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ABSTRACT 

This paper describes a compositional specification and proof system for networks of dis-
tributed processes. Each process in a network is specified using first order logic in terms 
of a presupposition P and an affirmation A as a triple (P) S (A) . For purely sequential 
programs, these triples reduce to the familiar Hoare triples extended for total correctness. 
In distributed programs, P-A triples allow the internal behaviour of a process to be 
specified in the context of the communications of the other processes in the network. 
Communications may either be synchronous or asynchronous. Properties such as termi-
nation, the absence of deadlock and the absence of livelock can be verified. As the tech-
nique is syntax-directed and allows network abstraction, proofs follow the structure of 
the program and a subnetwork within a network can be replaced by a single process. It 
also allows proof of the properties of non-terminating processes, such as servers. 

1. Introduction 

There has been much interest over the last 10 years in the class of distributed programming languages 
designed to have close relation with formal methods for the design and verification of programs. Among 
the best known of such languages are CSP 8  and its several variants such as occaml3 which gave rise to a 
number of partial correctness proof systems for establishing the so-called safety properties of programs (eg, 
Apt et al 1  , Levin and Gries 12  , Zhou and Hoare5  , Misra and Chandy 14  , Soundararajan 22  etc.). While 
alternative techniques were then explored for proving total correctness and liveness properties (Hoare9  , 
Barringer et a13 ) new forms of partial correctness proof systems were sought to allow programs and proofs 
to be developed compositionally (see de Roever21  , and Hooman and de Roeverl° ). 

Apart from needing close association between program development and proof, practical work in distri-
buted systems also demands the use of richer communication primitives than the purely synchronous com-
munication permitted in CSP and proof systems are now required to consider for example the use of asyn-
chronous and broadcast communication between processes, and to provide means of specifying non-
terminating (server) processes. Ideally, this must be done in a compositional proof system dealing with 
total correctness and liveness properties and handling the attendant requirements of establishing deadlock 
freedom, termination and divergence freedom. 

The wealth of past work provides a range of techniques for proving properties of distributed programming, 
and different proof techniques are distinguished by the elegance with which they can be used for solving 
one kind of problem or another. Unfortunately, there is no simple way in which all the desirable features of 
these proof systems can be combined without introducing defects not present in the original systems and no 
single proof system has as yet been constructed with the properties that a software engineer would regard 
as essential in the complex task of writing correct, large, distributed programs. 

In practice, large distributed programs consist mainly of sequential code and there is the well-established 
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and well-studied Hoare logic of sequential programs available for developing such code. Though, as it 
stands, Hoare logic is insufficient for dealing with the non-local properties of distributed programs its 
motivations are intuitively compelling and it is attractive to consider the use of a similar proof framework 
for all the constructs of such programs. This has been partly accomplished (see for example, Apt et all or 
Levin and Gnes12  ) but only by losing the ability to partition the development and proof of a distributed 
program into separate units and the costs of establishing that proofs "cooperate" or that they are free from 
interference are rather substantial. It is important to retain the same modularity in the proof as there is in 
the program and, with this, to be able to reason about deadlock freedom, livelock freedom and global ter-
mination. It should be possible to abstract from the environment of a distributed program the properties that 
effect the behaviour of a process and then to base the development and the proof of the process on this res-
tricted abstract view. 

This paper describes a proof system which attempts to meet all these requirements. From one point of 
view, we would be justified in saying as Apt did in another context 2  that the work contains "hardly any 
new ideas". But it would be deceptive to suggest that our proof system results merely from the combina-
tions of ideas from other proof systems: rather, we consider it as part of an effort being made at several 
places to devise effective and usable proof systems for distributed programming languages. Without much 
hesitation we can put forward the following claims about this proof system: that it offers a specification and 
verification technique for establishing total correctness of distributed programs written in a language per-
mitting synchronous and asynchronous communication, for proving absence of deadlock and livelock, and 
for dealing with server processes. The proof system is syntax-directed and compositional, allows network 
abstraction, and supports a top-down decomposition of a problem into a distributed programming solution. 

2. An Informal Introduction to Process Specification 

A distributed program consists of a number of disjoint processes which communicate with each other. For 
the program as a whole to reach a final objective, each process must be designed to exhibit a behaviour 
which depends both on its local properties (or its implementation) and on its interactions with its environ-
ment. It should be possible to determine this behaviour from a study of the syntactic structure of a process, 
given a specification of its global interactions. One way of accomplishing this is to formally characterize 
the dependence of a process on its environment in its specification. 

Let us define the specification of a process S as the triple: 

(Pre) S (Aff) 

where the affirmation Aff defines the desired behaviour of the process and the presupposition Pre abstractly 
characterizes the dependence of the process on its environment for achieving this behaviour. For sequential 
programs, this form of specification reduces to the well-known Hoare triples 

(P) S (Q) 

where P and Q are formulae in first order logic with program variables. This specifies that program S start-
ing in a state satisfying precondition P will terminate in a state satisfying postcondition Q (hence, the 
specification is really in Hoare logic extended for total correctness). Q specifies the desired final values of 
the variables and P gives the necessary initial conditions under which this final state may be achieved. 

Preconditions and postconditions can be used to specify the desired behaviour of a distributed process if 
these assertions are extended to include the communication histories of processes, where a communication 
history preserves the sequence of values transmitted along each channel between pairs of processes. For 
example, the communication history for a channel C could be C=3"4"5, which says that the sequence of 
values 3, 4 and 5 were sent along the channel in that order. 
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We shall use sequences to represent histories over channels, with the following operations on sequences, 

Seqi  oc Seq2  iff Seq'  is an initial subsequence of Seq2  

Seqi  oc Seq2  iff Seq'  « Seq2  A Seq'  * Seq2  

#Seq is the length of sequence Seq 
X is the empty sequence 
Seq[i] gives the i th element of the sequence 
Sec!'  A Seq2  is the catenation of Seq'  and Seq2  

There are some obvious properties of channels: eg, the channels of a process are empty when it begins exe-
cution, and its channel histories will not change after it terminates; each communication along a channel 
adds a value to the channel history. 

