THE UNIVERSITY OF

WARWICK

Original citation:

Alexander-Craig, I. D. (1987) The Blackboard architecture : a definition and its
implications. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-098

Permanent WRAP url:
http://wrap.warwick.ac.uk/60794

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60794
mailto:publications@warwick.ac.uk

Research report 98

THE BLACKBOARD ARCHITECTURE: A
DEFINITION AND ITS IMPLICATIONS

lain D Craig

(RR98)

Abstract

The blackboard architecture for problem solving has been considered as a
more-or-less informal construct for a considerable period of time: this paper
attempts fo rectify the matter by presenting a more rigorous definition. Due
to the controversy surrounding the status and role of the concept of
opportunism in blackboard systems, an argument is presented to show that it
is not a fundamental property of the architecture — it merely results from the
memory-based control component of implementations. Finally, the issues of
modularity and generality of the architecture are addressed. The findings,
here, to suggest that the architecture suffers from severe problems.

Department of Computer Science
University of Warwick

Coventry , March 1987
CV47AL, UK

o1 -1 1 L1

Iain D. Craig

Department of Computer Science,
University of Warwick,

Coventry CV4 7AL, UK

1. Introduction

In this paper, I will attempt a more or less rigourous definition of the blackboard architecture. Such
an exercise is quite obviously required, for there is no adequate definition of what constitutes a blackboard
system in the publically available literature, although there is a brief published definition by Nii (Nii,
1986a) and there is a Stanford Technical Report by Hayes-Roth (Hayes-Roth, 1983) devoted to the subject.
The comments by Nii are very brief and, perhaps, rather biased towards the demands of signal processing
applications; the Hayes-Roth paper is not generally available, although it discusses the architecture in con-
siderably more detail than (Nii, 1986a). The definition proposed by Nii suffers from some significant prob-

lems, as I will argue below.

The blackboard architecture is considered to be a general model for problem solving. As such, it can-
not be described or defined purely in terms dependent upon one particular class of problem or upon one
psychological theory. In this paper, I will attempt a definition which is completely independent of applica-
tion domain needs. It will be seen (and argued) that some implementations of the blackboard architecture
violate some of the constraints which I will require; others will add features that I do not see as being ceﬁ-
tral. As Barbara Hayes-Roth notes (Hayes-Roth, 1983, p. 2), the blackboard architecture is, basically, an
informal construct which is frequently adapted to the needs of a specific application or to the needs of a
particular psychological theory. Without a standard against which to compare systems and models, there is
very little sense in which one can present a system as being a blackboard system, nor is there much mean-
ingfully to be gained in comparing and contrasting other problem solving architectures with the blackboard

architecture.

-2.-

The definition proposed by Barbara Hayes-Roth is very similar to the one I shall present here. The
definition presented here differs in one major respect from the one proposed by Penny Nii. That difference
is the emphasis which Nii places on opportunism. Nii cites opportunism as a defining charac;eﬁstjc of
blackboard systems. Indeed, she claims it as the fundamental property of the architecture. I do not agree
with this and may be viewed as almost taking exception to this. position. The reason for this difference
must rest on the view one has of the architecture: my purpose, here, is to consider the blackboard architec-
ture as a general model of problem solving. This amounts to a view that the issues must reside in the
theoretical properties of an architecture and its adequacy as an explanatory device. Nii, on the other hand,
is very much more concerned with Knowledge Engineering, and seems to view the blackboard architecture
as a device with which to construct complex applications in domains which require considerable power
from the problem solver. Although theoretical considerations are important in Knowledge Engineering, the
focus in that enterprise is the construction of working systems which perform to specification. This, of
course, does not suggest that I am solely concerned with Cognitive Modelling: until a series of experi-
ments along the lines of those reported by Anderson in e.g., (Anderson, 1983), have been conducted, it will
not be possible to argue for or against the blackboard architecture in terms of its adequacy as a theory

within which to account for high-level cognition.

The structure of this paper is as follows. I will begin by giving a a general definition of the black-
board architecture. This definition will serve for the remainder of the paper, although it might be seen to
exclude some systems (notably CHRYSALIS (Terry, 1983)). During the presentation of the definition, I
will contrast blackboard systems with other architectures such as production systems: this will be done by
pointing out those features of blackboard systems which are radically different from other architectures. I
will then move on to the question of opportunism: Nii cites opportunism as being one of the key defining

features of the architecture. I will argue against the position taken by Nii and will argue:

(i) that opportunism is only one aspect of the control behaviour and that it is not crucial in blackboard

systems;

(ii) that opportunism has dangerous consequences, and

-3-
(iii) that opportunism is really not one but many related control phenomena.

The discussion of opportunism is one of the novel aspects of this paper. From this discussion of opportun-
ism, I will consider the generality of the blackboard architecture. Again, there is little discussion of metho-
dology in the literature, so I hope to make some small rectification of this fault by grounding some argu-
ments in methodological considerations. The discussion of generality will indicate some substantial prob-
lems with the blackboard architecture. These problems are concerned with the separation of knowledge
into neatly encapsulated chunks and the relationships between them. The discussion will also indicate that
the complexity of the blackboard architecture can sometimes be overwhelming, a fact which seems to sug-
gest limitations to the claim that blackboard is a general model of problem solving. This fault is already
evidenced, I believe, by the fact that one would not normally consider the blackboard architecture for some
classes of problem (although if one’s focus is cognitive modelling, one might consider something similar --

this point will be extended below).

1.1. Acknowledgements

This paper is the result of many long conversations with Ted Briscoe and Peter Harper on the general
features of the blackboard architecture. David Wilson suggested that I write a paper along these lines and

acted as a sounding board while I developed the approach to opportunism presented in section three.

2. Basic Definition

In this section, I will present the basic definition of the blackboard architecture. Readers familiar
with the blackboard architecture will see that it is a fairly conventional definition which concentrates on the

usual features.
For my purposes, the blackboard architecture has four defining elements:
(i) entries, which are intermediate results generated during problem solving;
(i) knowledge sources, which are independent, event-driven, processes which produce entries;

(iii) the blackboard, which is a structured global database which mediates knowledge source interactions

and organises entries; and

_4-

(iv) an intelligent control mechanism which decides if and when particular knowledge sources should

generate entries and record them on the blackboard.

These elements interact to produce a problem solving style which is "incremental and opportunistic”
(Hayes-Roth, 1983, p. 4) in character. Partial solution islands emerge in different structural partitions of the
blackboard, one entry at a time (in a serial implementation). New islands appear and existing ones grow as
a result of the addition of entries. Eventually, mutually supportive partial solutions merge to form a com-

plete solution.

I will describe each of the architectural elements in more detail.

2.1. Entries

Entries are intermediate results generated during problem solving. Entries may include both elements
of the problem solution and information considered important for generating solution elements. Depending
upon the problem domain, entries may include perceptions, goals, judgements, beliefs, hypotheses, deci-
sions, expectations and so on. In HEARSAY-II (Erman, 1975), the domain was continuous speech under-
standing, so its entries represented hypothetical interpretations of the speech signal. For OPM (Hayes-Roth,
1979), the task was to generate an errand plan, so its entries were decisions about the entries and the organ-
isation of the plan. For PROTEAN (Hayes-Roth, 1984; Hayes-Roth, 1985a), the task is the determination
of protein structure: its entries represent hypothesised atom configurations and constraints between

hypotheses.*

Entries may contain representations of relationships to any other structures found useful or beneficial
by the user. The relationships (frequently referred to as links) connect entries together into solution islands.
In HEARSAY-II, the hypothesis "The first word in the utterance is ’get’" might have a supports relation-
ship to another hypothesis, "The first phrase in the utterance is 'get me’". In OPM, the decision "From
Stanford, travel east on University Boulevard™ may have an elaborates relationship to another decision "Go
from Stanford to The Good Earth". PROTEAN entries are related by relationships expressing constraints

between structural entities: an entry on the Secondary-Anchor level has constraints indicating the position

* The development of PROTEAN continues as I write. This accounts for the tense change over the last three sentences:
HEARSAY-II and OPM are completed projects.

-5-

of the secondary anchor (part of a protein structure) relative to atoms in other pieces of protein secondary

structure.

Entries are represented as structures of arbitrary complexity. They are frequently represented as sets
of attribute/value pairs which describe an entry’s semantic content and its relationships to other entries.
Sometimes, entry history (in terms of the time it was created and by whom, and its subsequent
modifications) is recorded (as it is in, for example, (Craig, 1986)), as well as other information considered

useful by the user.

To make the typical structure of an entry clear, I now give an example entry from the blackboard
control model (Hayes-Roth, 1985b). The entry is generated by the PROTEAN system (Hayes-Roth, 1984)
and resides on the Focus level of the control blackboard. The entry is first described in tabular English form
and then in symbolic form (the latter was printed from a runtime blackboard display). I will then explain
some of the details of the entry so that the reader may gain a better understanding of the role of the entry

and the range and type of information it contains.

Name "Focus" + number

Goal Predicate or function to rate potential actions
(result in range 0 - 100)

Criterion Predicate to evaluate an expiration condition

Weight Goal importance (value in range 0 - 1)

Rationale Reason for Goal

Creator Action that created this decision

Source Information that triggered the Creator

Type Role in the control plan, e.g., "Strategic",
"Solution-Based"

Status Function in control plan, e.g., "Operative”,
"Inoperative”

First-Cycle First operative cycle number

Last-Cycle Last operative cycle number

The entry actually appears as the following. This will give the reader an idea of the genuine structure

of entries on the PROTEAN control blackboard.

