THE UNIVERSITY OF

WARWICK

Original citation:

Dain, J. A. (1987) Minimum distance error correction. University of Warwick. Department
of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-102

Permanent WRAP url:
http://wrap.warwick.ac.uk/60798

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60798
mailto:publications@warwick.ac.uk

Minimum Distance Error Correction

Julia Dain

Dept of Computer Science
University of Warwick
Coventry CV4 7AL
UK

ABSTRACT

A method is presented for incorporating error correction using a
minimum distance measure into LR parsers. The method is suitable for
use by an automatic parsgeneratar State information in the LR parser
stack at the point of detection of error is used to generate a set of strings
which are potential repairs to the inpu#.string with least minimum dis-
tance from the actual input is chosen and the parser is restRritical
methods for generating the set of repairs are discussed.

June 1987

Minimum Distance Error Correction

Julia Dain

Dept of Computer Science
University of Warwick
Coventry CV4 7AL
UK

I ntroduction

We investigate a method for incorporating error correction into practical parsers for
contet-free languagesWe ae specifically interested in the LR parsers for a number of
reasons. Firstlythe LR grammars generate a wide class of languages, the deterministic
contet-free languages (DCFLs) [8)Within this class, the LR(0) grammars define the
DCFLs with the prefix property (for grstring w in a DCFLL with the prefix property
there does not exist a proper prefixwoin L: note that for ap DCFL L, adding an end-
marker # toL gives the prefix property). Adding more than one symbol of lookahead
does not add to the class of languages defined, that is the LR(1) grammars generate the
DCFLs, but for ap k there are grammars which can be parsed Wwislgmbols of look-
ahead but ndt — 1. Thesecond reason forvestigating LR parsers is that there prac-
tical tools with time compbdty O(n) which are used in production programmingien
ronments. Thirdlythere are parser-generators whichetakgammay possibly ambigu-
ous, and produce an LR parser for the language generaimuples are the parser
generator used in the Helsinki system LR 1] and the UNIX tools yacc [7] and bison
[3]. We assume familiarity with LR(K) parsing as presented in for example [1].

Minimum distance

The minimum distancés defined for a pair of stringsve a finite alphabet and a
set of transformations on the alphabet, famaple the familiar edit operations of replace-
ment, insertion and deletiorthe minimum distance is defined to be the minimum num-
ber of transformations required to translate one string into the dtea finite alphabet
> and a set of transformations

A={(a b)|la,bOZ0{A}, (a,b)# (1, 1)}
we write
U-vviaa-binA

if (a,b) OA and there are string®, X in Z* whereu=wax and v=wbx For a
sequence of transformatioiis= tt,...t,, t; = (a, b) A, we write u - v via T if there
are stringswy, ..., W,_4 in Z *such that

u — wpvia ty,

W, - Wi viat,fori=1,...n-2,

W,_1 - Vvat,.
For stringsu, vin X *, the minimum distance(u, V) is given by
d(u,v) =min{n|u - v via Sfor some sequenc&=s;...5, }.

This notion may bextended to include a measure of the cost of the translation, by asso-

ciating a cost with each transformation and summing the costs to provide a minimum dis-
tance cost.Let y : A — N be a cost function and define the cost of a sequence of trans-

formations in the natural way: far = t;t,...t,, t; OA,

y(T) = z y(t).

The minimum distance costu, V) is given by
o(u,v)=min{ y(T) |u > vvaT}

A global minimum distance error correcting parser for a context-free grammar
G=(N, z, P, S) takes ay x in Z* and produces a parse for somven L(G) such that
the minimum distance betwe@&nand x is as small as possibl&hus a global correction
scheme does not handle each error in the input sepatatefinds a best approximation
to incorrect input wer the whole input string. Such a scheme is not held to be practical:
"Unfortunately global correction techniques cannot be incorporated in practical parsers
without drastically affecting the parsing speedreof correct sentences. In fact, the
global correction approach seems to fitvammently only general conk¢ free parsing
algorithms" [12]. Aho and Peterson [2] present @&{n®) agorithm for minimum dis-
tance error correction for greontext-free grammaiG. They add a set of error produc-
tions to gve a overing grammaiG’ which generate& *, and design a parser f@’ that
uses as f@ error productions as possible in parsing atring w. The error productions
used in a parse indicate the errorsvnG' is ambiguous and the parser is a variation of
Earleys dgorithm [5] which includes a count of the number of error productions used.
An alternatve gproach is used by Maup@nd Fischer [10] to achie what thg term
"regional least-cost repair”, i.e. minimum distance error correctrenabounded rgion
of the input string. They devdop a global least-cost error correcting parser and then
restrict it to regional least-cost. Instead of extending the original grammar with error pro-
ductions, the parser is modified so that it can simulate insertions, deletions and replace-
ments on the input stringFor the general context-free parsing method required; the
choose the Graham, Harrison, Ruzzo algorithm [6]. This method, which is similarto Ear
ley, finds the parse in tim®(n®). To achieve a nore practical method, thepropose
using anO(n) parser and calling the repair algorithm only when needed, to parse a sub-
string of the input. An algorithm is needed to output a string which camftiie input
accepted soaf, for example a context-free grammar which describes tia daffixes.
This howeer is not presented.