Example: A process D sends a sequence of n integers along a channel in'  be sorted in descending order by 
a sorter S. It then interrogates S along channel out'  to read back the sorted integers: when it has received 
all n values, it terminates. 

The sorter S is organized internally as an array of n processes Si  S. Each process Si  receives a sequence 
of n-i+1 integers from its left neighbour along channel ini, keeps the largest number it receives and sends 
the rest to its right neighbour along channel 	Sorted integers are returned along the channel outs: pro- 
cess Si  will first send its own stored value and then the values returned through its right neighbour along 
channel 

Initially, all the channels are empty. 

prep A in = out = X 

Process D will terminate after the n values have been received sorted in descending order: 

post')  A out = sort(in) 

This postcondition can however be realized by D only by assuming that the sorter will perform correctly: 
that its output is a sorted permutation of its input. This assumption assume')  must be specified as an invari-
ant for the environment as it holds at each point in the execution of the process. 

assume])  A out oc sort(in) _ — 

Considering now the sorter S, it too will start with all its channels empty. 

pres  A in = out = X 

S will behave correctly only if it is sent all the numbers to be sorted before it is interrogated, and if no more 
than n numbers are sent. This constraint can be represented by the invariant 

pump(in,out,n) A #in S n A #011t. > 0= #in = n 

This must be the assumption assumes  for S and process D must make a commitment commit])  that it is met: 

assumes  A pump(in,out,n) 

commit])  A pump(in,out,n) 

A commitment is an invariant describing the behaviour of a process at any point in its execution, while the 
postcondition describes only the final state of the process. So, a commitment for the sorter would be 
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commits A out oc sort(in) _ — 
These specifications show that process D and the sorter are intended to operate cooperatively, with their 
commitments satisfying their mutual assumptions. Also, process D will terminate in a state satisfying the 
postcondition provided it does not deadlock, ie wait indefinitely for a communication that will not take 
place. So the specifications are adequate to establish weak total correctness: to show that any execution of 
a process for which its assumption is invariantly true and its precondition is initially true will maintain its 
commitment as an invariant and will terminate satisfying the postcondition unless it deadlocks. 

Freedom from deadlock is a property that must be established from the global interactions between 
processes. This requires a specification of all the communication actions that a process is willing to per-
form at each point in its execution and is defined in its liveness invariant. 

Let en(in?) be true for process S if it is ready to read a value on channel in and let en(out!) be true if S is 
willing to send a value on channel out.. Assume us  is true when S has terminated. Liveness invariants for 
process D and S can be written in terms of these functions: 

#in < n = en(in!) A 

LD  A #in = n A #out < n = en(out?) A 
#in = #out = n up 

f#in < n en(in?) A 
Ls A  #in — #out > 0 = en(out!) 

The complete presupposition of a process consists of a precondition and an assumption. The affirmation 
consists of a postcondition, a commitment and a liveness invariant, and the specification gives weak total 
correctness. 

In some cases, processes are designed to execute for ever, for example in operating systems and implemen-
tations of network protocols. Clearly, weak total correctness which requires that the process execution be 
finite is not adequate for specifying such nonterminating processes. The specification must allow the pro-
cess to communicate indefinitely. Let divergence be defined as an infinite sequence of consecutive internal 
transitions. Then for nonterminating processes we must ensure that their execution is divergence-free: ie, 
that each process will be ready to communicate within a finite time. Thus, for infinite processes we use a 
divergence-correctness specification: any execution of the process for which the precondition holds ini-
tially, and the assumption is invariantly true will maintain its commitment and the liveness invariant; and 
will be divergence free. The postcondition will hold if the process terminates. 

Later sections give a precise formal interpretation of such a specification and show how, given the 
specification of each process in a network, it is possible to check that the assumption of each process is 
satisfied, and how it can be shown that deadlocks do not occur. The same form of specification allows a 
subnetwork to be considered as a single process by hiding the internal communications in the network. 

3. The Distributed Programming Notation 

Consider a notation for distributed programming based on the notion of a process. The simplest processes 
consist of one of the commands skip, assignment, input and output and these are called primitive processes. 
Initially, we shall assume that input and output are synchronous processes whose actions occur simultane-
ously and indivisibly. (We shall later consider asynchronously communicating processes). 

Primitive processes can be combined into more complex processes using constructors: for example, the 
constructors sequential composition, if and while can be used to build new processes out of simpler 
processes. If the simpler processes are sequential processes, then the new processes are also sequential 
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processes. But parallel composition is also a constructor and can be used like any other constructor to build 
a new process: in this case, the component processes are executed in parallel. Constructors can thus be 
freely intermixed to create new sequential or parallel processes. 

The notation described here is closely related to Occam (INMOS) and CSP (Hoare, 1978) so we call it 
Occam-S. It allows us to describe programs consisting of disjoint processes communicating with each other 
through named channels. An Occam-S program is itself a process, but it is called a closed process as it 
refers to no processes other than its components. Thus, it can be considered as a hierarchy of processes, 
and the structure of the hierarchy is syntactically determined. 

The if process is similar to Dijkstra's nondeterministic alternative command: it consists of a number of 
guarded processes, each having a guard b, and a component process Si. The guards are executed and one of 
those that evaluate to true is chosen nondeterministically and its component process is then executed. If all 
the guards of an if process evaluate to false then the process deadlocks. The while process is executed 
repeatedly as long as its boolean condition is true. 

