
http://wrap.warwick.ac.uk/

Original citation:
Dain, J. A. (1987) Minimum distance error correction. University of Warwick. Department
of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-102

Permanent WRAP url:
http://wrap.warwick.ac.uk/60798

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60798
mailto:publications@warwick.ac.uk

Minimum Distance Error Correction

Julia Dain

Dept of Computer Science
University of Warwick

Coventry CV4 7AL
UK

ABSTRACT

A method is presented for incorporating error correction using a
minimum distance measure into LR parsers. The method is suitable for
use by an automatic parser-generator. State information in the LR parser
stack at the point of detection of error is used to generate a set of strings
which are potential repairs to the input.A string with least minimum dis-
tance from the actual input is chosen and the parser is restarted.Practical
methods for generating the set of repairs are discussed.

June 1987

Minimum Distance Error Correction

Julia Dain

Dept of Computer Science
University of Warwick

Coventry CV4 7AL
UK

Introduction

We inv estigate a method for incorporating error correction into practical parsers for
context-free languages.We are specifically interested in the LR parsers for a number of
reasons. Firstly, the LR grammars generate a wide class of languages, the deterministic
context-free languages (DCFLs) [8].Within this class, the LR(0) grammars define the
DCFLs with the prefix property (for any string w in a DCFLL with the prefix property,
there does not exist a proper prefix ofw in L: note that for any DCFL L, adding an end-
marker # toL gives the prefix property). Adding more than one symbol of lookahead
does not add to the class of languages defined, that is the LR(1) grammars generate the
DCFLs, but for any k there are grammars which can be parsed withk symbols of look-
ahead but notk − 1. Thesecond reason for investigating LR parsers is that they are prac-
tical tools with time complexity O(n) which are used in production programming envi-
ronments. Thirdly, there are parser-generators which take a grammar, possibly ambigu-
ous, and produce an LR parser for the language generated; examples are the parser-
generator used in the Helsinki system HLPA [11] and the UNIX tools yacc [7] and bison
[3]. We assume familiarity with LR(k) parsing as presented in for example [1].

Minimum distance

The minimum distanceis defined for a pair of strings over a finite alphabet and a
set of transformations on the alphabet, for example the familiar edit operations of replace-
ment, insertion and deletion.The minimum distance is defined to be the minimum num-
ber of transformations required to translate one string into the other. For a finite alphabet
Σ and a set of transformations

∆ = { (a, b) | a, b ∈ Σ ∪ { λ}, (a, b) ≠ (λ , λ) }

we write

u → v via a → b in ∆

if (a, b) ∈ ∆ and there are stringsw, x in Σ * where u = wax and v = wbx. For a
sequence of transformationsT = t1t2... tn, ti = (a, b) ∈ ∆, we write u → v via T if there
are stringsw1, . . . ,wn−1 in Σ *such that

u → w1 via t1,

2

wi → wi+1 via ti+1 for i = 1, . . . ,n − 2,

wn−1 → v via tn.

For stringsu, v in Σ *, the minimum distanced(u, v) is giv en by

d(u, v) = min { n | u → v via S for some sequenceS = s1... sn }.

This notion may be extended to include a measure of the cost of the translation, by asso-
ciating a cost with each transformation and summing the costs to provide a minimum dis-
tance cost.Let γ : ∆ → N be a cost function and define the cost of a sequence of trans-
formations in the natural way: forT = t1t2... tn, ti ∈ ∆,

γ (T) =
n

i=1
Σ γ (ti).

The minimum distance costδ (u, v) is giv en by

δ (u, v) = min { γ (T) | u → v via T }.

