
http://wrap.warwick.ac.uk/

Original citation:
Thomas, R. F. (1987) ITS methodology for problem solving and programming. University
of Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-114

Permanent WRAP url:
http://wrap.warwick.ac.uk/60810

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60810
mailto:publications@warwick.ac.uk

R,esearch repcrL LL4

ITS METHODOLOGY FOR PROBLEM

SOLVING AND PROGRAMMING

Robert F Thomos

(RRt t4)

Abstroct

This report outlines a cognitive model of problem solving and programming, which forms
the basis of an Intelligent Tutoring System. Within this framework the report takes a criticai
look at the state of the art and addresses many of the problems that current ITS systems face.

--

Deparnnent of Computer Science
University of Warwick
Coventry CV47AL
United Kingdom December 1987

ITS Methodology for Problem Solving and Programming

Robert F. Thomas

Deparunent of Computer Science

Universiry of Warwick

Coventry CV4lAJ'

1. INTRODUCTION

There is an abundance of literature covering the design and construction of Intelligent Tutoring sys-

tems, as well as review papeff in the field. This report outlines a cognitive model of problem solving and

programming, and describes a tutoring system framework which addresses many of the problems that

current ITS systems face. Within this framework, *re report takes a critical look at the state of the art.

The complexity of issues that exists in the field of computers in education has resulted in a wide

variety of different ideas both on teaching methods and how to implement them in a rutoring system. The

fust section of this report p'rovides an overview of the variety of teaching philosophies that have been

embodied in ITS sysrems, and discusses how these approaches affect the student's learning ability' The

second section outlines a general tutoring system architecture that we have developed, and wirhin this

framework focusses on important design issues and discusses the contributions of other ITS projects.

2. TEACHING PHILOSOPHIES

The teaching philosophies embodied in tutoring systems range from the traditional CAI "drill and

pracrise" systems to the learning environments such as turtle graphics Gapert 80).Yazdani (85) points out

TIK

-2-

that all tutoring systems can be placed along a continuum:

Learnlng Environment -> coaching system -> Traditionat cAl.

Modern tutoring systems that adopt naditional teaching methods, use formal lessons followed by repeated

presentation of problems until the lesson content is leamt. They are generally implemented in shallow'

rigidly structured knowledge domains, where the presentation of learning material is controlled by a simple

algorithm.

Coaching systems bring more flexibility into the lesson. They provide a more informal environment

in which the student is given a task requiring certain skills to accomplish it. The coach monitors the student

and intemrpts, either when the student makes an eror, or to explain skills that would be useful in the situa-

tion.

Computer Based Irarning Systems adopt the Piagetian doctrine of "learning by doing", and provide

an environment in which ttre student can explore domain concepts. Learning about domain concepts is thus

a by product of experimenting with the environment.

In order to compare these different approaches, one must look at the effects they have on the

student's leaming abititY.

The most obvious factors that influence learning are motivational. Malone (80) has demonstrated the

use of simulation, graphics and games techniques to maintain the interest of the student' Confidence is

another importanr factor. Often students find nrmring systems difficult to understand, both in terms of the

dialogue and the lesson material. Coaching syst€ms such as WEST (Burton & Brown 82), which teaches

arithmetic skills and WUSOR (Goldstein 82), which teaches statistical reasoning, have demonstrated the

advantages of allowing the students to explore and test out their ideas in a learning environment that pro-

vides tuition only when it detects student errors. They minimise intemrptions while the student is learning'

and provide a graphical representation of the teaching domain.

SOPHIE (Burton, Brown & deKleer 82) is an example of a tutoring system that integrates the use of

simulation and games techniques inro the more sophisticated domain of Electrical Fault Dianosis. SOPHIE

teaches roubleshooting skills by inserting a fault into the simulation of an IP-28 regulated power supply,

and monitors the student as they try to locate the fault- SOPHIE also has several other teaching modes. The

-3-

Workbench allows the student to explore the effects of introducing faulty components on the system, and

the GAMES mode allows either t'wo students or two teams (promoting mutual leaming) to compete against

each other, by altemately generating and locating faults.Both modes allow the student to experiment with

the skills they have acquired during the course.

