
http://wrap.warwick.ac.uk/

Original citation:
Joy, Mike and Rayward-Smith, V. J. (1987) NP-Completeness of a combinator
optimisation problem. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-088

Permanent WRAP url:
http://wrap.warwick.ac.uk/60784

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60784
mailto:publications@warwick.ac.uk

Research report 88

NP-COMPLETENESS OF A COMBINATOR

OPTIMISATION PROBLEM

M S Joy
and

V J Rayward-Smith*

(RR88)

Abstract

Using the combinators S, K, I, B, C, S', B' and C', together with a rewrite system for a
graph representation of combinator expressions such that reduction of a duplicator
causes the duplicated expression to be "shared", we consider expressions in that
combinatory logic which reduce to normal form. To each such expression we assign a
weighting which is the number of reduction steps necessary to reduce the expression
to normal form. Two expressions are considered equivalent if they represent the same
lambda expression. The problem of minimising the number of reduction steps over
equivalent combinator expressions is proved to be NP-complete.

Department of Computer Science
University of Warwick
Coventry
CV4 7AL, UK

*School of Information Systems
University of East Anglia
Norwich
	

Jan 1987
NR4 7TJ, UK

NP-Completeness of a Combinator Optimisation Problem

M. S. Joy

Department of Computer Science,
University of Warwick,

Coventry,
CV4 7AL,

U.K.

V. J. Rayward-Smith,

School of Information Systems,
University of East Anglia,

Norwich,
NR4 7TJ,

U.K.

- 2 -

Abstract:

Using the combinators S, K, I, B, C, S', B' and C', together with a rewrite system for a graph representa-

tion of combinator expressions such that reduction of a duplicator causes the duplicated expression to be

"shared", we consider expressions in that combinatory logic which reduce to normal form. To each such

expression we assign a weighting which is the number of reduction steps necessary to reduce the expres-

sion to normal form. Two expressions are considered equivalent if they represent the same lambda expres-

sion. The problem of minimising the number of reduction steps over equivalent combinator expressions is

proved to be NP-complete.

References

1. Introduction

The uses of the lambda-calculus [1] and combinatory logic [2,3] as notations for defining functions

are well known. As branches of mathematical logic they have been explored in great depth. In recent

years, however, both disciplines have been used in computer science as models for the evaluation of func-

tional programs. The lambda calculus has served as a starting point for, for instance, SECD machines [4]

and combinatory logic for graph reduction machines [5, 6].

There is a "natural" correspondence between a lambda expression and the function it represents, but

to evaluate a function in such a form leads to complications. This is due to the use in the lambda calculus of

variable names, which results in environments needing to be stored when functions are called recursively.

In combinatory logic no such variables are used, so the evaluation of a function is simplified. However

such a combinator expression will probably not be easy to read. It is common practice to consider a func-

tion as being initially a lambda expression, and then to apply an algorithm to the lambda expression to

eliminate all the variables and introduce combinators. We assume the reader is familiar with the funda-

mentals of the lambda calculus and combinatory logic. A good introduction can be found in [7]. Having

created such a combinator expression, it can be considered in a natural way as being a graph, and to evalu-

ate the function it represents we can apply rewrite rules to the graph until the graph becomes the required

form representing "the answer".

A combinatory logic will often be augmented by extra primitives, such as integers, in order to

improve its efficiency as a computer code. In order to simplify our analysis we shall assume that no such

extra primitives are used. If we assume a small finite set of combinators in our combinatory logic, we can

think of each as corresponding to a single "machine instruction", and can thus form a measure of time for

the function to evaluate as being the "number of instructions (reduction steps) executed". This metric is

- 2 -

naive, but it will be sufficient for our purposes.

For simplicity in describing the result here, we shall assume that our combinatory logic is augmented

by a (countable) set of variables. Variables and combinators will be considered as "atomic" expressions.

Suppose we have a function f c written as a combinator expression. We consider the size If c I of the

combinator expression to be the number of occurrences of atoms (combinators or variables) in it. Suppose

f c evaluates, using "normal order" reduction, to "the answer" (that is, an expression in normal form) in r

reduction steps (assuming, of course, that f c is a function which evaluates in finite time!). Then the prob-

lem of minimising r , considered as a function of If c l, is NP-complete.

This result was proved first in [8] and was published (without proof) in [9].

2. Notations and Assumptions

A combinator expression is

(i) a variable v, or

(ii) a combinator (an element of (S,K,I,B,C,S',W,C')), or

(iii) an application (L M) where L and M are combinator expressions.