Our aim is to design a parser which is practical in time and space and incorporates
global minimum distance error correction, with no penalty for parsing correct ikiyait.
use the LR parsing method together with an errorveegdechnique which can be auto-
mated, thus permitting it to be built in to an LR parser generator sugaca$’]. A

technique which performs well for single token errors has already been implemented and
used with success as a tool for constructing various compilers [4]. Global error correc-
tion should imprge o this technique for repairs of multiple errors and compfeors.

Overview of the Method

Each state of an LR parser contains information on all the possibks fnom that
state: which input symbols can be shifted and which reductions are possible (LR(1)
parsers inspect one symbol of lookahead to determine whether a reductga).isTiee
parser detects an error in the input when there isgabri®ove (either shift nor reduce)
on the current configuration, andvakes the recoery method. The method generates
legal continuation string$or the input already parsed, i.e. prefixes gHlesuffixes of the
parsed input; the actual remaining input is not inspected during generation of the continu-
ation strings. One of the continuation strings is then chosen as the repair to the actual
input; the minimum distance measure from the actual input is used to choose the best of
the continuation strings.

The continuation strings are formed from sucaeslsigd shift moves of the parser
Each possible shift nve will cause an input symbol to be concatenated to a continuation
string. Themethod constructeecovery configuations of the parser which consist of a
parser stack and a continuation string. The initial vergoconfiguration is formed from
the parser stack at the point of detection of error and the empty dfongach recwery
configuration, all lga moves from the top state of the stack are considefedhift move
gives rise to a n& recovery configuration consisting of the stack with the shift state
pushed on and the previous configurasantinuation string with the shift symbol con-
catenated. Areduce mue gves rise to a ne recosery configuration consisting of the
reduced stack and the pieus continuation string (there is no inspection of a lookahead
symbol).

The LR Parsing Machinewith Minimum Distance Error Recovery
A context-free grammdB is represented by a tuplbl(Z, P, S) where

N is a finite alphabet of non-terminals
> is a finite alphabet of terminals
P is a finite set of productior®: N - (N [0 2) *

Sin N is the start symbol.

An LR(0) parsing automatol! for an LR(0) gramma6 may be represented by a tuple
(Q, =, qo, J, y) Where

Q is a finite set of states (the stack alphabet)
Jo in Q is the start state

2 is the finite input alphabet (terminals®j

J is the ACTION transition function
0:Qx{Z0 A} - SHIFT xQ O REDUCEx P 0 ACCEPTO ERROR

y is the GAO transition functiory: Q - Q

Moves of the parsing automaton are either shiftvesowhich consume one input symbol
and push a state onto the stack, or reduceesnahich consume no input and replace
zero or more of the top states of the stack withvasiate, or halting mees which accept

or announce errorA configuration of the parser stack and input is represented by an
instantaneous description (ID) of the formg|... ¢y, a; ... &.«] where theg; represent

the stack ¢, the top state) and tha represent the remaining inpuThe symbol -
denotes the relation "mae in one step” on IDsA shift move is then denoted by succes-
sive IDs

[Qo Omr @j@j4q wor i I = [Do oo O’y @y -v B]

whered(g, a;) = (SHIFT, q')

A reduce mue is denoted by succes® IDs
[Do - Gnen - Oy @) o @ [~ [o - OnnD's @) -0 @i]
whered(g, 1) =(REDUCE A - a), le|=n, and y(dppy) = O

A recovery configuration of the parser is represented by af Q... g, u],
u OX* where theq; represent the stack as before andepresents the continuation
string (we us¢ and] in place of [and] to distinguish IDs representing veop configu-
rations from IDs representing ordinary configurations). The relatiorvénmone step”
on recwery configurations, denoted by the symbey, is defined analogously te- on
parser configurations, as follows.