Name Focusl
Goal (Eq KS-Type ’Anchor)
Criterion (for Element in ($Level *Secondary-Anchor)
always
($Find-One ((Level-Is ’Secondary)(Copies Element))))
Weight 0.8
Rationale "Develop a comprehensive set of partial solutions
before deciding which ones to refine at the blob level"
Creator Chosen-Action5
Source Strategyl
Type Strategic
Status Operative
First-Cycle 6
Last-Cycle 20

The interpretation of Focus] is as follows.

The Goal of this entry, Focusl, contains a predicate which finds all triggered anchoring KSs: i.e.,
KSs which perform an anchoring operation -- anchoring, in PROTEAN, is the process of attaching one
piece of protein structure to another via the establishment of constraints between the structures. Focusl’s
Criterion says that a mapping should be established between entries on the domain blackboard levels
Secondary-Anchor and Secondary (Secondary-Anchor is the highest abstraction level; Secondary comes
immediately below it): the mapping is establishes a correspondence between Secondary-Anchor entries and
Secondary entries such that the lower entry is a copy of the higher (in simpler terms, the entry at the
Secondary-Anchor level has been dicovered to be a piece of secondary structure which has been incor-
porated into a partial solution). When such a correspondence has been derived, Focusl may expire -- that
is, change its Status to "Inoperative": it will no longer take part in control reasoning. Focusl’s Rationale
requires that partial solutions generated at the Secondary level should be preferred for refinement down to
blob and atomic levels: effectively, this requires that the partial solutions chosen for refinement should be
properly constrained. The Weight of Focusl is used to determine the priority assigned to KSARs con-
sidered for execution during problem solving cycles 6 through 20: the Weight is used by the blackboard
control model in determining priority. During cycles 6 through 20, the control regime partially defined by
Focus1 is Operative and Focusl was created as a result of a control decision at the Strategy level of the

control blackboard. The Creator was the fifth KSAR to be executed during the execution of the system.*

* The information in the Creator, Source and Type slots is explained only with reference to the blackboard control model.
This is an example of how information contained in entries depends, for its interpretation, on a global understanding of the
system, its architecture and the det=Ts of the application domain. A similar point can be made about the slots which refer to
the PROTEAN problem solving blackboard.

.

Despite the implementation specificity and detail of this example, it can be seen that entries contain
large quantities of information. Focus1 contains information about the kind of decision it represents (the
Goal and Criterion slots), about its history (Creator and Source slots) and about its role in the solution pro-
cess (Rationale and Weight). Focus] also contains relationships to other entries: in particular, the Creator
slot refers to a Chosen-Action (an entry recording the KSAR selected for execution on any cycle) and to a
Strategy decision (the value Strategyl in the Source slot). This example entry also shows the variety of
information which may legally be contained by entries: the attribute values range from single symbols to
pieces of implementation-language code. The interpretations of these items is performed by Knowledge
Sources which trigger on entries and by users of the system (the Rationale value is used during explanation,

for example).

2.2. Knowledge Sources

Knowldge Sources are the processes which generate or modify blackboard entries. Hayes-Roth
describes them as "cognitive processes”. Knowledge Sohf;:es contain the procedural representation of
knowledge employed b'fé' 'syétem to solve problems. They also contain information which assists the

system’s control component in making decisions about which KS 1o execute.

The structure of a‘IéS is—:'usually described as being in >t.wo parts: a condition and an action. The con-
dition describes the circumstances under which a Knowledge Source can contribute to the problem solving
process. Usually, the condition requires the existence of previously generated entries and can be viewed as
a predicate on those entries. The action of a Knowledge Source generates new entries to be posted on the
blackboard or else modifies the contents of existing entries. The two-part structure or condition-action for-

mat corresponds to the two stages of KS operation:
(i) triggering, during which a KS’s condition is evaluated; and
(i) execution, during which a KS’s action is performed.

Knowledge Sources are basically event-driven because only those KSs whose conditions have evaluated to

true can execute their actions.

Knowledge Sources represent independent knowledge-possessing entities. They are permitted to

-8-

interact only by the generation or modification of entries: that is, communication between KSs must always
be via the blackboard and not, say, via additional tables or via shared variables. KSs influence each other
indirectly whenever the execution of a KS’s action generates or modifies entries which satisfy or partially

the condition of another Knowledge Source.

These points are illustrated by the HEARSAY-II KS, MOW, and the OPM Knowledge Source,

FIRST-LEG.

MOW can be described as follows.

KS-NAME: MOW
CONDITION:
There are previously generated syllable hypotheses
ACTION
Hypothesise words that comprise sequential subsets
of the syllable hypothesis. Adjust their beginning
and end times. Rate their credibilities.

MOW is invoked when other HEARSAY-II KSs hypothesise sequences of syllables which are likely
to be present in the speech signal. When executed, MOW first hypothesises all words in its vocabulary
which contain subsequences of the hypothesised syllables. Because of noise in the speech signal and
because of ambiguity in the interpretation of syllables, MOW usually hypothesises more than one word for

any given syllable sequence. MOW then adjusts the beginning and end times in the speech signal of each

hypothesised word and rates each word’s credibility against the syllable data.

FIRST-LEG can be summarised as follows.

KS-NAME: FIRST-LEG

CONDITION:
Two tasks, t1 and 2, have been planned in temporal
order t1, t2.

ACTION:
Plan the first leg of the route t1-12 as:
start = t1.
legl = the direction-on-street from t1 which minimises
the angular disparity from the straight line connecting
tl and 2.
end-of-legl = the first intersection encountered on legl.

FIRST-LEG is invoked when other OPM KSs decide to perform two tasks, t1 and t2, in the temporal
order <t1, 22>. When executed, FIRST-LEG establishes t1 as the starting point for the route from t1 to 12.

The KS then enumerates the paths starting from tl in all directions on all streets in the town. This set of

-9.

paths usually includes at least two paths in each of two directions on t1’s street; it will include additional
paths if t1 is on a street intersection. FIRST-LEG determines which of these paths minimises the angular
disparity from the straight line connecting t1 and ©2** and plans that path as the first leg of the route. It then
identifies the first street intersection encountered on the planned route and makes that intersection the end
of the first leg (this is because another choice will usually have to be made to connect the intersection to

2).

These examples illustrate the general point that Knowledge Sources typically transform entries at
one level of abstraction into entries at another level. Some KSs, MOW is an example, operate in a basi-
cally bottom-up manner. Bottom-up KSs aggregate several lower-level entries into a smaller number of
higher-level entries: MOW aggregates syllables into words. FIRST-LEG exemplifies top-down KSs. Top-
down KSs expand higher-level entries into a larger number of lower-level entries: FIRST-LEG expands
task sequences into route segments. Other Knowledge Sources operate within a single level of the black-
board (for exanzple, KSs which attempt to find a temporal ordering over entries representing plan seg-
ments), or between different blackboard panels (OPM contains many such KSs, as does CHRYSALIS).
The blackboard architecture can combine Knowledge Sources embodying different general inference
mechanisms in a single problem solving system. It should be noted that by *general inference mechanisms’,
I mean only characterisations of the type just given: I do not intend characterisations such as model-driven,
data-driven, and so on. These properly belong to more intensional descriptions of the architecture in its

application to particular problems: the definition I am attempting here is intended to be extensional.

The representation of Knowledge Sources is basically that of condition-action pairs. The condition
component requires that there be at least one previously generated entry with particular attributes and
values and that the evaluation of the condition yield exactly one of true or false. (One may assume that
there is some process external to the blackboard system which creates and poSts one or more entries to start
problem solving.) The action component generates one or more new entries or modifies existing entries

already on the blackboard: the action component may also combine new entry generation with existing

** OPM represents the town as a two-dimensional coordinate array. Each object in the town (building, park, etc.) is
represented as a coordinate in the array. Street are represented as a sequence of points, each point representing the streets
which intersect the given street.

-10-

entry modification. Beyond these specifications, KSs may be viewed as ’black boxes’ of arbitrary internal

complexity which are applied to user-determined partial solution representations.

2.3. Blackboard

The blackboard is a global database which contains all entries generated by all Knowledge Sources
applied during the problem solving process. The blackboard serves two purposes. Firstly, it mediates all
Knowledge Source interactions in the following sense. Although Knowledge Sources may not communi-
cate directly with each other, they influence each other indirectly by placing and responding to entries on
the blackboard. An entry posted by the execution of one Knowledge Source may satisfy the condition of
another KS. Second, the blackboard organises and collects all partial and complete solutions generated for
the solution of the problem under attack. The solutions on the blackboard comprise configurations of
related entries on the blackboard. The contents of the blackboard are at least notionally inspectable by any

KS: the blackboard makes entries public.

The blackboard may have a user-determined internal structure which defines important relationships
between entries.* The relationships might be, for example, generalisation, aggregation, support, or tem-
poral sequencing. The relationships may be combined in various ways. The blackboard focusses
—Knowledge Source activity. It-is-usual for a Knowledge Source condition to refer to previously generated
entries in a particular region of the blackboard, while its action may alter another blackboard region. A
Knowledge Source need not consider entries in regions of the blackboard which are of no concern to its
condition or whiéh are not mentioned in its action. Viewed this way, the blackboard is a framework for

organising, interrogating and generating entries.

The blackboard may have additional structure: in fact, it may have any additional structure desired
by the user. There are, however, two dimensions of particular importance to the structure of the black-
board: these are the vertical and horizontal dimensions. The vertical dimension separates and distinguishes
entries at different levels of abstraction. Entries at a given abstraction level may elaborate or support entries

at the next level or at some other level in the hierarchy. The horizontal dimension represents intervals in

* Tt is a matter of fact that most, if not all, blackboard implementations impose internal blackboard structure.