By default parentheses may be omitted for clarity on the assumption of left-associativity, for example

S w (I y) z

is equivalent to

(((S w) (I y)) z).

We adopt the convention that lower-case Roman letters (with or without subscripts) denote variables unless

otherwise stated. We introduce no extra atoms, such as numbers. The above definition of a combinatory

- 3 -

logic is still sufficiently rich to be equivalent to a Turing Machine, that is, for any partial recursive function

there exists an expression in the combinatory logic which can be used to compute that function. We have

included variables in the definition of our combinatory logic - this is for convenience only and will simplify

the description later on; it avoids the need to define the lambda-calculus as well. Let CL denote the set of

all such combinator expressions.

Our plan of attack is to restrict our attention to a subset of lambda expressions which we know will

reduce to normal form in a finite time after they have been given the correct number of arguments. These

are of the shape

Xv1. Xvm.E

where E contains no lambdas and, as atomic subexpressions, only elements of (v1 ,...,vm). Thus they can be

thought of as simple functions which rearrange, possibly with duplications, their arguments. If v1 ... vm are

provided as arguments such an function with m lambdas will reduce to normal form (viz. E).

The conversion of such an expression with m lambdas to a combinator expression containing no

lambdas and no variables is equivalent to a map abstract from CL to CL, such that, for each E in CL,

(i) abstract (E) contains no variables, and

(ii) (abstract (E) v1 vm) reduces to E.

We use the symbol 	to mean "lexically equal to", and the symbol "=" (as a relation between com-

binator expressions) to mean "are equivalent'.

- 4 -

2.1. The Combinators Used

We use the symbol ">" to denote "reduces to", and ">x" to mean "reduces in one X-reduction step to",

where X is a combinator. The combinators used, originally introduced by Turner in I WI, have definitions

as follows (a, b, c, etc., are used here as meta-variables):

Sabc 	>s a c (b c)

K a b
	

>K. a

I a 	>1 	a

Babe >B a(bc)

Cabc 	>c a c b

S'abcd 	a(bd)(cd)

B'abcd >B' ab(cd)

C'abcd 	a(bd)c

The graph rewrite rules are given in diagramatic form as follows, all lines are directed downwards (the

arrows are omitted for clarity):

Figure 1

/<\b 	 /\ >, a

I 	a

a

a

a 	b c

B 	a

a

C' 	a

- 5 -

2.2. The Reduction Strategy

We assume that reduction is normal order, that is, "leftmost-outermost". This strategy minimises the

number of reduction steps needed to reduce an expression to normal form (as redexes are reduced only if

they are needed).

Initially, before any reductions are applied to an expression, that expression is stored either as a tree,

or as a graph in which the only nodes with in-degree greater than 1 are atoms. This corresponds with the

notion of a program being read in from a source in a way which naturally implies a simple storage mechan-

ism (knowledge about code-sharing is itself a difficult problem). Also, in our examples, significant code-

sharing would not be possible, thus we omit it altogether.

The phrase code-sharing will refer to nodes in a graph with in-degree greater than 1, and our result

depends on the code-sharing yielded by the S and S' combinators (the duplicators).

23. An Almost Optimal Abstraction Algorithm

We describe an abstraction algorithm, originally due to Turner (although we phrase it somewhat dif-

ferently) which produces code which in many cases is optimal. We shall prove the optimality of the algo-

rithm for some of our expressions.

The algorithm takes the form of a map abs from (variables of CL) x CL --> CL. For notational conveni-

ence we write abs x(E) in preference to abs(<x,E>), and abs x,y(E) as shorthand for abs Jabs y(E)).

E and F are here arbitrary combinator expressions, k is an arbitrary combinator expression which contains

no variables, and "x occurs in E" is a shorthand for "there is no variable which is an atomic subexpression

of E and which is lexically equal to x". The first possible of the following rules should be applied.

abs x(x) I,

- 6 -

abs x(E x) = E, if x does not occur in E,

abs x(E) = K E, if x does not occur in E,

abs x(k x F) (S k abs x(F)), if x occurs in F,

absx(k x F) (C k F), if x does not occur in F,

abs,(k E F) (S' k abs x(E) absx(F)), if x occurs in both E and F,

abs x(k E F) (C' k abs x(E) F), if x occurs in E but not in F,

abs x(k E F) (B' k E abs „(9), if x occurs in F but not in E,

abs x(E F) .ss (S abs x(E) abs x(F)), if x occurs in both E and F,

absx(E F) (C absx(E) F), if x occurs in E but not in F,

abs x(E F) (B E abs„(F)), if x occurs in F but not in E.

