THE UNIVERSITY OF

WARWICK

Original citation:

Joseph, M. and Goswami, A. (1988) What's 'real’ about real-time systems? University of
Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-123

Permanent WRAP url:
http://wrap.warwick.ac.uk/60819

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60819
mailto:publications@warwick.ac.uk

esearch report 123

'WHAT'S 'REAL' ABOUT REAL-TIME SYSTEMS?
Mathai Joseph, Asis Goswami

(RR123)

A real-time system is typically a concurrent (or distributed) system whose computations and
actions must satisfy some real-time constraints. Guaranteeing that such a system will in fact
meet its constraints can thus be viewed either in terms of some extended model of program
correctness or as a problem of scheduling, eg one of establishing a feasible schedule.
However, the crucial distinction between real-time and other concurrent programs is not
merely that of time, but that the former must execute on a system with limited resources. In
this paper, we give an informal account of a semantic model of programs which may execute
with limited resources: thus, the model can serve both as the basis for a formal specification
system for real-time programs and to characterise real-time scheduling problems.

This work was supported by research grant GR/D 73881 from the Science and Engineering
Research Council

Department of Computer Science
University of Warwick
Coventry CV47AL

United Kingdom May 1988

What’s ‘Real’ about Real-time Systems ?

Mathai Joseph, Asis Goswamsi

University of Warwick?

Abstract

A real-time system is typically a concurrent (or distributed) system whose com-
putations and actions must satisfy some real-time constraints. Guaranteeing that
such a system will in fact meet its constraints can thus be viewed either in terms
of some extended model of program correctness or as a problem of scheduling, eg
one of establishing a feasible schedule. However, the crucial distinction between
real-time and other concurrent programs is not merely that of time, but that the
former must execute on a system with limited resources. In this paper, we give an
informal account of a semantic model of programs which may execute with limited
resources: thus, the model can serve both as the basis for a formal specification
system for real-time programs and to characterise real-time scheduling problems.

! Address for correspondence: Department of Computer Science, University of Warwick, Coven-
try CV4 TAL, U.K. This work was supported by research grant GR/D 73881 from the Science and
Engineering Research Council.

1 Introduction

Viewed simply, a real-time system has two main parts: an external environment
with a number of devices such as sensors and actuators, and a programmed system
which registers events from the sensors and responds by producing actions to drive
the actuators. It is called a ‘real-time’ system because the incoming events are
distributed in time and induce timing constraints on the sequencing of the outgoing
events.

Different aspects of such systems have been studied: specification (eg, [13], [9],
[8]), languages (eg, [11], [2]), models and semantics(eg, [15], [6]), and scheduling
(eg, [12], [16]). It is clear that in many of these respects a real-time system has
a great deal in common with any other concurrent system and it is sometimes
argued that there are no significant differences at all between them. Equally, it
is well-accepted that real-time systems do have many specific scheduling problems,
especially those relating to feasibility for hard-real-time, that are not of concern in
general concurrent systems. So the ‘real-time’ problem is often seen with two views:
as one of representing time in the execution of a concurrent program or as one of
scheduling the tasks in a real-time program to meet particular timing constraints.
But there is some common ground, in that there are scheduling results that should
clearly be related in some way to results from other studies of concurrency (a good
example is synchronization, where Mok [12] has shown that the decision problem
about scheduling certain classes of processes which use semaphores to ensure mutual
exclusion is NP-hard).

In this paper, we argue that a real-time program is a concurrent program which
is executed on a system with limited resources. If processors were infinitely fast,
memory unlimited and channels had no restrictions of capacity, for example, a real-
time system would be like any other concurrent system and there would be no
‘real-time’ problem at all. Since resource limitations are central to the execution

of a real-time program, they must be represented in semantic models for real-time
languages.

This paper gives an informal description of a semantic model for concurrent
programs which execute with limited resources. We show how the model can rep-
resent limitations in any general resource and how the problem of computing these
limitations can be related to problems of scheduling in hard-real-time systems.

2 A Semantic Model

Consider a programming language in which a program has a number of variables
and there is an assignment operation to place a value in a variable (it is easy to
generalize this operation to permit multiple assignment [4]). Assume each variable
is represented by a sequence of elements which are the values assigned to the variable
during an execution of the program; let this sequence be the observed value of the
variable. Initially, the observed value of each variable is the empty sequence A and
each assignment to the variable adds a value to a variable. So, for the program with

the variables z and y and the sequence of operations
z:=3y:=z+2 (1)

the observed values of = and y before and after the execution of these assignments
are

Observations

1 2 3
X A <3I> <3>
y A A <5>

Define an observation of a program as the set of observed values of its variables
before or after the execution of an assignment operation. Then a behaviour of a
program can be represented by a sequence of observations. In some cases, eg with
non-deterministic commands, a program may have many possible behaviours and
the computation of a program is the set of all its possible behaviours.