-11-

the solution. Horizontal intervals may represent temporal, spatial, conceptual or other groupings: indeed, in
some cases, the horizontal dimension may be extended to cover many interacting groupings. It is usual for
the horizontal dimension to represent some form of temporal ordering on the solution process. Together,

these dimensions define an aggregation structure (hierarchy).

The structure of the OPM blackboard is thus:

Outcomes
Designs
Procedures
Operations

The vertical dimension represents tentative decision types collected into an abstraction hierarchy. The
abstraction relation may be described as generating a refines-fo relationship between adjacent abstraction
levels. The horizontal dimension of OPM’s blackboard represents time points in the emerging plan. Each
level of abstraction offers a different specification of the plan. The highest level represents the outcomes
the plan should achieve; the designs level represents designs for the general spatial/temporal layout of the
plan (e.g., do tasks in the S.W. comner of the town); procedures represent the sequencing of individual tasks
(e.g., pick up the medicine for the dog before buying a newspaper); operations represent the performance
of individual tasks and make inter-task transitions. Operations are aggregated into procedures, procedures
into designs and designs into outcomes. Because the errand planning problem requires the linearisation of

plan components with time, the blackboard structure distinguishes temporal intervals within the plan.

2.4. Control Mechanism

During problem solving, many different Knowledge Sources may be triggered simultzneously by
entries on the blackboard. In a serial implementation of the blackboard architecture, only one Knowledge
Source may execute at any one time (in a problem solving cycle, that is). In parallel implemenations,
more than one KS may execute. In both cases, an intelligent control mechanism determines which of the
currently triggered KSs to execute at any time. It might be thought that parallel implementations cou!d per-
mit execution of all triggered Knowledge Sources, but this is, however, not the case: I will be discussing

this when I examine the issue of opportunism in the next section.

In HEARSAY-II, OPM, BB1 (Hayes-Roth, 1985b, Hayes-Roth, 1986), HEARSAY-II (Balzer,

-12-

1980; Erman, 1981) and NBB (Craig, 1987), control is operationalised as an agenda-based scheduler. On
each problem solving cycle, the agenda lists all pending Knowledge Sources (that is, KSs whose conditions
are satisfied by entries or entry configurations on the blackboard). The scheduler rates these pending KSs
and selects one (or more, in the case of HEARSAY-III) for execution. Control can be operationalised in
other ways: for example, HASP/SIAP (Feignebaum, 1982) represents control in terms of stack-like event
lists which are used by a more-or-less algorithmic control mechanism; CHRYSALIS (Terry, 1983) makes
control decisions in terms of hierarchically organised control rules and an operational semantics very simi-
lar to procedure call. The fundamental differences between the various operationalisations of the control
mechanism are none too important for it can be shown (e.g., (Hayes-Roth, 1985b)) that that the agenda-

based mechanism can be used to implement other mechanisms.*

The control mechanism’s level of intelligence reflects its understanding of the system’s Knowledge
Sources and their applicability to particular aspects of the the current problem and its understanding of the
development of a solution. The scheduler can exhibit a range of behaviours based upon its level of under-
standing. At one extreme, the scheduler may adopt one, well-defined, strategy. It might, for example, adopt
a strategy to proceed top-down through the abstraction levels, executing KSs which are known to produce

entries at the next abstraction level lower in the hierarchy from the current one. Alternatively, the scheduler

~can integrate multiple strategies: for example, a mixed strategy might execute both bottom-up and top-

down KSs, preferring that strategy which prescribes the smaller number of triggered Knowledge Sources --
that is, preferring the strategy which more effeclively reduces the search space. The scheduler can also
deviate from the prescriptions of the current strategy, adopting arbitrary criteria: that is, behaving in an
opportunistic fashion. Some opportunistic strategies (it is quite possible to have opportunistic strategies:
indeed, more than one may be active at any time) might prescribe the execution of KSs which have
recently triggered or might prescribe the execution of KSs known to generate particularly important entries.
Intelligent schedulers are able also to alter the control strategies adopted as a dynamic response to progress
in problem solving. It is a characteristic of the blackboard architecture that there is a capacity for oppor-

tunistic behaviour (a stronger claim is that opportunistic behaviour is, somehow, pre-disposed, but I intend

* There are reasons other than those mentioned by Hayes-Roth in (Hayes-Roth, 1985b) for prefering agenda-based schedul-
ing. The reasons are made clear when I discuss opportunism in the next section.

-13-

to argue against this stronger claim as being based only upon empirical and not upon conceptual issues).

A clear example of multiple strategy scheduling is implemented by the HEARSAY-II scheduler.
The HEARSAY-II scheduler operates a two-phase strategy. In the first phase, a bottom-up strategy is
employed. Signal parameters are progressively aggregated into lexical items. It begins by scheduling all
KSs which have triggered on the Parameter level, then schedules all KSs triggering on the Segment level.
Next it schedules all Knowledge Sources which have triggered on the Syllable level and which generate

word hypotheses on the Word or Lexical level of the blackboard.

During the second phase of HEARSAY-II's activity, the scheduler engages in a more opportunistic
mode of operation. On each cycle, the scheduler calculates a priority for each pending KSAR. A KSAR is a
Knowledge Source Activation Record: KSARs record information about the conditions which caused a KS
to trigger. KSARs are the unit of control in HEARSAY-II and other blackboard systems. The scheduler

rates each KSAR against three criteria:

(i) the local effects of the proposed activity. This includes the nature of the hypotheses which would be

gene}ated, the cumulative credibility of the generated hypotheses and of their predecessors;

(ii) the global effects of the activity in terms of co-operative and competitive relationships between the

hypotheses it would generate and the existing hypotheses on the blackboard; and,
(iii) the computational resources which would be required by the proposed activity.

On each cycle, the scheduler executes the KSAR with the highest priority.

2.5. Summary

The blackboard architecture can be summarised as a list of eleven points. These points are similar

to those cited by Hayes-Roth (Hayes-Roth, 1983).

1. Problem solving activity generates a set of intermediate results which are represented as objects with

attributes and values. The objects are called entries.

2. Entries may have user-specified relationships with other entries.

-14 -

3. All entries have the relational attributes: abstracts/refines and adjacent-to. These attributes define the

vertical and horizontal structure of the blackboard.
4. All entries are recorded in a global database called the blackboard.
5. The blackboard structure includes partitions for different levels of abstraction and solution intervals.
6. The blackboard may have additional, user-specified, structure.

7. Independent knowledge-representing processes, called Knowledge Sources, generate, modify and

record entries on the blackboard.

8. Each Knowledge Source has a condition and an action. The condition matches a hypothetical
configuration of entries on the blackboard, performs computation and is a predicate. The action per-

forms computation and generates blackboard modifications.
9. Only triggered Knowledge Sources (those KSs whose conditions evaluate to true) can be executed.
10. An intelligent scheduler determines which triggered KS(s) should execute their actions.

11. The scheduler can base its decisions on user-determined criteria such as the characteristics of the
triggered KS, the utility of the proposed action, information about the general blackboard state,

characteristics of the problem or information about previous control decisions.

It is generally belies)ed that the criteria listed above éxhaustively define the bléckboard architecture.
It is possible to extend the properties of a system and still correctly refer to it as a blackboard system. For
example, the BB1 (Hayes-Roth, 1984; Hayes-Roth, 1985b; Hayes-Roth, 1986) and NBB (Craig, 1987) sys-
tems introduce extra KS components. The two major introductions are obviation conditions and a distinc-

tion between trigger and precondition predicates.

Obviation conditions are designed to be an additional relevance check: if any obviation condition
evaluates to true, the KS is not permitted to execute. Obviation conditions are permitted to examine any
part of the blackboard state (any configuration of entries in the simplest case) in an attempt to preserve con-
sistency and to ensure that the execution of the KS will genuinely contribute to the solution of the problem

currently under attack.

-15-

The division of the KS condition into a trigger and a precondition is designed to separate the event-
based triggering mechanism from the state-based matching processes typical of many KS conditions.
According to the definition stated above, KSs trigger as the result of changes to the blackboard state. How-
ever, there are often circumstances in which the condition should also examine the blackboard state to
determine if the KS should execute. KS trigger conditions are intended to respond to events and precondi-

tions to blackboard states: they represent a finessing of Knowledge Source semantics.

Although these two features are not included in the definition of the blackboard architecture, their
presence in a system does not preclude that system from being a blackboard system. These additions are

implied by the definition given above and in no way contradict the terms of that definition.

The definition given above clearly differentiates the blackboard architecture from other problem

solving models. Let us consider the production system architecture for comparison.

Production rules (Newell, 1973) are frequently assumed to be like black boxes for they represent
small pieces of information and have internal behaviours (albeit very simple internal behaviours) which are
not open to inspection by an observer. Production rules are often explained as generating working memory
items represented as attribute/value pairs (OPSS is a case in point -- (Forgy, 1977)). Working memory
serves the production architecture in the same way that the blackboard serves its architecture: it represents
a single, global, database through which all inter-production communication should pass (indeed, Rychener
(Rychener, 1978) describes IPS’s working memory as a blackboard). The contents of working memory are
generated or updated by the execution (firing) of production rule actions, and firing may only take place

when the situation-fluent (condition part) of a production has been satisfied.

