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OBSERVATIONS ON THE DISJOINTNESS

PROBLEM FOR RATIONAL SUBSETS OF FREE

PARTIALLY COMMUTATIVE MONOIDS

Alon Gibbons & Wojciech Rytler'

(RRr00)

Abstroct
Let I be o portiolly commutotive olphobet of size three. Let M denote the free portiolty
commutotive monoid generoted by L The disjointnes problem for rotionolsubsets of M is:

for two given rotionol (described by regulor expresions) subsets, X, Y of M decide if XnY=@.

In this poper we show thot the problem is decidoble for every commutotivity region over the
olphobet l. lt is known (see (3)) thot the problem is undecidoble in the cose of the four letters
olphobet. Hence we give o shorp bound on the number of letten for which the problem is

decidoble. A similor situotion occurs for the unique decipherobility problem with portiotly
commutotive olphobets, lt wos shown in (4) thot this problem is decidoble for olphobets of size
three ond thot it is undecidoble for olphobets of size four. We show thot the unique
decipherobility problem with portlolly commutotive olphobet I is o speciol cose of the
disjointnes problem of rotionol subsets of the monoid generoted by l. This ond our olgorithm
for the disJointness problem give olternotVe ond much simpler proof of the decidobility of the
unique decipherobility problem with portiolly commutotive olphobets of size three. Let
l={o,b,c}. lt wos proved in (5) using multicounter mochines thot if o commutes wlth c ond b, ond
b does not commute with c then the disjointness problem is decidoble. We give here o
simpler proof for this cose ond prove the decidobility for oll other possible commutotivity
relotions for three letters olphobet.
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trt I be a panially commutative alphabet of size three. Let M denote the free partially commutative
monoid generated by I. The disjointness problem for rationai subsets of M is:

for two given rational (described by regular expressions) subsets X, Y of M decide if Xny=O.

In this paper we show that the problem is decidable for every commutativity relation over rhe

alphabet I. It is known (see [3]) that the problem is undecidable in the case of the four letters
alphabet. Hence we give a sharp bound on the number of letters for which the problem is
decidable. A similar situation occurs for the unique decipherability problem with panially
commutative alphabets. It was shown in [4] that this problem is decidable for alphabets of size
three and that it is undecidable for alphabets of size four. We show that the unique decipherabiiity
problem with partially commutative alphabet I is a special case of the disjointness problem of
rational subsets of the monoid generated by I. This and our algorithm for the disjointness problem
give alternative and much simpler proof of the decidability of rhe uniqr:e decipherability problem
with partially commutative alphabets of size three. Let I-{a,b,c}. It was proved in [5] using
multicounter machines that if a commutes with c and b, and b does not commute with c then the
disjointness problem is decidable. We give here a simpler proof for this case and prove the
decidability for all other possible communrivity relations for three letters alphabet.

Keywords: rational subsets, partially commutative monoids, disjointness, decidability
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Languages over partially commutative alphabets are generalizations of classical formal languages

and the same classical decision problems can be considered for such languages. Matty classical

clecision problems for rational subsets over alphabets of size 3 were shown in [5] to be undecidabie

(using the results of [7]). Suprisingly the disjointness problem turns out to be decidable.

A partially commutative alphabet (called also a concurent alphabet) is a pair (I, C), where I is a
finite set of symbols and C is a symmetric irreflexive relation on I.

The symbols of I can represent processes (see [9,8]) and the relation C then represents which of
these processes can be executed independently (C is also called the concurrency relation).

Two strings v and w are said to be equivalent (with respect to C) if v can be obtained from w by
several applications of the operation of commuting certain nvo adjacent symbols a,b such that

(a,b) e C. we write in this case v =c w ( later we shall omit the subscript c ).

ln this paper we consider only alphabets of size three. We fix the alphabel l={a,b,c}. There are (up

to isomorphism) four possible commutativity relations C: Rl, R2, R3 or R4. They are presented in
Fig.l as undirected graphs, with an edge between two letters if they commute.

R3 R4

Fig. I . Possible types of commutativity relations over l= { a,b,c } .

For example if C=Rl then bcacbabbc = cbabcabcb.

The free partially commutative monoid (fpcm, for short) over I is the set M of equivalence classes

of the relation =g. These equivalence classes were called traces in [ 2,10,8,9] and subsets of a

fpcm M were called trace languages in [ 2]. Let [x] denote the equivalence ciass containing x.

Classical formal languages are languages over alphabets in which no symbols commute. Any
classical language L over the alphabet I has a corresponding trace language, by taking all traces

containing at least one element of L. In this sense rational subsets of M (rational race languages)

correspond to classical regular languages L.

'fhe subset L' of M is a rational set iff 1'= [[x]: x is in L] for some (classical) regular language L
over the alphabet I. It is technically simpler to deal with sets of strings instead of sets X, Y of
equivalence classes of strings. Hence instead of considering subsets of fpcm (trace languages) we

consider in this paper their classical language versions. To this end we inrroduce the operation CL.