In general, a behaviour of a program is an infinite sequence (or an w-sequence)
of observations. Each observation is made at a discrete point in a time domain of
real numbers and the number of an observation is an index into this time domain.
More formally, an observation 8 over the set VAR(C) of variables of a command C
is a pair (T'ime(8), Function()). Two observations §; and 65 are equal iff

Time(6,) = Time(6s) A Function(8;) = Function(ds) (2)

The Function component of an observation 4 of a command C gives the observed
values of the variables of C' (ie, maps the variables of C into their observed values)
at Time(f). Each element in an observed value is either taken from the (count-
able) value space of C or is a distinguished value representing a particular result of
executing C. For example, the sequence of commands

z=3%iz:=z+y (3)

will result in z taking the value of the expression z + y only when that is defined.
But if before executing the commands the observed values of z and y are empty
sequences, the new value of z is not in the value space of C and the command fails.
Failure of a sequential command induces the value L in all its variables.

Observations

1 2 3
X A <3> <3,1L>
y oA A <Ll>
Let 6p,01, - be an infinite sequence of observations of an execution of a com-

mand C. The command is assumed to start execution at time 0, so Time(fy) = 0.
The observation 8;41,7 > 0, is made after the execution of at least one primitive com-
mand of C following the observation 8; (provided that C has not stopped, normally
or abnormally) so we have

Time(fit+1) > Time(0;) A Function(8;+1) # Function(6;) (4)

Obviously, the observed value of at least one variable of C is extended by one el-
ement from observation 6; to 6;11. Also, no observed value is extended by more
than one element. If at some observation 8, k > 0, the command has failed or nor-
mally terminated then all subsequent observations of the command remain constant.
Clearly, if (¢, f) and (¢,g) are two observations in a behaviour, then f = g.

The executed part of F, Exec(F'), is the maximum initial subsequence of a
behaviour F in which no two successive observations are equal; for a non-terminating
execution, Ezec(F') = F. The set of all possible behaviours of a command C is
represented by 5(C); this is the set of all behaviours with all possible initial observed
values in VAR(C).

3 Sequehtial and Parallel Composition

We have already seen, informally, how the execution of sequential commands is
modelled in the semantics. In this section, we consider more general sequential and
parallel composition of commands.

Sequential Composition

Let C represent the command Cy; Cs formed by the sequential composition of the
commands C; and Cs.

The use of sequential composition widens the space of possible initial observed
values of variables. For example, if Cy-can execute then each of its variables which
is also in VAR(C}) has exactly one element in its initial observed value, and that
element is the last value assigned to it in the execution of C;. However, the observed
values of the other variables of Cy are all .

The predicate Consistent(;) tests whether the behaviours F1 € 8(C1) and F» €
B(C2) are consistent with respect to sequential composition, i.e., whether they com-
bine to form behaviours of the command C. Informally, F; and F» are consistent
with respect to sequential composition if either F; does not terminate or F} termi-
nates and the final state of C; in F} is the same as the initial state of C in F». The
condition required to hold when Fj terminates is now more formally described.

Let last(s) be the last (or, rightmost) element in a sequence s. Since F; termi-
nates, Ezec(F1) must be finite; let

last(Bzec(F1)) = (t,9)

and (0, k) be the first observation in F». Then Fy and F» are consistent with respect
to sequential composition, written as C’onsz'stent(;)(Fl, Fy), if

Vv € VAR(C1)NVAR(Cs) : h(v) = <last(g(v)) >

Let Combine(,) be a function which, for sequential composition, can be used to
combine the behaviours of two commands to produce the behaviour of the sequential
composition of those commands. Thus, Combine(;)(F1, Fa) can be used to combine

the behaviours F} and F5 to produce a behaviour of Cy; Co. If —~Consistent,(F1, F)
then Combine(,)(F1,F2) is undefined, and if Fy does not terminate then

Comb'ine(;)(Fl,) =R

Suppose F; terminates; let Fy and Fy be consistent and let their observation se-

quences be represented by 6o, 61, - and 10,1, - - respectively. Let last(Exec(F}))
= (t,g) and o = (0,k). Then

Combine)(F1,F2) = F

where F' is a behaviour
(tD) fﬂ), (tly fl)a (t21 f2)1 e
with t9 =0 and ¢; for 7 > 0, and f; for ¢ > 0 defined as follows.

