V n

sg

>0

But,

6n = F(rrr-,)



do=s,

and, do = s

and, Vn)0

and, Vn)0
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(i .f )

.(F(f ).i)

6n = F(rn-t).(j.f )

(us, 6n = rn.f

and, Tn = F(r,--r) .f )

6n = F(rn-).(F(f).i

( us, d,. = F(6n-t) .i

and, dr. -t = Tr-r . "f )

h
f,,

Lr
Li

F
I

I

,i">

TL

I

i

B"*

Thus as g is unique,

= i-f = F(f).i

Thus <j ,f ,i> is an arrow in ic,4s(r) , we must now show that there is no other

arrow f ' :A-B in cAS such that <j ,f' ,i) is an arrow in tcAS(F) , Remernber-

ing f rom above that / is the unique arrow with the property

Vt:u20 dr. = Tn

we will show that /' has this property if < j ,f '

thus that f = f' , The proof is by induction on

is an arrow in /C,4S(F) , and

Trivially, do = ro I'
Suppose we have shown that dr,-r = Tn-t .J' , then

6n = .tr(d,,-r).{

. ( by definition of d,, )

= F(rn_, .f' ) . i

( by induction hypothesis )

= (F(r"-,).r(/')).t

= F(r''-r) . (l'(/') .i )

= F(r,_r) . (i .I' )

.rb,
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( as <j ,f' ,i> is an arrow in /CAS(,F')

( F(r--r) .i ) . f'
Tn 'f'

( by definition of r,, )
t-
E
s
EE&

a.

r
iL

F
I

Thus,

V rt2 0 d", = Tn

Therefore f = I', completing the

.f'

proof of Lemma 1.

T

l,emma 2

For each iniLial object i:A-F(A) of

with verlex .4 such that

ICAS(F) there exists a

Iimiting cone Ajp

Vn)0 6n = I(d" -r)

Proof:

Let i:A.F(A) be an initial object in IC,4S(,F')

LeL j:R-F(B) and A[p be constructed as in the proof of Lemma 1

Then .B is a limit of eF , j is an initial objeet of. ICAS(F) , and

Vn)0 rn = ,F(trr_r)

Initial objects ln any category are isomorphic, thus there exists an arro\r

f .A-B in cAS such that <j,f ,i) is an isomorphism in ICAS(F), Therefore /
is an isomorphism in CAS.

F
&r
F

Let Ajp be the unique cone such Lhat
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Vn>. 0 dr, = Tn . f

This cone is limiting as Ailp, so is, and as / is an isomorphism (iimits of chains

are unique up to isomorphism), Then f or each n > O

6n=Tn-I

= (F(r"-r).i) .f
( by definition of rr, )

= F(2,,-t) . (i .f )

= F(rn_t) . (r(/) .i )

( as <t ,f ft> is an arrow in /CzlS(F) )

= (F(r"-r).F(I)).t

= F(r'--,.f).i

= .F(d,_,) . i

Thus

vn>. 0 dr, = r"(dr_l).i

This completes the proof of Lenima p.

Lemrna 3

Each isomorphism i:A-F(A) in CAS wrth a iimiting cone

Ajp such that

Vn)0 d,. =,tr(d"..r).i

is an initial objeet in /C,a.S(f) .

Proof:

Let i:A-F(A) be an isomorphism in CAS.

j
t

.i*rr--
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Suppose that Ajp is a limiling cone such that

vn>0 dr, = F(d,,_r).i

LeL j:B-F(B) and Ajp be eonstructed as in the prooi of Lernma 1

As Ajp and Ajp are both limiling, there exists an isornorphism /:,4-rB such

th at

Vn)0 A-vlt t n .J

the proof of Lemrna 1 ne can shorv thatBy an argurnent similar to that rn

j . I = F(f )

Thus as / is an isomorphism in c.AS, <i ,f ,i> is an isomorphism in /c/s(.n) .

Thus as 7 is initial in /C,4.S(F), and as initial objects in a category are unique

up to isomorphism, i is initiai

This completes the proof of Lemma 3, and thus completes our proof that initial

objects exist in ICAS(F), and that they are preciseiy the isomorphisms

i:B-F(B) f or which there exists a limiting cone A[p with vertex I such that

vn>0 rr, = FG"_t).j

t.

!"'
F6
t

I

I
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Solutions to Example Equations

In this section we give some example equations together

with their solutions constructed via the inverse limit method.

The first example is an equation to generate the natural

numbers with infinitv.

X = I+X

The solution is the eornpact space < INT , atnr ) where

INT = [0,1,2, i t,[-l

V rA €

Topologically, ///I is

INT z<y

the denumerable

==> awr(z,Y) = z

space with precisely one lirnit point

The second example is one to generale the space SEQ of

finite & infinite sequences over an arbitrary space <B,p>.