Another important design decision is whether to leave the teacher in the HCI loop, and although ITS

systems are designed to be autonomous, it is arguable whether this optimises learning.

3. ITS ARCHITECTURE

The last 20 yean of research into teaching systems have focussed on several important design issues

that constitute the basis of an Intelligent Tutoring System. This section discusses these issues in the context

of a general ITS architecture.

The architecture of an ITS system can be broken into four interacting modules as follows:

(1) User model

(2) Conrol mechanism

(3) Tutoringstrategies

(4) User Interface.

3.1. User Model

3.1.1. CurrentApproaches

The user model is the tutoring systems representation of the student it is interacting with. This model

is built using data that the program elici$ from the student and is used to control the tutoring module when

choosing an appropriate teaching strategy. This provides the basis for an optimal method of correcting a

student's mistakes. However it is the most important and also the most difficult module to design, because

of the difficulty of gathering and interpreting student data. It is important, when developing both the user

model and teaching strategies, to have a psychological theory, which can provide guidelines for collecting

and interpreting student data, as well as representing and imparting expertise and knowledge (Anderson,

Boyle, Farrell & Reiser 84). Work to date has focussed on three ways to model the student.

(2)

r?\

A

(1) Expert model

Bug model

Genetic graph

The expert model represents the sfudent. as a subset of the expert knowledge base. Thus student mistakes

are interpreted as being caused by a lack of expert skills or knowledge. WEST (Burton & Brown 78) is a

coaching system for a statistical reasoning game "how the West was won". The system monitors the

student's progress through the game by comparing their performance with the computer expert. Issue

recognisers spot any discrepencies and represent these in terms of missing skills. The approriate tutorial

action is then taken. The main criticism of this approach is that errors cannot be attributed solely to the lack

of prerequisite skills.

The bug model represents the student in terms of " buggy" behaviour. DEBUGGY (Burton & Brown

82) contains a bug database that picks up a student's inappropriate answers, and hypothesises about the

type of error tiat the student has made. Once one particular type of bug has been isolated, the appropriate

remedial action is taken. This approach has been implemented in the domain of acquiring simple arithmetic

skills, but within this relarively simple domain, the presence of several interacting bugs produces complex

student behaviour which is difficult to interpret. To reduce this interaction problem in more complex

domains, the bugs can be interpreted on different conceptual levels, and domain knowledge and skills can

be taught in a more modular way.

Goldstein (82) developed the concept of a genetic graph, which provides a history of the student's

progress as they develop expertise. The genetic graph was used in WUSOR I,II, and III to model the stu-

dents acquisition of probabilistic skills in a mau,e game called WUMPUS. The graph is a network of rules

connected by links. The rules specify the procedurat knowledge embodied in the domain, and are con-

nected according to their locality and relalionship in the problem domain. As implemented in WUSOR II,

the graph contains four fypes of relationship. Generalisation/specialisation, analogy, deviation/correction,

simplification/refinement. Each relationship provides a different way of tutoring the same rule, and gives

rhe system the flexibility, firstly of being able to monitor the student's progress through the graph, and

secondly !o have a choice of several explanation strategies at any stage on the gaph.

-5-

On a more general level, the development of these user models has highlighted several problems that

must be addressed. Primarily the need for both a long term record of the student's performance, to indicate

the level of skill attained, and provide a steady baseline of performance. Also a more detailed short term

model, which models the student's cognitive processes, and thus provides a more accurate picture of per-

formance.

3.1.2. Model for problem solving and programming

In rhe domain of teaching program design, problem decomposition and PASCAL programming

skills, a psychological model, based on protocols and informal observation has been developed (Craig &

Thomas 87). Diagram (3) shows the outline of the model-

(1) Long term student model (history)

(2) Short term model: 3 levels - a) Mental Models b) Problem decomposition c) Domain Knowledge

The long term model keeps a record of the students progess over t}re course of sessions, and builds up a

general model of overall performance. This is useful to provide a baseline to refer to during a session,

where due to short term factors (temporary illness, boredom etc..), the curent performance of the student

may be gnrepresentative. It also provides an indication of both the students knowledge and experience of

the problem domain. DEBUGGY (Burton and Brown 82) was developed to look at this problem of short

term perturbations. DEBUGGY contains a model of the "noise" created by factors such as cognitive over-

load, boredom etc.. It applies this model to it's student model, to provide a more flexible model within

which can account for short term fluctuations in performance.