A global minimum distance error correcting parser for a context-free grammar
G = (N, Σ, P, S) takes any x in Σ * and produces a parse for somew in L(G) such that
the minimum distance betweenw andx is as small as possible.Thus a global correction
scheme does not handle each error in the input separately, but finds a best approximation
to incorrect input over the whole input string. Such a scheme is not held to be practical:
"Unfortunately, global correction techniques cannot be incorporated in practical parsers
without drastically affecting the parsing speed even of correct sentences. In fact, the
global correction approach seems to fit conveniently only general context- free parsing
algorithms" [12]. Aho and Peterson [2] present anO(n3) algorithm for minimum dis-
tance error correction for any context-free grammarG. They add a set of error produc-
tions to give a covering grammarG′ which generatesΣ *, and design a parser forG′ that
uses as few error productions as possible in parsing any string w. The error productions
used in a parse indicate the errors inw. G′ is ambiguous and the parser is a variation of
Earley’s algorithm [5] which includes a count of the number of error productions used.
An alternative approach is used by Mauney and Fischer [10] to achieve what they term
"regional least-cost repair", i.e. minimum distance error correction over a bounded region
of the input string.They dev elop a global least-cost error correcting parser and then
restrict it to regional least-cost. Instead of extending the original grammar with error pro-
ductions, the parser is modified so that it can simulate insertions, deletions and replace-
ments on the input string.For the general context-free parsing method required, they
choose the Graham, Harrison, Ruzzo algorithm [6]. This method, which is similar to Ear-
ley, finds the parse in timeO(n3). To achieve a more practical method, they propose
using anO(n) parser and calling the repair algorithm only when needed, to parse a sub-
string of the input. An algorithm is needed to output a string which can follow the input
accepted so far, for example a context-free grammar which describes the legal suffixes.
This however is not presented.

Our aim is to design a parser which is practical in time and space and incorporates
global minimum distance error correction, with no penalty for parsing correct input.We
use the LR parsing method together with an error recovery technique which can be auto-
mated, thus permitting it to be built in to an LR parser generator such asyacc [7]. A

3

technique which performs well for single token errors has already been implemented and
used with success as a tool for constructing various compilers [4]. Global error correc-
tion should improve on this technique for repairs of multiple errors and complex errors.

Overview of the Method

Each state of an LR parser contains information on all the possible moves from that
state: which input symbols can be shifted and which reductions are possible (LR(1)
parsers inspect one symbol of lookahead to determine whether a reduction is legal). The
parser detects an error in the input when there is no legal move (neither shift nor reduce)
on the current configuration, and invokes the recovery method. The method generates
legal continuation stringsfor the input already parsed, i.e. prefixes of legal suffixes of the
parsed input; the actual remaining input is not inspected during generation of the continu-
ation strings. One of the continuation strings is then chosen as the repair to the actual
input; the minimum distance measure from the actual input is used to choose the best of
the continuation strings.

The continuation strings are formed from successive leg al shift moves of the parser.
Each possible shift move will cause an input symbol to be concatenated to a continuation
string. Themethod constructsrecovery configurations of the parser which consist of a
parser stack and a continuation string. The initial recovery configuration is formed from
the parser stack at the point of detection of error and the empty string.For each recovery
configuration, all legal moves from the top state of the stack are considered.A shift move
gives rise to a new recovery configuration consisting of the stack with the shift state
pushed on and the previous configuration’s continuation string with the shift symbol con-
catenated. Areduce move giv es rise to a new recovery configuration consisting of the
reduced stack and the previous continuation string (there is no inspection of a lookahead
symbol).

The LR Parsing Machine with Minimum Distance Error Recovery

A context-free grammarG is represented by a tuple (N, Σ, P, S) where

N is a finite alphabet of non-terminals

Σ is a finite alphabet of terminals

P is a finite set of productionsP: N → (N ∪ Σ) *

Sin N is the start symbol.