The parallel composition constructor // is used to produce a network: for example, Si//...Sk/ASk.01//.../AS,J, 
where processes [Sk.,4],...,[S,J are called servers whose component processes Si  .. S, are executed in paral-
lel. The network terminates when all its nonserver component processes have terminated. Servers, like 
monitors in concurrent programs, provide services to other processes in the network through their com-
munications. Servers are local to a network: they are created with the network, they die with the network 
and they can communicate only with the processes of the network. Servers do not have to be programmed 
to terminate as they are automatically destroyed with the network. 

Processes communicate with each other by sending and receiving data through ports which are connected 
to named channels. The input process C?x reads a value into a variable x from its port C? which is con-
nected to channel C. The output process D!e sends the value of the expression e through its port D! along 
channel D. A channel in Occam-S connects exactly two processes through an input port of one process (eg, 
C?) to an output port of another process (eg, D!) and can carry data in only one direction. Channels may 
differ in their characteristics: here we consider communication which is synchronous, i.e. input and output 
over a channel occurring at the same time. This means that the sending process must wait until the receiv-
ing process is ready to receive data, and vice versa. 

The alt constructor enables a process to be ready to communicate through any one of a number of ports. 
The components of an alt process are guarded processes each having a guard bi;ci  and a component process 
Si. A guarded process is enabled if its condition bi  is true; it is ready to execute if it is enabled and its com-
munication c, can be performed. The alt process waits if none of its guarded processes is ready to execute. 
If one or more of its guarded processes is ready to execute, exactly one is executed: the communication of 
this guarded process is followed by the execution of its component process. If none of the guarded 
processes is enabled, the alt process deadlocks. 

The ports and variables of a par-process can be accessed by its component processes provided each such 
port and variable is accessed by at most one such process. For example, a component process can commun-
icate with a process outside its network using a port inherited from its par-process and connected to an 
external channel. A channel connecting two processes within a network is called an internal channel. 

We can now define an abstract syntax for Occam-S. Let S range over processes, e over expressions, x over 
program variables PVAR, x over variable lists, e over integer expressions, b over boolean expressions, C,D 
over ports and ci  over communication commands C?x and C!E. 

<process> ::= skip I x:=e I C?x I C!e I 

seq Si  ; S2  ...; Sr, end I 
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if bi  --> S1  El • • • 0 bn 	S„ fi I 

while b do S od I 

alt bi  ; ci  —) S1  0 • • • El 	; cr, 	S n  end I 

par NET end 

<network> ::= S1 // • • • // Sk [Sk+1] //•••il [Sn] 

where 0<k5n. 

Let PVAR and PPORT be the sets of program variables and ports respectively. A basis is a triple (1,0,V) 
where I,OcPPORT, VcPVAR and I,O,V are finite. With each process we associate a basis B, denoted by 
B::S, indicating that all the input ports, output ports and program variables used by S are in I, 0 and V 
respectively. Note however that B may contain ports and variables not used in S. The basis of a network is 
designated by 

B::NET = (Bi::Si//...//Bn::[S,]) where B = L.) Bi  

The following rules formalise the (syntactic) constraints on the use of ports and variables. A process 
(I,O,V)::S is said to be well-formed if each of its ports is used exclusively for either input or output. 

(la) 

Similarly, the network B::NET = (B1::S1 //...//Bn::[S,J), where Bi=(1i3Oi,Vi) and 13=(1,0,V) is well formed if 

'di j, 15ij5n, i#j : BinBi=0 

Vk<j5n : Vi  = NULL , Ii, Oi  c no 
	 (lb) 

That is, no input port, output port or variable can be shared between processes; all servers are local to a net-
work. Within a network, ports with matching names (eg, C? and C!) are implicitly connected by synchro-
nous channels of the same name (ie, C). 

Let (I,O,V)::NET be a well formed network. Its par process B'::par NET end is well formed if: 

(I-0,0—I,V) B' 	 (lc) 

Note that B' may contain a port with the same name as an internal channel: this will then represent a dis-
tinct external port, as the par constructor automatically "hides" all the internal channels. 

Example 

((C,E), (D), (x,y )):: seq C?x; D!x*x end 

Basis( seq C?x; DIx*x end ) = ((C), (D), (x)) 

In the rest of the paper, we shall use S to designate the well formed process (I,O,V)::S with CH = 
Similarly NET will designate the well formed network B::(B1::S1/4..an::Sn)  with B1,0,V), 11%1T = 
EXT=(I-0)U(0-0 and CH=IUO. In this notation, operations on sets have been used as operations on 
bases in a pointwise manner. For example, if B1 = (11,01,V1) and B2 = (I2,02,V2) then 

B1 n B2 = (nru, o1n02, v1nv2) 
Also (0,0,0) will usually be abreviated to 0. 

Occam-S differs from CSP in not permitting "mixed guards". Thus, a CSP program fragment of the form: 
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if 

b1  => S1  0 • • • 0 bk  => Sk ❑ bk+i ; ck+1 => Sic+1 El • • • El b. ;cri => S. 

fi 

would be rewritten in Occam-S as 

if bi  => Si  0 • • • El bk  => Sk  

0 BB => alt bk+i ; ck+; => Sk+1 ❑ • • iThn;Cn => Sn  end 

fi 

where BB = bk+i  v • • • v bn  

The Occam-S notation is as expressive as CSP but it is a subset of Occam in which features dealing with 
time (like WAIT, AFTER, NOW) have been removed; procedures, replicators and variable declarations 
have also been omitted but this is for convenience as they are not central to the main concerns of this paper. 
Unlike Occam, the notation does allow input and output communications in guards, channel declarations 
are implicit and the if construct has been extended to allow nondeterminism. 