3.1.2.7. The short term model

This is used to evaluate the student's ability to understand tlte current concept being taught. There is

a hierarchy of three levels of student understanding, which, when combined indicate the appropriate

tutorial action to take.

3.1.2.2. Mental Models

Mental Models refer to the students conceptual model of the idea or problem that is presented. For a

-6-

novice, this usually takes the form of an analogy, for example the use of water as an analogy for electricity,

or in programming, conceptualising variable assignments as pigeon holes. As the novice progresses, the

model becomes more complex, as the student learns more features that must be incorporated.

The following two examples highlight the importance both of a psychological theory in which to

base the user model, and the need for a hierarchical user model, to accurately understand the depth of stu-

dent misconceptions.

WHy (Stevens A., Collins A., Goldin S.E. 82) was developed to teach students the "causal model"

underlying the climate of Oregon or Ireland. The system model was based on tutoring dialogues and exper-

iments, and provides an interesting parallel to the results we have observed with novices learning pascal

concepts. They isolated 16 common "conceptual bugs" that students had in this domain, which can be inter-

preted either as being due to a mental model of insufficient complexity, or an inappropriate analogy. As an

example, one conceptual bug is the "squeezing causes condensation" bug. The student thinks that putting

pressue on the air mass will cause condensation. The reason for this bug is that students often use the anal-

ogy of thinking tlat an air mass is like a sponge that soaks up water. When tuloring the student, it is impor-

tant to repair the student's model at the right level, in order to minimise confusion.

During the development of SOPHIE I, Burton, Brown and deKleer distinguish between several tlpes

of knowledge that an expert uses to troubleshoot a faulty component:

(a) Knowledge of the overall functional organisation of the device.

@) Strategies to choose next measurement to reduce hypothesis space.

(c) Tactics concerning the ease of making measurements.

(d) Understanding of electronic laws, and circuit components.

It can be seen rhat the t1'pes of knowledge from (a) to (d) follow the hierarchical model of knowledge

representation outlined above. However the authors do not encompass these ideas into any psychological

model, to aid learning. Indeed in their review paper of SOPHIE I,II, and III, they suggested two areas in

which ttre design could be improved. Firstly, that an expert model of understanding and a learning model

should have been developed in the initial stages, to aid the design process. Secondty that there was a need

- t-

for more levels of description, when explaining to a novice an expert's troubleshooting procedure.

3.1.2.3. Problem Decomposition

Problem decomposition refers to the ability of ttre student to take a problem and break it down in

such a way that it can be solved using the skills and domain knowledge that they have acquired. The impor-

tant aspects of human problem solving are problem representation, goal decomposition and goal hierarchy

(Anderson 84).

The problem representalion is t]re student's "mental model" or conceptualisation of the problem. It is

vital that this mental model is correct, because it provides the state space in which the problem is manipu-

lated, and also defines the operators used in the problem. In the area of PASCAL programming, Craig &

Thomas (8?) found that the wording of a problem w.ls an important factor governing the student's ability to

represent the problem as a mental model. In particular the way the problem was delined had a strong

influence on the operators that the student's used to solve ttre problem, both in terms of subgoals and PAS-

CAL concepts. A more detailed analysis of results, and an outline of the theory are given in the technical

report.

Goal decomposition refers to the breakdown of a problem into smaller, independant subproblems.

This is a top down process, which creates a hierarchy of subgoals. When an expert decomposes a problem,

s/he uses two important snategies. The first is to judge the independance of subgoals, and the second is to

pick out the most important subgoals and decompose these firsl These are important because they ensure

that any refinements that have !o be made to the goal hierarchy are kept to a minimum.