2.3.1. Example

To illustrate this algorithm, consider absx.y(y x x). The successive stages are as follows:

absx,y(y x x)

= abs x(absy(y x x))

= abs x(C (abs y(y x)) x)

= abs x(C (C (abs y(y)) x) x)

= abs x(C (C I x) x)

= S' C (abs x(C I x)) (abs x(x))

= S' C (C I) I.

- 7 -

2.4. Preliminary Definitions

We give now some notations and algorithm definitions. Let x, y and v be variables, n a positive integer,

and f and g combinator expressions, then

WO,f,g

	

(f 	if r > 0,

= 16n,

Vnx.,y = Vn,1,v,x,y, where

	

V,,,,„,v,„,y 	(vnul x) (v' y), if n > m 1, else Vn.n,„,,y (v" x) (v" y).

W,T4 (11;1,y V cd,)

Figure 2

„ n
V x, y

2n
V

V
2n 	X

V
n n 	X 	

V
n 	y

V

V

- 8 -

The size of a combinator expression is given by

1E1 = 1, if E is an atom, else

I(F G)I = IFI + IGI.

We note that IVyn x1 = nn(n+1) + 2n, which is polynomial in n.

The left-depth of a combinator expression is given by

left-depth(E,E) = 0;

left-depth(E,(F G)) = 0, if E does not occur in F, otherwise 1+left-depth(E,F).

We use the phrase "the left-depth of E in F" as shorthand for left-depth(E,F). Right-depth is defined simi-

lary, with (G F) replacing (F G) in the second clause.

The depth of a combinator expression is given by

depth(E,E) = 0;

depth(E,(F G)) = 0, if E does not occur in F, otherwise 1 + max(depth(E,F), depth(E,G)).

The spine of an expression E is the set of subexpressions of E whose right-depth in E is 0.

The notation [E/FiG is used to mean "the combinator expression produced when all occurrences of the

expression F in G are replaced by the expression E".

Let F be a combinator expression in normal form containing xl,...,xn, as its only atomic subexpressions.

Then opt,, 	xm(F) will be any combinator expression, not containing any element of (x1,...,x„,) such that

(opt x„ 	 xm(F) x1 ... xm)

reduces to F in the minimum number of reduction steps, denoted by red,

We also introduce Z1 and Z2:

Z1 = [(C'S(S'C(K(KI)))v"")/(C'B 	03)) abs „y(VZO,

Z2 = [(S'C(C'S(K(KI)) vn")v"")/(B'C vm7 v";')] ctbs x,y(V yA).

- 9 -

2.5. Preliminary Lemmas

We begin by giving some basic results on Vxn.y, W,Zy, Z1 and Z2.

LEMMA. 1.

(absxy(lif,y) x y) reduces to VZy in 4n-2 reduction steps,

(absx ,y (1,1,x) x y) reduces toll, in 4n-2 reduction steps,

(Z 1 x y) reduces to VZy in 4n+3 reduction steps.

(Z2 x y) reduces to 1/;', in 4n+3 reduction steps.

(Z 1 x) and (Z2 y) each reduces to normal form in 2n+1 reduction steps.

Proof These results are all immediate from the definitions of Vxn.y, Z1 and Z2.

0

LEMMA. 2.

redx (V:,y) 2n-1, redx (V;,x) 2n-1,

redx y riff) 4n-2, redx,y (11,x) 4n-2.

Proof The left-depths of x and y in V.n.y are 2n-1 and 2n-2 respectively, hence we get the first two inequal-

ities, as a combinator of CL can increase the left- (or right-) depth of one of its arguments by at most 1.

Let X1 ==_ [wi /v"i] aw2/v21] aw3/v3']... ([wn/vn"] VZy)...)),

and X2 =-7- [Wifri] ([W2/01 aw3/0")... ([wn/vn" 1 V;,.)...)),

where the wi are distinct new variables. Thus X1 = awn x)(wn y)... ((w1 x)(w1 y)), and v occurs in neither

- 10-

X1 nor X2.

We note that red,,,),(X 1) = red „,y(V 4), since the right-depth of 	in v(i+l)ii. is Ft, and thus any attempt to util-

ise the fact that there exist common sub-expressions of Vxn.y except the instances of 	in (vil x) and 	y)

for each i, will necessitate at least (-1) extra reduction steps, which is more than the number needed by

abs x,y(V 4). X2 is treated similarly. To create each sub-expression of the form (w1 x) or (w1 y), an A-

reduction

A ai ... at.... at >A 	br_1 	ai.+1 ... a, (r t).

where ar is either x or y, is needed. Each reduction step can increase the left-depth of either x or y (but not

both) by at most 1. For, if it increased the left-depth of both by one, at least one more reduction step would

be needed to "separate" them in order for them to be passed singly as arguments to the A combinators. We

thus get

red„,y(X i) 4n-2, and redx.y(X2) 4n-2. The results for V„n,y then follow.

