
http://wrap.warwick.ac.uk/

Original citation:
Beynon, Meurig (1986) The LSD notation for communicating systems. University of
Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-087

Permanent WRAP url:
http://wrap.warwick.ac.uk/60783

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60783
mailto:publications@warwick.ac.uk

Research report 87

THE LSD NOTATION FOR

COMMUNICATING SYSTEMS

Meurig Beynon*

(RR87)

Abstract

The LSD notation is intended for the specification and description of communicating
systems of sequential processes. It was originally developed with a semantic model
for the CCITT standard language SDL in mind (2]. Like SDL, LSD is primarily
conceived as a medium for describing systems at the higher levels of abstraction. A
central idea of LSD is the integration of functional and procedural models for
synchronisation mechanisms at different levels of abstraction. This integration is
based upon the "generalised spreadsheet" or definitive notation paradigm for
programming ([3],[4]), and the operational semantics of LSD is defined in terms of
dialogue states over such a notation. The paper includes an informal introduction to
the notation, together with several illustrative examples. A methodology for the
top-down development of LSD specifications for communicating systems is proposed.

* Department of Computer Science
University of Warwick
Coventry CV4 7AL, England

also:
Short Term Visiting Research Fellow
British Telecom Research Laboratories

Nov 1986

ABSTRACT

The LSD notation is intended for the specification and description of communicating
systems of sequential processes. It was originally developed with a semantic model
for the CCITT standard language SDL in mind [2]. Like SDL, LSD is primarily
conceived as a medium for describing systems at the higher levels of abstraction. A
central idea of LSD is the integration of functional and procedural models for
synchronisation mechanisms at different levels of abstraction. This integration is
based upon the "generalised spreadsheet" or definitive notation paradigm for
programming ([3],[4]), and the operational semantics of LSD is defined in terms of
dialogue states over such a notation. The paper includes an informal introduction to
the notation, together with several illustrative examples. A methodology for the
top-down development of LSD specifications for communicating systems is
proposed.

J

J

CONTENTS

Introduction
§1. Background
§2. The programming notation LSD
§3. An operational model for behaviour
§4. Some simple illustrative examples
Future directions
Acknowledgements
References

Introduction

The LSD notation is intended for the specification and description of communicating systems
of processes acting concurrently. It was originally developed with a semantic model for the CCITT
standard language SDL in mind [2]. Like SDL, LSD'is primarily conceived as a medium for
describing systems at the higher levels of abstraction. A central idea of LSD is the integration of
functional and procedural models for synchronisation mechanisms at different levels of abstraction.
This integration is based upon the "generalised spreadsheet" or definitive notation paradigm for
programming ([3],[4]), and the operational semantics of LSD is defined in terms of dialogue states
over such a notation. This paper includes an informal introduction to the notation, together with
several illustrative examples. A methodology for the top-down development of LSD specifications
for communicating systems is proposed.

LSD is a procedure-oriented notation, in the sense of [1]. There are three primary
characteristics of a notation for concurrent programming to be considered [1]: how concurrent
execution is expressed, how processes communicate, and how processes synchronise.

In LSD, each process instance is associated with a process definition, and process instances
can be dynamically created and terminated. The set of concurrently executing processes is then
determined by which processes are active at any stage. The actions taken by a process may include
invocations of other processes, to be executed concurrently.

Communication between processes is by means of shared variables. Typically the value of a
variable is under the control of a single active process instance, and can be inspected by another. A
variable known to a process is classified according to its role by its kind - oracle, state or derivate.
In brief: an oracle for a process P is a variable which has an explicit value subject to change entirely
beyond the control of P, a state for P is a variable which has an explicit value conditionally under
the control of P, and a derivate for P is a variable whose value is specified by a functional definition
in terms of the states and oracles of P. This classification of variables is significant in the semantics
of LSD.

Synchronisation of processes is described either explicitly by means of suitable procedural
protocols constraining the behaviours of communicating processes, or implicitly (in an idealised
fashion) by specifying appropriate functional relationships between variables.

The paper is in four sections. In section 1, the background to the LSD design is described,
and the motivation for the process model is introduced. In particular, the three primitive kinds of
variable (oracle, state and derivate) are described with reference to the intended semantic model. In
section 2, the formal notation is outlined, and used to describe a rudimentary telephone system.
Section 3 deals with the operational semantics of LSD, and examines system behaviour in more
detail. Section 4 comprises three simple examples to illustrate the main themes of the paper, and the
final section discusses directions for further research.