The domain of each f; is VAR(C;) U VAR(C5) because F is a behaviour of

C1; C2. Let the length of Exec(F;) be k. All the observed values in F; must be in
F. Thus

Yo € VAR(C'l) : Vie[L,k-1]: fi(v) = Function(d;)(v)

The observed value of each variable of VAR(C2) — VAR(C}) in the first k observa-
tions of F' must be the same as its first observed value in Fy. So,

Vv € VAR(Cy) —VAR(Cy): Vi€ [Lk—1]: fi(v) = h(v)

From the kth observation onwards, each variable in VAR(C;) — VAR(C,) has the
same observed value as in the (k¥ — 1)th observation. Thus,

Vo € VAR(Cy) — VAR(Cy): Yi 2 k: fi(v) = g¢(v)

Let v € VAR(C1)NV AR(C5). Consider some ¢ > k. Since F; and F, are consistent,
the last value in g(v) is the same as the first value in Function(¥p—;i+1)(v). The
rest of the sequence Function(1—;+1)(v) should be appended to (the right of) g(v)
to obtain f;(v). The time components of the observations of F' are defined by

Vie([Lk—1]: t; = Time(6;) AVi>k: t; = Time(VYi—gp+1)
The set of all possible behaviours of the command C is
B(C) = '{Combine(;)(Fl,Fg) | F1 € B(C1) A Fp € B(Cs) A Consistent(,y(Fy, Fa)}

Ezample 1: Consider two commands C; “z := z + 2;7 := y + 2” and Cy “y :=
¥y + 1;z := y” with the associated behaviours F; and Fy:

Behaviour Fy of C}

Observations 1 2 3 4
Time 0 3.2 8.4 8.4

x <3> <35> <3,5> <3,5>

y <4> <4> <4,9> <4,9>

Behaviour F5 of Cy

Observations 1 2 3 4
Time 0 2.3 3.6 1.3
y <9> <9,10> <910> <9,10>
z 22> <2 <2,10> <2,10>
Here, Fy terminates and Fy and F are comsistent so Combine(,)(F1,F2) = Fis

the behaviour represented by

Observations 1 2 3 4 5 6
Time 0 3.2 8.4 10.7 12.0 12.0
% <3¥> <35> <35> <K3,5> <3,5> <3,5>
y <4> <4> <4,9> <4,9> <4,9,10> <4,9,10>
z <2> <23 <2 <2 <2,10> <2,10>

Parallel Composition

Let C & Ci|| - - * || Cn represent the parallel composition of the commands Cy,...,C,,
n > 2. Assume the processes communicate with each other using some communica-
tion mechanism M.

The predicate Consistent(y) tests whether the behaviours F; € §(C;), i €
[1,n] are consistent with respect to M; in other words, this predicate serves as a
definition of the mechanism M. The conjunction of Consistent), taken over all
the communication mechanisms of the language under consideration, is represented
by Consistent).

Communication among the components of a parallel composition is modelled as
a pair of primitive actions — output and input. Like any other primitive action, these
are also represented by assignments to variables: output is recorded by appending
the communicated value to the observed value of an output variable, and input is
recorded in an input variable. If v is an output variable, Complement(v) is the set
of input variables which receive values from v. Similarly, for an input variable w,
the set Complement(w) includes all the output variables which sends values to w.
Usually, the complement of an input variable is a singleton.

The introduction of combinators such as parallel composition needs further elab-
oration of the way in which observations are made. Suppose an observation of a
command A records a communication of a value to A. In this case, all possible values
are taken into consideration (including values representing communication failure).
In general, all possible interactions with the environment of A are considered; the
interactions depend on the combinators of the language. For example, the use of
sequential composition requires that A or any any single-element sequence over the
value space of the language be taken as a possible initial observed value of a variable
of a command.

The expressions Input \(C) and Outputr(C) define the set of input and the set
of output variables which record communication across the boundaries of the com-
ponent commands Cy,...,C, of C. The communication mechanism M generates a
subset of 3(C1) x -+ x B(Cy), characterized by Consistent(uy).

Consider the specific example of asynchronous communication defined by the
predicate Consistent4. The function Complement will have singleton values and
the sets Inputr(C) and Output y(C) will be disjoint.

For uniformity, let Consistent 4 have pairs of observations as its arguments. Let
E (t1, f) and ¥ a (t2,9) be observations of F; and Fj; respectively. Let
v € (Inputs(C) U Output4(C)) N VAR(C;)

ie v is an input or output variable of C; for asynchronous communication with some
other process. If

Complement(v) N VAR(C;) = 0

then the observed values of v in # are not constrained in any way by the observed
values of the variables in V AR(C;).

