THE UNIVERSITY OF

WARWICK

Original citation:

Gibbons, A. M. and Rytter, W. (1986) Fast parallel algorithms for vertex and edge
colouring of Halin graphs. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-083

Permanent WRAP url:
http://wrap.warwick.ac.uk/60780

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/



http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60780
mailto:publications@warwick.ac.uk

Research report 83

FAST PARALLEL ALGORITHMS FOR
OPTIMALLY EDGE AND VERTEX
COLOURING HALIN GRAPHS

. Alan Gibbons & Wojciech Rytter*

(RR83)

Abstract
We show that every Halin graph can be optimally edge-coloured or optimally
vertex-coloured in polylog time using a polynomial number of processors on a parallel
random access machine without write conflicts (P-RAM). Our algorithm is designed
using the tree-structure of Halin graphs which allows an application of the Divide and

Conquer technique in a parallel setting.

Department of Computer Science
University of Warwick
Coventry CV4 7AL, England

*

and Institute of Informatics, Warsaw University, Poland Oct 1986



FAST PARALLEL ALGORITHMS FOR OPTIMALLY EDGE
AND VERTEX COLOURING HALIN GRAPHS

Alan Gibbons
Department of Computer Science, University of Warwick
Coventry CV4 7AL, England.
and
Wojciech Rytter
Department of Computer Science, University of Warwick
and Institute of Informatics, Warsaw University, Poland

Abstract

We show that every Halin graph can be optimally edge-coloured or optimally vertex-coloured in
polylog time using a polynomial number of processors on a parallel random access machine
without write conflicts (P-RAM). Our algorithm is designed using the tree-structure of Halin
graphs which allows an application of the Divide and Conquer technique in a parallel setting.

Key Words: Halin graphs, Edge-colouring, Vertex-colouring, Parallel Algorithm.

1. Introduction.

A general approach to designing fast parallel algorithms for problems dealing with well structured
objects is to reflect their structure in the divide and conquer technique. The resulting algorithms are
recursive. The first step is a decomposion of the input object into similarly structured objects
whose sizes decrease by a constant proportion p less than one. ( In this paper p = 1/2 ). The
second step is a recursive and parallel application of the same algorithm to each of the objects
independently. This independence may result in some inconsistencies between individual objects

( in our case different colours for the same edge) which have to be resolved. The third step of the
algorithm removes these inconsistencies for each object making suitable adjustments ( in our case
recolouring). This approach was also used for fast parallel edge-colouring [6] and vertex- colouring
[1] of outerplanar graphs.

In graph algorithms the above approach is best suited to trees. Halin graphs and outerplanar graphs
fall between trees and more general graphs in that trees are reflected in their structure. A Halin
graph is planar and consists of a tree T with no vertices of degree two and a circuit C (called the
skirt ) which consists precisely of a sequence of all the leaf vertices of T. A graph is outerplanar if
it is planar and every vertex lies on the same (which we can take to be the external ) face. We can
construct a graph in which each vertex corresponds to an internal face of a particular oterplanar
graph and which has an edge between such face vertices iff the corresponding faces are adjacent.
The graph so constructed is a tree and is a partial dual of the outerplanar graph. (In fact it is the
graph obtained from the dual by deleting the vertex (w, say) corresponding to the external face of
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the outerplanar graph. If we add to this tree a circuit of length degree(w), bounding the tree in the
plane, and if we add, in planar fashion, an edge from each circuit vertex to a corresponding leaf of
the tree then we obtain a Halin graph.) It is this tree of faces which is algorithmically taken
advantage of in [6].
It is well known that the minimum number of colours with which it is possible to edge-colour a
graph so that no two adjacent edges are similarly coloured is either A or (A+1), depending upon the
graph. Here and throughout the paper A is the maximum vertex degree of the graph. The problem
of determining whether or not a graph is A-colourable is NP-hard [7]. However it is known, for
example, that bipartite, outerplanar and Halin graphs (except for odd cycles) are A-colourable,
moreover there are polynomial-time sequential algorithms to obtain optimal (that is, using a
minimum number of colours) colourings [2,3,5,10,12]. NC is the class of problems solvable in
polylog (i.e. O(logkn), for some k) parallel time with a polynomial number of processors. It is
known that the problems of optimal edge-colouring of bipartite graphs and of outerplanar graphs
are in NC [6,9]. We show that optimal edge-colouring of Halin graphs is also in NC.

The problem of vertex-colouring an arbitrary graph using the minimum number of colours so that
no two adjacent vertices are similarly coloured is well known to be NP-hard. However,
polynomial-time sequential algorithms are known for the classes of graph mentioned earlier [12]. It
was shown in [1] that the problem of optimal vertex-colouring of outerplanar graphs is in NC. We
observe (in Remark 2) that the problem of optimally vertex-colouring Halin graphs is also in NC.

