
http://wrap.warwick.ac.uk/

Original citation:
Rafter, M. F. (1987) Formatted streams : extensible formatted I/O for C++ using object-
oriented programming. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-107

Permanent WRAP url:
http://wrap.warwick.ac.uk/60803

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60803
mailto:publications@warwick.ac.uk

Research report. L07

FORMATTED STREAMS

-D

Extensible Formotted l/O for C++ Using
O bject -O riented p rogram m in g

Mork Rofter

(RR r 07)

Abstrqcl

In a language that allows the programmer to define new types, two characteristics of a
formatted I/O system are desirable - it should be extensible and type-secure. We make a
demand of a language when we require that such a formatted I/O system be expressible
entirely within it.

In this paper we demonstrate that C++ is expressive enough to meet this demand. An
extension to the C++ stream I/O tibrary is described that provides formatting capabilities
in the style of the c stdio library. An example of its use is:

cout [" 1og of 8d is *7 f ,,] << x
An object-oriented implementation of this extension is described. The language features of
c++ that make this implementation possible are identified to encourage the use of this
approach with other languages.

Department of Computer Science
University of Warwick
Coventry CV47AL
United Kingdom October 1987

CONTENTS

t.

2.

Introduction

The C and Cr-r I/O Systems
2.1 The C stdio I/O System
2.2 The C+-r stream I/O System

Formatted I/O for C+-r
3.1 Control Flow
3.2 A Dilemma

4. An Object Oriented Implemenfation
4.1 A Solution
4.2 The Example
4.3 Access to the Format-Soecifler

5. The OOP Solution in C++
5.1 Some C++ Details
5.2 Formatted Output of C Strings

6. Conclusions
6.1 Achievements
6.2 l-anglage Features of C++
6.3 Difficulties
6.4 Further Work
6.5 Summary
6.6 Acknowledgements

7. Appendix

2

2
J
aJ

5

6
6

1

8

8

10

11

LZ

t2
IJ

9

9
10

IJ
laIJ

IJ

1A
l-

-i-

FORMATTED STREAMS

Extensible Formatted VO for C++
Usin g O bject-O riented Programming

Mark Rafter
C omp ut er S c i e nc e D ep ar tment

Warwick Universiry
England

ABSTRACT

In a language that allows the programmer to define new types, two characteristics of a formatted
I/O system are desirable - it should be extensible and type-secure. We make a demand of a
language when we require that such a formatted I/O system be expressible entirely within it.

In this paper we demonsrate that C++ is expressive enough to meet this demand. An extension
to the C++ stream I/O library is described that provides formatting capabilities in the style of the
C stdio library. An example of its use is:

cout["Iog of td is *7f"] << x << Iog(x)
An object-oriented implementation of this extension is described. The language features of C+r
that make this implementaLion possible are identified to encourage the use of this approach wittr
other languages.

October.l9 1987 Page 1 Mark Rafter

Formatted Streams

1. Introduction
Formatted VO, the ability to specify the field width, accuracy, radix ... etc for a data item, is popular. A
good formaued I/O system can provide the programmer with a compact notation well-suited to the task in
hand (in effect a little languagetll for I/O applications). This partly explains the continued use of formaued
VO even when, as in the case of the C programming languaget2l, other aspects of the programming
environment are quite hostile towards its use.

What support should a language provide for formatted I/O? The answer !o this depends on the language in
question. If the set of data-qpes provided by the language is fixed, then a built-in system of formaned VO
may often be adequate (e.g. in a*kt3l). However, when the language allows the programmer to define new
types, a built-in system of formatted I/O is inadequate, We require a formatted I/O system that is
extensible.

How should these extensions be expressed? For a general-purpose language this is an awkward ques[ion.
If the langauge is inadequate for the expression of its own formatted I/O system it can hardly claim success
in being general-purpose. The situation becomes worse when we require that the formatted I/O system be
type-secure.

The C programming language is equipped with a formatted I/O system in the form of the stdio librarytzl.
Although this library is implemented in C, it is neither extensible nor type-secure. This is due to the
limited nature of C. The C++ programming languagetal performs bener tran C. It is expressive enough to
implement an VO system (the stream I/O library) tirat is both extensible and type-secure. However, the
stream I/O library provides only crude capabilities for formatted VO; it is basically an I/O system without
format conEol.

In this paper we address the question: Is C++ expressive enough to allow its stream VO library to be
extended to provide format control facilities in the style of C's stdio library without compromising either
extensibility or type-security? We show that C++ is sufficiently expressive. A possible extension of the
stream I/O library that includes format control is described, and an object-oriented realisation of this in
C++ is examined in detail. The features of C++ that provide essential support in this approach to formatted
I/O systems are summarised. The formatted I/O system presented obeys criteria that we want to impose on
all such systems. No use is made of complex programming conventions that are unenforceable at compile
time. Extensibility is not achieved by allowing users to modify standard library sources.