SpADE (Miller 78) is an example of a tutoring system that teaches problem solving skills. It pro-

vides a planning and debugging environment in which to develop turtle graphics programs' The psycholog-

ical model on which the system is based has evolved from the analysis of snrdent protocols and suggests

five stages of program development.

Problem understanding

kocedure defining

(a)

(b)

-8-

(c) hocedure testing

(d) Localising bugs

(e) Repairing bugs

During the planning stage the student uses a list of defined operalors to build a plan representation of the

problem, which is displayed as a graph. The student is encouraged !o take a top down, left to right problem

solving method, but can choose to leave subgoals until a later stage (which is often the case).

SPADE diagnoses errors using four sources of evidence.

(a) Wamings that the student has put into the goal boxes

O) Problem description checked (to ensure that code has been written to achieve each subgoal)

(c) Trace running process (eg to check if previously accomplished steps have been undone erc..)

(d) code scanned for unusual pattems

The SPADE system highlights several problems that occur when designing a syst€m to teach problem solv-

ing and correct students mistakes. The use of a planning language means that the student has to learn the

syntax and semantics of this, as well as the coding language. Although SPADE is a programming environ-

ment rather than a tutoring system, it outlines the difficulty of assessing both the students problem solving

techniques and their plans. Miller points out lhat because SPADE-0 does not use any information in the

problem description, it is severely restricted in it's ability to provide advice on goal decomposition and

debugging, despite "better human engineering, extending the collection of plan t)?es, or adding new

features to the framework".

A very imporrant aspect of an expert's problem solving sfategies is that they distinguish between the

importance of subgoals. The hardest subgoals are tackled first, to minimise any reorganisation that may be

required during subsequent plan refinement.

PROUST (Johnson & Soloway 8f) is a commercially available system that finds non syntactic bugs

in PASCAL progams. Once found, it offers advice on correcting the bug, and suggests how the bug arose.

The system uses a problem description, which the human tutor types in, using a problem description

language.

-9-

Proust contains three levels of knowledge

(1) ProblemDescription

(2) Programming Knowledge (a) Goals (b) Plans

(3) Bug Library

The system contains a number of problem descriptions, in the form of pseudo code. When a student has

written a syntactically correct pro$am as a solution to a question, Proust initially parses the program. It

then takes the problem description it has been given for the program, and taking each subgoal at a time,

compares the students subgoal solution to a goal frame, and a plan frame. The goal frame contains informa-

tion about the particular subgoal, along with a list of the plan frames that could be used to achieve the goal.

It tries !o match each of the plan frames with the student's code segment, and if they match, no bugs are

present. If no match can be found, PROUST tries to interpret differences between the template plan and the

student's code in terms of bugs. It conhins a number of bug rules which are activated under certain condi-

tions, and generate an English explanation of the error. Experimental results for PROUST show that on a

simple progtam (the rainfall problem) it gave good analysis results (fully analysng 757o of

programs).However taken in context, this problem contains only 3 subgoals, and all the progams that

PROUST was given were syntactically correct.

Although PROUST has been developed to provide the basis for a PASCAL tutoring system there are

several issues which it does not address:

The only way it has of understanding the student is the syntactically correct PASCAL program. This

provides little information on t}te conceptual level of understanding either about PASCAL concepts

or problem understanding and program design.

PROUST analyses student progmms in terms of the subgoal breakdown that it has for the problem.

All but the most trivial problems have several possible goal strucnrres. PROUST enforces one panic-

ular way of decomposing a problem rather than allowing the student to develop their own equally

valid solutions.

(1)

(2)

(3) PROUST uses *re subgoal srructure that the tutor tlped in to analyse the student's programs, and it

-10-

has been demonstrated, during PROUST's evaluation (Johnson 86), that the greater the difference

befween the student's plan structure and PROUST's, the less it was able to make any analysis of the

student's program. A study of novice programmers (Craig & Thomas 87) has outlined several areas

where PROUST would have difficulty. (a) Novices have great difficulty with syntax. (b) Novices do

not develop a plan, but often type straight into the computer, not understanding what they are doing.