We take the definition of a Halin graph (sometimes called a skirted tree) from [12]. In any planar
embedding of the Halin graph, C forms the boundary of some face. Without loss of generality, we
can always take this to be the external face. In this paper we presume a natural representation for
Halin graphs as follows. For each vertex v we have an ajacency list in which the neighbours of v
are ordered in their (say, clockwise) rotational occurence about v in the planar embedding of the
graph. Moreover we also have an explicit representation of the skirt C (thus T is also available in a
single parallel step by removing skirt edges from the Halin graph).

Remark 1.

Given a more commonly used representation we can obtain a planar embedding, as represented by
the set of faces, in polylog time with a polynomial number of processors [8]. The problem of then
proceeding to our representation is in NC. We omit the details but observe that C will be a face
which has exactly one edge in common with every other face and that if (u,v), (v,w) are
consecutive edges of some face (in anticlockwise order) then u and w will consecutive vertices in
our adjacency list representation for v.

2. Edge Colouring.

Before describing our edge colouring algorithm we record the following fact . Here and throughout
the paper ND(v) is the number of descendants of v (including v) in a rooted version tree.



Fact 1.

For every tree T with n vertices there exists at least one vertex x such that for every component K
of (T-x), IKI € n/2.

Proof. Let T be arbitrarily rooted at some vertex u. It is easy to see that at least one vertex x will
exist for which ND(x) > n/2 and for which ND(w) < n/2 for every son w of v. Moreover it is easy
to see that x satisfies the thesis.

Tarjan and Vishkin in [14] have shown how to compute ND(v) in log n parallel time with n
processors (also father(v) which we shall presume to know later). Hence we can find x efficiently
as follows. Given ND(v) for all v, we proceed (in parallel) to compute MND(v), defined to be
max{ ND(w):w is a sen of v}. This can be done in logarithmic time using a standard doubling
argument. If ND(v) > n/2 and if MND(v) < n/2 then v satisfies fact 1. It is possible that v is not
unique in this respect. It is a simple matter to identify a single vertex satisfying fact 1 in logarithmic
time by, for example, choosing the first such vertex in a locally constructed list of vertices ( we
assume they have a suitable alphabetic labelling) using, again, a standard doubling argument. Thus
a vertex satisfying fact 1 can be found in O(log n) time on O(n) processors.

Given x as defined in fact 1, we imagine ( without loss of generality) that T is rooted at x. We shall
require to find, for each son(x), its leftmost descendant leaf L(son(x)) and its rightmost descendant
leaf R(son(x)). Such vertices are indicated in figure 1. In that figure the circuit C of the Halin

graph bounds the exterior face. The degree of x is d and its sons are v{ vj.....v4 . Again, itis a

simple matter to find L(v) and R(v) for all v in log n parallel time using standard doubling
arguments based on leftmost and rightmost sons ( in our representation these are known, being on
either side of father(v) in the adjacency list of v).

L(Vd?‘ .N/HB(VI)

FIGURE 1.

Algorithm 1.



STEP 1 {Decomposition}.

In constant parallel time on O(m)=0(n) processors, we decompose the Halin graph as follows.
Remember that, by definition of a Halin graph, d(v)>2 for all v. It follows that d(x)>2 and that
L(v)#R(v) for all v unless v is a leaf, in which case v=L(v)=R(v). If (u,w) is an edge such that

u=L(v;) and v=R(v;, 1) where we assume modulo d, then (u,w) is deleted. [In fact, such edges
have to be stacked for reconstruction purposes later]. In addition, for each L(v;) and R(v;) we add
edges (x,L(v;)) and (x,R(v;)). This deletion and addition of edges results in a graph in which x is

an articulation point, we complete the decomposition by separating the graph at x, passing a copy
of x to each component. The decomposition for figure 1 is shown schematically in figure 2. Notice

that each component of the gccomposition will be a Halin graph unless v; is a leaf of T. In this case

the component associated with v; will be the multigraph with n=2 and m=3. Notice that, in constant

time,we preserve our form of the representation of Halin graphs during the decomposition.

R(Y,)
FIGURE 2. ]
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STEP 2. {Recursive application of algorithm 1}

for each component created in step 1 do in parallel
if the size of the component > 2 then apply Algorithm 1 to this component

else {n=2} colour the edges of this {multigraph} component with 1, 2 and 3.
STEP 3. {Reconstruction and Colouring}
Given an optimum colouring of each of the components of the decomposition described we can
find an optimum colouring of the reconstructed component as follows. For the ith component of

the decomposition (which contains Vi, the ith son of v), let Cly, C2i and C3; (in clockwise
rotational order about x) be the edge colours present at x. For k = 1,2 ...d we intend that colour Cj.
be assigned to ej.=(x,vy) in H. In order to achieve this we permutate the colours in the ith

component according to any permutation in which C1; becomes C;_5, C2; becomes C; and C3;
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becomes C;_;. Such a permutation can be found within our time constraints with little difficuity.
These permutations additionally ensure that when H is reconstructed there are no colour clashes on
replaced edges because C3; and Cl;, jare replaced by the same colour which is assigned to the skirt
edge (L(vy), R(vi41)) which is replaced after the edges (x,L(v;)) and (x,R(v; 1)) have been

removed. Such a colouring scheme is shown schematically in figure 3.
End of Algorithm 1

The ith coloured C4-2
component
X
c3, C1; €3,/ Ciy
|Colour1’n§ H >\
R(Vi)
FIGURE 3.
Theorem

Any Halin graph can be optimally edge coloured in O(logzn) time with O(n) processors.