4. Semantics 

The behaviour of OCCAM-S processes can be formally described in terms of an operational semantics 18  
19  in the style of Plotkin. The semantics is formulated as a labelled transition system, where each point in 
the execution of a process (or a network) is represented by a configuration and one step of the execution of 
the process is represented by a transition. 

A configuration consists of S, which is the remainder of the program still to be executed, and the current 
state a, giving value of the program variables. A special symbol "E" designates the empty (terminated) 
process. The set of configurations CONFB  is defined below. For simplicity, we assume that all variables 
take integer values. 

Let Z be the set of values taken by the variables. Given a basis B.(I,O,V), we define 

a E STATEB  = (V Z) 

S E PROCESSB  = S I B::S is a well formed process ) U (E) 

NET E NETWORKB  = (NET I B::NET is a well formed network) U (E) 

ti E CONFB  = (PROCESSB  U NETWORKB) x STATER  

The set of terminal configurations, representing a terminated process, is given by: 

TCONFB  = E x STATER 

A process moves from one configuration to another on carrying out an action. The transition is labelled by 
the type of action: an internal action (denoted by "") or a communication. An internal action is a local 
action of the process (such as assignment) which is not affected by any external process. A communication 
action in a process requires the participation of another process and so is explicitly recorded by a suitable 
label in the transition: 

C?v represents the input of a value v over an external input channel C 
C!e represents the output of expression e over an external output channel C 
C.v represents the communication of a value v over an internal channel C 

The set of labels is given below. 

V E LABELB  = (I — 0) x(?)xZ (0 — I) x(!) x Z (I (I 0) x f x Z (*) 
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The semantics is given by a transition relation —>g  c CONFB  x LABELS  x CONFB. A transition is 

represented as B:: T —> f, where —3 is the transition labelled by v, T,TfE CONFB  and veLABELB. We will 
usually omit mention of B in a transition. We also assume the following identities: 

E;S=S, seq E end=E, par E end=E 

and 

<skip,cr› 	<E,a> 	 (1) 

The process skip starting in a state a will terminate in the same state in one step. Further, this action is an 
internal action. 

Let a[d/x] represent the state obtained by replacing the value of x by d in a. The transition rules for assign-
ment, simple communication, sequential composition and if follow. 

<x:=e,a> --> <E,a[a(e)/4> 	 (2) 
cier(e) 

<C!e,a> -4 <E,a> 	 (3) 

<C?x,a> —> <E,a[d/x]> 	V d€ Z 	 (4) 

<S1,cr> -4 <S 1',a'> 

<S1;S2,a> —> <S1',e> 

<S,a> --> <S',a1>  

<seq S end,a> -4 <seq S' end,a'> 

a(b)=true 

<if b then S1  else S2  fig> —> <Si,a> 

a(b)=false 

<if b then Si  else S2  fi,a> --> <S2,0> 

In the following rules for alt and while , let ci  be a communication command of the form C?x or C!e. 

a(bi)=true, <ci,cr> 	<E,cr'> 
i=n 

<altElbi;ci-->Siend,cr> 

a(b)=true 

<while b do S od,a> --> <S;while b do S od,a> 

a(b)=false 

<while b do S od,a> --> <E,a> 
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Consider a well formed network B::NET = ( S1//...//Sk/ASk1//[S„] ) with Bi::Si. The transitions of the net-
work can be defined in terms of the transitions of its processes. We give an interleaving semantics for 
parallelism, i.e. we assume that only one action can occur at a time in a network of parallel processes, and 
that two independent actions in two different processes occur in some arbitrary but fixed order. 

B1:: <Si,cri> 	<Si',cri'> 

where v = * or C?d or C!d, and Ce INT 
Sk=Sk', crk=crk for k#i 

v  B:: <S1//...HISnl , 1x..• • xcrii> --><S17/...il[Sni , ai'x • • • xcrn'>• 

Bi:: <Si,cri> --> 
Cld 

Bi:: <Si,Crj> 	<Si',Gc>, 

Sk="Sk% crk ork for kt-ij 
C.d 

B:: <S1//...//[Sn] , aix • • xon> 	<S1 7/...//[S0 , cri'x • • • xon'> 

This states that an internal communication C.d can occur only by simultaneous input and output by two 
processes Si  and Si  of the network over the internal channel C. 

The network termination rule given below states that the network terminates when all its non-server 
processes have terminated. The local state of servers is irrelevant on termination. 

<Eil...//EMSk+11//.../AS.] , crix • • • xon> ---> <E, (-six • • xcrk> 	 (14) 

Note that no priority is given to this transition and the servers can continue to execute as long as possible. 
However, if all the servers are deadlocked while all the non-server processes have terminated then this 
transition must be performed as it is the only possible action. 

Finally, the transitions of a par process can be derived from the transitions of its network: 

B:: <NET,a> 	<par NET' end,cr'> where v = * or C?d or C!d  

B':: <par NET end,o> —> <par NET end,o'> 
C.d 

B:: <NET,cr> ---> <NET',o'> 

B':: <par NET end,cr> <par NET' end,o-'> 

The internal communications of the network cannot be observed outside the network (Rule 16) and must be 
considered as internal actions of the par process. 

A configuration is called terminal if it has the form <E,a>. It is called deadlocked if there exist no T',V 

such that 't ---> 'r'. A transition with -r --> T with label * is called an internal transition. A configuration T 

is called a blocked configuration if there is no T' such that T 

The choice set of a configuration gives the set of actions possible from that configuration. Let 
VE LABELB, CONFB. Let ch(C?d)=C?, ch(C!d)=C!, ch(C.d)=C?,C!, ch(*)=* . Then 

choice(T)=U(ch(v) I T --> 	for some T') 

It can easily be shown that a configuration i is deadlocked iff choice(T)=0 and it is blocked iff 
* echoice(r). Thus, the choice set adequately represents the deadlock behaviour of processes. 