3

§1. Background

Spreadsheets have proved to be a very effective basis for human-computer interaction. The
interactive use of programming notations which are essentially generalised spreadsheets ("definitive
notations") has been advocated by the author [3]. In interaction using a definitive notation, the state
of the dialogue is represented by a combination of variables with explicit values and variables
which are implicitly defined by formulae. In effect, a dialogue state is represented partly by
procedural abstractions - variables whose values can be updated, and record "transient values" -
and partly by functional abstractions - variables whose values are functionally specified, and record
"persistent relationships". This offers a semantic basis for communication richer than that supplied
by many other programming paradigms. In view of this, it is very natural to seek a medium for
describing communicating processes founded upon a similar semantic model.

Accordingly, consider a communicating system of sequential processes, and suppose that the
model of the system state as viewed by one of the participating processes takes the form of a
dialogue state, as represented via a definitive notation. It will be assumed that processes within the
system are in general created, live for some period of time, and terminate, and that there are
variables associated with each active process. Pre-existent and immortal processes are also
possible, and in particular, there may be a global environment process pre-existent and immortal, to
which global variables are bound.

Within the view of one of these processes P, there will then be a set of known variables (not
necessarily bound to P), some with explicit values, and some having known definitions in terms of
other variables and constants. The values represented by these variables may be of several different
sorts (eg boolean, integer or process identifier), but it will be convenient to suppose that the level of
abstraction of the dialogue is such that a change in the value of a variable is an atomic action.

• A variable whose value is implicitly defined by a formula will represent a functional
abstraction known to P. Such a variable will be called a derivate of P. A derivate is not significant
in determining the state of P, since its value is functionally determined by the values of explicitly
defined variables. Amongst the variables with explicit values known to P, three different kinds can
be distinguished. There are those variables whose values are perceived by P as fixed; they can
neither be changed by P, nor are they subject to change beyond the control of P. These are the
constants of P, and form a subclass of the derivates. There are also variables which have explicit
values subject to change entirely beyond the control of P: the oracles of P. Finally, there are
variables which have explicit values under the control of P (perhaps subject to some preconditions
being met): these are the state variables for P. At this stage, the possibility that a variable behaves
both as a state variable and as an oracle for P (is a state-and-oracle variable for P) can be admitted,
though such features within a system can make formal analysis of behaviour difficult, or even lead
to paradoxical behaviour. It should also be noted that the same variable will in general be
categorised in different ways by different processes, and it would be more precise to speak of the
perceived derivates, constants, oracles and states of P.

This classification of variables will be formally clarified by appropriate examples in due
course, but it will be helpful at this stage to give some informal illustrations drawn from common
practical experience, which will help to motivate the definitions. These are based upon an
anthropomorphic view of processes which is a very fruitful source of illustrations. Indeed, for the
purpose of describing a particular interaction of a person and a system, it is often convenient to
model a person's role by a 'process.

The archetypal oracle is "absolute time", which (in an appropriate system model) might be
known by all persons, but subject to the control of none. Such a concept can be represented by a
variable time which is bound to the environment process. Other oracles may be bound to short lived
processes, or relevant only to a specific role. The state of the traffic lights, the speed of the taxi, the
length of a queue, the people present at a meeting are of this kind.

4

The simplest examples of state variables are attributes which are conditionally under a
person's control. The conditional nature of this control is illustrated by the different ways in which
"being silent", "being drunk", "being rich", "being alive" can be seen as subject to a person's
control. These examples indicate how state variables can be used to model states of the process in a
traditional sense, but the concept of state variable is broader, and encompasses attributes of other
processes over which control can be exercised. For instance, in a doctor's waiting room, whether
or not a person is to be treated as a VIP may be up to the receptionist. Whether or not a car has its
lights on is under the control of the driver.

Simple derivates of a person are his/her "date of birth", a constant variable bound to the
process, and his/her "age", which is implicitly defined as "time - date_of_birth". In general,
derivates will depend both upon oracle and state variables: so that for instance, "belonging to a
club" may be equivalent to "being over a minimum age" and "having paid the entrance fee".

These simple examples illustrate a number of underlying principles. The convenience of
using a single process definition to describe a generic mode of behaviour, and allowing many
instances of a particular type of process to participate in a system is evident. It is also clear that the
"same" concept can be invoked in different ways, depending upon the context. Over an extended
period of time, as in a school record, age will be seen as a derivate, but not as a constant: at any
particular time, as in registering for a competition, age may be viewed as a constant: in a play, the
age of a character might be seen as a state variable under the control of the actor: to a barman, the
age of a customer is an oracle.