The observed value of a variable v in Input4(C) U Outputs(C) is of the form
s"q, where “*” represents sequence catenation, and ¢q € {),6}. § is the failure value
representing deadlock in parallel composition, in the same way that L is the failure
value for sequential composition. Failure of a parallel composition induces the value
¢ in all its variables. Define Data(v) = v if ¢ = A and Data(v) = s otherwise.

Let u € VAR(C;) and u € Complement(v).

Case 1.t <1y

Let v be an input variable (implying that u is an output variable). Then we have

Data(f(v)) =< g(u)

ie a value cannot be received by a variable until it has been sent by another variable.
The initial subsequence relation also implies that communication preserves the order
of transmission of data.

If v is an output variable and the observed value of v has L or § as the last

element, then only that data which is in f(v) can be in u(V) at a time later than
t1. Thus

Data(u) < f(v)

However if Data(v) = v, then either the above relation holds or we have
1 <t2 A f(v) x g(u)

Case 2. 13 >ty

This case is simple because the order of arguments of Consistents should be im-
material. Thus Consistent 4(+,) is evaluated in this case using the above rules.

Two behaviours < F 2 Fy,F1,...>and < G 2 Gy, G1,... > are consistent
with respect to asynchronous communication if

Vicw: Vj €w: Consistent(F;, G;)

The set of all possible behaviours of C is

B(C) = {Combine(F\,...,Fn)|[Vi € [1,n]: F; € B(Ci)
A Consistent(y(F1,...,Fn)}

The function C’ombine(”) first transforms each behaviour F; into another be-
haviour Fj over VAR(C;); it is possible that F; = F! but it is not necessary that
F! € B(Cy).

Ezample 2: Consider the parallel combination of three processes P;, Py and P;
whose actions can be represented by the following commands:

Pz P1”P2“P3

P by <a=a+b > <a=a+2; 1b>
P yi=y—1; Mz; lly; Mz

Pyiuiz:=1

where 77 and !! represent asynchronous input and output respectively. Let the
individual behaviours Fy, F» and F3 be

Behaviour Fy of P;

Observations 1 2 3 4 5
Time 0 2 3 5 5

a <2> <2> <2,5> <2,5,7> < 2,5, 7>

b A <3> <3,4> <3,4,6> <3,4,6>

Behaviour Fy of Py

Observations 1 2 3 4 5
Time 0 1 4 5 5
X A A <3> <36> <3,6 >
y <3> <32> <32> <3,2,6> <3,2,6>
Behaviour F3 of P
Observations 1 2 3 4 5
Time 0 1 1 1 1
Z A <1l> <1> <1> <1>

Thus, since all communication is asynchronous, Input4(P) = {z} and Output4(P) =
{b, y}, with Complement(z) = {b}. Now F; and F, are consistent with respect to
parallel composition so they can be combined to produce a behaviour of P. However,
F5 and F3 show that a deadlock is detected in P, at time 5, whereas P; terminates
normally. Since deadlock is an abnormal termination, the composite command must
also deadlock at time 5. So Fj is transformed into the following behaviour Fj.

Behaviour F] of P;

Observations 1 2 3 4 5
Time 0 2 3 5 5

a <2> <2> <2,5> <2,56> <2,56>

b A <3> 34> <34,6> <3,4,6§>

The behaviour F» remains unchanged, ie F§ = F». The behaviour of F; would
become F even if the time of the 4th observation of F; was greater than 5, or if P;
and P did not communicate with each other.

7

a

It should be clear from this example how the behaviours are transformed by
Combine(|y so we omit the formalisms. Exactly the same approach is ta.ken to
transform the behaviours when failure (represented by L) occurs.

We now come back to the general case of the command C 2 Cill -+ ||Cn.

The expression Combine(|)(F1,...,Fn) evaluates to a behaviour F (of C) which,
if restricted to VAR(C;), for any ¢ € [1,n], produces a sequence S of observations
which can be shown to have a particular relation with the behaviour F}. Informally,
S is either the behaviour F} or an w-sequence of observations of C; obtained from F!
by iteratively introducing observations such that time still increases monotonically
with the observation index (until it becomes constant) and there are one or more
pairs of successive observations, (¢1, f) and (2, g), in S such that f = g but t; # ¢,.

We write S ~ F (read as “S is compatible with F). The relation ~» is now formally
developed.