These properties are common between the blackboard and production rule architectures: this fact is a
result of the structure required for pattern-directed knowledge processing -- both architectures fall into this
class, of course. It is also a result of the psychological theories from which they are both derived. In both
architectures, there is a procedural representation of Long Term Memory (LTM), and LTM elements
operate on a declarative representation of Short Term Memory (STM). In the blackboard architecture, STM

is represented by the blackboard; in the production rule architecture, working memory represents STM.

-16-

The differences between the architecture really become clear when one considers the structure of the
Short Term Memory representation and the model of control each presupposes. In the blackboard architec-
ture, STM is represented as a structured database; in the production rule architecture, STM is a collection
of items with no external structure imposed. The blackboard architecture states that STM elements have
arbitrary internal structure and that elements are related to each other in various ways. That is, the black-
board architecture imposes different structuring and organisational constraints upon entries. The production
rule architecture goes no further than to require working memory to contain intermediate results. When
considering control, it is apperent that the blackboard architecture makes many more assumptions than the
production rule architecture. It is also clear that blackboard systems can exhibit far greater ranges of
behaviour than can production systems. Control in production systems is usually based upon syntactic
notions of match and of situation-fluent length: it can also base its notion of control on the concept of
counting the number of rule firings or of counting the number of rule action components executed per
cycle. The blackboard architecture, on the other hand, permits very much more sophisticated and semanti-
cally or epistemologically based control regimes. This additional control capability extends the functional-
ity of the blackboard architecture beyond that of the production rule architecture and it allows blackboard
systems to make decisions in a far more reasoned and rational manner than can production systems -- for
one thing, the scheduling mechanisms of a blackboard system can take a global view of solution develop-

ment

These points serve, I believe, to distinguish the blackboard from all other architectures. They also
indicate, I think, that the blackboard is very much more powgrful Lhan pther arcrhiteclures.WThis is not to
suggest that I believe that the blackboard is the ultimate answer, for, as I will argue, there are severe prob-
lems with it and these problems are not just those cited by Anderson (Anderson, 1983, p.130) which are
concerned with the computational and memory loads imposed by blackboard systems.* It is to these wider

issues that I now turn.

* In any case, hardware costs are dropping so what is computationally expensive today is cheap tomorrow. Anderson does
not make his argument too clear in this respect: is he talking about absolute measures or measures relative to the computer
processing powe he has available?

-17-

3. Opportunism

It is often said that opportunism is the central feature which distingushes the blackboard architecture
from all others. The claim is that opportunism is really "what blackboard is all about" for no other architec-
ture accomodates it as readily as the blackboard. In this section, I will argue that the concentration on
opportunism is a fundamental misconception of the architecture and that suggestions that the blackboard
architecture should be considered for some problems "because they are opportunistic” is based on too
superficial an analysis of the assumptions and consequences of the architecture. The main proponent of the
"blackboard = opportunism’ movement is Penny Nii, so I will be spending most of my time refuting her

arguments.

Why examine opportunism in detail? The reason is that I wish to establish a view of the blackboard

architecture which puts opportunism in its correct place -- as one control regime among many.

In order to examine Nii’s account of opportunism, I will concentrate on the remarks she makes in the

first part of her survey papers (Nii, 1986a; Nii, 1986b). I will present two quotations taken from (Nii,

1986a), both on page 39. The first quotation appears on the top right of the page:

"In an opportunistic reasoning model, pieces of knowledge are applied either backward or forward at
the most "opportune” time. Put another way, the central issue of problem solving deals with the ques-
tion "What pieces of knowledge should be applied when and how?" A problem-solving model pro-
vides a conceptual framework for organizing knowledge and a strategy for applying that knowledge.
... The blackboard model of problem solving is a highly structured special case of opportunistic
problem solving. In addition to opportunistic reasoning as a knowledge-application strategy, the
blackboard model prescribes the organization of the domain knowledge and all the input and inter-

mediate and partial solutions needed to solve the problem."

(Italics and spelling as in original.) This quotation appears at the end of a definition of the term *problem
solving model’ which includes descriptions of forward and backward chaining rule-based reasoning

models.

The second quotation is taken from the definition of the control component of the blackboard model

(page 39, bottom right):

-18-

" Control. The knowledge sources respond opportunistically to changes in the blackboard."

(Bold face as in original.) One reaction to this is to say ’of course’ and to say no more, for it says nothing.
Quite clearly, KSs have to respond to entry configurations on the blackboard. Opportunism can be viewed
as responding to beneficial items and events in one’s environment. What is at issue, really, is the use of the

word "respond”: it suggests and is implied by control processes of one form or another.
The contrasting view is exemplified by Hayes-Roth (Hayes-Roth, 1983, p. 9):

"The capacity for and disposition toward opportunistic behavior are characteristic of the blackboard

architecture."
(Spelling as in original.)

The view espoused by Hayes-Roth and by me is that opportunism is typical of the architecture and
the architecture invites opportunistic control: this contrasts strongly with Nii’s claim that opportunism is a
fundamental property of the architecture. The alternative view must be argued for. This I shall do on two
fronts: I will look very carefully at Nii’s statements, then I will examine the consequences of opportunism.
Along the way, I will be saying a few things about opportunism itself (it appears to be another 'informal

construct’ in the blackboard theory): in particular, I want to say what sort of thing opportunism is.

————The-first-thing-which-must-be-said-about-Nii’s-remarks-is-that-they-do-not-add-up-to-much.-Her -

definition of an opportunistic model is one that applies relevant knowledge at the *most "opportune"’ time,
yet she gives no criteria upon which to determine what is xheant by "opportune”. Secondly, she contrasts
opportunistic models with other models and gives no clear differences. Purely on the basis of her remarks,
it is possible to derive a counter-argument which reduces the first quotation to meaninglessness. In addi-
tion, there is no strong definition of what is meant by ’applying knowledge’ -- this, too, needs to be
tightened. It needs to be tightened because the import of Nii’s whole argument is that the basic control
model employed by the blackboard architecture is fundamentally opportunistic in nature and all other con-
trol regimes are, in some sense, additional and de trop. The question of control is a vexed one for Nii, for

on the same page (page 39), in footnote six, she states quite clearly:

"There is no control component specified in the blackboard model. The model merely specifies a

-19-

general problem-solving behavior."

The import of her remarks, when taken together with footnote six, suggest that opportunism is the frame-
work within which control components should be specified. This, however, she does not justify, nor does

she make clear the relationship between opportunistic control and other regimes.

Let us now examine the definition of opportunistic control and see where it leads. Let us state, for the
purposes of clarity, the definition of knowledge application as follows: in the blackboard model,
knowledge is applied whenever the action of a Knowledge Source is executed to cause changes to the
blackboard. This is, I assume, the definition which Nii has in mind. With this definition, it is possible to

expand the definition of opportunistic problem solving as follows.

In an opportunistic problem solving model, such as the blackboard is claimed to be, Knowledge
Source actions are executed at the most "opportune” time. A Knowledge Source’s action may only
execute when its condition has been satisfied by the blackboard state (by the definition of KS
triggering: this is accepted by Nii). Thus, after triggering a KS on the blackboard, its action may be

executed sometime later but at the most opportune time.

#This elaboration seems to be reasonable and seems to be in line with what Nii claims. It still contains the

use of the word "opportune” and it is precisely that word to which I object.

Now, for contrast, consider the case of a forward chaining production rule interpreter. Production
rules have their situation-fluents matched on each cycle of the intepreter and those rules whose situation-
fluents have been satisfied enter the conflict set. When a conflict set has been created, a conflict resolution
procedure selects one or more productions to fire, causing changes to working memory. In the case of a
production rule interpreter, there is usually no choice but to execute one or more productions immediately,
for there is not usually a concept of retaining triggered rules between cycles. If triggered KSs are retained
in a control database between interpreter cycles and are retained for consideration for execution across a
number of blackboard interpreter cycles, all is well and one can sce the sense in the distinction Nii is
attempting to draw. The very fact that KS instantiations (triggered KSs) are retained allows for the possibil-
ity that they may be executed later when certain conditions obtain which do not obtain at the time of

triggering.

-20-

Even with this distinction, I do not see that Nii has achieved very much. The distinction between the
so-called opportunistic blackboard and the non-opportunistic production system seems to rest on the facts
that production rule interpreters do not retain instantiated rules in the conflict set between cycles (at the end
of a cycle, all those rules not fired are discarded and the conflict set is created afresh) and that production

rule interpreters do not normally imply problem solving strategies at the interpreter level.

The distinction becomes very much finer when one considers the application of a problem solving
strategy. Consider the case of a problem solving system which applies a strategy to derive solutions in an
efficient manner and assume that the problem solver represents its operators as condition-action pairs (nei-
ther of these is, I think, a particularly strong assumption). Now, during the application of its strategy, the
problem solver examines all those operators whose conditions have been satisfied by the current solution
state. From this set of operator instantiations it is permitted to select one or more for application. It selects
those instantiations it considers will best further the solution and which are most in keeping with the stra-
tegy. If there is a choice to be made between operator instantiations, the problem solver will opt for that
operator it considers will have the best chance of achieving the goal state (or sub-goal state, clearly) and

apply that to its representation of the problem state.