(12)  

(13)  

(15)  

(16)  
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If we can make the weak assumption that a process (or a network) must carry out one of its possible transi-
tions in finite time then it will continue to progress until it has reached either a deadlocked or a terminal 
configuration. When there is more than one transition possible, the choice between them is nondeterminis-
tic. We do not make any assumptions about fairness. 

An execution over a basis B is a sequence of transitions 111----T1  —v1 	T2 —v2  ---> T2  • • • which is either 
infinite or in which the last configuration is terminal or deadlocked. 

Dom(T) = (1..n) if IP = t1  —v1  —* T2  —v2  —> 'r2 • • • T., 

(i i>0) if 'I' is infinite 

An execution is said to diverge if it contains an infinite subsequence of consecutive internal transitions. 

Definition (Semantics): The semantics of a process B::S is given by 

[B::S]=(`P I `11  is an execution starting in a configuration <S,o->, where ae STATES) 

5. Describing the behaviour 

As can be seen from the example, the sequence of communications carried out by a process reflects an 
important aspect of its behaviour. Let the communication of the value d over a channel C be represented as 
a tuple C.d . A finite sequence of such communications is called a trace. We assume the following standard 
functions on finite sequences. 

first(seq) 	gives the first element of the sequence seq 
<a> 	gives a unit length sequence containing a 
rest(seq) 	gives the sequence obtained by removing the first element from seq 

If tr is a trace and CS a set of ports, then triCS represents the trace obtained by deleting from CS the com-
munications which are not over the ports of CS. For example 

(<C.3>A<D.4>A<C.2>) T C? = <C.3>A<c.4> 

Consider an execution 	• • • "En  • • • . At any point kE Dom(`ls) we can make an observation which con- 
tains 

(1) The state of the process, i.e. the values of all its variables. 

(2) The communication trace of the process, i.e. the sequence of communications carried out by the pro-
cess so far, assuming some initial trace h0. 

(3) The set of enabled actions of the process, i.e. which of the process ports are enabled for communica-
tion and whether an internal action (designated by *) is enabled. 

(4) Whether the process has terminated: for a network, we record additionally which of its processes 
have terminated. 

Assuming that the initial trace is h0, let Obs(tP,h0,k) denote the observation at point k of the execution 'P. 

Since an observation contains many types of entities, we will use formulas of many-sorted first order logic 
to specify sets of observations (Enderton6  ). We assume that the program variables PVAR take values of 
some data type called DTYPE. The formulas also contain variables of the form his, where CS is a set of 
ports, denoting the sequence of communications carried out by the process on the ports in CS. Such vari-
ables are called trace projections (Zwiers23  ). As before, the predicate en(P) indicates whether the associ-
ated process is willing to communicate through port P and the boolean variable us  signifies whether the 
process S has terminated. The specification also includes logical variables used in assertions but not in 
programs. They differ from the auxiliary variables used in other proof systems (Owicki16  , Apt' , Levin 



and GriesI2  ) in that no values can be assigned to them. 

Let LVAR.(a,b,c...) denote the logical variables taking values of DTYPE. Variables TVAR= (t1,t2  • • • ) 
take traces (finite sequences of communications) as their value. IVAR=fm,n...) have standard natural 
numbers NAT as values. We also assume that the standard functions 0, 1, + and over NAT are available. 

The assertions are formulas of many-sorted first order logic. Other functions and predicates can be defined 
in terms of the functions and predicates given above. Thus #seq denoting the length of the sequence seq is 
defined by the axioms: 

#X, = 0 

#<a>At = 1+#t 

segraseg2  A seqimseq2vseq1=seq2  

Similarly, seq[i] can be defined to denote the i'th element of seq and val*(tr) to denote the sequence of 
values in trace tr. 

Examples 

(1) x=a A y=x+1 

(2) hm,D!  = <C.2>A<D.2>A<D.3> 

We will usually drop parentheses from the set of ports and from the singleton lists, and write (2) as 

(2') hc7,131 = C.2^D.2^D.3 

(3) huochc?  

and we will abreviate val*(h sub {C?}) as C?. Thus (3) can also be rewritten as 

(3') D!c<C? 

(4) D!ocC? => en(D!) 

(5) D!=C? => us  

We can associate a basis B=(I,O,V) with each formula P, denoted by B::P such that the input chan-
nels, output channels and program variables referred to in P are from I, 0 and V respectively. fv(P) 
designates the set of free variables of P. 

Definitions 

(1) Variable substitution : Let q[erx] represent the predicate obtained by simultaneously substituting all 
the free occurrences of the variables in x by the corresponding expressions from the list e. It must be 
ensured by systematic renaming of bound variables that no free variable in e is bound. 

(2) Trace extension : Let P contain trace projections hs1, 	, hsn. Then P[hAC.v /h] represents the 
predicate obtained by replacing each hsi  for which CE Si by hsiAC.v in P. 

(3) Channel renaming : Let P[nchlichl] represent the predicate obtained  by  simultaneously renaming the 
channels in the list chl  by the corresponding channels in the list nchl. Similarly, the renaming of 
channels of a process S [nchl/chl] can also be defined. 