Let F be an w-sequence of observations. Then Timeseq(F) is a function from
w into the set of non-negative real numbers such that Timeseq(F)(k) is the time
component of the kth observation of F'. If F is a behaviour, then Timeseq(F) is an
w-sequence of times < #¢,%1,... > having the following properties:

Pl ¢t =0
P2. [Few: ti=tin]=>Nk>i: & = ti]

Let W be the set of all w-sequences of observations of a command C such that for
all F € W, Time(F) satisfies the properties P1 and P2 above. Then there exists
a relation ~+ (read as “compatible with”) from W to B3(C) defined as follows: if
F € W and G € B(C) then F ~ G if any observation in G is also an observation in
F, and for any observation (2, f) in F, there is an observation (#, f) in G such that
t' is the largest observation time in G which is less than or equal to ¢.

The behaviour
F 2 < 04,01,...>

of a command C when restrictedto a nonempty subset X of VAR(C), F T X, is an w-
sequence of observations < Sy, S1,... >, where, for all i € w, Time(S;) = Time(6;)
and Function(S;) is the restriction Function(F;) T X of the function Function(d;)
to the set X.

Let F be an w-sequence of observations. The expression Timeset(F) is the set
of the elements in Timeseq(F). If

o & Cul++-||Cn

and F; € B(Ci), 1 < i < n, then Combineq(F1,...,Fn) is an w-sequence F of
observations of C such that Timeseq(F) satisfies the properties P1 and P2 above,
and

a) Timeset(F) = Ui Timeset(F!)
b) Vi € [1,n]: (F 1 VAR(C;)) ~ F!

Condition (b) states that Combine)y merges several behaviours into one in which
the temporal ordering of the observations is preserved.

Ezample 3: Given the program P :: Pi||P;||P; of the previous example, the
following behaviour F' of P is produced by C’ombine(”)(Fl, E).

Behaviour F' of P

1 2 3 4 5 6 7
Time 0 1 2 3 4 5 5
a <2> <2> <2> <2,5> <2,5> <2,5,6> <2,5,6>
b A A <3> <34> <3,4> <3,4,6> <3,4,6>
x A A A A <3> <36> <346>
y 3 <3,2> <3,2> <3,2> <3,2> <3,2,6> <3,2,6>
z A <l> <1> <1> <1> <1,6> <1,6>

Note that (F T {a,b}) is a sequence which can be obtained from ths behaviour
by removing the three rows corresponding to z, y, and z. Clearly, (F T {a,b}) is
not a behaviour because the 1st and the 4th observations are repeated, while the
observations do not become constant before the 5th observation. This justifies the
use of the relation “~»" in the definition of Combine()).

The soundness of the function Combine(|) is easily established. When it is
defined, the expression Combine(y(F1,...,Fn), evaluates to a unique behaviour of
C. Suppose Combine(y(F1,...,Fn) evaluates to an w-sequence F of observations
of C. Let F be the sequence < 6g,8;,... >. First, we show that F' is a behaviour
of C.

Let (¢, f) be any observation in F. For F to be a behaviour of C

o the observations in F', except the first, must be made only when at least one
primitive command of C terminates, and

e for all v € VAR(C), the observed value of v at time ¢ must be given by f(v)

Let t > 0. Since .
te U Timeset(F;)
=1
there is some 7 € [1, n] such that ¢ € Timeset(F;). Obviously, one or more primitive
command of C;, and hence of C, terminates at time .

Consider some v € VAR(C). There is some C; such that v € VAR(C;). Now,
(t,f T VAR(C;)) is an observation in F T VAR(C;). We have

FTVAR(C,‘) ~ F;

If t € Timeset(C;), then (¢, f T VAR(C;)) is an observation in F;. Then (f T
VAR(C;))(v), and hence f(v), is the observed value of v at time ¢. If ¢ & Timeset(C;),
then (¢, f T VAR(C;)) is an observation in F;, where ¢ is the maximum of all times
in Timeset(F;) which are less than ¢. Since one or more primitive commands of C
terminates at time ¢, and no primitive command of C; terminates in the interval

(t',t], the observed value of the variable v at time ¢ is unchanged from time ¢/, and
is (f T VAR(C;:))(v), ie, f(v).

So F' is a behaviour of C. Suppose Combine(y(F1, ..., Fy) can evaluate to some
other behaviour F' of C. Since Timeset(F) = Timeset(F'), from the discussion
above we know that both F' and F' give the observed values of the variables of C
at each point in the same time-space. Thus, F = F'.

4 Commands and Combinators

In general, a program is formed by composing commands with combinators of which
the sequential and parallel combinators are two examples. Commands may be
nested, ie a command may contain other commands and combinators. A command
is primitive with respect to a combinator if it contains no further occurrences of that
combinator; for example, a single or a multiple assignment statement is primitive
with respect to the sequential combinator “;” and a program consisting of sequential
commands only is primitive with respect to the parallel combinator “||” .