A full discussion of how system behaviour is interpreted within the above model will be
given at a later stage, but an informal outline of the principal features is appropriate.

The primary model for communication in this context is via shared variables. A variable
which is a state or derivate variable for one process and an oracle for another is used for
communicating a value. Bearing in mind that the LSD notation is intended for describing systems at
a high-level of abstraction, it is natural that the interpretation of system behaviour incorporates
some idealisation. The idealised view of the system behaviour will be based on the assumption that
the values of a single variable as perceived by different processes are always consistent, so that, in
effect, communication of the value of a shared variable is instantaneous, and all derivates are
instantaneously updated as appropriate. Of course, these will not in general be realistic
suppositions. In particular, the oracles of a process are not necessarily reliable, and may lead to
behaviour of the system outside the intended scope, in much the same way that the action taken by
a barman in admitting a young person to the bar can be inconsistent with the idealised view of how
the licencing system should operate. In a similar spirit, it may be that the oracle time is better
represented by "time by a personal clock", which may be fast, slow, stopped or erratic. For
purposes of implementation, it will usually be necessary to replace the functional abstractions in the
idealised description by suitable explicit synchronisation and communication protocols at a lower
level of abstraction.

As explained in more detail later, the classification of variables which most naturally suggests
itself in an informal description of a system will not necessarily be suitable for a formal
specification. For instance, though it may be natural to regard an attribute of a shared resource as a
state-and-oracle variable for two or more processes, this may lead to paradoxical situations if both
processes can exercise simultaneous independent control over its value. In some cases, refinement
of the model may offer an alternative to allowing a variable to behave as a state-and-oracle variable.
For instance, the liveness of fa person is to extent under his/her control (suicide), under the control
of other persons (murder), and under environmental control (accident), but "being alive" could be
viewed as a derivate "not having killed oneself and not having been killed and not having died
natural death", in which the state and oracle components are separated.

5

§2. The programming notation LSD

The formal notation to describe processes will reflect the ideas illustrated above. To define a
process type, the states, oracles and derivates are given, together with a protocol which describes
the exact nature of the control exercised over state. The binding of variable names to variables will
be determined from the context when a process instance is created. The skeleton of each process
type definition has the form:

process process_name (pararneter_list) {
oracle 	list of oracle names
date 	list of state names, possibly initialised
derivate 	list of derivate definitions
protocol list of guarded commands of the form: guard -> action

}

A typical guard takes the form of a boolean condition on the state and oracle variables, and a typical
action consists of a sequence comprising assignments to state variables and invocations of process
instances. The semantics of actions is such that at most one assignment to a particular state variable
within each action can be assumed. Termination of a process instance is achieved in two ways. At
any point, setting a private boolean state variable LIVE to false is an action which leads to
termination: alternatively, a process may terminate when a special private boolean derivate LIVE
becomes false. The semantics of termination can be expressed formally by adjoining the clause
"LIVE and ..." to each guard. Informally, the specification of the behaviour of a process instance
has a declarative component associated with the functional definitions of its derivates, and a
procedural component associated with the actions in its protocol.

An extended example of the use of the LSD notation will help to clarify the concepts. This
will be developed in a systematic fashion, to illustrate the principles which may be used to derive an
LSD description.

Consider a simple telephone system, in which the role of a user, and of a telephone is
represented by a process. (For simplicity, the descriptions below have been expressed in terms of
two users user(X) and user(Y) whose telephones are phone(M) and phone(N) respectively.) An
appropriate model of the user's role is a process which does not terminate, together with a protocol
which reflects the many different conditions in which a user may find the telephone. A telephone
process is likewise - for the purpose of this application - non-terminating, and acts in response both
to the user and to signals generated by calling processes.