It might be objected that the deletion of nodes (states) from the search space causes problems. The
argument rest.é only upon an abstract ch;lractel:xsanonofthe problemsolverInabstract charactensauons
of search processes, the concept of deletion need not appear because effort is always concentrated on
expanding the most promising portions of the state. Since the state only changes at one place at a time, it is
now possible for our problem solver to retain operator instances across cycles, and it now becomes possible
for the problem solver to apply operator instances at a time very much later than the time at which the con-
dition was matched. We could, in fact, supply the problem solver with an infinite number of operators, one
for each possible state in the search space (this is really what adding variables to operators provides), but
the argument would remain the same. For example, the problem solver could apply an operator, find it use-
less, then move to another portion of the search space and apply an operator instance it had created some-

time before. Since the action of applying an operator to one portion of the seach space has no global effect,

the applicability of other operators in the space extended by the application of an arbitrary operator does

-21-

not alter. Even if the assumption about pruning is relaxed (for implementation purposes, say) and pruning
is permitted, the assumption of the locality of the effects of an action assures us that previously generated
operator instances which refer to other parts of the search space are still consistent with the remainder of

the state.

This hypothetical problem solver saves operator instantiations and applies them at a later date. When
an operator has been shown to lead to a poorly valued state (say, one with greater differences from the goal
state than other states), the problem solver is able to apply another operator instantiation from the store it
has created on previous cycles. This, I claim, is identical to Nii’s definition of an opportunistic problem
solving model. The hypothetical problem solver applies knowledge when it is "opportune™; that is, when it
is forced to go back on the result of applying an operator instantiation. Since the first operator has failed to
generate a useful or better state, the problem solver is forced to apply another operator in an attempt to rec-

tify matters.

If this is all that is meant by Nii’s definition, she is not saying anything interesting either about

opportunism or about the blackboard model.

Here is a very simple reason why this should be so. The hypothetical problem solver I have described
could be behaving in the way it does with respect to operator instantiation caching because of an imple-
mentation trick. It is conceivable that problem solving systems will store operator instantiations for future
use because of complications with the task at hand or with matching problems or because the state is only
ever extended by the application of an operator. Under these circumstances, it might actually be cheaper to
employ some indexing mechanism to relate operator instantiations with states in the solution space. Would

one actually aggrandise a hack with the portentous title "opportunism™? I doubt it.

This argument destroys, I think, Nii’s point by showing that she says nothing of content. Does this
mean that the blackboard architecture has nothing to do with opportunism? If one accepts a better
definition, there is a sense in which the blackboard should adopt opportunistic behaviour, but I am also

claiming that opportunism is not the whole story.

Rather than concentrate on asking 'what time is meant by "opportune"?’, I will suggest an interpreta-

tion of opportunism which is very much closer to that used by the Hayes-Roths in describing the behaviour

-22.

of subjects during the experiments which led to the development of OPM (Hayes-Roth, 1979). The sug-
gested interpretation has the benefit that it tends to coincide rather better with what is understood by

’opportune’ when it is used in ordinary language.

Opportunism can be construed as making use of beneficial accidents: that is, making the best possi-
ble use of what appears in the environment by accident or of that which has been overlooked. In other
words, opportunism is concerned with using things which happen to appear rather than appearing by
design. This amounts to claiming that it is a species of control strategy. In control terms, one can say that
the effect of applying one or more control strategies may produce a state in which there is little or no
benefit to be derived from continuing with the strategy or strategies and in which the accumulated effects
provide a better foundation for making progress toward a solution than does the continued application of

the strategy. The Hayes-Roths state (Hayes-Roth, 1979)*:

"However, we assume that people’s planning activity is largely opportunistic. That is, at each point
in the process, the planner’s current decisions and observations suggest various opportumities for plan

development. The planner’s subsequent decisions follow up on selected opportunities™

In control terms, one can take this to being the statement that control strategies generate situations in
which there are various opportunities for control decisions. One opportunity is to continue with the current
strategy (assuming there is only one); another is to examine the results of applying that strategy, or of other
previously followed strategies, to see if they present an alternative way to make progress. The alternative

definition of opportunism is that it is simply a class of control strategy.

This view of opportunism clearly rests upon the concept of control strategies and their effect upon
the solution state. This definition or interpretation improves upon Nii’s by removing the ill-defined term to
which I objected above. Instead, it relies upon very much better defined terms. The only question is what
constitutes an ’opportunity’, but that appears to be covered by the statement that the control model may
make choices: an opportunity in this case is the exercise of choice at any point in time where decisions of

that kind are permitted. The exercise of choice depends upon there being alternatives. By assumption it is

* As far as I am aware, this is the first time the term *opportunism’ appears in the literature.

-23.-

the case that, while following a control strategy, there will be opportunities to make decisions which are
not in accordance with the prescription of the strategy -- for one thing, any strategy will exclude certain

states or will ignore some alternative decisions.

This alternative approach to opportunism, which I consider to be the correct approach, has many
benefits over Nii’s. Nii’s approach* does not explain how opportunism meshes with other control strategies
(are they, for example, specialisations of opportunism?): this approach does. Nii’s approach turns oppor-
tunism into a quasi-magical consequence of the architecture: this approach does not and, furthermore, it
gives an account of how opportunism enters into problem solving within the blackboard model. This
approach tells us much more about the phenomenon as well as putting it into its proper place -- the
phenomenon is best regarded as strategic opportunism and that tells us, quite clearly, what sort of thing it
is. Finally, my approach provides a framework within which to make predictions about the appearance of
opportunistic behaviour in a blackboard system: Nii’s does not, for it tends to suggest that controlled
(Emnst, 1969; Anderson, 1983; Clancey, 1985).

Taking the last point at face value, it is possible to see the consequence of accepting the position that
opportunism is the fundamental behaviour in blackboard systems. Opportunism depends, according to Nii,
on finding the right time to do something. This, in the limit, entails either than nothing is done, or that
everything is done immediately. The consequence of this is that there is no control. Again, there is more
than ample evidence to suggest that intelligent behaviour depends to a great extent upon the presence and

exploitation of control mechanisms.

Let us now move on to a prediction about the behaviour of blackboard systems. This prediction

takes us along the road to a fuller discussion of the model and the architecture.

From the definition of opportunism introduced above, it is possible to see where and when systems
will adopt this control strategy. A blackboard system will become strategically opportunistic when there is
no other applicable strategy, or when the prescriptions of all current strategies are inadequate to cope with

the current control requirements of the problem under attack or when the current strategies do not produce

* By the argument above, I may no longer consider her remarks as constituting a definition.

-24-

optimal values for scheduling parameters in the current state of the problem solving process. That is, one
way in which opportunism appears is that the current state happens to present alternatives control criteria
which are locally better than those provided by all active pre-defined strategies. One way to see this as hap-
pening is to consider that many control strategies are based upon the examination of only a few of the pos-
sible parameters which might affect problem solving behaviour: indeed, many strategies are heuristic in
nature. Viewed this way, it is not surprising that strategies define regions of an abstract control space in
which they are at their most effective. One could draw power curves for control strategies to discover their
effectiveness, very much in the way that Lenat draws power curves for heuristics (Lenat, 1982).*¥ Where
there are multiple strategies, the theory predicts that opponunistic behaviour will appear between the peaks
of strategies and the points at which their successors begin to have a real effect -- i.e., filling in the gaps

between strategies.

This account of the appearance of opportunism in blackboard systems with explicit control strategies
turns opportunism into an alternative strategy which comes into operation when other strategies are no
longer optimal. It also appears because the control mechanism may be unable to detect the sub-optimal per-
formance of the current strategy, and so is unable to adopt an alternative. This makes opportunism into a
sort of filling-in process: it applies when other strategies are not performing or cannot apply. Given the fact

that opportunism is a class of strategy, it is possible to define regions of a problem’s control space which
are to be treated opportunistically (HEARSAY-II is a good example of this). In addition, therefore, to
allowing opportunism as a kind of default behaviour, it can be exploited as a genuine strategy class in its

own right and explicitly included in the control plan for a given problem.

Is opportunism an essential property of the blackboard model? I think, on balance, that my answer is
in the negative. What I believe is that opportunism has naturally been exhibited in blackboard systems
because they deal with realistically complex control strategies. Why should it be Lhaf opportunism and
blackboard are so closely related? The answer is, I think, a result of the fact that control mechanisms in

blackboard systems have been provided with memories to record past situations. In HEARSAY-II, BB1

* Hans Berliner has, I remember, also described heuristics in terms of graphs. Specifically, he talks about the effectiveness
of heuristic in terms of n-dimensional surfaces. This allows him to consider the power and utility of heuristics in terms of
discontinuities in the surface. Unfortunately, I cannot remember any references to this work, nor have I been able simply to
find references.

r,.«..-«,

-25-

and NBB, control is mediated by an agenda of KSARs: KSARs record triggering information and encapsu-
late the blackboard state at triggering time. In HASP/SIAP, the control database is implemented as a set of
event lists in which are recorded KS instantiations and the events which caused their creation. The fact that
KS instantiations are recorded means that part of the developing solution on the blackboard is available for
inspection by the control mechanism (in the blackboard control model (Hayes-Roth, 1985), the scheduled
KSs are recorded, so a greater portion of the state is available), which entails that it is able to keep track of
possibly beneficial deviations from the current strategy. Although not actually required by the model, this
implementation of the control component has gained favour because it provides the control mechanism
with a database encapsulating the state: the controller does not have to search the blackboard to make deci-
sions.*** The very fact that the blackboard state is retained makes it easier to determine the appropriate-

ness of deviations from any current strategy.

The last paragraph suggests what I wanted to say from the beginning. Here, then, is a summary of
this section. Strategic opportunism is uniquely in evidence in the blackboard architecture not because of
any architectural dictates, ﬁot because of anything in the theory. It is a side-effect of the way in which the
original metaphor has been construed for implementation. Strategic opportunism is clearly the correct

interpretation of:the opportunism phenomenon because of its explanatory power and because it does not

" impute magical properties to the architecture.