Combinators such as “” and “||” are syntactic combinators and they appear in
a program with a precedence which determines the structure of the program. The
semantics of a particular programming language is defined in terms of the semantics
of its syntactic combinators and the commands that are primitive with respect to
these combinators.

Let & & {01,092, ++,0n} be the finite set of syntactic combinators of a language.
Then for each o;, define the set of distinguished values assigned to the variables at
the end of all possible finite executions of any command which is primitive with
respect to ¢; as

Stopo, 2 {terminate} U fail,, (5)

where terminate denotes normal termination and fail,, is the set representing all
possible abnormal terminations of commands. For example, for the parallel combi-
nator “||”

Stop(C) = {terminate} U {deadlock} (6)
Let Fail & UL, fails,.

In terms of observations and behaviours, a finite execution of a command always
produces a constant observation: for normal termination, the values in this obser-
vation are from the value space of the language while for abnormal termination the
last value in each of the observed values of V AR(C) is a distinguished value (in this
case § for deadlock).

Note that we are not using the value terminate to denote normal termination be-
cause this is represented by constant observation without any failure value assigned
to the variables. However, description of livelock properties of parallel programs
would need normal termination to be represented by terminate. For example, con-
sider the parallel command

Pz PB...||Ps

10

If P;, for some i in [1, n], starves, then there is a behaviour F of P, and a behaviour
H of P; such that

F1VARP) ~ H

and observation in H becomes eventually constant. But the observed values in H
have elements only from the value space of the language. Thus H represents a nor-
mally terminating execution whereas it should represent starvation. So, starvation
can be distinguished from termination only if the termination of a command C is
indicated by appending the distinguished value terrfzinate to the observed values of
all communication variables of C when C has terminated.

Let V be the value space of programs. Assume that V' is countable and equipped
with an equality (=) relation which is the minimum reflexive relation on V. Let V*
and V* be respectively the set of all finite sequences and the set of all (finite and
infinite) sequences over V, both including the empty sequence A. Define

Vi={s"<d> |seV*Ade Fail}
Then the space W of ‘observed values’ is defined as

w=v+tuvt

The function component of an observation 8, ie Function(f) maps VAR(C) into
W such that '

[3v € VAR(C) : (Function(8))(v) € V1]
= Vv € VAR(C) : (Function(8))(v) € V1]

Thus, whenever C fails, the corresponding failure element is induced in all vari-
ables of the command. If 4 is the corresponding observation, the predicate Failed(d)
is true.

Let U be the set of all one-element sequences over the set V U Fail. A behaviour
of C is an w-sequence F given by

F 2 < 09,01,09,...>

An element 6 of this sequence is an observation (¢, fi), where t, = Time(d)) and
fr = Function(8;). The sequence F has the following properties:

a)tg = 0

b) Vv € VAR(C) : fo(v) = AV fo(v) €U

c)Vkew: Yw e VAR(C): [Fs € UU{A}: frr1(v) = Fe(v)"s] Ate < trar
d) Vkcw: (fk = fr+1 VFailed(Hk)) = W] Ew: j>k= 9]' = 9k+1]

e) Vk € w: O # Oks1 = tr < tig1 A fro # Frst

The semantics of a combinator ¢; defines how the behaviour of the composite
command it forms can be obtained from the behaviours of its arguments. The
examples of sequential and parallel composition in the previous section show how
this can be done with a uniform approach for any combinator. Let ¢; be an n-ary
combinator, and C = 0;(C1,...,Cr). Then the semantics of o; is given by the
formula

11

B(C) = {Combineo,(F,...,Fy) |
Vi € [1,n] : F; € B(Ci)] A Consistento,(F1,...,Fn)}

The predicate Consistent,, tests whether the behaviours F; describe only those
observed values of the variables of C; that are consistent with respect to the com-

putation mechanism of o;. If so, then these behaviours can be combined to produce
a behaviour of C.

It not necessary that Consistent,, should be a relation on all the variables of
C. Associated with o; is a function VAR, such that only variables of V AR, (C),
which is a nonempty subset of VAR(C), participate in the operation of ¢;. In the
case of parallel composition, for example, VAR (Cy|| - - - [|Cr) is the union of the sets
produced by the Input and Output functions corresponding to the communication
mechanisms.