This paper has several sections. The fust establishes certain terminology, and describes both the C and the
C++ VO systems. An ability !o read C will be useful, but no knowledge of C++ is assumed; points of fine
detail relating !o C++ have been relegated to an appendix, cross referenced using the notation [APP}]. The
second section describes a formatted I/O extension !o the C++ I/O library. The general form of the
extensions is described, emphasis being placed on how we would like formatted I/O to work rather than on
exactly how this is achieved. The details of the implementation are contained in the third and fourttr
sections; the third is concerned with how the implementation would be achieved in a completely objecr
oriented language, and the fourtl with how to map this implementation into C+r. The final section of the
paper examines the degree to which our initial aims have been achieved, and summarises $re features of
C++ that provide essential support in this approach to formatted I/O systems.

Z. The C and C++ I/O Systems
In a language that allows the programmer to define new types, two characteristics of formatted VO are

desirable - it should & extensible and rype-secure. The meaning of extensibility is clear: it should be
possible to input and output the user-defined types, and not only the base types of the language.

Type-security, however, is covered by a spectrum of reasonable interprefations. At one exfreme, we may
demand that a succesfal input operation for a variable of type r should always operate on a represenndon
produced by T's output operation. Under such a scheme, the output representation of an integer value

could not be input as a floating point value. At the other end of the spectrum, we may merely demand that
illegal values and operations are never generated by I/O operations. For example, under a scheme like this,
the output representation of an integer value could be input as a floating point value; also an attempt to

October.l9 1987 Page2 Mark Rafter

Formatted Streams

output a character array as a though it were an integer would be handled gracefully. This should perhaps
be called type-robustness rather than rype-securiry blur, to avoid terminological clashes with Stroustruptal,
we will use the latter term.

2.1 The C stdio UO System

The C language fscanf and fprintf functions provide an example of a formatted VO system that is
rnt at all type-secure. The following C fragment reads an octal integer value into x and then prints the
decimal representation of the yalue together with some explanatory text and the value's logarithm. This
example is written in ANSI Ct5l, which differs from older versions of Ct2l by allowing ttre types of external
function arguments to be declared, as has been done for the J.og function in the example. Amongst other
changes, ANSI C also provides limited implicit type conversion of function arguments, e.g. the integer
argument x supplied !o the 1og function is converted to a doubJ-e, which the J.og function expects.

int x;
extern doubJ-e 1og(double); ,/* declare 1og function */

f scanf (stdin, "to", &x) ,.

fprintf(stdout, "Log of $d is *7f", x, Log(x));
The first argument of both fscanf and fprintf identifies a file. The second argument is a character
array which is used as a format-specifier. Within the format specifier, the character t precedes the
formatting information which relates to one of the later arguments. In this use of fprintf, gd means
"print an integer decimal representation for the integer value x", and t?f means "print a floating point
representation with a minimum field width of 7 characters for the double value log (x) ". In this use of
fscanf, to means "read an octal integer representation for the integer variable x". Because in C all
arguments are passed by value, f scanf is passed &x, a pointel to the variable x.

Both fscanf and fprintf take a varying number of arguments of varying types. At run-time, they
deduce the number and types of their railing arguments from the information in the format-specifier.
Errors will result if either funclion is provided with railing arguments that disagree in rype or number from
those implied by the format-specifier. Such errors often cause immediate progmm termination.

2.2 The C++ stream VO System

The C++ stream I/O system addresses both extensibility and type-security, but lacks format controltal.
Sroustrup is aware of this lack, and provides some minimal support through the functions hex, oct, dec
and forra These are unsadsfactory; fonn, in particular, provides all of the problems to be found with
fprintf.
If we omit octal input and output field-width specification, the previous C example can approximated to
using C++ stream I/O as follows

int x;
extern double].og(double); ,/* declare log function */

cin >> x,'
cout << "1og' of " ((:< ((" ig " ((Iog(x),'

In this, >> is regarded as an input operator and ((as an output operator. cin is an input stream (type
istream) and cout is an output stream (ty'pe ostream). Connol appears !o be passed to each data
object in turn, and each data type se€ms to "know" how to output or input. itself. We will examine how
this works.

The infix notation

cin)) x

is equivalent to the functional notation

October,l9 1987 Page 3 Mark Rafter

Formatted Streams

operator>)(cin, x)

where operator>> is the name of a user-defined operator function IAPPI]. User-defined operators are
genuine (overloaded) functions

- they just allow two notations to be used for function call.

The above operator could be declared as

istrealn & operator))(istre€rm & stm, int e i);
In this, the first occurence of istream e is the return type of the operator; this is dealt with below. The
operator's left and right-hand operands are declared as the function arguments istrean & strrn, and
int & i. The e in these declarations mears reference toi the equivalent Pascalt6l declaration of i would
tre var i: integer. Reference parameters remove the need to explicitly work with pointers to
variables. Thus, the argument stIm is a reference to an input stream that will supply the data for the input
operation, and i is a reference to the integer variable which is to receive a value.