If 5(gm,@)=(SHIFT,q),a0%, then][dy... G, U]|=r [do - G, UA]

If 6(dm A)=(REDUCE A - a), |la|=n,andy(gm0) =0,

then[go ... O, U] [~ [Qo -+ Gmends U]

Let |-, denote the refidve and transitve dosure of|—g. Let the configuration of the
parser when error is detected be denoted bydp.[. ., a; ... 8.]. Thenthe seto,
of continuation strings of length is given by

O ={ufubz" [do.. G A]|=r[o thu]}

Generation of the Continuation Strings

We gve a design in Rscal for the algorithm to generate the continuation strings.
First, we outline the data types to be used.

TOKEN represents an input symbol (terminal or lexical token) of the grammar.
PRODUCTION represents a production of the grammar.

STRING abstracts a string of tokens with operatynst, concat, length.
TOKENSET abstracts a set of tokens with iteraextT.

PRODUCTIONSET abstracts a set of productions with itersggtP.

STACK abstracts a stack of (LR(1)) parser states with operations
shift: STACK x TOKEN - STACK
reduce: SACK x PRODUCTION - STACK
LegdShifts: SACK — TOKENSET
LegdReductions: SACK —» PRODUCTIONSET
GenRepairs: ACK x STRING - {}

The operations LgdShifts and LgdReductions inspect the top state of the stack to
return the tokns which it is possible to shift and the productions by which it is possible
to reduce respewtily.

The algorithm is implemented by the recuesprocedureGenRepairs The input
to the algorithm is the current configuration of the paxsersisting of the current stack,
passed as a parametand the actual remaining input to the pars&he output is a
sequence of strings of tokens (the continuation strings).

1 procedure GenRepairs(stack: 3CK, continuation: STRING);

2 const REPAIRLENGTH = 10; { desired length of continuation }

3 var shifts: TOKENSET { legd shifts from current state }

4 t TOKEN; { next symbol for shift mee }

5 reductions: PRODUCTIONSET { legd reductions from current state }
6 p. PRODUCTION; { next production for reduce me }

7 begin

8 if length(continuation) >= REPAIRLENGTH
9 then print (continuation)

10 else begin

11 { compute lgd shifts }

12 shifts:= LegdShifts(stack);

13 t:= nextT(shifts);

14 whilet <> 0do

15 begin

16 GenRepairs(shift(stacl}, concat(continuation, t));
17 t:= nextT(shifts)

18 end;

19 { compute lgd reductions }

20 reductions= LegdReductions(stack);
21 p:= nextP(reductions);

22 whilep <> 0do

23 begin

24 GenRepairs(reduce(stagh, continuation);

25 p:= nextP(reductions)
26 end

27 end

28 end;

Computing the minimum distance

We wse the Fischewagner algorithm [13] to compute the edit distance af tw
stringsu, v of lengthsm and n over a finite alphabet, with error transformations insert,
delete and replace. This algorithm constructsnann matrix M whereM(i, j) gives the
minimum cost of transforming the prefix of lengtbf stringu into the prefix of length
of stringv. The algorithm has time compi¢y O(mn) (Masek and Paterson [9] imm®
this algorithm to one dD(n . max1, nvlog n)) by use of the Four Russians’ idea).

Restarting the par ser

In order to continue parsing the remaining input after having formulated a good
repair it is desirable for the parser to be synchronized with the infM& wish to identify
the most appropriate continuation string with which to replace a portion of the ifput.
continuation strings of length are generated, then the minimum distances of the contin-
uation strings from a prefix of length. f the upcoming input is computed. The contin-
uation string with the smallest entry in the lasw raf the FischeiWagner matrices is
found; if the column number of this entry gsthen the ngt c tokens on the input are
replaced with the chosen continuation stringfe choose the smallest entry in the last
row, over al the FischetWagner matrices, rather than the smallest entry in the last col-
umn of the last no, because it is possible toVea ontinuation string whose last Fis-
cher-Wagner entryM (L, 2L) is greater than that of anothdess suitable, continuation.
There may be more than one continuation string with the same smallest anthe last
row and in this case we choose the continuation which will replace most of the upcoming
input, i.e. the entry with the Igest column number. Consider for example the Fischer
Wagner matrices for actual inpabcdef, L = 3, repairsggcd, gab:

WNPRPO||WNEF O~
NFPRRP[|IWONRP R
R NPN[WwNNDDNT
NWwWwiNnNww o
whrhipONDMO
NOgog|flwdorolo
OO oo O —

ToOQ MO0 CQ >

Here we choose the repgabin preference t@cd, because the former allows the possi-
bility of completing the repaired input with the string commenaddgf, giving an wer-
all repair of a single insertion, whereas the latter forces at least a deletion and a

replacement.

If we denote the Fisch&Wagner matrix of a continuation stringby M, then the
required repaiw in @, satisfies

If My (L, c)=min{ M,/(L,i)]i=1,..,2L}
then for alluin ©,, My(L, i) > M,,(L, c) for 1<i < 2L,
and if M(L, i) = M(L, c) theni < c.