The function Combine,, essentially reorders the observed values of its argument
commands into a new total order of time values which is obtained from the obser-
vation times and certain properties of the observed values (eg, deadlock in the case
of parallel composition) in the arguments. This is explained in more detail in the
next section. ‘

Certain behaviours can be derived from a given behaviour of command C in two
ways — by hiding variables and by hiding observations. For example, in the program

P Qi (Pl ||1Pr); Q2

the variables used only for communication between the parallel programs P; should
not be visible when P is considered as a sequence of three commands. Thus, in
general, if
A
C = O(C’l,...,CN)

then C can be transformed into another command C’ such that
VAR(C') =V AR(C) - VAR,(C)

and the behaviours of C’ can be obtained from those of C by hiding variables as
appropriate. This hiding operation can easily be defined with the help of restriction.
If the subset Y of the variables of C is hidden, a behaviour F of C gives a behaviour
F' of the resulting command such that

F1(VAR(C)-Y)~ F'

Variable hiding is meaningful only when some useful equivalence between the original
and the resulting commands can be defined.

Hiding an observation from a behaviour can be used to avoid the description
of unnecessary detail in the actions of a command. If a certain observation in
a behaviour of a command C records assignment only to a proper subset ¥ of
V AR(C), then hiding the variables in ¥ obviously hides that observation. However,
the command C is transformed by variable hiding. Observation hiding without com-
mand transformation is achieved by deleting an observation ; from a subsequence
“0;—1,0;,01 + 1” of a behaviour such that

Time(0;—1) < Time(8;) < Time(bi41)

12

This condition is justified because hiding the first or a constant observation is not
meaningful. The deletion of §; will require readjustment of all subsequent times and
deletion of the last elements of the observed values in §; from the observed values
in all subsequent observations.

We have assumed that it is not necessary while recording a behaviour of a com-
mand C, to observe all instances of assignments to the variables of C. Therefore, the
set 3(C) should be closed under the operation of observation hiding. A more detailed

examination of this operation and the domains 3(C) based on formal definitions can
be found in [7].

It is usual practice to define the semantics of a program in terms of the semantics
of its commands but this carries with it the assumption that the computer system
on which the program may be executed has unlimited resources. But if for example
a program is too large to be stored in the computer system, it may need to be
divided into units (‘working sets’) which each require less memory than the whole
program. Thus in resource- limited cases a program may need to be divided into
units separated by non-syntactic combinators. Note that, in general, these combi-
nators have no fixed precedence relation with syntactic combinators and many of
the difficulties of scheduling a program on a system with limited resources come
from attempting to do this in terms of arbitrary non-syntactic combinators when
the demands upon the resources are made by the program at times determined by
its syntactic combinators (see eg Belady [1]). We shall return to this point later
when discussing the semantics of limited resource execution.

5 Representation of Time

In a sequential program, the value of the time component of successive observa-
tions increases monotonically until the observation becomes constant. So we may
say that time imposes a total order on these observations. In a parallel program,
observations on individual sequential processes have a total order and the predicate
Consistent|y specifies the time relation between events in the different processes;
for example, synchronous communication takes place when the values of the sending
and receiving variables change simultaneously (ie in the same observation). With
independent observation of time in the diferent processes, parallel composition re-
quires tranformation of the times of each process into times in a new total order
so that the observations in different processes can be related and combined into an
observation of the parallel command (as in [10]). -Clearly, this is possible (in general
for any combinator) if the meaning of any command C is given by a pair (I,5(C)),
where I is the interpretation of ‘time’ used in the behaviours in 3(C). More for-
mally, I is a well-order with the least element represented by 0;. Thus, ‘time’ in a
command is strictly a local property.

The notion of simultaneity, which cannot easily be expressed in trace logics, is
not restricted to synchronous communication and can apply to any two events in
a parallel program which are observed with appropriately transformed local times.
The relative ordering of the observations of two processes during a parallel compo-
sition brings with it the operational possibility of one process ‘waiting’ for another.

13

This has often been modelled in semantics as the execution of a wait ¢ command,
where ¢ denotes a time interval. It is difficult to see how, in a distributed system,
t can be effectively computed if process executions are truly independent. Some-
times, however, a wait ¢ instruction is explicity used in a process as a timeout (eg,
as in Ada’s timed entry call and delay alternative): in our model, such use of a
wait command would be equivalent to synchronization by parallel composition with

a clock process, the value ¢ being interpreted in the new order produced by this
combination.

Thus, with these semantics, the values of time in a parallel program are relative,
rather than absolute. However, this time can always be related to the time of some
reference, such as a clock process, or even to a Standard Time which is itself defined
in relation to the more stable reference of an atomic clock. This essentially relative
view of time stands in contrast with the concept of an absolute global clock which
has been used elsewhere to relate time with program executions.

6 Limited Resources and Real-time Scheduling

A program C (or, in general, any command) can be partitioned in a number of ways
depending on the combinators used in its description. Most often, the behaviour
of a real-time program is determined by partitioning it with respect to omne of its
syntactic combinators, such as the parallel combinator || .