An LR(0) parsing automatonM for an LR(0) grammarG may be represented by a tuple
(Q, Σ, q0, δ , γ) where

Q is a finite set of states (the stack alphabet)

q0 in Q is the start state

Σ is the finite input alphabet (terminals ofG)

4

δ is the ACTION transition function

δ : Q × { Σ ∪ λ} → SHIFT × Q ∪ REDUCE× P ∪ ACCEPT∪ ERROR

γ is the GOTO transition functionγ : Q → Q

Moves of the parsing automaton are either shift moves which consume one input symbol
and push a state onto the stack, or reduce moves which consume no input and replace
zero or more of the top states of the stack with a new state, or halting moves which accept
or announce error. A configuration of the parser stack and input is represented by an
instantaneous description (ID) of the form [q0 ... qm, a j ... aj+k] where theqi represent
the stack (qm the top state) and theai represent the remaining input.The symbol −
denotes the relation "move in one step" on IDs.A shift move is then denoted by succes-
sive IDs

[q0 ... qm, a j a j+1 ... aj+k] − [q0 ... qmq′, a j+1 ... aj+k]

whereδ (qm, a j) = (SHIFT, q′)

A reduce move is denoted by successive IDs

[q0 ... qm−n ... qm, a j ... aj+k] − [q0 ... qm−nq′, a j ... aj+k]

whereδ (qm, λ) = (REDUCE, A → α), |α | = n, and γ (qm−n) = q′

A recovery configuration of the parser is represented by an ID[q0 ... qm, u] ,
u ∈ Σ *, where theqi represent the stack as before andu represents the continuation
string (we use[and] in place of [and] to distinguish IDs representing recovery configu-
rations from IDs representing ordinary configurations). The relation "move in one step"
on recovery configurations, denoted by the symbol−R, is defined analogously to− on
parser configurations, as follows.

If δ (qm, a) = (SHIFT, q′) , a ∈ Σ, then[q0 ... qm, u] −R [q0 ... qmq′, ua]

If δ (qm, λ) = (REDUCE, A → α), |α | = n, and γ (qm−n) = q′,

then[q0 ... qm, u] −R [q0 ... qm−nq′, u]

Let −*
R denote the reflexive and transitive closure of −R. Let the configuration of the

parser when error is detected be denoted by ID [q0 ... qe, a j ... aj+k]. Thenthe setΘL

of continuation strings of lengthL is given by

ΘL = { u u ∈ ΣL , [q0 ... qe, λ] −*
R [q0 ... qn, u] }

Generation of the Continuation Strings

We giv e a design in Pascal for the algorithm to generate the continuation strings.
First, we outline the data types to be used.

5

TOKEN represents an input symbol (terminal or lexical token) of the grammar.
PRODUCTION represents a production of the grammar.
STRING abstracts a string of tokens with operationsprint, concat, length.
TOKENSET abstracts a set of tokens with iteratornextT.
PRODUCTIONSET abstracts a set of productions with iteratornextP.

STACK abstracts a stack of (LR(1)) parser states with operations
shift: STACK × TOKEN → STACK
reduce: STACK × PRODUCTION→ STACK
LegalShifts: STACK → TOKENSET
LegalReductions: STACK → PRODUCTIONSET
GenRepairs: STACK × STRING→ {}

The operations LegalShifts and LegalReductions inspect the top state of the stack to
return the tokens which it is possible to shift and the productions by which it is possible
to reduce respectively.

The algorithm is implemented by the recursive procedureGenRepairs. The input
to the algorithm is the current configuration of the parser, consisting of the current stack,
passed as a parameter, and the actual remaining input to the parser. The output is a
sequence of strings of tokens (the continuation strings).