For an operator function, and for any other overloaded function, the declared types of the function's formal
arguments determine which function definition applies in a function call. Below is an example of a
definition of an operator that outputs a C string (a zero-terminated character anay). It is defined in terms of
a similar operator that outputs single characters. [APP2]

ostrearn & opelator<< (ostrearn & out, char data[])

{
inti=0;
whi].e(datalil != 0)

{
out ((datalil;
i = i*1,'

)
return out;

)

User-defined operators have the usual syntactic properties that C associates with their tokens i.e. number of
operands, associativity, and precedence. For inslance, because the token << is left-associative, the
following

cout << "1og'of " ((x

operator<<(operator<<(cout, "1og' of "), x)

are equivalent.

The convention "all I/O operators retum a reference to the stream that they use" is adopted to allow I/O
operators to be cascaded as above. This is why they have the return types istream & or ostleam &,
and why the statement

occurs in the definition of the output o*.u,o.ffi,
^rl;".

If we examine our example in the light of the above :

cin >> x,'
cout (("1og of " ((x {(" is " ((1og(x),'

we see that connol flow in t}te stream I/O system is data-driven. The types of the operands of the
overloaded I/O operators determine which functions are to be called, and the associativity of these

operators is exploited to produce the required sequencing of I/O operations. To make this exploitation
possible, the convention was adopted that VO operators retum a reference to the stream tiat they operate
on. In general, the use of conventions indicates either bad style or a weakness in the language bcing used.

and

October 19. 1987 Page 4 Mark Rafter

Formatted Streams

However, the use of this convention by the stream VO system can be tolerated because it is simple, and
(most importantly) the compiler can detect important transgressions at compile time.

The C++ stream VO library lacks the formaning capabilities of stdio, but has important advantages over the
C library. The VO system is type-secure and user-extensible. Also, error-prone functions which take a
varying number of arguments have been banished.

3. Formatted I/O for C++
The C+r stream I/O system can be made format-specifier-driven rather than data-driven. This can be done
without losing type-security, extensibility, or the convenient operator based I/O idiom. In this section we
will concentrate on the notation used for the formatting, its meaning in C++, and the control-flow
mechanism that underlies the formatted I/O system. This mechanism presents a natural dilemma, which is
resolved later as the fine detail of the implementation is presented.

when we incorporate fprintfJike format-specifien into the sfieam I/o system, our example becomes

int *.;
extern doub].e]-og(double);

cin ["to"] >> x,'
cout["log of td is $7f"] << x << J.og(x);

We want this notation o give the impression that a format-specifier is attached !o a stream and maintains
overall control as the I/O operations proceed. The format-specifrer outputs its pieces of plain text, and at
the format control points marked by $, it permis the data objects to input or output tlemselves. A data
object ges any formatting parameters by "reading"this information from its format control point.

Again, we need to examine how the example works. The notation

cin["So"]
is another example of a user-defined operator. Here the index operalor, [] , is overloaded. It combines an
input sneam, cin, and a character array, "$o", to yield a formatted input stream (type fistream).
Similarly,

cout ["Iog of *d is 87f"]
is another overloading of the index operator. Here it combines an oueut stream and a character array to
yield a formatted output stream (fype fostream).

As before we can re-write

coutl"Iog of 8d is g7f"] ((x ((log(x)
using functional notation. This time, for the sake of layout compactness, we have abbreviated the C++
keyword operato! as op.

op<<(op<<(optl (coutf "Iog of td is S7f'), x), log(x))

The only purpose of ttre index operators is to create a formatted stream object, fstr:rr, to control a
formatted I/O operation. The operators bind access to two streams of data into f st,rnr

r fst::rc. strm is a reference to the unformatted stream upon which the formatted I/O is layered: i.e.
the stream that the index operator was applied to.

r fstrm.fmt is a newly-created istream object that provides "read" access to parts of the
format-specifier string. fst::m.fmt allows the data in the format-specifier string (supplied as the
argument to t}le index operator) to be "read" using standard input operators. See section 4.3 for a
discussion of ttris.

October 19,1987 Page 5 Mark Rafter

Formatted Streams

3.1 Control Flow

The introduction of the new types fostrearn and fistrean allows the definition of formatted VO
operators that look like their unformatted counterparts but behave differently. The formatted I/O operators
co-operate with the fostrean objects created by the index operators to retain overall control tfuoughout
the formatted I/O operation.

After an index operator has created the formatted stream object, control passes from right to left through
each of the formatted I/O operators. Each operator processes plain characters from the format-specifier
until a format control point, marked by a $ character, is encountered. For oufput operators, this processing
consists of outpuning the plain characters. In response to a format control point, the operator calls upon the
next data object in the formaned I/O expression to perform iS I/O operation. For this purpose, the object is
provided with access to both fstrm.strm and fstrm.fmt. When the object's I/O operation is
complete, it returns control to t}re formatted I/O operator and the processing of the remainder of the
format-specifi er takes place.

This control flow mechanism is quite flexible. It accommodates any housekeeping that needs no be
performed before, or after, an object's I/O operation.