X = I + BxX

The solution generated by the inverse lirnit method is < SEO , a.s;,? ) where

v zy e SEQ qsEQ@,y) =

inf[ n+F@^,a^)ln<lzl] if lzl= ly1

inf[ n+Fbn,a")lnllzl jUt l"ll if lzl<lsl

For each z e SEQ lzldenotes the leneth of z i.e,

l<>l =

all

w

i-

'

k

I

I

#*-_--

| <ro,r 1, ,.. ,u r._1) |
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| <ro,, r, ...) | = E

Also note that by convention inf If =

that B(z,V)=0 precisely when z*A )

case for all distinct z e. y in SEe

tial segment of r and y .

- . When B is a flat (that is a domain such

a5s'9 becomes the Baire agreement. In this

astQ(z,y) is the length of the common rni-

'1

,-7

nfl
t

^3-

!n

:

r
i
[*

F

L



.BB-

Chapter

Function Domains f or Completeness Rules

Section 4. 1) : hrtro du ction

Seetion 3.1) described the problem of choosing the right

domain of functions in order to establish a CompleLeness Rule. The first prob-

Iern in constructing any domain in this dissertation is deciding which objects in

the domain deserve to be called "complele", A satisf aetory answer to this ques-

tion f or funetion domains will take us half way to establishing a theory of Com-

pleteness Rules. This is because Completeness RuIes are used to prove fune-

tions complete, just as the Cycle Prcduct Test is used to show that equations

have a complete (unique) solution. '!fe propose here a simple funetion domain

for investigating the completeness properties of functions. A function f is

def ined to be complete in this Chapter if f or each complete objecL c , I (c ) is

complete. This definition is unfortunately too simple, as we t'ill see it needs

refinement when discussing agreements upon functions. The f unction applica-

tion combinator is shown to be complete, while the usual function composition

combinator is shown to be partial. The failure of this composition to be com-

plete appears to be the main stumbling block in constructing domains of f unc-

tions. A nerv eomplete composition cornbinator is inlroduced. This discussion is

carried out using a set theoretic model for domains. This model includes both

the Kahn & Lucid Domains. A consequence of this Chapter will be that f unctions

in a higher order theory of completeness should be absolute. The Conclusion of

4

i

f:"r
i:j:t
&..f

e-
I

I

{
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this Chapter discusses the implications of absolute funetions and the problems

with composition.
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A Model For Domains

The examples of eomplete functions given so far have been

all first order. Also they have been restricted to either the Kahn & Lucid
Domains, or else dornains of the like kind. lt is possible to talk about the com-

pleteness of higher order functions such as function application, function com-

position, and fixed point f unctions, For example, function application is imple-

mented in programming languages by a variety of ',eager', and ,'lazy,, techniques

[He?6]' These different techniques can be described by a variety of partial &

complete objects in a function domain. To illustrate this we construct a simple

theory of domains. A dornain 2 in this theory is a coilection of subsets of a set

n partially ordered by the set inclusion relation ) . The eompleLe objeets in

these domains are the singletons, ithiie the partial objects are the non-

singletons, A more precise definition is given below. ln thls theory ,,eagerness,,

and "laziness" can be expressed in terms of completeness. Another interesting

example for these dornains is function composition, This corresponds to the

way in whieh modules are "plugged" together. The way in which the plugging is

done deterrnines the efficiency of the resulting program, this efficency can be

described using completeness. The final example f or this theory of domains will

be an examination of various fixed point combinators with respect to therr

completeness.

The construction of the dornains themselves is straightf orward.

Definition

A domain D with u-niverse -D is a partial order of subsets of l? such that.

(i) The order E on D is set inclusron 2

(ii) -D e D

H
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(iii) 0 4 n

(iv) wce-O lcleD
(") All non-ernply meets exist

(vt) D is chain complete

The operations Ll and f-l are not necessarily set union and set inlersection,
this is because domains do not have to include all non-empty seLs. The Kahn

Domain can be formalised as a domain D by letting -D be the set of all infinile
sequences in Ka, and by letting each non-singleton ,4 in D be as f oilows. ,4

corresponds to a finite sequence 3 in Ka , where .4 is the set of all infinite
sequences having r as an initial segment. The Lucid Domain can be defined

similarly in terms of these set theoretic domains.

Definition

The complete members of a domain are the singletons, while the partial objects

are the non-singletons.

The f ollowing properties of a domain may be noted.

(i) Each mernber of a domain is either complete or else

has a complete member above it. This is because

each and every singleton is in the domain.