In developing the LSD description, the first step is to identify the states, derivates and oracles
for the principal processes. For the user, the oracles are the signals which he can receive from the
telephone: in this case, the boolean variable ringing: whether the telephone bell is ringing, and a
variable (say integer-valued) tone: what tone is emitted (as appropriate) in the earpiece. The user's
state variables comprise a boolean onhook: whether the telephone receiver is onhook, and an
integer dialled number to represent the current contents of the dialling register within the telephone.
Note that all these variables are bound to the telephone with which the user is associated - this is
indicated by preceding these variable names by a '#' symbol. (A simplified "instantaneous dialling"
facility is assumed, in so far as assigning a value to dialled_number is interpreted as an atomic
action in the model.) For the telephone process, there are two oracles under the control of the user
whether the phone is onhonk, and the value of the dialled_number, and other oracles to reflect
signals received from the telephone network. The variables ringing and tone must also be defined
within the telephone process, and may most appropriately be conceived as derivates defined in
terms of other processes yet to be specified. The condition of ringing, for example, requires that the
telephone is onhook, and that the telephone number is presently being called. Similarly, the tone
emitted by the telephone will reflect the status of a process invoked when an attempt is made to
make a call, and is functionally determined in this manner.

6

Having decided upon the principal processes and the nature of their associated variables, it is
appropriate to develop protocols for the user and telephone processes. The relevant ideas are very
simple: examine the state variables and consider under what preconditions the state variables can be
changed, and under what preconditions other processes are invoked. For the user, the state
variables are onhook and dialled number. When the phone is offhook, the receiver can be put
down at any stage: this has the effect of re-initialising the telephone by clearing the dialling register.
When the phone is onhook and ringing, it can be picked up and answered: when it is onhook and
not ringing, it can be picked up and a process for setting up a call invoked. (The process initcall()
used at this point might be more appropriately extended to a more detailed dialling process.) For the
telephone process, in the absence of state variables, there is a simple protocol whereby a valid
number N in the dialling register at an appropriate time will invoke a calling process call(M,N)
which attempts to make a connection.

The manner in which the auxiliary processes init call() and call(M,N) are defined resembles
that described above; the details will be left to the reader to infer from the complete description
below. (The notation I ... I indicates evaluation of the enclosed expression.) A significant feature of
the final description is the attempted use of derivates in the exchange() process to resolve the
problems which concurrent access to a single phone can present. The exchange() process is
intended to ensure that at any one time at most one call(*,N) instance can be responsible for phone
N ringing; its limitations are discussed in §4.

process user(X,M) {

oracle (int) toneM, (bool) ringing[M];
state (bool) onhook[M], (int) dialled_numberM;

protocol

not onhook[M] -> onhook[M]=true; dialled_number[M]=@;
not onhook[M] and tone[M] is D -> dialled number[M] = N
not onhook[M] and tone[M] is Q -> <speak>
onhook[M] and not ringing[M] -> onhook[M]=false; init call(M);
onhook[M] and ringing[M] -> onhook[M] = false; <speak>

}

process phone(M) {

oracle (bool) ltonhook[M],
(int) #dialled_numberM,
(bool) #active[M],
(bool) itconnected[M], 	 #engaged[M], #dialling[M],
(boot) isringing[M];

derivate (int) #tone[M] = D if diallindMI:
E if calling[M] and engaged[M]: •
R if calling[M] and not engaged[M]:
Q if connectedM:
@ otherwise,

(bool) ftinging[M] = onhook[M] and isringing[M];

protocol
not active [M] and < dialled number = N is valid > -> call(M,N)

}

7

process initcall(M) {

oracle (int) diallednumber[M], (time) TR-rD, (bool) onhookM;
state 	(time) #tRTD = Itimel;

derivate (bool) diallingM = time - tRID < TRTD,
(bool) #LIVE = dialling[M] and not onhook[MJ

and not dialled number is valid;

}

process call(M,N)

oracle (bool) onhookM, onhook[N], isringing[N], (time) Tcau;

state 	(bool) engaged[M] = I not onhook[N] or isringing[N] I,
(time) keel = 'time',
(bool) connected[M] = false;

derivate
(bool) calling[M] = (time-tcau < Tull) and not connected[M],
(boot) ring[M,N] = calling[M] and not engaged[M],
(bool) #LIVE = not onhook[M] and ((connected[M] and not onhook[N])

or (calling[M] and not connected[M])),
(bool) active[M] = LIVE;

protocol

not engaged[M] and calling[M] and not onhook[N]
-> connected[M] = true; < connect M and N >

}

process exchange() {

oracle 	#ring[*,1, onhook[*];
derivate #isringing[*] = ring [?,*] and onhook[*],

(time) #TRTD = < max dialling delay > ,
(time) rrcail = < max time for calling >;

}

It should be noted that the above example is offered as an informal use of LSD in a
descriptive role, rather than as a rigorous specification. The techniques required for a full formal
analysis of the behaviour of an LSD system have yet to be developed, but the context for studying
the behaviour will be described below. In practice, it is clear that principles for developing
specifications with tractable behaviour must also be devised. In the example above, for instance, no
variable appears as a state or derivate in more than one process, thereby reducing the likelihood of
interference, and the use of the LIVE derivates in the init_call() and call() processes makes it easy
to determine which process instances can operate concurrently.