3.2 A Dilemma

To implement the above scheme, we must define the index operators that will form our formatted stream
objects from a format-specifrer string and an unformatted stream; this, in turn, requires us to define the
formatted stream types. All of this is routine programming, and is omitted for the sake of brevity. The I/O
operators, however, provide an interesting problem. The obvious implementation is to declare input and
output operalors in the spirit of the unformatled I/O system. To cope with our example

coutl"Iog of td is g7f"] ((x ((J-og(x);

we would declare an operator

fostrean E

operator<((fostream & fstrm, int x)
{

house-keeping before object I/O;
object-I/O for x,'
house-keeping after object I/O;
return fstrm;

)

to handle the integer x, and a similar operalor to handle the double 1og (x) . We have used some pseudo-
code in order to suppress details ofthe house-keeping operations.

This approach presents us with a dilemma.

r We could make the provision of the formatted I/O operators the responsibility of data-type designers.
Then, when a new data-type is designed, any associated formaued I/O operator will be required to
conform to the model given by the operator above. This would be the adoption of a programming
convention.

Unfortunately, we have no way of enforcing such a convention. So, potentially serious errors, e.g.

omining one of the house-keeping steps, will only manifest themselves at run-time. This leads us to
reject the provision of I/O operators by data-type designers on the grounds that this is unacceptably
insecure.

. Alternatively, we may require that data-type designers only provide functions to perform the object-
I/O. Then the provision of the I/O operators which will call *re object-VO functions becomes the
responsibility of the formatted I/O system. This allows the implementor of the formatted I/O system

to ensure that the programming convention is respected.

October 19, 1987 Page 6 Mark Rafter

Formatted Streams

Unfortunately, this alternative is not possible if the formaned I/O system is to remain extensible
while not allowing users to modify standard library sourses. The implementor of the formatted VO
system is in no position to know in advance which data-types will be invented, and thus cannot
provide the required operalors. (Of course, this is the problem that functions like fpr5-ntf run up
against. The solution taken there is to provide support only for the types that are known about in
advance, i.e. the base types of the language.) We are forced to reject this altemative on the grounds
of inextensibility.

We will see that the inextensibility of the second alternative can be overcome by using object-oriented
programming.

4. An Object Oriented Implementation
ln the previous sections we have loosely used expressions such as "the data objects input or output
themselves". We must now clarify this terminology.

When programming with user-defined data-types, it is common to refer to variables as objects on which
operations are defined. When the programming language being used allows data-type encapsulation, this
nomenclature becomes the norm. Consequently, programming with objects of encapsulated data types is
sometimes referred to as object-oriented programming (e.g. tzJ chapter l7). In other sourcesttl trl, nn6 in
this paper, the term object-oriented programming (OOP) is reserved for the application of specific
techniques over and above tlose of data encapsulation.

We say that a language supports OOP when two features are present:

. The ability to manipulate objects of disparate types uniformly.

Type hierarchies are one such mechanism. In a flpe hierarchy, general types include more
specialised types as sub-types. Uniform manipulation can tlen be achieved by "forgetting" the
details of an object's t1pe, and manipulating it merely as an object of a (less specialised) super-t'?e.

A completely object-oriented language has a most general type, obj, which includes all other types
as special cases. An example of such a language is Smalltalkt8l, where the most general type is the
class Object.

Languages may have type hierarchies without being competely object-oriented - in these it is not
possible !o uniformly manipulate all objects in terms of some most general rype. Examples are:
Objective Ctel, SIMLILAIIOI and C++tal.

. The ability to define operations which may be applied to objects uniformly (i.e without exact
knowledge of an object's type) but which act on objects non-uniformly (i.e in a way dependent on
the object's type).

The inheritance mechanism in type hierarchies can be strengthened to achieve this. The inheritance
mechanism allows that an operation defined for a "general" data type may also be applied to any
object of a sub-type. In this case the operation's definition is inherited unchanged by the sub-type.
However, this inherited definition may be overridden by a redefinition in the sub-type. The
strengthening of the inheritance mechanism allows that such a redefinition applies, even when an

object of the sub-type is being (uniformly) manipulated as an object of its super-type. This implies
the need for some sort of type-labelling of objects.

Examples of this mechanism are: method invocation - Smalltalk and Objective C; virtuzrl functions

- SIMULA and C++.

OOP can be used !o solve problems of extensibility. Type hierarchies may be extended by adding new
sub-types without modifying the existing parts of the hierarchies. Virtual functions allow operations to be
specified on these extensible hierarchies without demanding a priori knowledge of the full type hierarchies.

When we use expressions such as "the data object outputs itself ' we mean that a call is made of the output
function defined for the object. In some settings, the object will come from a type hierarchy and the ourput

October 19.1987 Page'7 Mark Rafter

Formatted Streams

function will be a virtual function. In this case, the corect definition of the function will be selected even
if the object is manipulated as if it is a member of is super-type.

4.1 A Solution

The solution to the dilemma presented at the end of the last section takes a simple form in a completely
object-oriented language. To avoid introducing another language, we will (for the rest of this section only)
adopt tlre convenient ftction that C++ is completely object-oriented, having all types as sub-types of the
type obj. The additional problems of how !o map the solution into a language like C++ are dealt with
later.