0

LEMMA. 3.

optx ,y (Vxn,y)= absx ,y (V;,y), opt (11,x) absx ,y (V; ,x).

Proof This follows from lemmas 1 and 2.

0

LEMMA. 4.

opt x.y (W 	abs„..y (Wxn optxy(Wyn,) = absx,y (W yn,t).

Proof. Since no node in X1 nor X2, as defined in lemma 2, with right-depth 0 and left-depth less than 2n+1

can be shared, each reduction step in opt„,y(W,n,y) may only affect the spine of V,n y or Vyn, (but not both).

So each reduction step using opt„,y(X1 X2) can be associated with either Vxn,y or V. Thus red x,y(W „n,y)

red,,,y(V xn.y)+ red y,,(V Zy). The result then follows from lemmas 2 and 3.

0

LEMMA. 5.

red, (absx y (Vxn 4)) 5 nn + 2ti + 8n -3,

red, (abs„4 (V; ,)) nn + 2n + 8n -3.

Proof Let V1= 4rn-1(f4)V 	abs.,y(V,L,), where

f a y > (C'S(S'C(a. 13 ((3 y)) y) y),

g (3. y> (C' B y), and

absh(lVii(v,h)).

Thus we have

f = (C' (C' (S' (C' S)))(C' (C' (S' (S' C)))(C (S' B) I) I) I),

g = (K (S (C' B) I)),

v xvi3_1((B v),v) =1{13_1(((S B),I) v), and

= (k.1((S I), n v).

- 12 -

Hence,

Vo = (S' (Wn-t(f,g)) 	B), I) (xvi-i_1((S I), I)) v)

reduces to normal form (abs„,y(V4)).

V1 = (S' F (11/F,_1((S B), 	(V 1((S I), I)) v), where F is (Wn-i(f,g))

reduces to normal form (abs,,y (V,Zy)) in at most

1 	 because of initial S'

+ 9(n-1) 	 because off

+ 5 	 because of g

+ n + (n-1)(n-1) because of 	1((S B)J), since each

B is used for each occurrence off

+ 	 because of N1,3_1((S I), I))

= nn + 2n + 8n - 3 reduction steps.

The result for abs (V4) is almost identical.

0

LEMMA. 6.

red, (Z 1) nn— + 2,7 + 8n + 6,

red, (Z2) 5 nn— +2n + 8n +6.

- 13 -

Proof. The proof is essentially the same as that for lemma 5, except that

gR y > (K (K I)),

g = (K (K (K (K I)))),

U0 = (S' (wr,(f,g)) (vii_1((S B), I)) (xii,--,1((S I), I)) v)

reduces to normal form Z1;

U1 = (S' F 	B), I)) Nil. 1((S I), I)) v), where f is (141„(f,g)) reduced to normal form, reduces to nor-

mal form, Z1, in at most

nn + 2n + 8n + 6 reduction steps. The result for Z2 is almost identical, with the (C' S) and (S' C) in f inter-

changed.

We now examine Z1 and Z2 more closely. First of all, by using Z1 instead of abs 	4), and Z2 instead of

abs,u(Vyn,„), we have a structure which is more "symmetric". The extra symmetry manifests itself in the

following way:

abs ,,,y(VZy) = C' S (S' C ((C' B 	v"))

Z1 = C' S (S' C ((C' S (S' C(K (K I)) vnx) vil")) vn) vn,

so the former contains an expression (C' B v"" vri), which corresponds to (B' C vrtl3 v"7') in abs

Apart from the interchange of (C' B) and (B' C), abs „,y(V,Zy) and abs„J(V yn,„) can be interconverted merely

by swapping occurrences of (C' S) and (S' C). The anomaly of the (C' B) and (B' C) is not present in the

Zi.

Consider the proof of lemma 5. Since code which reduces to Z1 can be created by swapping the

occurrences of (S' C) and (C' S) in the definition of f, we may replace (C' S) and (S' C) in U0 by variables

- 14 -

t1 and t2 respectively, and abstract them out. Thus f would become

(C' (C' (S' ti))(C' (C' (S' t2))(C (S' B) I) I) I).