The above example also illustrates several characteristic features of the LSD notation. The

8

classification of variables provides a useful form of documentation, and describes the interface
between processes in an unconventional but effective manner. The role of functional abstractions
within the description is very significant, and illustrates different ways in which idealisations are
used to simplify the model. For instance, within the model, "lifting of the receiver" and "initiation
of the dialling tone", occur instantaneously. Similarly, no signal delays at the exchange are
assumed. Refinement of the model would entail the replacement of derivates by protocols to define
equivalent behaviour.

§3. An operational model for behaviour

This section informally develops a broad framework within which many aspects of system
behaviour can (in principle) be described and analysed. These include, for instance, deviation from
the idealised behaviour, as in the event of unreliable oracles, and the possibility of singular
behaviour in exceptional circumstances within an imperfectly specified system. A formal treatment
of behaviour is beyond the scope of this paper, and further work is required both on methods of
analysis of specifications, and on the semantic rules which must be observed to avoid singular and
ambiguous behaviour. It must be acknowledged that, if .the form of specifications is unrestricted,
an analysis of behaviour exclusively based on the operational semantics outlined here will generate
the familiar combinatorial explosion of case analyses. On the other hand, there seem to be good
prospects that the judicious use of functional abstractions will allow the top-down development of a
formal system specification in conjunction with an incremental analysis of the behaviour of the
approximating specifications, and that an axiomatic approach [5] focussing on the guarded
commands within protocols can be used to complement reasoning based upon the operational
model.

The guiding principle behind the development of LSD is that the state of a system of
concurrent processes should be representable by the state of a dialogue over a definitive notation. In
some sense, this is an approximation to the truth; provision has only been made for the view of the
system associated with each process to be representable by the state of a dialogue over a definitive
notation. This is perhaps only reasonable; it is arguably the case that "the state of the system" has
no meaning other than "the totality of system views of the participating processes". In general, it is
to be expected that there will be some discrepancies between these views, and a naive attempt to
synthesise the views of all the processes might easily result in inconsistency. For the system
analyst, whose task is to reason about the behaviour of the entire system, the semantic problem is
to reconcile an idealised model of the entire system behaviour with the actual behaviour as
determined by the states of the participating processes.

Within the system model described above, the births and deaths of process instances which
occur in the course of a period of the system history are constrained by some order relations. These
arise from the fact that each process instance in general has an ancestry which must have been born
before it, and may also necessarily be invoked only after other processes have died. Subject to
these constraints, there will be certain families of process instances that can be alive
simultaneously. The (idealised) state of the system at any time will be described in terms of such a
family of process instances which are currently live. As suggested above, the system state will be
synthesised from the views of the participating processes, each of which is a dialogue state within a
definitive notation, and the idealised system state will itself be of this form. That is, each state of
the system will be defined by means of a family of sorted variables, each of which has a current
value which is either undefined, explicitly defined, or defined implicitly via a formula in terms of
other variables. To desci;ibe the idealised state of the system it is necessary to specify the
appropriate set of variables and defining formulae. The set of variables is simply obtained as the
union of all variables bound to a live process instance, each of which will be an oracle, state or
derivate for that process type, as appropriate. The set of explicitly defined and undefined variables
is then specified by the subset comprising oracles and state variables, and the set of implicitly
defined variables by the complementary subset consisting of derivates. The values ascribed to
oracle and state variables within the idealised system state will coincide with their values as
perceived by the process instances to which they are bound, which are interpreted as their authentic

9

values.

The behaviour of the system is defined by the possible transitions to another state of the same
form which can occur through the action of the live process instances. It will be important to
distinguish between the actual behaviour, which is determined by the actual states of the
participating processes, and will depend in general upon the potentially unreliable values ascribed to
oracle and state-and-oracle variables bound to other processes, and the idealised behaviour, which
is the behaviour to be expected on the basis that all processes have reliable knowledge of variables
bound to other processes. The latter is an essential fiction of the system analyst, whose role is that
of an observer who knows the authentic values of all variables, but who has no part in determining
the transitions which occur. This knowledge equips the system analyst to reason about the system
behaviour in terms of idealised states, but not to predict the actual behaviour, since knowledge of
the perceived values of all variables within the participating processes is not assumed.