We present the solution in two parts using the output operator as an example (input is similar). First, a
single formatted output operalor is defined. This will output objecs of the hypothetical type ob j

fostream E opelator<((fostream & fstr:n, obj e ob)
{

house-keeping before object I/O;
object-I/o for ob;
house-keeping after object I/O;
return fstrrn;

)

Because of the assumption that all types are subtypes of obj, this operator can be applied to all types of
objecs. Our example

cout["J.og of td is t7f"] ((x ((J-og(x);

involves two applications of this one operator; once with an integer, x, as its right-hand operand, and once
with a double, l.og (x) . This is type-correct in both cases because the operands are objects of sub-types of
the type ob j, and hence they are both ob j objeca in their own right.

The second part of the solution is to perform the object I/O by using a virtual function, print, that can be
redefined for each type in the system. We demand that all types in the system be equipped with a virtual
print function. Object I/O in the output operator becomes:

ob.pr5-nt (f st::rr. strm/ f stt m. fmt) ;

where: ob is the object to be output; print is a two-argument vfunral function for the object ob;
fstrm. strm is the unformatted stream to receive the representation of ob; fstrm. fmt is the way of
accessing the appropriate part of the format-specifier.

4.2 The Example

We will examine some of the events ttrat take place as our example:

cout["log of td is *7f"] << x << J.og(x);

is executed.

1. First, the index operator creates a formatted output stream object from cout and the string

"Iog of td is t7f"
The formatted output stream object is actually anonymous but we will call it fst:rq the name it is
known by in the formatted output operator defrned above. cout becomes the unformatted output
stream, fstrm.strrq !o be used by fstrrn The string is the dara for the format-specifier,
f strm. fmt. of f strrn

2. The index operalor returns a reference to f strltt
3. The formatted output operator is invoked for fstrm with x as its other argument.

4. The operator performs is initial house-keeping. This involves reading "1og of " from the format
specifier f strm. fmt and printing this on f strm. strrrl"

October 19.1987 Page 8 Mark Rafter

Formatted Streams

5. The formaced output operator arranges for the object VO to be done by calling the virnral print
function for ob.

ob.print (f stm. st:m, f strm. fmt) ;

This function is provided with both f str:m. fmt and fstr:m. stlm as arguments. f st:m. fmt
allows the print function to read details of the format specifier, and fgt::n. st::m is somewhere
for the function to write is output.

6. The virtual print function appropriate to the type of ob is determined- In this case ob is a
reference !o x so the print function for the integer x is selected.

7. The print function executes for the integer x. It determines the way in which x should be printed
by reading data (a character 'd') from the format specifier f str:rn. fmt.

8. The print function prins x in the way specified (decimal) on the unformatted stream
fstrn. strmand then returns.

9. The formatted output operator performs its final house-keeping. It reads the string " is " from
fstr:m. fmt, prints it on f strm. stflr\ and returns yielding a reference to f strtrl Access to the
format-specifier is explained in section 4.3.

10. The process continues with the formatted output operator being called for fstr.m with the value
J.og (x) as the other argument. The sequence of events is the same as for the case of integer x, but
now the virtual print function will be selected on the basis of the rype (double) of the expression
l-og (x) .

4.3 Access to the Format-Specifier

Access !o the format-speci.fier by the print and read virtual functions needs to be provided in a
connolled way. One approach to this is to equip objects of the ty'pes fistrearn and fostream with a
procedural interface through which parts of the format-specifier may be "read". The fistream and
fostream objects are then in a position to keep track of how much of the format specifier has been
processed. They can implement. quoting conventions (e.9. a plain t character is represented as t* for
fprintf) or impose access restrictions (e.g. ensure that only the current control point of the format-
specifier can be "read").

Rather than making an arbitrary choice about the form of this procedural interface, we choose to make the
"read" operation a genuine stream VO input operation. The details of how this is achieved are merely
outlinedhereastheyarenotcentralmthispaper. TheinterestedreaderisreferredtoStroustrup'spapsltlll.

Access to data in the format-specifier string can be via a genuine input operator, because the stream I/O
system decouples the use of data delivered by a sueam from the method of its delivery. The types
istream and ostream define the interface to which unformatted I/O operators work - behind this
interface are hidden the details of the sfream data-types. The unformatted VO operators see stream objects
as byte-streams and are insensitive !o the true nature of the stream objecs that they are dealing with. The
stream I/O system comes equipped with a hierarchy of data-types that allows stream access to data kept in
external files, simple character arays in memory, and circular buffers. This hierarchy may be extended by
the programmer m provide strqrm access to user-defined data-types. By decoupling data-use from data-
delivery, it is possible for one set. of operators to provide I/O on files, arrays and user-defined data-types.

The object fstrm.fmt is the istreaminterface to an object thatprovides stream access to the format
specifier string. The access that is to be provided will be more complicated than (say) the access for a
character array, but the principles are the same.