(c) Novices often misinterpret or do not understand the question they are trying to solve.

3.1.2.4. Domain Model

Domain knowledge is the amount of context related lnowledge that the student has memorised. For exam-

ple ttre syntax of a computer language. This is the bottom level of the learning process in the sense that the

student understands the area on a conceptual level, and can solve fhe problems, but lacks specific details

about the domain.

3.2. Control Mechanism

The control mechanism and the user model are the vital parts of the tutoring framework. The control

mechanism accesses the user model in order to pinpoint at what level the student is experiencing problems,

and then to use this information to choose a suitable teaching strategy. An important design consideration is

to have a fast control structure, which quickly analyses the user model, and decides upon an appropriate

strategy. The two main problems tiat occur with current ITS systems are speed and complexiry. With

many representations, the search space that must be traversed to find an appropriate response, is enormous'

when

PROUST uses a frame based approach, where a plan structure is hypothesised at the top level, and

depending on how slots in the plan are filled, lower level frames are activated accordingly. As outlined

above, PROUST has a 3 level conrol structure. WUSOR uses a semantic net representation to embody the

genetic graph, and nrtoring strategies are selected as the network is traversed. Although it is useful in sim-

ple domains, it becomes unwieldy in more complex areas.

- 11-

3.3. Teaching Strategies

The teaching strategy affects both *re efficiency and quality of student, learning. The most important

issues are :

(1) When to intemtPt

{2) What tutoring role to adopl

3.3.1. Knowing when to interruPt

Knowing when to intemrpt has a strong effect on student. Too many interuptions and the leaming

process is disrupted as well as the student becoming demotivated. Too few and the same effects occur.

WEST @urton & Brown 82) contains tutoring heuristics, which tell the coach when to interrupt and what

to intemrpt with. These heuristics are in the form of a principle hierarchy, which calls up these rules of

thumb when conditions fire.

33.2. Tutoring roles

A tutoring system needs to provide a comprehensive range of tutoring snategies, which address dif-

ferent levels of understanding, and also provides different ways of teaching a particular concept. Extending

the user model that has been outlined, diagram (4) outlines the different sraegies that may be used.

(1) Mental models; Repair analogy; Propose new analogy

(2) problem solving; Correct problem representation; Conect problem decomposition; Conect goal

hierarchy

(3) Domain knowledge; Teach domain lnowledge; correct domain knowledge.

In some cases these can be integrated, and the following systems demonstrate the tutoring strategies that

have been implemented and tested.

Woolf & McDonald (78,84) developed MENO-Tuor to use as a generic research tool experimenting

wi*r tutoring rules. It has been tried in several different domains, including understanding weather and

PASCAL programming. The system's tutoring component consists of a hierarchy of decision units, on

three absracdon levels.

-12-

(1) Pedagogic states

(2) Strategic states

(3) Tactical states

The top level decides on the choice of approach, which would include when to intemrpt the student, and

when !o introduce a new topic, test the students knowledge, or teach. The second level refines the top level

decision into a particular strategy. For example, the "tutor state" may produce an "explore competency",

,'teach data" or "describe domain" strategy. The bottom level produces tactics or courses of action, which

are used to guide the interaction. The "describe domain" strategy could be implemented as one of five

courses of action.

(a) Describe general knowledge

(b) Describe specific knowledge

(c) Describe dePendant knowledge

(d) Proposeanalogy

(e) Suggest example

During the lesson, the control structure is continually changing, at all levels of the hierarchy. Once a

course of action has been decided upon, it is sent to the language generator module where the appropriate

response is generated.

WUSOR contains four variations on an explanation, one of which is chosen on the basis of general

teaching heuristics, such as "vary your explanation" and "avoid strategies that have been consistently

unsuccessful in the past". The four explanation t)?es are similar to flose described in MENO.

(a) Explanation

O) Generalisation

(c) Analogy

(d) Refinement

13

3.4. User Interface

The user interface provides an important way of presenting information to t}le student. The computer

has the :ldvantage over traditional teaching mediums in it's flexibility of offering complex graphics ard text

interfaces. LOGO and turtle graphics have demonstrated the power of providing an environment which the

student can quickly become familiar with (Papert 80).