In any state, the behaviour of the system is determined by the set of possible transitions.
Each transition is defined by selecting a set of processes, and within each process a guarded
command whose guard is perceived to be true by that prdcess. (This guard might indeed be false or
undefined in the idealised model, which accounts for the unpredictability of the behaviour in
general witnessed by the system analyst.) In a single transition, all the selected processes
simultaneously execute the appropriate command atomically. If a system is to have consistent and
non-singular behaviour, some non-interference constraints, to be described below, have to be
satisfied. The effect of a transition (in general) is

- to change the values of state variables
- to create new process instances, thereby introducing new variables and derivate

relationships
- to kill some existing processes, thereby possibly deleting some variables and their

definitions from the idealised state.

There are a variety of respects in which the above description of system behaviour has to be
qualified. The functional relationships defined by the derivates must be consistent at any time: in
particular, they will always be such as to define the values of certain variables implicitly in terms of
others in such a way that there is no recursive reference. It will also be necessary to ensure that
there is no possibility of the same variable being simultaneously assigned different values by two or
more processes in a transition. These conditions will be enough to guarantee that the state reached
through a transition is a dialogue state of the appropriate form. (Even without these restrictions, it
may still be useful to work within the same semantic model, and regard invalid transitions as
singularities.) There is one further possible source of interference between actions in a transition: if
an action includes the assignment of an expression involving an evaluated derivate or oracle, and
the value of this expression can be affected by assignments within another action, then the dialogue
state reached after the transition will depend upon the manner of synchronisation. It is clear that
such interference will in general complicate reasoning about a specification; nevertheless, the
importance of (for example) recording the time of initiation of a process instance, as in the init-call()
and call() processes in the telephone example, indicates that such ambiguity can sometimes be
accommodated.

The idealised system view is that of the system analyst who knows the authentic values of all
explicitly defined variables, and can compute the authentic values of all derivates. The least the
analyst can ask of the system is that behaviour which properly reflects the values of variables
within the idealised model 'should be acceptable, but it may be necessary in practice to consider a
broader notion of good behaviour which reflects the unreliability of oracles. Good behaviour would
have to mean that the integrity of the sytem state is guaranteed, and that actual behaviour would
approximate to idealised behaviour. For example, the idealised behaviour might be stable in the
sense that the system converged to this if states and oracles took time to acquire their authentic
values through signal delays.

It may be observed that the approximate behaviour of a system can be realised as the
10

idealised behaviour of another system in which explicit value sharing processes have been
introduced. Formally, all oracles which refer to a variable v bound to another process can be
renamed, using distinct identifiers, and a signal process whose role is to update the value of the
oracle as appropriate introduced. For instance, if the variable v is referenced as an oracle by the
process A, but owned by process B, then the oracle variable v can be replaced by a variable xv, and
the signal process:

process signal() {
orade v;
state xv;
protocol true -> xv=v

}

introduced. The idealised behaviour of the resulting system will then be the same as the behaviour
of the original system under the assumption that A's oracle for v is intermittently updated. A simple
illustration of these principles is given below.

$4. Some simple illustrative examples

In this section, three simple examples are used to illustrate some of the issues raised by the
abstract model of system behaviour described in $3.

(a) The telephone example re-examined

Interpretation of the telephone example in the light of the operational model of system
behaviour in 3 reveals some subtle points, and illustrates in particular some aspects of translating
functional into procedural abstractions.

Within the telephone system, a critical aspect of the behaviour is ensuring that two or more
calls cannot be simultaneously connected to the same destination phone. The exchange() process, in
conjunction with the call(M,N) process, is intended to guarantee this. Certainly the given
specification is such that initiation of the process call(M,N) "instantaneously" sets the boolean
variable isringing[N] to true if phone N is not engaged, causing a subsequent initiation of
call(M',N) to set the boolean variable engaged[M] to true. On the other hand, if two process calls
call(M,N) and call(M',N) are initiated in the same transition (ie are truly concurrent), it will be seen
that both M and M' will become connected to N.