(ii) Each mernber of a domain is the meet of the maximal

members above it. This is because,

vA€D A = Ull"JlaeAl

These domains are exarnples of posets which we shall consider later cailed
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acpos, however, f or the moment the only domains to be considered are these seL

theoretic ones' The notion of "set" quite naturally models the idea that a par-
tial object should correspond to a collection of complete objects. Simple opera-

tions such as the cartesian product llxf of Lwo universes can quite easily be

I extended to a producL D*E of two domains,
L"

Definition

The product of domains D & f is the dornarn

DtE = [AxBlAeDandBeEJ

D*E is a domain with universe -Dx.e . The complete objects in DtE are the sin-

gletons l<d,">J for dED and e €E . This fits with the intuition that the corn-

plete objects of a product should be formed from the complete objects of the

component domains. The rneet of a set of members

| 4x4 : iel l

of D'8 is

t all4:ieIl l[8,,.i€rJ >

Also there is a one-one correspondence between

interpretation function J e ((D'E*(DxE)) where

DrE and DxE given by the

I

i

VACDVB€E T(AXEI) = <A,B>

At this poinl

was allowed

be a domain,

\{e can justif y the

in domains then .

and so

ornission of the empty set S

could not be defined as. f or

from domains If p

example, ISJ would

L
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This omission is desirable as we do not want "overdefined" (i.e.

objects in domains. The claim that * is an extension of x is

f act that ,DxE is always a mernber of D,E .

- 93-

ttsi l- ldl[0]'tt3l J

DfE =

t

I

"overcomplete")

justified by the

k
8&

;

ii-

FB

r8
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The disjoint s,rrn n+E of universes can also be extended easily Lo a st,rn D#E

of domains.

Definition

The disjoint sum of sets A e. B is the set

A+B = [<o,0> laeA ] U [<b,i> lb €B ]

Definition

The srrrn of dornains D e. E is the set

I l<",0> la e .4

[<b,1>laeall
-D+E J

I l/ ED-[r] I

8e E-[.EJ I U

U
I

I'
b

'*

i-

i_

E
E

I

I
I
I

This sum is the so called coalesced sum. where the bottorn elements -D and -E

are "merged" into the new botlom D+-8. The universe of D/E is D+E . The

clairn Lhat f is an extension of + is justified by the fact that D+E is aiways a

member of. D#E .
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Section 4.3): Function Domains

The final operator on universes l'hich rve wish to extend is the following

Definition

ths f rnction space A-+B is the space of ali funclions from the set .4 to the set

B.

As with the previous domain constructions of product & sum, r'e conf orm to the

tntuition that a partial object should be the meet of the complete objects above

it. A complete object in a function domain wili be a singleton lf J for f in a

function space -D-E , In general, an object in the domain wiII thus be a non-

empty set of such functions / .

i

h
sr

f&.I

I

FtF

Definition

The functisa dsrnain DE E is the set of al} non-empty subsets ,4 of 2-f such

that

(i) vce-D l/(')lIeA Je E

(ii) A = [t€-D-El
v c €-D /(.) e lg(.)lgeAl J

' Using (i) we can map each complete member [c j of D into an e]ement of E .

(ii) implies the f ollowing property. If tivo members of b E agree on the com-
fl
&:

F plete points of D then the1, are rdentrcal.

i

It still has to be shorrn that D-.8 1s in eeneral a dornain.

'- .-

Theorem 1
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Foralldomains D k E, D-+E€D-E

Proof:

( proof technically uninteresting )

Theorem 2

For ali domains D e. E , b.E is chain complete.

Proof:

( proof technically uninteresting )

The prevtous two theorems shorv that in general DE E is a domarn. As with

product and sum, there is the f ollowing property to show that - is an exten-

sion of * ,

vD,E lDl-lal = [2f -[{f

A function dornain is no good unless its members can actually be interpreted as

functions. This we can do via an interpretation funcLion.

Definition

For ail domains D k E, the intcrpretation funclion lor IhE is the functjon

+ e ((D- E )'(D-E)) such thar

rf

t

:*

ru.
I

I

I

VA€ D-E VB€D
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(.t,.4)(B) = ntt/(")lI€AJ lceaJ

Absolute funetions occur in }anguages using lazy evaluatiorr lHez6]. In such
ianguages calls are made f or only the minimum amounl of input needed to pro-

duce the required output. Absolute functions embody the ultimate (or abso-

Iute) notion of laziness. This notion turns out to be lazier than that employed

by present users of lazy evaluation, ln other words, absolute functions can be

regarded as specifications f or curren L razy imprementations.

The interpreLation function gives a one-one. correspondence between the func-
tion domain D-B and the set of all absoluLe functions in D-E .

Definition

A f unction Fe(D -E) over domains D e. E is absolute if

vA€D F(A) = l-l Il'(lcj)lce,a j

The one-one correspondence between each domain D-E and the set of all

absolute f unctions from D Lo .g is established by the next theorem.

Theorern 3

For all domains D &. t, the intcrpretation funclion I for I)-E is iniective.

AIso, the range of .r. is the set of all absolute functions in I)-E .