Because opportunism is a class of strategy, just as top-down is a class, it is possible explicitly to
include opportunistic control in blackboard systems and that inclusion is eased by the presence of the con-
trol database so‘ frequently used in implementations. Opportunism also appears because of gaps in the
applicability of other strategies, so it can also seem 10 be a species of default behaviour and it is this I think
Nii has latched on to. Opportunism has become an issue because of implementations and not as a necessary
theoretical entailment of the architecture. Opportunism is, I would argue, an important ingredient in control
(and this seems to be reflected in studies of higher cognitive processes in humans -- e.g., (Hayes-Roth,
1979)): people sometimes behave opportunistically, so it is reasonable to make the option of following

rigid strategies (sub-goaling, for example), or of behaving opportunistically. One of the arguments for

*** This idea of the agenda encapsulating state is the implementation recommendation I promised above.

-26-

using the blackboard architecture is that it is very flexible: opportunism is one way in which flexibility is

introduced.

To conclude: although opportunism is not a necessary component of a blackboard system, it is often

found to be of utility because of the flexibility it engenders.

4. Modularity

One of the claims made for the blackboard architecture is that it is highly modular. The architecture
is usually claimed to be modular on the basis of the independence of Knowledge Sources. Other claims
could be made about the relative independence of the abstraction levels which typically form the vertical
structure of the blackboard database: relative independence because the blackboard architecture is com-

monly taken to be a representative of models which exploit near-decomposability.

The conventional method for building blackboard systems emphasises the relative independence of
abstraction levels. Knowledge Sources are constructed for a particular level of the blackboard at a time.
The Knowledge Sources are tested on entries at the chosen abstraction level: the results of executing the
KSs are just placed in a nameless space during the earliest stages of development. When one level’s KSs

have been shown to operate properly, another level (frequently one that is adjacent) is then developed. The

process-iterates until all levels have been covered. This method relies upon-an-assumption that it is possible ——

to decouple a particular abstraction level from the overall structure and operate upon it. It is also a way of
managing complexity during development which relies upon the modular structure of the architecture. The
method uses the fact that the effects of KSs can be separated out. Depending upon task, KSs which trigger
on the chosen level and then those which modify that level are first introduced into the system; next, KSs
which trigger on the level and modify other regions of the blackboard are introduced and tested. The
effects of this second kind of Knowledge Source are collected in an effectively un-named space which

represents ’the rest of the blackboard’.

The reason for introducing an aspect of the development methodology is to show that the blackboard
architecture is considered to be highly modular by application builders and to show that it can be con-

sidered to be so, to an approximation. The caveat is important for I wish to show that the architecture is not

-27-

quite as modular as one might think.

It is usual to cite Knowledge Sources as the basic modular structure in blackboard systems.
Knowledge Sources are independent knowledge structures which cause changes to the solution state
recorded on the blackboard. They are not permitted to interact with each other directly, but must communi-
cate only indirectly by posting entries on the blackboard. One KS may not share variables or other data
with another KS unless that data is represented as an entry and has been posted on the blackboard. Because
of this modularity; it is possible to include or remove KSs from a system without causing configuration
problems. Bf adding or removing a KS, only the quality of the emerging solution can be effected. The
emerging solution is represented as a configuration of entries on the blackboard, so the addition of new
Knowledge Sources will either allow new entries to appear in the solution, will allow new relationships to
come into being between entries, or will alter the range of modifications to existing entries. The removal of
KSs is directly analogous, but operates in the reverse direction (e.g., the removal of a KS will reduce the
number of possible entries which can be posted on the blackboard). Since there is no direct interaction

between KSs, th; addition or removal of a KS cannot impact upon the internal workings of any other KS.

Since Knowledge Sources are encapsulated modules, any alterations to their internal structure or to
their content, equally, cannot cause changes to anything other than the quality of the emerging solution. By
ﬂ making a particufar KS more specific, for example, the entries it can generate will also be more specific --

this is observable externally only as a property of the solution.

The case for KS modularity is, I think, quite sound. Knowledge Sources, however, bcommunicate by
posting and inspecting entries on the blackboard. As has been pointed out, a KS may inspect one region of
the blackboard and record an entry in quite another region. This prompts the question of how the various
regions are related to each other. The simplest case of this (and the one with the most general theoretical
importance) is the relationship between the constituents of the blackboard structure’s vertical dimension:

abstraction levels, that is.

The hierarchy of abstraction levels on the blackboard is one of the most commonly cited structural
details in descriptions of blackboard systems. Feigenbaum (Feigenbaum, 1978) describes the hierarchy as

defining a prototypical control plan. The hierarchy represents views of the problem at varying levels of

-28 -

abstraction. The structure and interpretation of the blackboard may be considered as being analogous to the
abstractions in hierarchical planning (Sacerdoti, 1974; Sacerdoti, 1977): a problem is solved by considering
—its properties at a variety of levels of abstraction, the highest of which should provide the most concise

description of the problem. This view of blackboard structure actually ignores other structural information

as I will now argue.

At any abstraction level of a blackboard, there is usually one Knowledge Source which triggers on
the entries there. It is usual for a KS only to trigger on one abstraction level because entries are allowed
only to reside on one level. Triggering events are caused by the addition or modification of entries and so
are each related to only one particular abstraction level. When a triggered KS is executed, it causes

modifications to the blackboard at the same abstraction level as it was triggered or to another level.

The generic Blackboard Control Model KS, Implement-Strategy, for example, is triggered on the
Strategy level of the control blackboard and makes modifications to that level as well as to the Focus level
(the abstraction level immediately below it in the control blackboard hierarchy). Implement-Strategy
changes the status of the current Focus entry (similar to Focusl, above) to "Inoperative™ and proposes a
new focus entry. A consequence of this action is to introduce a new problem solving strategy by posting a

new entry on the Strategy level: the new appearance of the new entry on the Strategy level of the control

blackboard will cause other KSs to be triggered.

This example clearly shows that the relationships between abstraction levels on the blackboard is
rather more complex than is apparent from the definition given above. The example shows, in particular,
that entries may, in theory, be recorded on a particular abstraction level by any Knowledge Source in a sys-
tem. The interface between abstraction levels depends upon the Knowledge Sources which trigger on one
level and cause modifications to another. The inter-level interface is hidden in the actions of all Knowledge
Sources in a system and is, what is more, distributed across KSs. In other words, there is no central inter-
face between abstraction levels. The imerfacer between blackboard events and KSs is described in systems
like BB1 and NBB as a causal connection which is locally defined for each KS. The definition is the
trigger condition associated with each Knowledge Source. The interface describing the more global rela-

tionship between Knowledge Sources and the locus of their effects (the levels at which they alter the black-

-29.

board state) is not made explicit, but remains implicitly defined by individual KS actions.

The structure of an abstraction level may be considered to consist of a set of entries and a set of
Knowledge Sources which trigger there. The KSs themselves may be thought of as being relations between
abstraction levels. Two levels are related if at least one Knowledge Source triggers on one level and alters
the contents of the second. This makes clear that the information held in entries at any particular level of
the abstraction hierarchy depends upon information held at other levels, not just adjacent levels. It also
makes clear the idea that KSs may post or modify entries on levels which are not adjacent in the abstraction

hierarchy.

The second of these points is the important point: abstraction levels are related other than simply by
the abstraction hierarchy which defines the blackboard. Entries are created as a result of executing KS
actions; KS actions are permitted to execute as a result of KS triggering. The entry which causes a KS to
trigger determines some, if not all, of the information the action uses to cause changes to the blackboard.
Thus, there'is a relationship defined by information flow across the blackboard. This relationship is defined
in terms of the relationships represented by KSs and is additional to the generator relationship for the
abstraction hierarchy. Quite obviously, the information flow across the blackboard is important, yet it sel-
dom recieves attention: it has never, to my knowledge, been expressed in these terms before, but has

always been submerged in descriptions of the abstraction hierarchy.

These considerations show that the blackboard database is not an encapsulated (or modular) con-
struct. The interfaces presented by the abstraction levels in the abstraction hierarchy are related by means
other than the abstraction relationship. The ways in which levels are related are hidden in KS actions, so
there is no explicit statement of how an arbitrary pair of levels are related. What is more, there is no expli-
cit statement of how information on any particular level is, in general, produced -- to obtain this informa-
tion, one must examine the individual entries to determine which KSs have created and modified them,
then examine the KSs mentioned by the entries to see where they trigger. The second step of this process

may involve going through historical information to find entries on the KS’s triggering level.

The modularity of the blackboard architecture rests entirely with Knowledge Sources. KSs have

well-defined interfaces with regard to their areas of competence. The levels at which a KS triggers and at

may contribute to form entries at any given abstraction level. One of the justifications for the abstraction

-30-

which it executes its action are well-defined inside the KS. The larger issue of interfaces across the black-

board is far less clean and clear. The argument above has shown that information from a variety of sources

hierarchy is that it separates the structure of the blackboard into distinct and distinguishable regions. This
justification appears to be defeated in the face of the evidence that information on a particular level may be
composed of information from practically everywhere else without any statement (other than in each indi-

vidual KS) of how it got there.

If abstraction levels are genuinely independent in the way that it seems they should, it becomes
important to be able to define their relationships with other levels, just so that one can give a definition of
what it means for an entry to appear at any given abstraction level. One way to do this is to define cleaner
interfaces between abstraction levels. This permits an abstract description of the boundaries between levels.
It also allows constraints to be imposed upon information flows across the blackboard. One interpretation
of this is that it defines the kinds of information which can legally be used to construct an entry at a given
level. At present, any Knowledge Source at any level may, in theory, post information on any other level

without constraint — in the limit, this leads, of course, to chaos.