Remedying this deficiency in the specification - an exercise to the reader - suggests further
considerations. A natural approach to take is to regard isringing[*] as a state variable rather than a
derivate, to eliminate the functional definition of isringing[1, and introduce appropriate actions to
manipulate its value within a protocol for the exchange() process. When the possibility of two or
more simultaneous invocations of call(*,N) attempting to set isringing[N] to true then arises, the
choice of which is successful can be made by selection between the guarded commands in the
exchange() protocol. Devising a protocol to guarantee such "mutual exclusion" naturally suggests a
role for state-and oracle variables, notwithstanding the potential complications. Procedural
manipulation of the status of telephone N also entails a mechanism for resetting isringing[NJ on
termination of a call(*,N) instance, and can result in counter-intuitive behaviour if lazy execution of
guarded commands within a protocol is assumed. For this reason, it may be convenient to
introduce some other prioritising mechanism on actions in a protocol - stipulating for instance that
particular guarded commands are to be greedily executed. The semantic distinction between a
functionally defined derivate d=D and a greedy execution of the guarded command

d!=D -> d=IDI
is then of interest.

As a footnote, it may be observed that problems with true concurrency - models of behaviour
in which genuinely simultaneous action is possible - are perhaps more likely to arise in the context

11

of functional abstraction such as is used to defined isringing[l in the telephone example. It may be
that procedural refinement will of itself introduce the sequentiality which underlies a semantic
model based on interleaving actions.

(b) A simple algorithm for the greatest common divisor

In §3, the concept of regarding the approximate behaviour of a concurrent system as the
idealised behaviour of another was introduced. It is as yet unclear how far such a concept can be
exploited in practice, but a very simple example of this principle in action may be helpful.

Consider a system involving two processes, each of which owns a positive integer state
variable known to the other as an oracle. Starting from an initial configuration in which each
process knows the authentic values m and n of both variables, the system is intended to behave in
such a way that each process terminates with the value of its state variable equal to the greatest
common divisor of m and n. The processes to be used are defined as follows:

process p(i) {
oracle (int) v[i+1]
state (int) #v[i]
protocol v[i]>v[i+1] -> v[1]---v[i]-v[i+1]

}

where i= 1,2, and i+ 1 is interpreted modulo 2. It is very easy to see that the idealised behaviour of
this system of processes is acceptable: it corresponds to the elementary sequential GCD algorithm:

v[1]=m; v[2]=n;
do v[1]>v[2] -> v[11=v[1]-v[2]
[] v[2]>v[1] -> v[2]=v[2]-v[1]

od

since there is no possibility that both guards can be simultaneously true.

Now consider the behaviour of the same system under the more realistic assumption that the
oracles in the processes p(i) do not always have authentic values, but acquire the authentic value
from time to time (eg as and when a signal is received). The behaviour of the system is then
precisely described by the idealised behaviour of a system comprising three processes:

process signal(i) {
oracle sv[i]
state #ov[i]=sv[i]
protocol true -> ov[i]=sv(i]

}

where i=1, 2 and:

process update() {
oracle °N(1], ov[2]
state #sv(11=m, #sv[2]=n
protocol

sv[1]>ov[2] -> sv(11.sv[1]-ov[2]
sv[2]>ov[1] -> sv[2].sv[2]-ov[1]

}

Inspection of the protocols easily shows that ov[i]?sv[i]>0 is a derivate, and that at most one of the
guards in the process update() can be true at any one time. It follows that any idealised behaviour of
this system can be simulated by a sequence of atomic actions, each of the form:

12

ov[1].sv[1]
ov[2].sv[2]
sv[1]=sv[I1-ov[2]
sv[2].sv[2]-ov[1]
ov(11=sv[1] sv[1].--sv[1]-ov[2]
ov[2]=sv[2] If sv[2]=sv[2)-ov[1].

To prove that the idealised behaviour of the system leads to sv[1].sv[2].gcd(m,n) on termination,
it is enough to show the invariance of the relation

gcd(m,n)=gcd(ov[1],ov[2]).gcd(ov[1],sv[2])=gcd(sv[1],ov[2])=gcd(sv[1],sv[2])
under each of the assignments and parallel assignments above. This is straightforward once it is
observed that ov[2]=sv[2] is a necessary precondition for an atomic action in which the assignment

svi1i=sv[l]-ov[2]
occurs, and dually. To justify this, note that ov[2]>ov[1]?s. v[1] is a postcondition of the action

sv[2]--,--sv[2]-ov[1]
in the update() protocol, and thus the action ov[2]=sv[2] must be performed before the guard

sv[1]>ov[2]
can be satisfied, and dually. In effect, action from the appropriate signal process is essential when
execution of the update() process switches between the two guarded commands in its protocol.