1 procedure GenRepairs(stack: STACK, continuation: STRING);
2 const REPAIRLENGTH = 10; { desired length of continuation }
3 var shifts: TOKENSET; { legal shifts from current state }
4 t: TOKEN; { next symbol for shift move }
5 reductions: PRODUCTIONSET; { legal reductions from current state }
6 p: PRODUCTION; { next production for reduce move }
7 begin
8 if length(continuation) >= REPAIRLENGTH
9 then print (continuation)
10 else begin
11 { compute legal shifts }
12 shifts:= LegalShifts(stack);
13 t := nextT(shifts);
14 while t <> 0 do
15 begin
16 GenRepairs(shift(stack,t), concat(continuation, t));
17 t := nextT(shifts)
18 end;
19 { compute legal reductions }
20 reductions:= LegalReductions(stack);
21 p:= nextP(reductions);
22 while p <> 0do
23 begin
24 GenRepairs(reduce(stack,p), continuation);

6

25 p:= nextP(reductions)
26 end
27 end
28 end;

Computing the minimum distance

We use the Fischer-Wagner algorithm [13] to compute the edit distance of two
stringsu, v of lengthsm and n over a finite alphabet, with error transformations insert,
delete and replace. This algorithm constructs anm × n matrix M whereM(i , j) giv es the
minimum cost of transforming the prefix of lengthi of stringu into the prefix of lengthj
of stringv. The algorithm has time complexity O(mn) (Masek and Paterson [9] improve
this algorithm to one ofO(n . max(1, m/log n)) by use of the Four Russians’ idea).

Restarting the parser

In order to continue parsing the remaining input after having formulated a good
repair, it is desirable for the parser to be synchronized with the input.We wish to identify
the most appropriate continuation string with which to replace a portion of the input.If
continuation strings of lengthL are generated, then the minimum distances of the contin-
uation strings from a prefix of length 2L of the upcoming input is computed. The contin-
uation string with the smallest entry in the last row of the Fischer-Wagner matrices is
found; if the column number of this entry isc then the next c tokens on the input are
replaced with the chosen continuation string.We choose the smallest entry in the last
row, over all the Fischer-Wagner matrices, rather than the smallest entry in the last col-
umn of the last row, because it is possible to have a continuation string whose last Fis-
cher-Wagner entryM(L, 2L) is greater than that of another, less suitable, continuation.
There may be more than one continuation string with the same smallest entryx in the last
row and in this case we choose the continuation which will replace most of the upcoming
input, i.e. the entry with the largest column numberc. Consider for example the Fischer-
Wagner matrices for actual inputabcdef, L = 3, repairsgcd, gab :

λ a b c d e f
λ 0 1 2 3 4 5 6
g 1 1 2 3 4 5 6
c 2 2 2 2 3 4 5
d 3 3 3 2 2 3 4

λ 0 1 2 3 4 5 6
g 1 1 2 3 4 5 6
a 2 1 2 3 4 5 6
b 3 2 1 2 3 4 5

Here we choose the repairgab in preference togcd, because the former allows the possi-
bility of completing the repaired input with the string commencingcdef, giving an over-
all repair of a single insertion, whereas the latter forces at least a deletion and a

7

replacement.

If we denote the Fischer-Wagner matrix of a continuation stringu by Mu, then the
required repairw in ΘL satisfies

If Mw(L, c) = min { Mw(L, i) | i = 1, ..., 2L }

then for all u in ΘL , Mu(L, i) ≥ Mw(L, c) for 1 ≤ i ≤ 2L,

and if Mu(L, i) = Mw(L, c) theni ≤ c.

If an error configuration of the parser [q0 ... qe, a j ... aj+k] giv es rise to the choice
of repairw,

w ∈ ΘL , [q0 ... qe, λ] −*
R [q0 ... qn, w],

then the parser is restarted in configuration [q0 ... qn, a j+c ... aj+k] wherec satisfies

Mw(L, c) = min { Mw(L, i) | i = 1, ..., 2L }

Pruning the Search Tree

An upper bound on the number of possible continuation strings is |Σ|L whereL is
the length of repair desired. The configurations generated by the method can be viewed
as a tree with the state in which error is detected and the empty contination string at the
root. We wish to reduce the size of this search tree. The first idea for pruning the tree is
to use a depth-first search of the tree and to record a current best repair against which
other potential repairs are measured and possibly discarded early. One configuration is
followed to completion and its minimum distance from the actual input is recorded.This
is the current best so far. Generation of the next configuration is started, simultaneously
constructing the continuation string’s Fischer-Wagner matrix. If at any stage all the
entries in the current row of the matrix are greater than or equal to the current best, then
this branch of the tree can be pruned.If the generation continues to completion, and its
minimum distance is less than the current best, then this repair becomes the new best.