If an error configuration of the parseqq ... ¢, a; ... 8.] gives 1ise to the choice
of repairw,

w0, [do.. & A][-r[a0 th W],
then the parser is restarted in configuratiop [.. ¢, aj.c ... &.x] wherec satisfies

M (L, ¢) =min { M(L, i) [i =1,...2L }

Pruning the Search Tree

An upper bound on the number of possible continuation string$-isvhereL is
the length of repair desired. The configurations generated by the method cawdx vie
as a tree with the state in which error is detected and the empty contination string at the
root. Ve wish to reduce the size of this search tree. The first idea for pruning the tree is
to use a depth-first search of the tree and to record a current best repair against which
other potential repairs are measured and possibly discarded @adyconfiguration is
followed to completion and its minimum distance from the actual input is recofthsl.
is the current best sarf Generation of the next configuration is started, simultaneously
constructing the continuation strisgFscher-Wagner matrix. If at an stage all the
entries in the current woof the matrix are greater than or equal to the current best, then
this branch of the tree can be prundidthe generation continues to completion, and its
minimum distance is less than the current best, then this repair becomes tiestne

The second idea is to refine this method by estimating a likely best for the first con-
tinuation string. One way of estimating such a string is to mark the current position in the
input, choose a shift or reduce on a symbol which appears, nearest, in the input, mark this
new position in the input and repeathis estimation simulates deletions; a simulation of
insertions and replacements is needed. The third idea simulates these operations in a
breadth-first search of the tree. At the firsel®f the tree, all possible configurations are
generated. Athe second ke, we choose only those configurations whose accessing
symbol (shift or reduce) appears nearest in the input; this simulates an insertiwadollo
by zero or more deletions. Thisvgs the folloving heuristic: (i) avays choose the
accessing symbol which appearxti@ the input if possible; (i) if there is none such,
simulate a single insertion folleed by zero or more deletions as aoA multiple inser
tion can be simulated by increasing the number\afldeof the search tree at which all
configurations are generated from oneeli¢o k levels, for an insertion of lengtk sym-
bols.

Concluding Remark

There remains to be carried out work on implementing the scheme presented here
in a parsegenerator and comparing the error raxyp of parsers generated with that of
existing parsers.

References

1. AHO, A. V., STHI, R, AND ULLmaN, J. D. Compiless, principles, techniques, and
tools. Addison-Weslg, Reading, Mass., 1986.

2. AHO, A. V., AND PeTERSON T. G. A minimum-distance error correcting parser for
context-free languagesSIAM J Comput. 14 (Dec. 1972), 305-312.

3. CorBETT, R. P Static semantics and compiler error reey. Report No.
UCB/CSD 85/251, Computer ScienceviBion (EECS), Uni. California, Berleley,
Calif., 1985.

4. DaiN, J. A Error recwery for Yacc parsers. Computer Science Report No. 73,
Dept. Computer Science, WnWarwick, Corentry, 1985.

5. EarRLEY, J. An dficient context-free parsing algorithr@ommun. ACM 13 (Feb.
1970), 94-102.

6. GrAHAM, S. L., HARRISON, M. A., AND Ruzzo, W. L. An improved context-free
recognizer.ACM Trans. Pogram. Lang Syst. 2,3 (July 1980), 415-462.

7. JHNsoN S. C Yacc - yet another compikeompiler Computing Scienceéchni-
cal Technical Report 32, AT&T Bell Laboratories, Murray Hill, N. J., 1978.

8. KnuTH, D. E On the translation of languages from left to righhf. Control 8
(June 1965), 607-639.

9. Masek, W. J, AND PATERSON M. S. A faster algorithm computing string edit dis-
tances.J. Comput. Syst. Sci. Z6eh 1980), 18-31.

10. Mauney J.,AND FiscHER C.N. A forward mae dgorithm for LL and LR Rrsers.
ACM SGPLAN Notices 17 (June 1982), 79-87.

11. RaiHA, K-J., S\ARINEN, M., SARJAKOSKI, M., SPPU, S., SOISALON-SOININEN, E., AND
TIENARI, M. Revised report on the compiler writing system HLP7Report
A-1983-1, Dept. Computer Science, Urielsinki, Finland, 1983.

12. Sppy, S. Syntax Error Handling in CompilersReport A-1981-1, Dept. Computer
Science, Uni. Helsinki, Finland, 1981.

13. WAGNER, R. A., AND FiscHErR M. J. The string-to-string correction problend.
ACM 21,1 (Jan. 1974), 168-173.