Let us denote by 8 the assignment of values of appropriate type to the logical variables and by 8 the 
set of all such assignments. Given an observation 5 and a logical assignment 8 we can evaluate the 
truth value of a formula P. Let <5,0>IP denote that P evaluates to true in the valuation <5,0>. 
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6. P-A logic 

A P-A formula (presupposition-affirmation formula) has the form 

B:: [ A : p) S [ q  : C : L] 

where the presupposition comprises of the invariants p the pre-condition and A the assumption. The 
affirmation contains the postcondition q, the commitment invariant C and the liveness invariant L. The 
basis B gives the set of input ports, output ports and variables used in the assertions or the program. The 
following syntactic restrictions must hold: 

(i) fv(A,C,L) rl PVAR = NULL 
(i) variables of the form us  and predicates of the form en(P) do not occur in (A,C,p,q) 

In the subsequent discussion, we will use the meta-predicate en(*) to indicate that an internal action of the 
process is enabled. 

A specification can be intuitively described to mean the following. Consider any execution IF of S starting 
such that (q) holds initially. A point in the execution IP is called obedient if the assumption (A) holds 
continuously from the start of the process to that point. The P-A formula states that the commitment (C) 
and (1, v en(*)) hold at each obedient point; the post-condition (r) holds in the terminal-configuration pro-
vided it is an obedient point, and the commitment [C) holds after an external output communication if the 
point before the communication is an obedient point. We can define two kinds of P-A formulas. A total 
correctness P-A formula will ensure that if all points in an execution are obedient then the execution is 
finite. A divergence correctness P-A formula will ensure that if all points of an execution are obedient then 

[B:: A : q II -he recution Is divergence free. A divergence correctness P-A formula will be represented as 
S r:C:L 1. The absence of surrounding parentheses will denote a total correctness P-A formu . 

' 
It will have been noted that we do not require L to be invariantly true: only (L v en(*)) must be invariant. 
This means that L describes only the blocked configurations of the process. This is adequate as non-
blocked configurations cannot be deadlocked. Such a specification leads to considerable simplification in 
the specification of a network of processes, as we need to describe only the blocked configurations of the 
network, disregarding its internal communications. 

Formally, we can define the interpretation of a P-A formula as follows. 

e [B::S1, 0 e THETA, ho  E TRACE, 

Let Tk=conf(Y,k),and 8k=Obs('Pho,k) 

OBEDIENT(k) = V j k: <0,8i> 1 A 

Then B:: [A : 	S [ r : C : L] means: 

OBEDIENT(k) => <0,6k> 1 (C A (L v en(*)) A (u => r) 

OBEDIENT(k) A ck  - C!d -> tk+1 => <0,8k+i> 1C 
If <0,8k> 1 q 

then'Total correctness : (V j E Dom(Y) : OBEDIENT()) => finite(111) 
Divergence correctness: (V j e Dom('F) : OBEDIENT(D) => divergence-free('11) 

Theorem : Any property P such that A A C A (L v en(*)) => P will hold throughout the execution of the 
process in any enviroment satisfying A if the precondition holds initially. 

The predicate en(C) indicates that the channel C is not blocked, i.e. a communication can occur on channel 
C. Note that differs from en(C?) which is true when the input port C is enabled. 
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Corrolary : For any closed network, if C„„, 	=> tine, v 3 C : en(C) then the network is deadlock-free. 

7. Proof rules 

There is a proof rule for each primitive process and for each constructor; each composite process can be 
considered to be synthesised from its components using a constructor. The specification of a process can 
then be proved from the specification of its components using the proof rule for the constructor. 

In this section, we give the proof rules for establishing the correctness of a P-A formula. The proof rules 
for the sequential part of OCCAM-S are similar to the conventional rules in Hoare logic for total correct-
ness (Gries7  ). 

7.1. Network composition 

Let B::NET = (S1//...//Sk/gSk4.1]//...//[S,J) be a well formed network with B=(I,O,V), Bi::Si. Since the chan-
nels we are considering are synchronous, the depatch and receipt of a message must occur simultaneously. 
Further, such a channel will be ready for communication when both its input port and output port are 
enabled. Thus, we can characterise a synchronous channel by the following invariances. 

C? = C! 
en(C) = en(C?) A en(C!) 

For the network as a whole, the following invariant must hold. 

SMERGE = V C E INT : 

Let Bi :: [Ai :qi] 	[ri : Ci : Li, be the specification of the process Si. This specification refers only to the 

ports and variables of the process, which cannot be accessed by any other process. Hence, execution of 
any other process in the network cannot "interfere" with the specification of the process (01,vickil5  ). 

Initially, the precondition of each process of the network must hold. If all the processes cooperate, the 
commitment of each process will hold invariantly. Hence, 

q„, A ( V 15 i 5 n: ) A SMERGE 

C„, A ( V 1 5 i n: Ci ) A SMERGE 

The network terminates when all its non-server processes have terminated. We could say that the 
processes cooperate if their liveness invariants hold and if the post-conditions of the non-server processes 
hold on termination. Hence, 

rile, A ( V 1 i 5 k: ) SIVIERGE 

1....„„ A (frl 1 :5 i 5 n: ) A SMERGE A Uma=111A • ' • Auk 

The network may contain external channels, and the network behaviour must be specified with respect to 
some assumption B'::A„„, about the behaviours of these channels. Note that the network assumption cannot 
mention internal ports of the network and must be only over the external ports of the network. 