Pro of:

Suppose +: ((Ih E)-(D-E))

is an interpretation function

I

II

H

I
i
{
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Then J is injective as f or each A e Dp E

A = l/ €-D.E I v" €t.f (c)e (.r.A)(t"i) I

Also .t. is surjective as for each absolute function ,tr s D-E

.t.( ["f e-D-Elvce-D.Ik)er([c])f ) - F

The complete objects in a f unction domain pe g are, of course, the singlelons

[/J for any .f in (-D*f). However, the interpretation .t for bE puts them

in one-one correspondence with the set of absolute functions in (D-A) which

maps each complete object in D to a complete object in E . Thus a

complete function in our theory is an absolute f unclion which rnaps complete

objects to complete objects. The product & function interpretations can be

combined to obtain inLerpretation f unctions such as

r € @,Qt-E))- n -+ (Dx(D.E))-E

For example, when the set

lappl € @.11t-E))- n

is interpreted, where app is the usual f unction application

app € (Dx(D*E))-J'

we get the function .t. fappJ where f or each A in D and absou]ute -tr rn D-E

( rluppl )( <,q,F> ) = F(A)

That is, IappJ is interpreted as the usual function application. By simi]ar argu-

ment we can interpret members of domains such as

I

F

r
t:

ili

l

-
I

I

4-
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((b E),(b r))- (b F)

as members of

((D-E)x(E'P)) - (D-F)

Thus if comp is the usual funcLion composition in

((2-'E)x(x--E)) - (D-E)

then the inLerpretation of Icompf in the above domain

Iute functions .P & G in D-E &. -O--P respectivelv

is such that for all abso-

I

:

I

I

I
l.*

&-

I

v B€D (+([cornpl)(<r,c>) )(8) l-r Ic(r.(t"'i))lceB]

This is not the following definition of function cornposition that one rvould

exDect

dcomp( <lt,G> ) A.A€D c (r(/ ))

dcomp will not in general be absolute, but a weaker function as,

v A €D (deomp(<,n,G>))(,4) E (.r([compJ)(<F, G >))(A )

An example of rvhen this relation is not an equality is included in the proof of

Theorem 1 of Section 5.2. However, the two functions .l([compJ)(<F,G>) and

deomp(<F,G>) do agree on the complete members of D .

This suggests that .t([compf) is to be regarded as a specification of the usual

composition dcomp.

.i.([compj) does not share ali the properties of dcomp, for example, dcomp is

associative u'hile +([compf ) is not.
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ConcJusions

The first conclusion frorn this Chapter is that the usual

f unction composition combinator cannot be easill, extended from the complete

objects to the remainder of the domain. Yie can in this model show what com-

plete composition is, as well as complete application, as opposed to jusl specu-

iating what they might be. Our version of composition can be regarded as a

specification for all other forms of composition, an upper bound for which the

usual f orm of composition is an approximation. Our specification does not have

nice properties such as associativity. Is there a reason though lrhy composition

goes wrong? It is this question which needs an answer before completeness for

f unction dornains can really be understood.

A second conclusion from this Chapter is that absolule

functions are the most natural functions to consider for complete objects in a

funclion domain. llhile this claim is justified in our model it is not justified in

functions used by many programming languages. This is firsLly because the

norrnal cornposition of absolute functions is not in general absolule. Secondly,

it is because our complete composition is (to say the least) not easy to imple-

ment when the complele objects used by the functions are infinite data struc-

tures. However, having made these negative points about absolute f unctions we

should remember that such f unctions are used in programming Ianguages hav-

ing lazy evaluation. Thus absolute functions, however difficult they rnay seem

from the point of view of function composition, are used by programmers as

specifications f or the functions which they actually write. Hence this Chapter

has provided an argument in support of CompleLeness Rules f or lazy program-

ming languages. By consequencc, lle have provided an argument in support oI

cornpleteness in general.
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Chapter

Absolute Functions

Section 5.1) : hrtroduction

Previous discussions ln Chapter 4 lead to a conclusion that

a theory of function domains for Completeness Rules using the naive set-

theoretic approach necessitates a restriction to absolute functions. This sec-

tion discusses the possibility of setting up categories of such functions, and

thus considers the f easability of the naive approach. It is shorqn that categories

of absolute functions (using o for morphisrn composition) do not have the

basic categorical properties required for a theory of domains, This is achieved

by restricting the allowed absolute functions, firstly in Section 5.2) to super

absolute functions, and secondly in Section 5.3) to meet presereing functions.

This is more difficult than the work of Chapler 3, as there we did not consider

funclions over domains, but only functions over complete objects. The conclu-

sion of Sections 5.2 and 5.3 is that a reappraisal of the role of f unction compo-

sition is necessary to generalise completeness (note that this is consistent with

the conclusion of Chapter  ). It is this conclusion which in Section 5.4 leads us

to weaken the f undamental categorical axiom of composition associativity, the

result being a category-like structure which we call a malegory, and ithich in

its delinilion incorporates the nolion of cornpleteness.
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A cpo is a chain-complete partially ordered set with a least element.

Definition

An absolute cpo (acpo) is a cpo such that

k (i) the meet of each set of points exists.
E

(ii) each point has a maxirnal elernent above it.
-
,; (iii) each point is the meet of the maximal points above it.