After U0 had then been reduced to normal form we would have

U0' = t1 (t2 (t1 (t2 	(t1 (t2 (K (K I)) vicri) v'u')) v25 v25 v")

Abstracting t1 and t2 from this expression yields 8n new combinators, since

U0' = (U1 ' t1 t2) and U0' = (U2' t2 t1) where

u1' c (s C' (C' C (B' S I ()) v3))

U2' C' C (B' S I (C (S C' ())1.6) v",

and so an extra 16n reduction steps, as each combinator must be used twice.

LEMMA. 7.

opt1hrz(U0') = U1', optta,(U0') = U2'.

Proof. We examine the first case; the second is almost identical. As in lemma 2, we are unable to utilise

the code-sharing possibilities offered by the vi3, and the other internal nodes of U0' cannot be shared. Due

— —
to the symmetry of U0', we are interested in code U and U' such that (U t1 t2) reduces to (t1 (t2 (U' t1 t2) V")

v;') in the minimal number of reduction steps. Each combinator A occurring in U must take as its last argu-

ment precisely one of ti or t2. It is then straightforward to enumerate the possible U, and the result follows.

0

However, we cannot simply abstract the ti from U0', since this process would alter the structure of the Z, -

we would, as in lemma 6, need to consider red,(U1') and reds,(1J2').

- 15 -

LEMMA. 8.

Z Z2) nn +2n + 28n + 17.

Proof Replace in U0' above t1 by (B C (S C')), and t2 by (B (C' C) (B' S I)), thus obtaining U0", where

(Uo" (C' S) (S' 	= Z1 and (Uo" (S' C) (C' 	= 12. Thus we have introduced 10 combinators to create

each Zi (total of 20n reduction steps). We have also red,(Zi) = red,(U0"), since the structures of Z1 and

U0" are essentially identical. So (C' B (C (C S' (C (C I (C' 	(S' C))) (C (C I (S' C)) (C' S))) opty(Uo"))

w v reduces to (w Z1 Z2) in at most red ,(Uo") +11+ 20n reduction steps. Apply lemma 6.

LEMMA. 9.

red„,,, (w absxa (17:a) absx y (17;`,)) red,,,, (w Z 1 Z2).

Proof Clear, by symmetry.

LEMMA. 10.

opt,(0)_ .41,7_1((S I), 1).

- 16 -

Proof Clear, from inspection.

LEMMA. 11.

red„ (Z 1) 	+2,7 +8n-10.

Proof. We count the minimum number of combinators needed in opt, (Z1). We note first that it will be

necessary to share certain sections of code. The occurrences of vn must be shared, and by lemma 10,

red,(17n). 2n-1. Since the expressions 	must be shared there will be a function h: 	v(i+1)" which

must be executed (n-1) times. Each execution of h must require at least T1-1 reduction steps, as the depth of

(i+1) — Since v 	v 	• n. w 	the right-depth of vii(v,x) is n, at least n-1 reduction steps will be needed to create h

initially. We are using the "simplest" method for obtaining each vi". We thus need an expression Z which

will take as arguments h and vih, returning an expression of the form

(C' S (S' C

where Z' is Z with arguments h and (h vli). So

Z = S' (C' (C' S)) (S' (C' (S' C)) (S' B Z' I) I) I.

This code is optimal. We get 9(n-1) extra reduction steps from the Z, and the result follows. Note the

effects at the "top" and "bottom" of Z1 have been ignored, and will introduce (a few) extra combinators.

0

- 17-

LEMMA. 12.

Z i Z2) > nn + 271 +25n-11. 25n

Proof We note first of all that the only differences between Z1 and Z2 are the leftmost (C' S) and (S' C)

expression referred to at the start of the subsection. Thus the "obvious" way to achieve the expression

opt,,,,(w Z1 Z2) is to use a strategy similar to that outlined in lemma 8. Such a strategy involves replacing

t1 and t2 in U0' by expressions consisting only of combinators such that the resulting expression (U0", say)

acts as if t1 and t2 had been abstracted out, yet is still of the same essential structure as Uo. Thus (U0" t1 t2)

reduces to U0'. If such a strategy is adopted, the replacements for t1 and t2 previously given are optimal.

Unlike the previous lemma, it is not obvious that this reduction strategy is optimal. However, it is

sufficiently close to optimal for our purposes.

There are two other possible reduction strategies. The first involves creating some (and by symmetry this

implies all) of the vizL, and passing them as arguments to code representing Z1 and Z2. This would require

0(n2) extra reduction steps - so such a strategy is unacceptable.