The environment of a process consists of the external channels of the network and the other processes of 
the network. The behaviour of the other processes in the network can be characterised by: 

Cre,,,,(i) A ( V 1 5 j 5 n, j a i: Ci ) A SMERGE 

To establish that the processes of the network do cooperate, we must show that the assumption of each pro-
cess in the network is upheld by its environment, i.e. for each process Si of the network, 

Cr„(i) Ane, .=> Ai  

gnu A Ana => Al 
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A channel connecting two servers of a network is called a server-channel. It is sometimes possible for two 
servers to communicate infinitely on a server-channel, preventing more useful communication with the 
other processes of the network. To ensure that such infinite chatter does not occur we must show that at any 
point in the execution of the network the number of communications over a server channel is bounded by 
some total function of the number of communications over non-server ports. Let SERV denote the set of 
server ports, i.e. ports connected to a server channel, and NSERC denote the set of non-server ports, i.e. 
the external ports as well the ports connected to non-server channels. 

nochatter AVCE SERV: #C f( 	E : #D ) 
De NSERV 

Thus, the network composition rule can be stated as follows: 

Bi  :: [Ai  : 	Si  [ri  : C; : Li
) 

all the processes` rocesses cooperate 
Cne, => nochatter 

B:: [An, : (Inez] NET[ rn„ : Cn, : Lnet] 

Using this proof rule we can derive weak total-correctness specification of a network of processes. The fol-
lowing corrolary allows us to prove that there is no deadlock in a closed network so that strong total 
correctness of a closed network can be establised. 

Corollary (to theorem): For any closed network, if C„, 	tiL4,t  N.,  3-C  : en(C) then the network is 
deadlock-free. 

7.2. Network abstraction 

An important requirement for a proof system for distributed programs is that it must allow a network of 
processes to be described as a single abstract process, disregarding the details of its internal communica-
tions. The predicates in the external specification of the network must therefore not mention the internal 
ports of the network. 

For a well formed network B::NET such that B.-41,0,V), we define an external basis B'::(1-0,0—I,V). The 
set of internal channels of the network INT is I n 0 and the set of its internal ports CINT is (I n 0)x (? ,!) 
The internal channels of the network are created with the network and are initially empty. 

B:: (A: (qAh 	= 	NET [ r : C: Lin] 

A A C A 	=> (1.,„„ vaCE INT: en(C)) 

B':: [ A : q] par NET end [r C : 
	 R13 

The second clause in this rule can be explained as follows. The external liveness invariant Lex, of the net-
work must describe those blocked states of the process which are unaffected by any possible internal com-
munication because, after network abstraction, such communications must be considered as internal 
actions. 

73. Other proof rules 

In what follows, the basis of all P-A formulas is assumed to be (1,0,V) with CH = I x (?) U O x !. We will 
not explicitly mention the basis in the formula; u will designate the termination flag of the process. 

R12 
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Definition 

[ A : q] S [ r : C :<L>] A [A: q] S [ r : C :L] 

where L' A L v3 v:r A us  A YCE CH : --en(C) 

The P-A formula with <L> describes all the blocked configurations of the process except the terminal 
configuration. Such a formula is much more convenient to use for sequential composition as can be seen 
from the sequential composition and while rules below. 

q A A => C 

[ A : qj skip [ q : C:<L>i 

q A A => C  

[ A : q[e/x] i x := e [ q : C :<L>] 

The proof of a communication statement is given in two parts. In the first part we verify the correctness of 
the postcondition r and the commitment C and in the second we check the correctness of the liveness 
invariant. The conclusion of the first part of the check is written by enclosing the communication in <>. 
Formally, this is just an intermediate syntactic stage in applying the proof rule. 

Let h' = hAD.e 

q A A => C A C[11711] 
q A A A A[h7h] => r[h7h]  

[ A : q] <D!e> [ r : C I 

Let h' = hAD.v, where v is a fresh logical variable. 

q A A => C 
V,: (q A A A A[h'/h] => C[11711] A r[h'/h,v/x] 

( A : cd <D?x> [ r : C] 

Let port(C?x) A C? and port(C!e) A C!  
q A A A en(port(comm)) A VcEcH, n(comm)- —, en(c) => Walsall] 

[ A : q] <comm> [ r : Ci 

[ A : q] comm [ r : C :<L>i 

[ A : cd Si  [ rl : C:<L>] 

[ A : rl] S2 [ r : C:<L>) 

[ A : (I] SI ;S2  [ r : C:<L>i 

R1 

R2 

R3 

R4 

R5 

R6 
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[A:q]S[r:C:<L>] 

[ A q) seq S end [ r : C :<L>1 

[ A:q A bi] Si [r:C:<L>i 

q A A A BB A V c E CH en(c) => L[false/u]  

[ A : q] if Oi.ibi => Si  fi [ r : C :<L>) 

q A b => bf > 0, where bf E IEXPR 

[A:q A b A bf=v]S[q A bf<v:C:<L>1 

[ A:q] whilebdoSod[q A --.1):C:<L>i 

[A q A bi] <ci> [ri  

[ A : ri i Si  [ r C :<L>i 

V T [1..n] 
q A A A bi  A en(port(ci)) 

ke
A bk  A en(port(ck)) => L[falseiu] 

je T 	 T 

(A) : (q) alt O bi; ci 	Si  end{r) : (C) 

[ A:q] S 

[A:cd SHC:<LA---itr>] 

A=>A1 ; q=>ql ; r1=>r ; C1=>C ; L1=>L 

[ Al : ql] S [ rl : Cl :<L1>] 

[ A: q] r : C:<L>] 

7.4. Proof rules for divergence correctness 

With the exception of the rule for the while contructor, the other proof rules for total correctness can be 
used to combine the divergence correctness specifications of components into the divergence correctness 
specifications of composite processes. But in order to prove that loop execution is divergence-free we need 
to show that there cannot be an infinite sequence of loop iterations involving no communication. 

q A b => bf > 0 

[A:q A b A (ha/  =t) A bf=v]S[q A (hai=t=> bf<v:C:<L>] 

[A:q] whilebdoSod[q A —,b:C:<L>] 

The new rule is not necessary if all the internal channels of the network can be considered as slave chan-
nels. But it can be used to establish the correctness of a server implemented as a network of processes 
which do not terminate. 