:
F Definitionr
I forallacpos A k B,afunction f :A'B isabsoluteif foreachpoint z in A

f (") = al I f (-) | z ErtL and rn is maximal j

This then is the world lre are interested in, This Chapter looks at categories of

absolute functions over aepos. Do there exist products, sums or exponentia-

tions in sueh categories? First it must be established as to whether or not any

category of absolute f unctions exists at all.
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Section 5 -Z) : Super Absolute Functions

Theorem 1

There exist trvo absolute functions whose composition is noL absolule

Proof:

Let,4 , B,k C betheacposwith

functions f :A-+B and g:B-C

given by the f ollowing diagrams.

' f (rn) f

\
\

\
f

("rr)) sU@L')) g(m")

\^/ 
/o\/

\/
e(.f( -L ))

(ro') m," g (f

tlJ
U

(r)

ll

i
I

!r

I
b&

i

I and g are absolute, however

s (t ( -L )) * l'-l I g (f (.,)) , s (f (*')) I

Hence gof is not absolute.

Theorem 1 appears Lo down any hopes of setting up a category of cpos and

absolute f unctions. This is not the case if a more restrictive notion of "absolute

funclion" is used.

Definition

Forallacpos A k B,anabsolutefunction f :A*B issuperabsoluteif foreach

uin14,

ITL TfL

\/
\/
\/
\/
I

*-_
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foreachmaximal rn in B ,if f ({Em then

there exists a maximal rn' in ,4 such that z E rn'

and / ("r.')Em

The idenLity function is always super absolute as are many other absolute func-

tions. The following function .f is an example of a super absolute func[ion.

.f(<>) =

f(<20,...,rr. ) ) = (2t,...,2,')

f(<ro,2r,...)) = Kzr,xz,...)

The next theorem will be needed to shorv that super absolute functions are

closed under f unction composition.

Theorem 2

Each absolute function is monotonic.

Proof:

brivial.

Theorem 3

For each set A of subsets of an acpo

fl (;A) = fl lalA l,4eAi

b

x..
s:
F

l:]

Proof
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Let A be a set of subsets of an acpo, and let

z be in that acpo, Then,

zf -l(UA) <==> vyeUA,xEU

<==> vA.L Vye A xEA

<==> VA€L rCTlA

<==> z E -l I ;lA I ,4 e A J

Lhus, fl (9A) = nl-lA l/eAi

Theorem 4

Super absolute functions are closed under function composition.

Proof:

k"

LeLA,B,e.Cbeacpos.

Suppose that t:A-B and g:B-+C are super absolute.

Now, f or each s in ,4 ,

g (f (z))

= l-l I g (r.r,) I m is maximal, and f (")Ent I

( u. g is absolute )

= n { g (*) | m i.s rnaximal, and there exists rn' such that

z Ern' e f (rn')E* I

(as / is super absoiute)

= n [ [l I g(nt) | m is maximal and f (rn')En, I

ii
Pi

llila--.

I m' is maximal and z f rz' I
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(by Theorem 3)

= I-l I g(f (n')) | *'ismaximal,and zEm' ]

(as g is absolute)

Thus f or each r in A ,

g(f (")) = l lgU@' )) l-'ismaximal,and rEnr; J (.)

Let:r beinl, andsuppose rne C issuchthat 9(/("))Ern.

Suppose rn' is maxirnal in B , and is such that

f (z)tr_rn' and g (n')Ern

(rn' exists as g is super absolrrte)

Suppose rn" is maximal in,,4 , and is such that

E Err-" and f (rn")Em'

(rn" exists as / is super absolute, and as f (r)Ern,)

thus S$$n")) E g0r'')

(g is monotonic by Theorem Z)

thus s (I ?rL")) E rn

thus z ErrL" and g (f (rn")) E n (as g (/ (" )) E*)

thus by (t) S o I is absolute.

Using Theorem 4 a category of absoluLe functions can now be built. The objects

of the category are precisely the acpos, while the arrows are precisely the super

rf

bri

r-
i-.

F
t

E

I

i
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absolute funclions (Theorem 5 proves that the identity morphisms exist in the

category).

t theorem 5

h The identity function on each acpo ts super absoluLe
H:i

Proof:

trivial

lf this category is to be usef ul for solving dornain equations then it must have,

arnong other things, products. The following definition defines the notion of a

categorical product.

Definition

Aproductof objects,4 & B inacategoryisatriple <c,po,pr) where C is

an object, and p s:C -A k p lC -B are morphisms such that f or any morphisms

f :X-A & g:X-B for some object X there exisLs a unique morphism h:X-C

f or which the f ollowing diagrarn commutes

I

,e
:

:*

l.

lr-

iltu

X
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Notation

For all posets .4 e. B ,'AxB' denotes the poset with universe

[ <o,b> | o €,4 and b eB I

under the pointrvise ordering.

Definition

The carLesianproducL of posets A &. B is the triple <AxB,Po,pt) where

Po.AxB-+A and p ;AxB-B are the obvious projeclion functions.

The follo'ning theorern suggests that carLesian products are categorical pro-

ducts.

Theorem 6

For any acpos .4 & B , AxB is an acpo. Also the projection funcLions

ps'.AxB-A andp;AxB-B are super absolute.