The second involves amending the definition of f so that the number of reduction steps needed to abstract

the ti is less. For instance,

f a 13 > C (S' C (C' C (B' S I (a f3 ((3 y))) y))

would implement the optimal abstraction of t1 and t2 from U0' given earlier. Now, suppose that we had

decided on another, more efficient, abstraction of ti and t2 from U0'. The corresponding f will be such that f

a R y > F, where a, 13 and y occur in F, but the depth of a in F is increased by at least one, and thus

abstracting a, 13 and y from F will yield at least one extra combinator, hence a total of n-1 extra reduction

steps. The optimal number of combinators introduced to abstract t1 and t2 from U0' is 8n, hence

- 18 -

red,„,,(w Z1 Z2) 	2redt„t2(Uo') + (n-1) + rec v(Zi.)

2(8n) + (n-1) + 	+ 2n + 8n - 10)

(by lemma 11).

0

LEMMA. 13.

Let sn„, = Ex 	. ,(E)1 as E ranges over expressions in CL with /E/ = n.

Then 4.. <2mn.

Proof See [9] or [11].

0

3. The NP-Complete Problem

The Optimisation Problem ("OP") is NP-complete; this is the specific result which we prove.

INSTANCE: A combinator expression E whose only atomic subexpressions are variables x1, xm, and an

integer k.

QUESTION: Does there exist an expression E', whose only atomic subexpressions are combinators, such

that the expression (E' x1 ... x„,) reduces, using a normal order reduction strategy, in k (or less) reduction

steps to E?

-19-

3.1. The Vertex Cover Problem

The vertex cover problem ("VC") is NP-complete [12].

INSTANCE: Collection C of distinct subsets of a finite set S such that cie C satisfies Ic11=2 and S=uC, a

positive integer k ISI.

QUESTION: Does there exist a subset S' of S such that

(i) IS' I k, and

(ii) for each ci e C, cinS' # 0.

3.2. The Optimisation Problem

Given an instance of VC, we construct an instance of OP as follows:

a combinator expression E, containing variables v,di ,...,d„, (all distinct),

E(W~,as Wc,A), where n = 100r3

an integer k' = 30r(m+r) + 4n(r+k) +(n—ri + 2n + 28n).

3.3. Further Analysis

Let F be the set of all functions from (1,...,r) 	1,2). Fix some 4) E F, and let ai = c3. (1). Let b1,...,bq be

an enumeration of the and

[(S (C (K I) (el c3_0(i)))) / (B (013 c3_00)) v"")] absed

x12 - 	(K I) vfln) (vn" c3_0(0)) I (C v' (y' c3-00)] abs

thus (Zi ci,o)) reduces to

Let Y1,...,Y2p be an enumeration of the Xil and X?, where we note that, due to the symmetry of the 	there

-20-

must be an even number of Y1.

Let 4, and yj be variables which will correspond with XI, X? and yi respectively.

Ei = abs y 	 MO, ya,b, 	b,

E2 ((xi al) (x? al) ... (4 a) (x a)),

E3 Ei Yi Y2p bi bq.

Thus choice of 0) corresponds with code-sharing variables v and C44)) in Wxn,y, and p will correspond to k

in VC.

E3 reduces to E in ei+ex reduction steps, where, by lemma 13,

el < 2(2p+q)(4r) S 24r2

. (since q 5_ r and p r). el is the number of combinators introduced by abs in El, and, by lemma 1, ex =

2r(2n+2) is the number of reduction steps for the)q and X?.

So we now have a situation where we have taken E and abstracted two variables (one of them being v)

from each Wxn.), in E (we remember that there are three variables occurring in Ky). This has led to code-

sharing; thus if, for instance, Wxn,y and Wzn x are in E, then we may have chosen to code-share the

occurrences of (vm x) in Wx",y and Wz̀1,..

Now, Yi = (Zi y), where Z' E (Z1,Z2), y, occurs in Y1, and yi # v (1 5 i 5. 2p).

Let E4 = (abSzbz:,c1. , 	 d,, (E1(z1 yi) 	(z2P y2,) bi ...bq)),

where the zi are variables corresponding to the Z1, and z1,z2 is the enumeration of the zi corresponding to

Z1,Z2, and we note that each of Z1 and Z2 contains precisely one variable v.

(E4 Z1 Z2 d1 ... dm) reduces to E3 in e4+ey reduction steps, where

e4 < 2(m+2)(4p + q + 2) < 24mr, by lemma 13.

- 21 -

e4 is the number of combinatory introduced by abs in E4,

e = 2p(2n + 1) is the number of reduction steps for the Z1 and Z2.