R2KI
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Let L be a classical language over rhe alphabet I, by cL(L) we denore the set

{w : w=v for some ve LJ.

CL is called the closure operation.
'I-he disjointness problem can be formulated now as follows:
for two given regular languages LI,L2 (described by regular expressions) decide whether

CL(L 1 )nCL(L2)=@.
In the case of relations Rl and R2 we reduce this problem to the emptiness problem for context-frec
languages (which is decidable).

Throughout the paper I= {a,b,c } . Let e denote the empty word.

Let h be the homomorphism: h(a)=s, h(b)=b, h(c)=s.

Lemma 1.

If the commutativity relation C is Rl then for every nvo regular languages Ll,L1over I the

Ianguage L = h(CL(L1)nCL(L2)) is a context free language. If the regular expressions describing
Ll,Lz are given then the context-free grammar generating L can be effectively constructed.

Proof.

Let A1 (A2) be the finite automaton accepting Ll (L2). Let Q1 (Q2) be the set of states of Al (A2).
we construct a nondeterministic counter automaton A accepting L. The counter can take arbirary
integer value, it is initially zero and in one step it can decrease or increase by one. The set of states

of A is Q1xQz. The initial state of A is (the initial state of A1, the initiai srate of A2) and accepting
states of A are pairs of the form (an accepting state of A1, an accepting state of A2). We can
imagine A as a composition of A1 and A2. Whenever A reads the symbol a or b then Al and 42 eo
to the next states and their next states form a pair which is a next state of A.

At any time A can nondeterministically assume in an t-move the input symbol c for one of the
machines A1, A2 (without advancing its input head and disregarding the input text), then the
simulated machine makes a move as if it was reading the symbol c. If the machine A1 is chosen
then the counter is incremented by one, if it is .{2 then the counter is deffemented by one. The
machine A accepts iff there is a computation which ends in an accepting state and during the
computarion the counter is empry whenever we read the symbol a. The counter should also eoual
zero at the end of the computation.

The input to A is of the form bb..babb...bab...bab... . The machine is guessing two sequences of
c's to be interleaved with the symbols b between rwo consecutive occurences of the symbol a. One
sequence goes to the machine Ai and the other to the machine 42. Using the counter A checks
whether the lengths of these sequences (bet'ween rwo consecutive symbols a) are the same.
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In other words for a given string w

Li and w2 is in L2 and wl:w2.
A guesses two strings wl, w2 from h-1(w), such that wi is in

accepting

sCceperg

M:

Fig.Z. The automata A1, A2 accepting the languages Ll,LZ.

For example let A1, A2 be as as in Fig.2, and Ll, L2& the languages accepted by, respecriveiy,

Al, 42. LIaL2=Q, however CL(LI)nCL(L2)*@ .The automaton A (rhe composirion of Ai rnd

42) accepts the word w=ababa e h( CL(L1)nCL(L2) ). A can guess a sequence of three symbols c

to be interleaved with w in two ways resulting in words w1=abcabcac and w2=acbacbac. wle L,l

and w2e L2, moreover w1=w2.

'fhe power of A lies in its nondeterminism. We show an accepting computation path of A for the

input word w. A starts in the state (ql,rl) with counter equal zero. A reads the symbol a and goes

to the state (q2,r2). Then A guesses the symbol c for the auromaton A2, (the state of A2 is changed
to q3), A goes to the state (r2,q3) and increments the counter by one. Next A reads the symhol b
and goes to the state (r3,q1). Then A guesses one symbol c for the automaton A1, A goes to the

state (r3,ql) and decreases the counter by one. Now A reads the symbol a and goes to the state

(q4,r2), however it checks first whether the counter is zero. The counter is zero, hence A continues
its computation. Finally A arrives at the accepting state (q6,r3) with the counter equal zero after
reading the whole word w. The automaton A accepts w.

'fhe counter automaton is a special case of the pushdown automaton. The absolute value of the

counter can be represented by the number of symbols on the stack, and the sign of the counter i:an

be stored in the finite memory. The context free grammar generated the language accepted by A ean

be constructed using the description of the automaton A. Then the problem is reduced to checking
the emptiness of a context free language. This completes the proof.
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Remark

It can be proved, using a more complicated construction, that L=h(CL(L1)nCL(L2)) is a regular

language, where LI,LZ are as in the lemma.

The next lemma concerns the case when the commutativity relation is R3. If all letters cornmute

then the cardinality of the alphabet does not matter, we can also speak about context free languages

instead of regular languages. This is so because in this case for each context free language L there

is a regular language L' such that CL(L')=CL(L).The sets CL(L) are nicely characterized by

senrilinear sets. We refer the reader to [6] for the definition and properties of semilinear sets.

Lemma 2.

If all the letters commute then the disjointness problem for rational subsets is decidable for any

finite alphabet.

Proof.

Let L I , L2 &, two regular languages over the same finite alphabet. Assume that all the letters

cornmute. Then CL(L1) and CL(L2) are semilinear sets, see [6]. It follows now from Theorem

5.6.1 in [6] that the set CL(L1) nCL(L2) is also a semilinear set (effectively constructed) and the

disjointness prblem for semilinear sets is decidable. This completes the proof.