Proof.

Our algorithm is simply the recursive application of the decomposition and reconstruction process
described. At the lowest level of recursion we colour a multigraph with n=2 and m=3, the three

edges being assigned colours Cq, Cy and C3 in constant time. The cost of a single decomposition

and reconstruction phase is O(log n). Because of fact 1, the depth of the recursion does not exceed

log n and so, overall, we have an O(logzn) algorithm running on O(n) processors.

We need to show that the algorithm uses A colours. At the lowest level of recursion each
multigraph uses 3 (=A) colours, which are labelled from 1 to A. We therefore have a basis for an
inductive proof of this statement for all n. Consider the merging of several components into a larger
component. By the induction hypothesis each of the several components uses its respective value of
A colours and these are labelled from 1 to A. In forming the larger component the edges adjacent to
the vertex x, which is common to the several components, are coloured from 1 to d(x). New
colours are introduced only if d(x) is greater than all of the As of the several components. In this
case the larger component has A=d(x) and again precisely A colours are used and they are labelled
from 1 to d(x).

This completes the proof.
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Figure 4 illustrates an application of the algorithm to tl\le specific Halin graph shown in (a). From
(a) through to (d) we illustrate the decomposition of the graph for successively deeper levels of the
recursion. For reasons of clarity we do not separate the graph at the articulation points; at
successive levels of the recursion these are (3), (1,5) and (2,4). Also for clarity reasons we
represent the multigraph with n=2 and m=3, which appears at the lowest level of recursion, as

follows:

e —

&)= 2 — s represented by @——= 0
- S—

Here x is the articulation vertex which caused the creation of this multigraph. In figure 4 we
understand that the edges of each such multigraph are coloured 1, 2 and 3 in a clockwise fashion
about x as shown here. From (d) back to (a) figure 4 illustrates the reconstruction of the Halin
graph and, at each level of recursion, the colours that are assigned to the edges. In the figure each
component created in the the decomposition has an identifying letter, this is used in the following
statement of the colour permutations used within the components as they are merged to form larger
components. The notation is as follows, X->Y: 'permutation’ means that we apply the permutation
to the colours of component X in the reconstruction of component Y.

from (d) to (¢)
E->J: 1->2, 2->4, 3->3 A->D: 1->1,2->3, 3->2
F->J: 1->3, 2->1, 3->4 B->D: 1->2, 2->1, 3->3
G->J: 1->4, 2->2, 3->1 C->D: 1->3, 2->2, 3->1
H->J: 1->1, 2->3, 3->2
from (c) to (b)
D->8:1->4, 2->3, 3->2. J->T:1->3, 2->1, 3->4,4-52. V->Y:1->2,2->1, 3->3
K->8:1->3, 2->1, 3->4. P->T:1->1, 2->3, 3->2. W->Y: 1->3, 2->2, 3->1
L->S8:1->4, 2->2, 3->1. Q->T:1->2, 2->4, 3->3, X->Y: 1->1, 2->3, 3->2

M->S:1->1, 2->3, 3->2. R->T:1->3, 2->1, 3->4

from (b) to (a)
S->7: 1->1, 2->2, 3->4, 4->3. U->Z: 1->3, 2->1, 3->4
T->Z: 1->4, 2->3, 3->2, 4->1. Y->Z: 1->3,2->2, 3->1

Remark 2.

A similar theorem holds for vertex colouring. In this case the known sequential algorithms [12] are
very easily parallelisable. If all but one of the vertices are skirt vertices then the colouring is quite
easy. We therefore assume that this is not the case it what follows. It is easy to colour T with two
colours 1 and 2 depending on the parity of their distances from the root. Then colour clashes on
the skirt C may occur. These are resolved as follows. If C has even length then we colour each
second vertex on C in a single parallel step with the colour 3. Otherwise we find a vertex v all of
whose sons are skirt vertices. Such a vertex is called a fan in [12]. If C is odd then there is always



(d)

FIGURE 4.

An Application of the Edge Colouring Algorithm.
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a fan v with an odd number of sons. For convenience, we imagine that the skirt vertices have been
consecutively numbered so that the sons of v are the vertices 1,2....(d(v)-1), where d(v) is the
degree of v. In a single parallel step, we colour v with 3, even sons of v with the colour of skirt
vertex L, odd sons of v with 1 or 2 (whichever is not the colour of skirt vertex L) and even
non-son-of-v skirt vertices with 3. All steps are easily achieved in log n time with O(n) processors.
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