Proof:

trivial

Unfortunately the folloving theorem rules out the carLesian product as a

categorical product,

Theorem 7

There exist two acpos whose carLesran product is not a categorical product in

the category of all acpos and super absolute f unctions.

I:I

t

I
I

r-
F.

L

I
1



Proof:

Let X, A,k

be'the super

diaorarns

7'rL rrl'

\/
\/
\/
J

ffiO TIL

\/
f(n)

T

r,L') g (nL) tul |TL 
1

/
rn')

a\
e (r)

\
n(lt\

1"fl
I

(AxB,p o,P r) of ,4 & B is a

& super absolute functions,

:

I

I
l.rt

rl
f''
I*

I

I

Then there exists

such that p ooh =

Horvever, this is a

l, (rrr) * 1rno,n

a unique super absolute f unction h:X-+AxB

f and p1efu = g and

€X h(z)=<.f ("),g(")>

contradiction as both

1> and l, (*') 4 lrnoln r)

Hence ,AxB,p o,p r) is not a categorical product,

Theorem 7 does not deny the exislence of categorical products in the categorv

of acpos & super absolule functions. However, it does confirm that if they do

- 108

B be the acpos, and let f :X-A k g:X-B

absolule f unctions given by the f ollowing

o f(

/
/

/
(r)

Suppose that the cartesian product

producl in the category of all acpos

Thus f rom the definition of super absolute function,

as (rne,rrrr) is maximal in AxB, and as

h ( -L )E <rto,rt,) we have that either,

l,(rn)t- 1.nts,rrlr) or h(rn')C lmts,n:cr)
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exist then they are not what they are expected to be.

bined with the fact that there are inleresting non

such as check : (KaxKa)-Ka

This fact should be com-

super absolute functions

<1>

is maximal, and

acpos & absolute meet preservrng

should have at ieast products in

check(<>) =

v non empty e check ( r )t
r
L

r
tr
t_
r-..1

F
F

This function output.s precisely one daton as soon as an input daton has

arrived. Analysis of the proof of Theorem 4 reveals that the tightening up of

absolute functions to super absolute functions is unnecessarily tight The

tightening is to ensure the f ollowing in that proof .

lm lmismaximal,and I@) l= r'.rL I

I m I rn is maximal, and -lrn'

zErrL e f ?n')Ern

1TL

I

t
F
F
t..

Y-

i,

E'e.
H
&

I
I

Now rve try loosening the tightening to just ensuring that the meets of these

sets are equal.

Definition

A function f :A-B over acpos .4 & -B is meetpreserving if for each pair .4' &

A" of sets of points in .4

A' c A" and f-t t't - f-t t,ttH-ttA

n[/("") la"€A"]= l-l [ /(o') | a'€A' I

The aim is now Lo see I'hether a category of

functions can be defined. Such a category

order to improve on super absolute functions

€.. 1
:!.-

E
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Meet Preserving Functions

This seetion shows that the category of all meet preserleng functions over

acpos has finite products. However, it is also shown that none of the popular

"disjoint", "coalesced", or "separated" sums IS177] are categorical.

Theorem 1

Each meet preserving function is monotonic

Proof:

LeL A and B be aepos.

Suppose that /'.A-B is meet preserving,

Suppose that a, o' € A aresueh that a Ea'

Then, f-l[o j= t-1[a,o'J

thus as / is meetpreserving, t-ll/(") I = l[/(a), /("') J

thus f (") E r @')

Theorem 2

Each meet preserving function is absolute

Proof:

Let,,4 and .B be acpos.

Suppose that /:A-B is meet preserving.

Let a e ,4.

E
I

I

tl

I

Ilr-

F'
!.1
ii'
i,li

I
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Now, l-l I nz I rn. is maximal, and o E rn ]

= l--l [ [ rn I rn is maximal, and o f rn I U I " i i

(as a. is Lhe meet of the maximal objecls above it)

Thus as / is meet preser\'lng,

L fl t / (*) | rn is maximal, and d ErrL t
E

= n t lf fur) lrn ismaximal,and aE^ J U I/(")l l

Thus, fl tt(rn)lrnismaximal,andaErr. lE /(")
r"
ti"

But as / is monotonic by Theorem 1, the reverse irnplication holds.

FI tn,tt /(") = f-l I t(-) | rn ismaximal, and c-Ern 
J

Thus / is absolute.

Theorem 3

The class of meet preserving f unctions is closed under f unclion composition.

Proof:

LeL A, B. e. C be acpos.

Suppose l:A'+B and g:B-C are meet preserving.

Suppose that .4' &,4" are subsets of .4 such lhat,

A' cA" and al A' = fl A"

Then as / is meet preservlng,

n t/(o") | a"e A" J = fl lt(o') | a'€A' l

thus as g is meet preserung,

lf

t"
i:.

;

t'
i
i*

Fr

E

I

I
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n Ig(/("")) | a"aA" J = t*l lg(/("')) | a'€A' 
J

hence g oJ ismeetpreserving.