5. The OOP Solution in C++
We now turn to mapping our object-oriented solution into C++. In C++, there is no type obj from which
all other tlpes are derived. The first step is to address this problem.

October 19, 1987 Page 9 Mark Rafter

Formatted Streams

We declare a container type fobj to approximat€ to the type obj. Then, for each type, T, tlrat is to be
equipped with formatted VO we declare another container type, fobj_T. fobj_T is declared as a sub-
type of fob j. This provides a hierarchy of container types. Each object of a type in this hierarchy will be
used to "wrap up" an object taking part in formatted I/O.

The second step is to define the I/O operators. The formatted input and output operators are defined in
terms of the type fob j, and so may operate on any object of a sub-type of fobj. As before, the operarors
provide the scaffolding, but ttre real work is done by print and read virtual functions. These are
defined on the fobj type hierarchy, and redefined appropriately for each of the sub-types.

The objects of the subtypes in the fobj hierarchy are not of interest in tlemselves; they will merely have
been used to "wrap up" the objects taking part in the formatted I/O operations. Hence, in each sub-type
the virtual print and read functions will specify how to perform an VO operation on the the "wrapped-
up" object.

The third step is !o attend to tlte "wrapping-up". Explicit "wrapping-up" is undesirable, and can be
avoided if each container tlpe is equipped with a suitable constructor. A constructor for a type B taking a
single argument of type A not only specifies how a newly-created object of B is to be initialised from an
object of type A, but also defines a user-defined conversion from A to B. Such conversions are implicitly
applied, e.g. when matching a function's actual arguments with the declared types of its formal arguments.

We equip each type fobj_T with a construclor taking a single argument of type T. This will then allow a
formatted VO operand of type T to be implicitly converted to (i.e "wrapped-up" into) an object of type
fobj_T. Because fobj_T is a sub-type of fobj, the converted object is an acceptable right-hand
operand for the formatted VO operators.

This use of constructon allows an object of type t to be supplied as the right-hand operand for the
formatted I/O operators: tle "wrapping-up" has been automated (but see tAPP3l).

5.1 Some C++ Details

We now turn to the implementation in C++ of the above outline. The base of the container type hierarchy
is the type f ob j. The declaration of f ob j contains no data, but it does contain the declarations of the two
virtual functions that are to be defined for ttre whole fob j type hierarchy.

struct fobj
{

virtual. void print (ostream & strm. istream & fmt
virtual. void read(istream & strm, istrean t fmt

l;
The declaration of the output operator is straight-forward (input is similar). Again, we use some pseudo-
code in order to suppress details ofthe house-keeping operations:

fostream t operator(((fostrearn & fstrm, fobj & ob)

t
house-keeping before object I,/O,'
ob.print, (f strm. strm, f strm. fmt) ;
house-keeping after object I/O;
return fstrm,'

)

These operalors, taken together with the definitions of the index opemtors and the formatted stream types,
complete the scaffolding of the formatted I/O system. What remains to be provided is an example of how a
programmer would use this scaffolding to build user-supplied formatted I/O for a particular data-type.

5.2 Formatted Output of C Strings

As an example of the use of ttre scaffolding, we will see how to provide a variant of formatted output for C
strings. Two formats are catered for; the first outputs a string argument with all its lower-case letters

);
);

October 19.1987 Page 10 Mark Rafter

Formatted Strerms

translated to upper-case. This is requested by a tu format parameter in the format specifier. The second
format outputs a string argument in the normal way; this is requested by the usual ts format pammeter.
Any other format paramet€r is an error, and will be silently treated as te.
First let us introduce a simple name, string, for the C string data type char *.

typedef char * string,.
A container type, fobj string, is necessary

struct fobj string: fobj
{

string data;
fobj_string(string s){ data = g,' }
print (ostrearn & strrn, igtrearn t fnt) ;

t;
This is an example of a C++ class; it has been declared using the keyword gtruct to allow us !o avoid
discussing the C++ class-member visiblity rules. This container type declares three members. The first
member, data, is used to point to the string undergoing formatted I/O; it is initiatised in the constructor.
The construclor is the second member; in this example the body of the constructor is supplied as part of the
type declaration. The third member is the fobj hierarchy print function, indicating that it will be
redefined for the fobj string class. The re-definition of print uses the library functions isalpha
and toupper to map lower-case letters into upper-case ones. For readability, is body is provided
separately from the class declaration.

void fobj string: :print (ostrean & stlm, istream e fmt)
(

int i = 0,-
char mapcase,-
fmt)) napcase; /* get format paratneter */

whiJ-e(datalil != 0)

char ch = data[i];
if (napcass-.11' && isalpha(ch))

{
ch = toupper(ch);

)
strm ((ch,'

)
t=i*1;

)

An example of the use of the above is

cout ["**s*tu*"] (("-hello-" << rr-wolId-rr ;

which produces the output

-heIlo--WORLD-+

on the output stream cout.