In rhe domain of program design and problem solving, the use of graphics, to show the modularity

and hierarchical structure, both of a problem solution and a progfam structure, are powerful teaching aids

for problem solving and program design. SPADE is a good example of both the advantages created by

using graphics, and the problems associated with unrestricted user input. SPADE allows the user !o create a

hierarchy of planning boxes on t}re screen, which is a useful way to show the development of a goal hierar-

chy. However, once the student has specified the type of box, they are free to describe it's exact purpose by

typing in text. As a result SPADE cannot interpret their comments, in order to "understand" the purpose of

the goal boxes, and thus cannot undersland the students problem solving strategy.

There is a trade off between the freedom given to a student to express the interaction in English, and

the complexity of the parser needed to analyse the dialogue, and also the size of the model needed to inter-

pret the results (Carbonell 70). Increasing the size of the vocabulary also magnifies the opportunity for

erors, misunderstandings and ambiguities. This problem is particularly acute for CBLS systems which try

not !o resEain the student's communication.

4. SUMMARY AND CONCLUSIONS

This review has provided a general framework for an Intelligent Tutoring System on two levels.

Firstly it addresses the general educational approaches that have been embodied in the tutoring systems,

and their effect on student learning. Secondly, it has provided a modular approach to the design of an ITS,

outlining important issues, and problems highlighted by current systems. This has been witi particular

reference to the domain of program design and PASCAL programming. This paper provides the basis for

the development of a PASCAL and program design tutor, which aims to integrate a sound psychologicai

learning model with a comprehensive tuloring model and a sophisticated graphics interface.

-14-

REFERENCES

Anderson J.R. (S4) Cognirive psychology and its implications Academic Press, London.

Anderson J.R., Boyle C.F., Fanell R.G., Reiser BJ. (84). Cognitive principles in the design of com-

puter rurors. proc. sixti annual conference of the Cognitive Science Sociery, Boulder Co.

Ba11 A., Feigenbaum E. (80) The handbook of Artificial Intelligence v2, chap. 9, W.H.Freeman San

Francisco

Burton R.R. (82) Diagnosing bugs in a simple procedural skill.lr Sleeman D., Brown J.S. (82)

Brown J.S., Burton R.R., de Kleer J. (82) Pedagogical, natural language and knowledge engineering

techniques in SOPHIE I,tr & il. In Sleeman D.,Brown J.S. (82)

carbonell J. (70) A.I. approaches t0 c.A.I. I.E.E.E. trans. man machine systems.

Dede C. (86) A review and synthesis of recent research in intelligent computer-assisted instruction

Int. J. Man-Machine Studies 24,329-353

Ford L. (84) Intelligenr computer aided instruction. See Yazdani M., Narayaman A. (8a)

Goldsrein I.P. (82) The genetic graph: a representation for the evolution of procedural knowledge /n

Sleeman D., Brown J.S. (82)

Green T.R.G., Payne SJ., Van der Veer G.C. (ed) (83) The psychology of computer use, Academic

Press, London.

Johnson W.L. (86) Intention-based diagnosis of novice programming errors, Pitman, London.

Malone T.W. (81) Towards a theory of intrinsically motivaring instruction, Cog. Science 4,336-369

Miller M.L. (7S) A structured planning and debugging environment for eiementary programming Int.

J. Man-Machine Snrdies 11,79-95

papert S. (80) Mindstorms - Children, computers and powerful ideas Harvester Press

Sleeman D., Brown J.S. (ed) (82) Intelligent Tutoring Systems Academic Press, London'

Woolf B., McDonald D.D. (84) Building a computer tutor : design issues I.E.E.E'- Computer Sept.

1984

-15-

yazdaruM., Narayaman A. (84) A.I. and human effecS Ellis Horwood Ltd.

yazdani M. (s6) Intelligent tutoring systems survey A.I. Review Vol. 1, 43 - 52,