Noting that each identity function and constant function is meet preserving,

Theorem 3 shows that a category of rneet preserving functions can be built.

Now to the quesLion of whether this category has products.

Theorern 4

For all acpos A k B, and f or each C/ff 6 C AxB,

al C = < TlI aeA l3a eB. <o,b >e C J

flI b €A | 3oe,4. <a,b >€C I >

Proof:

triviaL

Theorem 5

For all acpos .4 & B with cartesian produet <AxB,Po,Pr), ps &p1are

both meet presernng.

Proof:

trivial (using Theorem 4)

F.*

1,,:

r

rf
l
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Theorern 6

In the category of meet preserving functions the cartesian product of eaeh pair

of acpos is a product.

Proof:

Let ,4 , B, k C be acpos.

Let < AxB ,po,p, ) be the cartesian producLof A &. B.

Then by Theorem 6 of Section 5,2), & Theorem I 0, ,4 xB is

an acpo, also po & p r are absolute & meet preserving.

LeL X be an acpo.

Suppose f :X-+A & g:X-B aremeetpreserving.

Let h :X-AxB be the unique function such that

pooh - f and proh = g (ii)

Then, vzeX h(z) = <f(r),g(t)>

Now to show that h is rneet preserving.

Suppose that X' c X" c X are such that 7l X" = al X

then, fl I h(r") I r" eX" I

= l-l I </ @"),g ("")> | z" ex" I

h

:

r
t

L,

x}

I

f ("")lr"EX" I , nlg@")lz"eX"J >

f (r') lz'eX J , t-l[s(z')l:r'eX j >

(as / & g are meet preserving)

= t-l [ <,f ("'),g('')> | r'€X i
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(by Theorem 9)

= fl I h("') | r'eX i

thus h is meet preserrrng.

Thus by (i) & (ii), < AxB ,po,p, ) is aproduct

in the category of all acpos and meet preservlng functions.

To surnmarise the results so far in this chapter. We now have a category of all

acpos with a subclass of absolute functions that has at least finite products.

The only absolute f unctions aliowed are those which are meet presernng. The

next interesting question f or this category is whether or not it has sums (co-

products). There are three potential sums, disjoint, coalesced, and separated.

The disoint sum of two acpos is not an acpo as it does not have a least member.

Coalesced sums involve "joining" the two least members, something which

would have worked if all functions in the category had the same value on the

least mernber -|- The remainder of this section shows that separated sums

will not work either.

Definition

Asumof objecLs.4 & B inacategoryisatriple (C,io,it) whereCisan

object, and ris:,4-'C and i.;.8-C are morphisms satisfying the following condi-

tion. For any object X and morphism f '.A-+X & g:B-X there exisLs a unique

morphism h:C -X f or which the Iollowing diagram commutes,

tl

g
I

i

I
f.r

S'

ut-

I
I
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AB

k"/ |/\ f I

\t/
X

C is denotedby A+B , while h is denotedby f +g .

Definition

The separateds'rn of acpos ,4 & B is the triple <AxB ,'Lo,it > where ,,{tB

denotes .4+B with a new least rnember, and where is:A'+AtB &.it:B-AtB are

the usual injections.

Theorern 7

The injection functions of each separated sum are absolute and meet preserv-

rng'

Proof:

trivial

Unf ortunately separated sums are not going to be categoical.

Theorem B

There exist acpos whose separated sum in the category of all acpos & absolute

meet preservrng f unctions is not categorical.
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Let .4 be the acpo

Then AtA =

o

LeLid.:A-rzl be the identity f unction on,4

h:(AxA)-.A be the unique absolute f unction such that

f ollowing diagram commutes.

Then it can be verif ied that h is not meet preserving.

I

j

oo
\/
\/

o

/
/

o

/

o

/

\

o
\

\
o

o
\

\
o,fl

i

LeL

the

n

,'//

l^l
at

tY t
li Y/
I

,t).

in

Hence < A+A,io,ir ) isnotasum
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in the category of all acpos & meet preserving f unctions,

The overall conclusion from this chapter is that categories of meet preserung

f unctions are worth considering because products do exist. However the lack of

a suitable surn is a source of major concern. A category of strict meet preserv-

ing functions would make the coalesced sum categorical, This would rule out

many necessary functions though, such as the constant valued f unctions, For

this reason we are reluctant to consider meet preserving functions until other

avenues such as that in Section 5.4) have been investigated,
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Mategories

The previous two sections have throughly examined the

possibiliLy of constructing categories of absolute functions over acpos. The

conclusion from those resulls is that absolute functions and category theorl'

will not provide a general theory of domains which use the notion of complete-

ness. However, the efforts of Chapter 4 Lo define the notion of a "complele

funcUon" forced our researches to consider absolute functions. The only

parameter left open to us f or reconsideration in thal work is a change in the

morphism composition operator. lnstead of using o , we now suggest the abso-

lule composiLion operator | , where f or absoiute f unctions / and I ,

vz (g l/)(') l-ll g (/ (rn)) : z E m , and rn is rnaximal i

The trouble with o is that it is not cornplete, this is because the following is not

in general an equality.

sof E slf

We choose absolute composition because it is cornplete, that is, it is the besl

operator consistent with the value of o on complete objects. This secticn con-

siders category theory using | , and shows that if it is to be successf ul ttren the

notion of completeness must be incorporaled in the very definition of a

"category". PresenLed in this section is a category-like slructure caIIed a

rnategory which the author has def ined, and is currently working on and which

incorporates completeness. Hopefully mategories rvill in the future help gen-

eralise compieteness.