Now, let Z = opt,,,,„(w Z1 Z2) and ez = red,,,,,„(w Z1 Z2).

We have, by lemmas 8 and 12, nil + 2ii + 25n - 11 5 ez < nn + 2n + 28n + 17, and

— —
E4 v d1 dm) reduces to E3 in e4+ey+ez reduction steps.

We note here that, by using Z1 instead of abs zo,(V zn,y) and Z2 instead of absz,y(Vyn,z) we have introduced at

most 12r extra reduction steps from using the optimal code for each individual V,Z),, and have got improved

code for the abstraction of v from V4, by lemma 9.

LEMMA. 14.

There exists an expression E5 containing no variables such that (recalling that v, d 1,...,dm is our enumera-

tion of the variables occurring in E)

E5 v d 1 ... dm reduces to E in e steps, where

e < 30r(m+r) + 4n(r+p) + 	+ 2n + 28n).

Proof From the above discussion, let E5 = E4).

ei +ez +e4 +ey +ez

< 24r2 + 2r(2n+2) + 24mr +2p(2n+1) + ez

< 27r(m+r) + 4n(r+p) + e1, since 4r+2p < 3r2

< 30r(m+r) + 4n(r+p) + (nn + 2n + 28n), since 17 < 3r2.

0

- 22 -

3.4. R6sum6

We assume that n is "large" (though only polynomially so) compared to r and m. We have found an expres-

sion E5 which after suitable arguments have been added reduces to E in 4n(r+p) + e, + 0(r2) reduction

steps.

We associate p in this with k in VC. We next show that "optimal" code representing E reduces in approxi-

mately 4n(r+p) + ez reduction steps.

We know the value of ez to within (approximately) 3n. Thus we know the "optimal" size of code, and have

an algorithm for getting to within narrow bounds of such code, and certainly to sufficient accuracy to

evaluate the value of k necessary to furnish a solution of VC. Thus we argue that, if we can find code

representing E of size at most

30r(m+r) + 4nr + 4nk + (nn— + 2n + 28n)

for E in polynomial time, we can solve VC in polynomial time also.

LEMMA. 15.

red, ,d 	(4n-2)(r+p) + (nn + 2n + 25n - 11).

Proof Since the depth of Vz",), is greater than nn, optimal code to represent Vz",), reduces in at least nn steps,

and by lemma 5 there exists code representing E which reduces in less than 2rin steps. Thus to produce

optimal code for E some code-sharing will be necessary. An "obvious" strategy would be to share as many

common subexpressions as possible, in particular all occurrences of 	and of (vi" z), where z E (d1,...,dm).

This does not, however, yield a strategy for producing optimal code, since we may only assume that most

of these subexpressions must be shared, and we have not exhibited an optimal method for generating them.

- 23 -

Consider Vzn,, and Van b, where x, y, a and b are distinct. The only shareable subexpresions are those con-

taii.ing only occurrences of v, that is the 	Suppose we require to find code V such that (V v x y a b)

reduces to (V,Zy Van.b) in the minimum number of steps. Then we may assume that we share code X where

(X x y) reduces to Vzn,y. For, if we share code that allows more complicated arguments, we do not improve

the code we produce, since we still require a similar amount of work for each Vzn.y, of which less may be

shared. By lemma 3, we may assume that X = abs x,y (V4). If a = x then this allows us the possibility of

sharing the instances of 	also.

Consider now Vzn,y and VL,, where x, y and a are distinct. Suppose we wish to find code V such that (V v x

y a) reduces to (VZ), V;y) in the minimum number of steps. If we share code as X above, we lose the pos-

sibility of sharing expressions (vi ' y) containing y. However, if we have created abs„,y(Vy",„), we will be

able to share those expressions. By symmetry, for a non-trivial E it will be necessary to create both

abs„,y(V„n,y) and abs „,),(V yn,„), hence we will need at least e.z reduction steps to perform that creation.

At this point we note that, by lemma 4, we would not be better off treating each Wzn.), as a single unit rather

than a combination of Vzii,y and Vyn z.

Each occurrence of abs „,y(V 4) or abs „,y(Vyn,„) will, by lemma 1, require 4n-2 reduction steps, of which

2n-1 cannot be shared (viz. the second arguments), and 2n-1 may be shared (the first arguments), thus

yielding 4n-2 for each WL, (total (4n-2)r) and 4n-2 for each shared expression (total (4n-2)p). We also

have, by lemma 12,

ez 	+ 21t + 25n -11.