6. Conclusions
ln demonstrating that C++ is expressive enough to extend the stream I/O system to include format
specification, we have developed an approach to structuring a formatted I/O system that could be applied to
other languages. Whether this is easy, unattractive, or impossible will depend on the facilities provided to
the programmer by the language in question.

October L9,1987 Page 11 Mark Rafter

Formatted Streams

In this secdon we will identify the features of C++ that are of importance to the formaned I/O system
presented here. C+r also provides difficulcies; these, and inherent limitations in our approach to formaced
VO, will be discussed. First we summarise what the formatted VO system achieves in extensibility, type-
security, error handling, and the avoidance of programming conventions.

6.1 Achievements

Extensibiliry As new data-types are introduced, the user is free o provide virtual print and read
functions to perform formatted VO. These functions will interpret the parameters that they read from the
format-specifier in ways appropriate to their data-type. For example, a data-type complex might need to
provide a tz format-specifier.

Type-Securiry The type of the object taking part in formatted VO determines the correct operator function
to call using the virtual function mechanism. Although the format-specifier appears to control the progress
of the formatted VO statement, the format-specifier only controls the points at which the virtual functions
are called. It is the types of the data objects that really determine which functions are to be called.

Formst Errors Because the formatting information in the format-specifer is decoupled from the data
objecs to which it refers, it is possible for the two to be incompatible. For example, an output format
appropriate to a string may be paired with an integer variable. But just as input operators should cope with
incorrect data in the external data sEeam, I/O operators can (and should) gacefully handle unexpected
formatting requests. Problems do not arise as a result of I/O operaors manipulating objects of the wrong
type because, as noted above, tle type of the object determines the function called.

The above should be contrasted with the situation that arises when either fprintf or fscanf are
presented with incompatible formats and data-types. Both fprintf and fscanf use the format-
specifier, not the type information, to select the (inconect) formatting algorithm which then operates on the
data object in a way inappropriate to its type. Graceful error-handling is not possible; a common
consequence is immed iate program term ination.

Programming Conventions The control flow conventions used in ttre formatt€d VO system are quite
complex; provision is made for housekeeping to be done both before and after each format conrol point.
Any formaned I/O systsm that required its users to conform !o such conventions would be quite
unacceptable. Programming errors that were Eansgressions of these complex conventions could not be
detected at compile time. The result would a formatted I/O system that encouraged bug-prone progEms.

The complex control-flow conventions are hidden from the user in the scaffolding of the formatted I/O
system. To extend the formatted I/O system to cope with a new t1,pe the user must provide a container fype
in the fobj hierarchy. The control flow convention demanded of this type is merely the provision of a
print or read function.

6.2 Language Features of C++

Of the language feanres of C+-r that are important to our formatted VO system, one should need no
mention - strong typing. Not only is this the foundation for type-security in our system, but also several
of the other heavily-used language features cannot exist in its absence. Most of the language features that
we identify here underpin not only our formatted I/O system but also Stroustrup's original stream I/O
syst€m.

Overloading The ability to express related ideas in different contexts using a common notation relieves the
programmer of the burden of many irrelevant details. The same notation is used !o output an integer, a

complex number, a tree, or a string; moreover this notation is independent of whether the the data source is
a file, a string, or a concurrent process.

User-Defined Operators User-defined functions that may be called using infix notation provide an

extremely compact notation that seems well suited to I/O. This notadon could be done without (e.g. see the
expanded form of operator expressions) but the resulting long expressions of nested function calls obscure

the programmer's intention.

October 19,1987 Page 12 Mark Rafter

Formatted Streams

Object-Oriented Programming Support Type hierarchies and virtual functions have important. semantic
contenL Whereas Overloading and User-Defined Operators could be dismissed as "semantic sugar", mere
psychological props, this is not the case here. In the development of the formatted VO system we saw that
a natural dilemma was reached which was resolved by applying the more powerful techniques of object.
oriented programming. Without OOP the development would have failed at this point. It should be clear
that languages that may be claimed to support object-oriented programming, but in fact merely provide
support for programming with encapsulated data-types, will cause difficulties here.

User-Defrned Type Conversion The ability to extend the set of implicitly-applied type conversions by
defining an appropriate construclor was used !o automatically wrap up data objects and inject ttrem into the
fobj type hierarchy, ready to take part in formatted I/O. This is convenient, but could be done by the
explicit use of a function. The use of such an injection function would be ugly, and would clutter the
formatted I/O expressions, but this is not its main drawback. Formaued I/O expressions would then look
different to unformatted I/O expressions, and we would lose some of the advantages that accrue from using
a common notation to express related ideas in different contexls.

6.3 Difficulties

The formaued I/O system takes the form of a library; because of this, it can only detect format errors at.

run-time, not compile-time. This is true even when it is possible to deduce ttte presence of an error at
compile time.