The firsL problem wilh absolute composition is that it is

non-associative, and thus cannot be used for categorical composition. To see

this consider the f ollowing example Let ,4 , B , and C be the following acpos

l:;l
I

I

I

I
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lrLz tTL 4 |rL?

h:B -+ C be the absolute functions such that

tuS rTL6

t/t/t/
c

\
-L

tTLS

-L

and

H

L

6t
F
I

f (zrr) = I f (nrr) = -L

g (rno) = Tn2 g !rrt) =

h (rn) = 'zLs h (n'") =

Then I is non-associative as,

Tng

rrLB I" (rr) = rn7

(tL I

((h

-L,(g lf ))(-o)

lg)lf)("'o)

,t=
lL

i'

l.
1'
t

FEE
l;.F

I
I

However, I is partial associative, that is,

i. | (g l/ ) E (n lg)l/

l?hile the lack of associativity is fatal frorn the point of view of constructing

categories with I it is not totally unexpected. For exarnpie, it was seen in Sec-

tion 4.3) that o is not complete, the source of the problems in constructing

categories of absolute functions. Due to historical reasons categories were not

intended to take account of a distinction between partiai and complete objects

[Ma71]. I can however be regarded as a form of "partia] composition". Thi.s is

in contrast to category theory where Lhe only composition is (what may be

termed) "compieLe". Our structures called mategories are still under investiga-

*
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tion. The complete objects and concepts are taken straight from calegory

theory. However, extending notions such as "rnorphism" is more difficult. This

problem cannot be separated from the redefinition of "product", "sum", and

"exponentiation". Such definitions in category theory are used to define con-

cepls up to isomorphism. But what is "partial isomorphisrn" in mategory

theory. When such problems have been worked out we can begin to think about

using mategories of absoluLe f unctions to construct higher theories of domains

which have a built-in notion of completeness.
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Chapter 6

Conclusi ons and F urther 'tTork

Section 6.1) : Conclusions

There are a number of conclusions from this work. The

first is that the notion of completeness can be used to reason about some "obvi-

ously correct" programs. This is justilied by the work in Chapter 2 on the Cycle

Product Theorem. The second conclusion is that a theory of Domains which use

completeness is eompatible with traditional least f ixed point semantics. This is

justif ied by lhe ref ormulation of Kahn's Sernantics in Section 3.2) where unique

and least fixed fixed poinls are compared. Also frorn this example, our third

conclusion is that domains of complete objects are worth considering whenever

devices such as the hiaton can be used to turn partial objects into complele

ones. The fourth conclusion is that the compleLe objects in a domain should

f orm an ultrametric space. This is because in such domains the completeness

of objects can be proved, as the degree of completeness of an object is defin-

able.

Our main conclusion f rom this work concerns the problerns

of exlending compieleness from simple domains such as Kahn's to more

tnteresting sLrucLured dornains. Our experience is that compieteness is a

natural (but uncomputable) concept, and that a general semantrcs cannot be

eonstructed until all the semantic tools such as category theory include com-
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pleteness in their definitions. In other words, completeness cannol be another

theory building on top of someone else's theory, but has to be thoueht oul f rom

the very bottom,

The final conclusion is that this study has tried to go too

far too quickly. The natural way in which completeness can be f ormalised in

the Kahn and Lucid Domains has eneouraged the author to leap forward into

category theory. Thus our last conclusion is that completeness has first to be

formalised in other simpie domains before the above mentioned rethink of

semanlic tools can take olace.

h

L
hi



.-**lT

tt

;

tl
iiL

F
I

I

d!----

Section 6.2):

- 123-

Further Work

There are several directions in which the work starLed in

this dissertation can be continued. The first direction is to consider lazy

languages such as Lucid whose complete objects f orm an agreement space. As

mentioned in the text, these languages provide the best hope for realising Com-

pleteness Rules in programming languages. This direcLion probably has the

most potential of all possible directions. The second direction is to consider

other interpretations of agreement spaces in existing languages. One such

example is the consideration of sequences of state transitions. In this interpre-

tation an intentionally non-terminating program such as an operating system

is complete if it does not "crash", It is felt by the author that pursuit in this

direction would shed a lot of badly needed computational light upon the notion

of completeness.

Other directions f or f urlher work are more abstract,

Mategories are a good example. ln such work we believe that "static"

mathematical notions such as category theory have to be extended to meet the

challenge of partial objects, This is precisely what we did in replacing metric

spaces by metric domains in Chapter 2,
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