Using WZy ensures that, if at any point we introduce abs x,y(V Zy), we must also introduCe abs y,„(V 4), thus

ensuring symmetry. Use of Z1 and Z2 in the previous analysis serves to iron out the asymmetry which is

- 24 -

introduced at the "bottom" of V',, when applying abs.

0

3.5. Construction of an Instance of OP from an Instance of VC

We note that the map is injective, and that the size of the instance of OP is polynomial in the size of the

instance of VC. We see also that m _5 2r. We shall assume that r is large, for instance, r > 100.

THEOREM. 1.

VC Transforms to OP

Proof. We have, from lemmas 14 and 15,

(i) A map from an instance of VC to an instance of OP which can be evaluated in polynomial time, and

which is injective,

(ii) An algorithm which will find code for an instance E of OP which reduces (after suitable arguments

have been added) to E in e steps, where

e < k' = 30r(m+r) + 4n(r+k) + (nn + 2n + 28n), and

(iii) A proof that

reds d, 	4.(E) (4n-2)(r+k) + (nn + 2ii + 25n - 11).

The difference between these two bounds is 30r(m+r) + 2(r+k) + 3n - 11, which is less than the change in

value of either of them if k is altered by 1 (viz. 4n), since n = 100r3. If we produce code which reduces in

k' reduction steps, we can find a value for k which is uniquely determined, which will calve the

corresponding instance of VC.

- 25 -

0

THEOREM. 2.

The Optimisation Problem is in NP.

Proof To show this, we need only generate expressions E' "at random", with IE'l=k', such that the only

atomic subexpressions of E' are combinators. For each such E' we form the expression (E x1...x.), and see

whether it reduces to E in k' (or less) reduction steps. The steps necessary from creating the expression E'

to deciding whether E' is a suitable expression can clearly be completed in polynomial time.

0

THEOREM. 3.

The Optimisation Problem is NP-Complete

Proof This is a consequence of theorems 1 and 2.

0

4. Further Observations

If we restrict our attention to a subset of combinators, a subbase, and the corresponding set of func-

tions which are representable using them, then the problem of producing optimal code may be simplified,

as Batini in [13) shows for the subbase 03).

- 26 -

However, it is reasonable to assume that the result we have given is true if we do not restrict the

functions we allow, provided that we use only a finite set of combinators. Our proof is specific to one par-

ticular set of combinators (it would, for example, fail at lemmas 5 and 6 for a different set of combinators).

A general proof is required.

5. Acknowledgements

We are grateful to Warren Burton for comments on previous versions of this document, and to the United

Kingdom Science and Engineering Research Council for funding the initial research.

6. Bibliography

References

1. H.P. Barendregt, The Lambda Calculus, its Syntax and Semantics, North-Holland, Amsterdam

(1981).

2. H.B. Curry, W. Craig, and R. Feys, Combinatory Logic, Vol. 1, North-Holland, Amsterdam (1958).

3. H.B. Curry, J.R. Hindley, and J.P. Seldin, Combinatory Logic, Vol. 2, North-Holland, Amsterdam

(1972).

4. H. Glaser, C. Hankin, and D. Till, Principles of Functional Programming, Prentice-Hall, Englewood

Cliffs (1984).

-27-

5. D.A. Turner, "Another Algorithm for Bracket Abstraction," Journal of Symbolic Logic 44(3) pp.

67-70 (1978).

6. D.A. Turner, "Combinator Reduction Machines," Proceedings of the International Workshop on

Iligh Level Computer Architecture, Los Angeles, (1984).

7. J.R. Hindley and J.P. Seldin, Introduction to Combinators and X-Calculus, Cambridge University

Press (1986). London Mathematical Society Student Texts 1

8. M.S. Joy, On the Efficient Implementation of Combinators as an Object Code for Functional Pro-

grams, University of East Anglia, Norwich (1985). PhD Thesis

9. M.S. Joy, V.J. Rayward-Smith, and F.W. Burton, "Efficient Combinator Code," Computer

Languages 10(3/4) pp. 211-224 (1985).

10. D.A. Turner, "A New Implementation Technique for Applicative Languages," Software - Practice

and Experience 9 pp. 31-49 (1979).

11. J.R. Kennaway, "The Complexity of a Translation of ?.-Calculus to Combinators," Internal Report

CS/82/023/E, University of East Anglia, Norwich (1982).

12. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman, San Francisco (1979).

13. C. Batini and A. Pettorossi, "Some Properties of Subbases in Weak Combinatory Logic," Report

75-04, Istituto di Automatica, Roma (1975).