The second idea is to refine this method by estimating a likely best for the first con-
tinuation string. One way of estimating such a string is to mark the current position in the
input, choose a shift or reduce on a symbol which appears, nearest, in the input, mark this
new position in the input and repeat.This estimation simulates deletions; a simulation of
insertions and replacements is needed. The third idea simulates these operations in a
breadth-first search of the tree. At the first level of the tree, all possible configurations are
generated. Atthe second level, we choose only those configurations whose accessing
symbol (shift or reduce) appears nearest in the input; this simulates an insertion followed
by zero or more deletions. This gives the following heuristic: (i) always choose the
accessing symbol which appears next in the input if possible; (ii) if there is none such,
simulate a single insertion followed by zero or more deletions as above. A multiple inser-
tion can be simulated by increasing the number of levels of the search tree at which all
configurations are generated from one level to k levels, for an insertion of lengthk sym-
bols.

8

Concluding Remark

There remains to be carried out work on implementing the scheme presented here
in a parser-generator and comparing the error recovery of parsers generated with that of
existing parsers.

References

1. AHO, A. V., SETHI, R., AND ULLMAN , J. D. Compilers, principles, techniques, and
tools. Addison-Wesley, Reading, Mass., 1986.

2. AHO, A. V., AND PETERSON, T. G. A minimum-distance error correcting parser for
context-free languages.SIAM J. Comput. 1,4 (Dec. 1972), 305-312.

3. CORBETT, R. P. Static semantics and compiler error recovery. Report No.
UCB/CSD 85/251, Computer Science Division (EECS), Univ. California, Berkeley,
Calif., 1985.

4. DAIN, J. A. Error recovery for Yacc parsers. Computer Science Report No. 73,
Dept. Computer Science, Univ. Warwick, Coventry, 1985.

5. EARLEY, J. An efficient context-free parsing algorithm.Commun. ACM 13,2 (Feb.
1970), 94-102.

6. GRAHAM, S. L., HARRISON, M. A., AND RUZZO, W. L. An improved context-free
recognizer.ACM Trans. Program. Lang. Syst. 2,3 (July 1980), 415-462.

7. JOHNSON, S. C. Yacc - yet another compiler-compiler. Computing Science Techni-
cal Technical Report 32, AT&T Bell Laboratories, Murray Hill, N. J., 1978.

8. KNUTH, D. E. On the translation of languages from left to right.Inf. Control 8
(June 1965), 607-639.

9. MASEK, W. J., AND PATERSON, M. S. A faster algorithm computing string edit dis-
tances.J. Comput. Syst. Sci. 20(Feb. 1980), 18-31.

10. MAUNEY J.,AND FISCHER, C.N. A forward move algorithm for LL and LR Parsers.
ACM SIGPLAN Notices 17,6 (June 1982), 79-87.

11. RAIHA , K-J., SAARINEN, M., SARJAKOSKI, M., SIPPU, S., SOISALON-SOININEN, E., AND

TIENARI, M. Revised report on the compiler writing system HLP78.Report
A-1983-1, Dept. Computer Science, Univ. Helsinki, Finland, 1983.

12. SIPPU, S. Syntax Error Handling in Compilers.Report A-1981-1, Dept. Computer
Science, Univ. Helsinki, Finland, 1981.

13. WAGNER, R. A., AND FISCHER, M. J. The string-to-string correction problem.J.
ACM 21, 1 (Jan. 1974), 168-173.