A difficulty that seems to have no satisfactory resolution in C+r is illusrated by the last example,
formatted output of C strings. The name of the data-type, char*, is a problem when we attempt to
declare a container tlpe for it in the f_ob j hierarchy. In the example, we worked around the problem by
introducing the tlpe-name string. Ideally, the container tlpe should be named fobj_char* but this
would be syntactically incorrect in the class declaration, and would mean something quite unintended in
other contexts. This is because C++ gives us no way to express tire intended form of the f_ob j hierarchy.
What is needed is a way of re-expressing f_ob j as a function on types combining aspects of both generic
types and type hierarchies.

6.4 Further Work

Layering the formatted VO system on top of the existing stream I/O system is an interesting exercise, but it
means that separate operators for formatted and unformatted I/O are required. This is undesirable from the
point of view of the person writting the operators; also, it means that mixing formatted and unformatted I/O
is problematical. More work is needed to develop an integrated system. There are no fundamental
obstacles here, rather the difficulty lies in achieving an implementation that is acceptably efficient for t}te
case of unformatted I/O.

6.5 Summary

The C and C+r I/O systems have been examined and the question posed: Is C++ expressive enough to
allow its stream I/O library to be extended to provide format control facilities in the style of C's stdio
library without compromising either extensibility or type-security? It has been shown that C++ is
sufficiently expressive to do this. An implementation of formatted exlension to the C++ stream I/O system

based on principles of object-oriented programming (type-hierarchies and virtual functions) has been

examined in detail, and a method of realising this in C++ has been given. We have discussed the C++
language features that are essential to our approach - the methods themselves may be applied to other
languages that provide the necessary support.

6.6 Acknowledgements

I am indebted to Professor Mathai Joseph, Kay Dekker, Jeff Smith, Steve Hunt, Julia Dain and Russel

Quinn for their valuable comments on drafts of this paper.

October 19.1987 Page 13 Mark Rafter

Formatted Streams

7. Appendix
This appendix covers those poins of C++ that, were, in the interess of the exposition, presented in a
simplified form.

APP| The stream I/O operators for the base types of C++ are acurally defined as member functions of the
t)?es ostream and istream rather tlan as the plain operator functions presented in this paper.

APP2 The output of cout
expected letter a. This is because in C+r, for the sake of compatibility with C, character constants are
taken to have type int rather than type char. Thus, the character 'a, in the above operator expression
is acnrally an integer, not the character it appears to be. The situation is slightly better for the output of
character variables. For these a reference-to-character output operator can be added to the type istrean
A reference-to-character is distinct from a reference-to-integer, so the correct definition of the output
operator is found by the C++ overloading rules. With this done, cout << data [i] outputs characters,
not integers.

APP3 What appears to be a compiler bug prevents the constructor-based scheme for wrapping-up data
objects from working. The appropriate object in the fobj hierarchy can be created automatically; and
such an object can be automatically cast to its public base class. Unfortunately the release 1.1 C++
compiler from Bell labs will not do both of these things automatically; although a careful reading of the
language definitiontal indicares that it should.

The problem can be circumvented by the introduction of an output operator for each of the types in the
f ob j hierarchy. An operator to cope with the formatted output of the type r would be:

fostream & operator(((fostrean E fstr:m, T e t)

{
return fst::m << fobj_T (t) ;

l
This operator just explicitly states one of the conversions, that from type T to type fob j_T; the release 1.1
C++ compiler is then happy to do the other automatically.

The need to provide these unnecessary operaton is ugly, but should not be viewed as pafi of the
architecture of the formatted I/O system. However, we are lucky in that the task is mechanical, and does
not. introduce any unacceptable programming conventions.

October 19,1987 Page 14 Mark Rafter

Formatted Streams

References

1. Jon Bentley "Little Languages - Programming Pearls Column", Comm ACM, vol29 No8, 711-721,
(Oct 1986).

2. B.Kernighan and D.Ritchie, The C Programming Language, Prentice Hall, New Jersey, 1978.

3. A.Aho, B.Kernighan and P.Weinberger, "Awk
- A Pattern Scanning and Processing Language

hogrammer's Manual", Computing Science Technical Report no. 118, AT&T Bell Laboratories, New
Jersey, June 1985.

4. Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, New Jersey, 1986.

5. Draft Proposed Amcrican National Standard for Information Systems - Programming Langauge C,
X3J11/86-017.

6 . K.Jensen and N.Wirth, PASCAL User Manual and Report, edn 2, Springer-Verlag, New York, 1978.

7 . G.Ford and R.Wiener, Modula-2 A Software Development Approach, John Wiley & Sons, New
York, 1985.

8. A.Goldberg and D.Robson, Smalltalk-8) The Language and its Implementation, Addison-Wesley,
Massachusetts, 1983.

9. Brad Cox, Object-Oriented Programming - an Evolutionary Approach, Addison-Wesley,
Massachusetts, 1986.

10. G.Birtwistle, O.Dahl, B.Myhrhaug, K.Nygaard, SIMULA BEGIN,Petrocelli/Charter, New York, 1975.

11 . Bjame Stroustrup, "An Extensible I/O Facility for C++", 1985 Srunmer Usenix Technical
Conference Proceedings,5T-70, Usenix Association, El Cerrito, 1985

October 19.1987 Page 15 Merk Rafter