(c) The attendance form example

The LSD notation is primarily intended for high-level specification of systems, and may be
useful in a wide variety of applications. In particular, LSD processes can be used to model systems
such as office environments in which the use of administrative records and physical transfer of data
is involved. For instance, a licence can be viewed as a process incorporating a derivate

(bool) valid = (time - purchase_date < period of validity).
By way of further illustration,the following example describes the circulation of an attendance
record at a meeting for signature by all members present

process attendance record()
oracle (bool) signed[(member)*]=false,

(member) handler=secretary;
derivate (bool) has_form[(member)*] = (handler==*);

MEM

}

process transfer_form(Y) {
state handler
derivate LIVE = handler != Y
protocol true -> handler=Y

}
•••

process member(X) {
state (bool) signed[X], requests[X);
oracle (bool) signed[*\X], requests[*\X], has_fonn[X];
derivate (bool) requests[X] = not has_form[X] and not signed[X]
protocol

has form[X] and signed[X] and requests[Y] -> transfer_form(Y)
has form[X] and not signed[X] -> <X signs form>; signed[X]=true
has_form[X] and X != secretary -> transferform(secretary)

}

Note that the derivate has form() in the attendance record is strictly redundant, since it can be
inferred from knowledge of the current handler, but it is useful to distinguish between "knowing
when I have the form" from "knowing who currently hat; the form". In effect, derivates can be
used in this manner for information hiding. The example can also be elaborated: not all members
will continue to request the form as the derivate stipulates for instance, and some may not wish to

13

MEN

MEM

sign the form unless obliged to do so. An alternative profile for the member() process, taking
account of this possibility is given below. It is of particular interest to note the way in which an
appropriate use of oracles, denvates and protocols enables the knowledge and manipulative scope
of a process to be faithfully and subtly represented.

process member(X)
state (boot) signed[X], requests[X];
oracle (bool) signed[*\X], requests[*\X], has_form[X];
protocol

has_form[X] and signed[X] and requests[Y] -> transfer form(Y)
has form[X] and signed[X] and not signed[Y] -> transfer form(Y)
has_form[X] and not signed[X]

-> <X signs form>; signed[X]=true; requests[X]=false;
has form[X] and X != secretary -> transfer form(secretary)
not has_form[X] and not signed[X] -> requests[X]=true

}

Future directions

The LSD notation was originally conceived in connection with semantic models for the
CCITT standard language SDL (cf [2]). SDL has an enormous range of constructs intended to
specify and describe systems at many different levels of abstraction, and a central problem which
must be addressed in using the language is the lack of a satisfactory and consistent semantic
framework. The solution proposed in this paper is based upon the idea of developing an LSD
specification by successive refinement in such a way that an analysis of behaviour can be developed
incrementally in parallel. Such an approach is plausible only because of the integration within LSD
of functional and procedural features which can be respectively used to model synchronisation
mecharasms at higher and lower level levels of abstraction. The design methodology proposed has
aiTnities both with formal specification using a functional notation, and with systematic program
developmelt using the axiomatic method.

The design of LSD is still in its early stages, and more work is needed to consolidate the
preirnmary design sketched in this paper, and to develop further examples. There is a particular
7.1eZe,d tO identifii the semantic constraints which a specification must satisfy in order to make the
opera=nal behaviour consistent and free of singularities. It will also be important to develop a
cotinp6enlmary axiomatic approach to the analysis of system behaviour, and consider the issues of
e7mng deadlock freedom, mutual exclusion and fairness.

Actriowiedgernmiti

The azibor is crateful to British Telecom for sponsorship on a Short Term Research Fellowship.

:s 771tith. Z1Stiebled io Mark Norris for enthusiastic encouragement and motivating ideas without
rElcb. tz.s. *oat mould not have been undertaken, and to Charles Jackson and Mathai Joseph for

*e:11.73,51i

14

References

[1] G R Andrews & F BSchneider, Concepts and Notations for Concurrent Programming
ACM Computing Surveys Vol 15 Number 1, March 1983, 3-43

[2] Meurig Beynon and Mark Norris, A Formal Model for SDL (submitted)
[3] Meurig Beynon, Definitive Notations for Interaction

in Proc. BCS Conference "People and Computers: Designing the Interface"
ed. Johnson and Cook, CUP, 1985

[4] Meurig Beynon, A Programming Paradigm based on Definitions
University of Warwick, Computer Science Research Report #** (in preparation)

[5] E W Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J., 1976

15