R7 

R8 

R9 

R10 

R11 

R15 

R9d 
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8. Asynchronous Communication 

Processes can communicate asynchronously with each other if messages sent between them are bufferred. 
A buffer of finite size puts a limit to the number of messages which can be sent before the first of them is 
received, but there is no such limit with an infinite buffer. In both cases, the basic problem is to determine 
how to relate the sending of a message in one process with its receipt by the other process. 

We shall assume that each channel has an infinite buffer. Thus, the sender can always send a message 
without delay, and the receiver need only wait if there is no message in the channel. As before, each chan-
nel will connect a pair of processes and messages will be received in the order in which they were sent. 

We shall use the same syntax as for synchronous communication with the restriction that output guards are 
not used in an alt constructor as they are non-blocking. In asynchronous communication, the sending and 
receipt of a message are distinct events and they will be recorded separately in the communication history 
as the triples C?d or Cle and a trace could have the form C!2"*D!3"C?2. The liveness invariant now need 
only specify whether input ports are enabled. 

An asynchronous channel C can be characterised by the following invariances: 

C? « Cl 

en(C) C? « C! A en(C?) 

Thus for a network of processes communicating on asynchronous channels the network invariant 
SMERGE is replaced by 

ASMERGE o VccEvr  : C? oc C! 

The network composition rule and network abstraction rules for asynchronous networks are same as the 
previous rules R12 and R13 using the new definitions of ASMERGE and en(C). 

The proof rules for all the sequential programming constructors remain unchanged, and verification is done 
in two parts: part 1 uses the proof rules R3 and R, and part 2 is given below. 
Let h' = hAD.e 

q A A => C A C[h'fit] 
q A AA A[If/h] => r[h'/h]  

R3 
[ A : 	<D!e> [ r : C 

Let h' = hAD.v, where v is a fresh logical variable. 

q A A => C 
Vv : (q A A A A[h'ill] => 	r[h'/h,v/x]  

[ A : qj <D?x> [ r : C] 

Let port(C?x) 6 C?. 

q A A A en(D?) 

[ A : 	<D?x> 

A VcE CH, 

[ r : C] 

c 	D? : 	en(c) => L[false/u] 

[ A : <D!e> 

[ A : (I] comm 

[ r : Ci 

R5a 
[ r : C :<L>i 

R5b 
[ A : q) comm [ r : C :<L>] 

The other proof rules are the same as for synchronous communication. 

R4 
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9. Conclusions 

The last few years have been notable for the development of a variety of different proof systems for what is 
basically one class of distributed programming languages. Building on the pioneering work of Owicki and 
Gries 17  which showed that Hoare-style proofs of individual processes in a shared variable parallel program 
are valid provided the processes can be shown to be 'interference-free', the first of these proof systems 
came from Apt, Francez and de Roever 1  and from Levin and Gries 12  : the former used local and global 
invariant assertions and a proof of 'cooperation' between the proofs of individual processes to establish the 
properties of a program, while the latter extended the work on interference freedom to distributed programs 
using global auxiliary variables and a proof of 'satisfaction'. Both were concerned with what Lamport11  
has called 'safety properties', which is partial correctness and deadlock freedom, but if the termination of 
each process could be proved locally the Levin and Gries proof system would also handle total correctness. 
A different style of proof system was developed by Soundararajan 22  using reasoning over the traces, or 
communication sequences, of different processes: unlike proofs using satisfaction or cooperation between 
the proof outlines of different processes, the parallel composition rule in this system requires the communi-
cation sequences of different processes to pass a test of 'compatibility'. Each proof system threw some 
light on the methods that could be used for proving properties of distributed programs, but none of them 
could be said to lead to a method of modular program construction as any proof required fairly involved 
global reasoning (as Barringer4  illustrates well). 

Other proof systems have used reasoning over program traces: eg, the work of Misra and Chandy 14  and 
subsequent developments of this work by Zwiers and de Roever23  Though these proof systems laid down a 
possible framework for developing programs and proofs compositionally, they shared with their predeces-
sors a motivation which is primarily verificational in the sense that they provided proof rules for specific 
language constructs. 

Given the extent of detail inherent in even simple programming languge constructs, it is difficult to con-
struct a verification method based on proof rules for language constructs which is also sufficiently abstract 
to allow the effective specification of entire distributed programs. And little acquaintance with these proof 
systems is needed to realise that the verificational systems are cumbersome to use, even when some rigour 
is omitted in the interests of convenience. 

Using a rather different approach, Hoare 9  has described a total correctness proof system for communicat-
ing processes based on traces which is primarily specificational, in that it is relatively independent of the 
constructs of languages and therefore inherently more abstract than verificational proof systems. 
Specificational systems do have many attractive properties, such as conciseness and compositionality, but 
when used in a program development system they would need to be supported by some verificational sys-
tem to guarantee that the programs that are finally produced do in fact conform to the specifications. And it 
is not clear that the temporal logic based proof systems (Pnueli20  , Barringer, Kuiper and Pnueli3  ), which 
in some sense do bridge the gap between verificational and specificational proof systems, offer any 
significant advantages in terms of simplicity when used for program development. 

One way to bring together the requirements for providing abstract specifications and verification rules is for 
the proof system to make effective use of features for network abstraction and network composition in sug-
gesting a top-down program development method. As we have shown in Section 2, it is possible to specify 
a distributed program at a level which permits its total correctness to be established without at the same 
time requiring details of its implementation. These specifications can then be used to define the operations 
of individual processes, and the proof rules of Section 7 used to verify that the processes are correct. The 
language used can be rich enough to make use of network abstraction, servers and asynchronous communi-
cation and no further check is necessary to establish either "interference freedom" or "compatibility". 

This was the aim of this work, and we shall leave the reader to judge how much of it has been achieved. It 
is clear, nevertheless, that considerably more work is necessary in using this method for more substantial 
problems so that its effectiveness and its limitations can be studied. 
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