The proof of decidability given in [5] for the commutativity relation R2 was using the results about

reversal-bounded multicounter machines. We provide here a much simpler proof similar to the

proof of Lemma I by reducing the problem to the emptiness probiem for context free languages.

Lemma 3.

lf the commutativity relation C is R2 then for every two regular languages Ll,LZ over I the

language L=h1(CL(Ll)nCL(L2) is a context free language. If the regular expressions describing

LI,LZ are given then the context-free gmrnmar generating L can be effectively constnrcted.

Proof.

We proceed rj a similar nunner to the proof of lrmma 1. Let A1 (A2) be the finite automaton

accepting LI (L2). Lrt Ql (Q2) be the set of states of A1 (A2). We construct a nondeterministic

counter automaton A accepting L.

The set of states of A is QlxQ2. The initial state of A is the pair (the initial state of A1, the initial

state of A2).

Accepting states of A are pairs of the form (an accepting state of A1, an accepting state of A2). A is

a comoosition of A1 and A2.
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Whenever A reads the symbol a or b then Al and A2 go to the next states and their next states form
a pair which is a next state of A.

At any time A can nondeterministically assume in an e-move the input symbol c for one of the

machines A1, A2 (without advancing its input head and disregarding the input rext), then the
simulated machine makes a move as if it was reading the symbol c. If the machine Al is chosen

then the counter is incremented by one, if it is A2 then the counter is decremented by one. The
machine A accepts iff there is a computation which ends in an accepting state and the final value of
the counter is zero. Using the desciption of A a corresponding context-free grammar can be
effectively constructed. This completes the proof.

Theorem 4.
'lhe disjointness problem for rational subsets over partially commutative alphabets of size three is
decidable.

Proof.

The thesis follows from Lemmas 1,2 and 3 and the decidabiiity of the emptiness problem for
context free languages.

We show that the unique decipherabiliry problem is a special case of the disjointness problem of
rational subsets.

Let Q = {w1,...,wk} be a set of nonempty words over I. The words wi are called codewords and

w - a code-set. we say that w is uniquely decipherable over I iff the equality

witwi2 ... wip = wjlwj2 ... *jq

The unique decipherability problem is the following: Is W uniquely decipherable over I?

1'he generalized unique decipherabiliry problem was introduced in [4]. lrt W be a code set and

Z = (u6,vg,u1,v1) be a four-tuple of words over I. We say that (W,Z) is not uniquely decipherabie

over I if there exist sequences (i1,i2,...,ip), 0t jZ,...jq) such that

u0wilwi2 ... wipul = v0wj Iw j2...*jqrl.

The generalized unique decipherabiliry problem is:

decide if (lV,7.) is uniquely decipherable .

The unique decipherability problem for a code-set W can be easily reduced to the finite set of
generalized unique decipharability problems (W,Z), where Z are all four-nrples (ug,vg,u1,v1) of
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code-words from w such that ug*vg. Then the problem can be seen as a special case of the
disjointness problem of rational subsets, because of the following obvious fact.

Lemnra 5.

Let Z=(u0,v6,u1,v1) and let Ll,Lzbe the following rational subsets over the alphabet I:
Ll= u6W*u 1, L2= v6W*vg.

Then (W,Z) is not uniquely decipherable if and only if L1 n L2* @.

Hence the decidabiliry of the unique decipherability problem with parrially cornmuadve three letter
alphabet follows directry from our theorem about disjointness problem.
In fact the decidability results presented in [3] are much stronger and are related to the structure of
the graph corresponding to the commutativity relation (all graphs with three nodes have good
structllre in this sense)' However their proofs are more complicated than the proofs presented here.
Tlre shortness of the proof of rheorem 4.2 in [4] can be misleading, because it is incorrect (it can
be corrected but it needs a more complicated argument). If one wants to prove the decidability of
the unique decipharability problem restricted only to parrialiy commuhrive alphabets of size three
then the proof via theorem 4 and lemma 5 is simpler than via graph theoretic constmctions in [4].

The following theorem (showing that the size three of the alphabet is sharp) was proved in [3]:

Theorem 6.

The disjointness problem for radonal subsets over partiaily commutative alphabets of size four is
undecidable.

The alternative proof follows from Lemma 5 and the fact that the unique decipherabiliry problem for
parriaily cornmurarive arphabets of size four is undecidable [4].

Let NL denote the class of problems solvable in nondeterministic logarithmic space. It is easy ro
prove that the disjointness problem for regular languages (over noncommuhdve alphabets) is in
NL' It was shown in t12l that the unique decipherabiliry problem (over noncornmutative alphabet)
is log-space complete in NL. Hence the disjointness problem for regular languages is also compiete
in NL' because the unique decipherability problem is. This implies the following natural question:
is the disjoinnress problem for rational subsets over three letter partially cornmutative alphabets also
log-space complete in NL? In fact it remains only to show that it is in NL.
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