Fodor (Fodor, 1983), makes the distinction between vertical and horizontal organisations in cognitive

systems. Vertical organisations are domain-specific and encapsulated; horizontal organisations, on the
other hand, are non-specific and non-encapsulated. Perceptual and linguistic processes are examples of
vertical processes; central cognitive processes are cited by Fodor as examples of horizontal processes. In
the blackboard architecture, vertical structure is represented by Knowledge Sources. There appears to be a
tacit claim that because the blackboard is organised into abstraction levels, there is an encapsulation
mechanism here, t0o. The claim rests upon the usual interpretation of ’abstraction’ which implies that
objects at different levels of abstraction do not strongly interact. From the way the blackboard is treated
and described in implemented systems, it would appear that it has a horizontal structure, but its definition
suggests a combination of vertical and horizontal structure. The very fact that the blackboard is organised
into abstraction levels implies that each level is specialised and has special-purpose processes operating

upon it: this is precisely equivalent to the definition of vertical process given by Fodor. The blackboard as

,,m,.f.
{

-31-

a whole may be regarded as a general-purpose process (a horizontal process, that is), but its components
are specialised. This indicates that there is scope for re-examining the blackboard architecture from the

viewpoint of modularity to see if it is possible to derive a model with clearer structure.

5. Generality

Finally, we must examine the claim that the blackboard architecture is a general model of problem
solving: that is, that it provides a general framework within which to express and develop theories of prob-

lem solving. Nii (Nii, 1986a) states that

"HASP, as the second example of a blackboard system, not only added credibility to the claim that a
blackboard approach to problem solving was general, but it also demonstrated that it could be

abstracted into a general model of problem solving."

Hayes-Roth (Hayes-Roth, 1983) specifically asks if the architecture is general. After examining the com-

putational advantages and psychological plausibility of the model, she concludes (p. 23):

"In summary, I would answer the question posed in the title of this paper: "The Blackboard Architec-

ture: A General Framework for Problem Solving?" in a single word: Perhaps.”

Although it seems inuitively plausible that the blackboard architecture is a general model of problem

solving, this has not been conclusively shown.

Anderson (Anderson, 1983) argues that it cannot be an adequate model because it makes great
demands of memory and requires considerable computational power. For Anderson, production rule archi-
tectures are the most plausible general model because they make fewer assumptions about computational
requirements. Although I take the point, I am disinclined to accept that this is valid for it is not easily possi-
ble to express all that one can express within the blackboard architecture within the confines of produc-

tions, complex control being an obvious case.*

* It has to be admitted that I feel somewhat uneasy about Anderson’s ACT* work. In particular, he has presented tasks
which appear to support his theory of top-down goal-directed control. Although Means End Analysis and its relatives are
attractive, I wonder if they capture the entire story: that is, work on MYCIN, for example, indicates that there are alterna-
tives to sub-goaling strategies. Perhaps my true reaction is that Anderson’s account appears to solve 100 many problems
and leaves so little to do -- it all seems too neat.

-32.

One of the major generality claims for the blackboard architecture is that it is general because it is so
flexible and so powerful. The blackboard has been used, it should be remebered, to tackle high complexity
problems. It has been argued that the blackboard is the only architecture capable of operating in these
domains (this argument is implicit in the selection of the architecture for the task). This seems to suggest
that, were the task not so complex, the blackboard would not have been the chosen architecture. We have
to be a little careful, here, because there are, effectively, two claims-to generality: one is a psychological
claim, the other rather more pragmatic. The argument that the architecture was chosen because it can han-
dle the complexities of a given domain is a pragmatic one and depends only upon the flexibility of the
architecture and upon the architecture’s native power. One can see, practically immediately, that the black-
board architecture is not suited to some tasks: resolution theorem proving is one example -- one would not
use the full power of the blackboard to do what Prolog does, although one might want to include a lush
resolution theorem prover in a KS. The counter to this is that the blackboard provides a methodology
within which it is possible to make problem solving and control knowledge more explicit.* The simplest
task attempted, to my knowledge, is the reading task (McClelland, 1981; Rumelhart, 1982): but even this
task is far from trivial (a property shared, it seems, by most perception-oriented tasks). Since the majority

of blackboard systems have not been aimed at Cognitive Modelling, I will examine the generality claims

without reference to psychological arguments.
The claim for generality for the blackboard architecture is based on the claims that

@i it produces a general model of problem solving; and,

(i) itis powerful and flexible enough to be employed as the architecture for any problem solving system.

The second point is wholly empirical and depends upon a sufficient number of implemented systems,
operating in different domains, performing to satisfactory levels. The first claim is more difficult to assess,
but there are pointers. The fact that there have been a number of completed and successful blackboard sys-

tems indicates that point (ii) has some truth: indeed, as a result of the Strategic Computing Initiative, the

level of interest in the blackboard architecture has increased and it is being applied to many, different,

* I have heard a rumour that MYCIN and some of its derivatives are to be re-implemented as blackboard systems. The ra-
tionale is precisely the one which I have given.

=33

problems.

If the architecture can be applied to different problems and, what is more, produces a natural solu-
tion (i.e., one which is aesthetically, theoretically and computationally satisfying), one would be inclined to
assert that the architecture can be generally applied. This is said despite the fact that it is very difficult to

apply the architecture to some domains and that systems which look highly counter-intuitive can result.

In particular, consider some of the tasks Anderson chooses for his work on ACT* -- elementary
geometry and LISP programming. The reason ACT* seems to be such a plausible account of these domains
is that there is a good fit between his architecture and the complexity of the problem. As a paper exercise
some time ago, I took the geometry experiment and attempted to re-cast it as a blackboard system. The
result was unspectacular. One consequence of adopting the blackboard architecture was that the concept of
abstraction levels had to be taken on board and the result of that was that abstractions had to be found
where there were none in the experimental data. The geometry production set shown on page 222 of
(Anderson, 1983), reveals, on close examination, three abstraction levels: Goal, Sub-Goal and Operation.
The solution is retrieved from the Operation level. This analysis appears to be less attractive than the one
suggested by Anderson that there are goals and results which are distinguished, basically, by the role each
plays in the problem solving process. The control model one would have to adopt to cater for Anderson’s
results is simply a variation on recursive sub-goaling: each rule in the set on page 222 is sensitive to the
presence of a goal and merely expands that goal. This suggests that most of the power of the blackboard
architecture is not used, and it also suggests that a blackboard implementation of these productions would

be computationally wasteful.

It could be argued that it is comforting to know that the blackboard architecture could be applied to
simple problems. This argument continues with the suggestion that the full power of the blackboard is not
needed for such a simple problem, but it is there in case it is needed. My point is, though, that the power of

the blackboard is always there and that it is being wasted in solving problems of this level of complexity.

A second argument concerns abstraction levels. For many tasks, it is extremely difficult to discover a
natural abstraction hierarchy -- oft times, the hierarchy looks highly artificial and contrived (the controlled

airspace monitoring problem is such a problem, as is the interpretation of visual images): the Hayes-Roths

-34-

found this a difficulty with parts of OPM and admit as much in (Hayes-Roth, 1979). One could say that the
system builders simply have not done their analysis correctly, but this will not do, for this problem is

encountered by experienced and careful application builders.

Many of the more successful applications of the blackboard architecture have been in domains in
which there is a fairly obvious decomposition which can serve as the prototype for the blackboard: the
speech processing domain is an example. Even when it is possible to find abstractions (it is usually possible
to invent abstractions, at least in the domains I have considered), it is not always possible to form them into
a coherent hierarchy. There is a further problem: abstraction hierarchies tend, very often, to be problem-
specific. That is, it is not usually the case that an abstraction hierarchy can be used for another problem, let
alone another domain. Can one really believe that an architecture is general if it posits structures which
cannot be readily generalised? Unfortunately, I believe that it cannot.** This point could be expressed by
saying that the abstraction hierarchies are problem-specific (otherwise put, they represent part of a faculty
for that task -- this can be shown to be unreasonable). A partial counter-example is afforded by the BB*
environment (Hayes-Roth, 1986). A number of assembly tasks are being implemented using the BB1
blackboard interpreter: the tasks use a more-or-less similar abstraction hierarchy. Even if hierarchies can be

found for entire domains (and I am doubtful, though willing to be convinced), the faculty argument is

pushed only one stage back, and that is to a stage at which it is hard to see how anything but very general
organisations could be used: this would make, I suppose, the hierarchy fairly useless for specific problems
and would, consequently, reduce the power of a system using these general hierarchies. Basically, an
abstraction hierarchy is a knowledge-organising device and is domain- and/or problem-specific. The capa-
city of the blackboard architecture to represent abstractions is not in question: that is a matter of fact. What
I am really questioning is the methodological assumption that everything must exhibit hierarchy in this
way. Even in her paper on the generality of the architecture, Barbara Hayes-Roth equivocates on the status
ofabstraptions (lsyes Ret 998 seorlon &0 Trne 1B

In summary, these are my points. Firstly, the blackboard architecture is powerful and flexible, but

**] find this genuinely unfortunate because I like the architecture and find it generally quite satisfying. Whether it is sanis-
factory is, though, another matter.

,‘.—,M:,«

Pr—

[re—
|

-35-

when applied to simple problems much of the power and flexibility is just not required. Second, abstraction
levels are in many ways problematic and only apply within particular domains or within particular parts of
a domain. The blackboard methodology requires one to find abstractions in order to build working models,
even when this might not appear necessary or advisable. It may be the case that non-hierarchical organisa-
tions are more appropriate, in which case, the blackboard becomes a set of panels with little or no internal
structure. This last point sounds to me very much like a hack or other trick to force the architecture to cater

for every case.

Methodologically, there are problems with the blackboard architecture. Specifically, its methodology
is under-specified. It is under-speciﬁed in the following sense. The methodology basically states that prob-
lem solving systems should be constructed from modular Knowledge Sources which operate on a hierarchi-
cally organised database called the blackboard. Insofar as it is suggested that Knowledge Sources trigger
on entries at particular abstraction levels of the blackboard, it specifies the relationship between KSs and
abstraction levels. The methodology says a little about control, but not much, for the architecture does not
really specify its control mechanisms. The methodology for building blackboard systems emphasises the
fact that parts of the system can be considered as black boxes until it is fully integrated. A major assump-

tion of the methodology is that the entire power of the architecture is always needed.

If a problem solving architecture is to be a candidate for the title general problem solving architec-
ture, it must do a number of things. Firstly, it must be sufficiently flexible that any instance of problem
solving activity from the simplest to the most complex can be covered. Second, it must not project
unwanted constructs on descriptions of problem solving activity. Third, it must supply a general methodol-
ogy which can be applied to every case of problem solving: when the architecture or its methodology fall
down, a revision of the architecture must be revised. In some of these respects, the blackboard architecture

is inadequate and cannot qualify for the generality title.

6. Conclusions

This paper has presented a fairly strict defintion of the blackboard architecture. The definition is quite
close to that given by Hayes-Roth, (Hayes-Roth, 1983). The definition provides a framework within which

to compare implementations of the blackboard architecture and acts as a standard against which to rate

36 =

systems claiming to be "blackboard’ systems.

The paper gives a detailed argument about the status and role of opportunism. Opportunism is cited
by some (notably, Nii) as a central characteristic of blackboard systems -- so central, in fact, that systems
without opportunistic control may not, by her definition, be properly called blackboard systems. I have
argued that Nii’s conception of opportunism is fundamentally incorrect and have argued that opportunism
is just one of many control strategies which may be employed by blackboard systems. The reason for the
identification of opportunistic problem solving and blackboard systems is that the latter are usually imple-

mented using control mechanisms with memory: memory allows opportunism.

Finally, the modularity and generality of the blackboard architecture were considered. It was argued
that there are modularity problems: in fact, that the architecture is not as modular as is commonly thought.
One breakdown of modularity is in the very structure of the blackboard database itself. Since modularity is
frequently stated as one of the desiderata of general problem solving architectures, the generality of the
blackboard was briefly considered. There are grounds, based on arguments concerning modularity, to doubt

that the blackboard architecture is a truly general model of problem solving.

References

~ (Anderson, 1983) Anderson, J.R., The Architecture of Cognition. Harvard University Press, London,
1983
(Balzer, 1980) Balzer, R., Erman, L., London, P. and Williams, C. HEARSAY-III: A Domain
Independent Framework for Expert Systems. Proc. First Annual Conference on Artificial Intelli-

gence, pp. 108 - 110, 1980
(Clacey, 1985) Clancey, W.J. Heuristic Classification. AL, Vol. 27, pp. 289-350, 1985

(Craig, 1986) Craig, I.D. The Ariadne-1 Blackboard System. Computer Journal, Vol. 29, No. 3, pp.

235-240,1986

(Craig, 1987) Craig, 1.D. BB-SR. Technical Report No. 94, Department of Computer Science,

University of Warwick, February, 1987

[

,,N-\.—-.

<37 =

(Erman, 1975) Erman, L.D. and Lesser, V.R., A Multi-level Organisation for Problem Solving Using
Many, Diverse, Cooperating Sources of Knowledge. Proc. UCAI 4, Vol. 2, pp. 483 - 490, 1975

(Erman, 1981) Erman, L.D., London, P. and Fickas, S. The Design and an Example Use of

HEARSAY-II. Proc. UCAI 7, Vol. 1, pp. 409 - 415, 1981

(Emst, 1969) Emst, G. and Newell, A. GPS: A Case Study in Generality and Problem Solving,
Academic Press, New York, 1969

(Feigenbaum, 1978) Feigenbaum, E. and Nii, H.P., Rule-based Understanding of Signals. In (Water-
man, 1978).

(Feigenbaum, 1982) Feigenbaum, E., Nii, H.P., Anton, JJ. and Rockmore, A.J. Signal-to-signal
transformation: HASP/SIAP case study. Al Magazine, Vol. 3, pp 23 - 35, 1982

(Fodor, 1983) Fodor, J.A. The Modularity of Mind. Bradford Books, MIT Press, 1983.

(Forgy, 1977) Forgy, C.L. and McDermott, J. OPS, A Domain-independent Production System
Language. Proc. DCAIS, pp 933 - 939

(Hayes-Roth, 1979) Hayes-Roth, B. and Hayes-Roth, F., A Cognitive Model of Planning. Cognitive
Science, Vol. 3., pp. 275 - 310, 1979

(Hayes-Roth, 1983) Hayes-Roth, B. The Blackboard Architecture: A General Framework for Prob-
lem Solving? Report No. HPP-83-30, Heuristic Programming Project, Computer Science Dept.,

Stanford University, Palo Alto, CA, May 1983

(Hayes-Roth, 1984) Hayes-Roth, B. BB-1: An Architecture for blackboard systems that control,
explain, and learn about their own behavior. Technical Report HPP-84-16, Stanford University,

1984

(Hayes-Roth, 1985a) Hayes-Roth, B and Hewett, M. Learning Control Heuristics in BB-1. Techni-

cal Report HPP-85-2, Stanford University, 1985

(Hayes-Roth, 1985b) Hayes-Roth, B. A Blackboard Model for Control. Artificial Intelligence, Vol.

26, pp. 251 - 322, 1985

-38-

(Hayes-Roth, 1986) Hayes-Roth, B., Garvey, A., Johnson, M.V. and Hewett, M. A Layered
Environment for Reasoning about Action. Technical Report No. KSL 86-38, Knowledge Systems
Laboratory, Stanford University, 1986

(Lenat, 1982) Lenat, D.B. The Nature of Heuristics. AIJ, Vol. 19, pp. 189-249, 1982.

(McClelland, 1981) McClelland, J.L. and Rumelhart, D.E. An interactive activation model of con-
text effects in letter perception: Part 1. An account of basic findings. Psychological Review, Vol. 88,
pp. 375-401, 1981

(Newell, 1973) Newell, A. Production systems: models of control structures. In W.G. Chase (ed.),
Visual Information Processing, Academic Press, New York, 1973

(Nii, 1986a) Nii, H.P. The Blackboard Model of Problem Solving. Artificial Intelligence Magazine,

Vol. 7, No. 2, pp. 38 - 53, 1986

(Nii, 1986b) Nii, H.P. Blackboard Systems Part Two: Blackboard Application Systems. Artificial

Intelligence Magazine, Vol. 7, No. 3, pp. 82 - 106, 1986

(Rumelhart, 1982) Rumelhart, D.E. and McClelland, J.L. An interactive model of context effects in

letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the

model. Psychological Review, Vol. 89, pp. 60-94, 1982

(Rychener, 1978) Rychener, M.D. and Newell, A. An intrstructable production system: basic design

issues. In (Waterman, 1978).

(Sacerdoti, 1974) Sacerdoti, E.D. Planning in a Hierarchy of Abstraction Spaces. AlJ, Vol 5, pp.

115 -135, 1974
(Sacerdoti, 1977) Sacerdoti, E.D. A Structure For Plans and Behavior. Elsevier, New York, 1977

(Terry, 1983) Terry, A. The CHRYSALIS Project: Hierarchical Control of Production Systems.
Memo-HPP-83-19, Heuristic Programming-Project, Computer-Science Dept.,- Stanford-University, -

Palo Alto, CA., May, 1983

-39-

(Waterman, 1978) Waterman, D.A. and Hayes-Roth, F. (eds) Pattern-directed inference systems.

Academic Press, New York, 1978

- e N 1l
il NI It i
_, M.:lu 1 _,,7 i | , ”
. i i 1|
‘. w w | ;, | ,,, H |
s | LIl o e ﬁ
<1:/r | | ,7, “7
o ¥ Aﬁi il f, |
s 1 it | m | , W W
S :” , i ; ”
3 | | , ,
o .W, ,.,, | ,i W
N A
; M: L | ;
J m , ,
IR i
v o | | il R
, ,,7 j |- | |l |
! m,vi i , | ﬁ
, . m , |
[HHf , : | |
il A TR -
[H il b , | W , W
:7 wi | ﬂ | I -
! ,, , | ”
; ﬁ 7 f ﬂ | W
i W I ; ,7 | |
_ ! | ,
| | _ “ , , ,
| A T [\
| _ K | W
i ! 1,% | ”
,ﬂ?w _ a | | ”
” ,,; I .; 7 |
I “ W , H ”,
B HIRAE! | .
. L
o i ,
_,ﬁ 1”” | |
A I | |
| i
Ll 1k | | |
A I |
| , |
! | | |
i i ,
IR
| S , 7 ,
B/ AR | 1l
s I\ , ,
_, il , | , |
i A,, M, i | |
”: 7 | | , 7 |
| w | I |
| | N , 3 |
| , | | , ‘
M; B 1l
.l i | |l w
| I) i | | , g
il i | 7
ﬁ 7 | ﬂ i 7 |
| | ﬁ
, i , ,
| ,7 7
.,, 7
il