Without paying too much attention to the specific syntax of the language used,
assume that C is partitioned into m units or processes C ... Cy, which are primitive
with respect to || so that Vi,j € 1--.m, VAR(C;) N VAR(C;) = ¢. Then, m is the
degree of mazimum parallelism of C; if C is a sequential command, clearly m = 1.
The program C has a maximally parallel implementation if it is executed on a system
with m processors and the semantics of this execution are the same as that for any
system with v processors, v > m.

As for many practical real-time systems, assume the processes Cj--:Cp, are
periodic and have infinite, non-divergent executions, for example of the form C; ::
*[ci1; ci2; €3+ + * Cin,] Where each cip is a terminating sequential or communicating
command. The periodicity p; of a process C; can be established by letting one
communicating command, say c¢;,, complete its execution at a fixed time after the
completion of its previous execution, all times being relative to some external clock.
Let there be a deadline d; for each execution of process C; and let Si; be the minimum
slack, which the smallest difference between the time of completion of any execution
of Cj, and the deadline. For the program to meet its real-time deadlines, ie for
some implementation to be ‘feasible’, the minimum slack for each process must be
positive for the maximally parallel execution.

Let the m processors be identical and assume that they have an execution speed
such that the minimum slack for at least one process is zero. This gives the minimum
processor speed for the maximally parallel execution to be feasible. Let S be the
subset of processes with non-zero slack times; if S = ¢ the implementation is optimal
(but note that in general the problem of finding such an implementation is NP-hard).
The more interesting case is when S # ¢; each C; in S has some slack time and it

14

is possible to consider limited processor executions of C, ie executions of C in which
fewer than m processors are used.

For simplicity, assume that each process executes only on the processor to which
it is assigned (if this is not the case, a time overhead is incurred each time a process
changes processors, and this must be represented by adding a ‘switch’ command to
the process). Then a limited processor execution of C is one in which it is executed
on T processors, r < m, so that each of m — r processes shares a processor with one
or more other processes. For example, if » =m — 1, the following problem must be
solved if the m — 1 limited processor execution is to be feasible:

e to choose two of the m processes such that their interleaved execution on one
processor remains feasible.

An interleaved execution of processes c; and c; can be represented by a behaviour
in which the primitive commands of ¢; and c; are executed in some sequential order
so that the partial order of their observations in 3(C) is preserved. In general, for
any positive integer k, it is possible to find the subset 8x(C) of 8(C) which contains
all behaviours of C executed on & processors [7]. If m is the degree of parallelism of
C, then Vk > m : Bi(C) = Bm(C). I k < m, then B, (C) gives all behaviours of C
with interleaving. For parallel composition of C] Ci1,...,Cn, we obtain 3 (C) by
combining behaviours from the sets Bx,(C;), for ¢ € [1,n], such that

kitka+othn = m

where m is the degree of parallelism of C. This condition is required so that no
processor can remain unused if a commmand needs it. For each syntactic primitive
command C, the degree of parallelism is unity, and consequently, only £81(C) suffices
as the limited processor semantics of C.

Let ﬁ”(C —1) be the set of all behaviours of the parallel partition of C, ie of
the processes c¢; - - - ¢,, for which any two processes have interleaved execution. The
problem is then to choose the set of all behaviours in 3j(Cm-1) for which the exe-
cution of all the processes remains feasible. If this set is empty, there is no feasible
m — 1 limited processor execution of C. In general, we must consider the set of all
behaviours in 8)(C,) for which process executions are feasible.

For the general case, even given the behaviours of all the processes, finding a fea-
sible interleaving of a subset of the processes is an NP-complete problem (sequencing
within intervals [5]) as would be the ‘optimal’ problem of finding the smallest num-
ber r of processors for which a feasible interleaving is possible. Moreover, finding
all possible behaviours for a program is an exponential problem even if the times
for each primitive command are known a priori.

Another way of approaching the problem is to consider the speed of execution
of the (identical) processors. If Sp is the minimum speed, in some suitable units, of
the processors for which the maximally parallel implementation with m processors
is feasible, then feasible solutions can be found for processors of speed Sp X k, where
k is a positive integer, provided some &k processes are interleaved on each processor.
In fact, it is easily shown that any k processes can be interleaved for a feasible m/k

15

limited processor implementation, and the difficult problem of process allocation is
avoided. Sp is related to the longest execution path of the processes in a program:
finding such a path is in general of exponential complexity but simplifying program
structure, eg by considering only deterministic programs or programs with simple
communication mechanisms, can reduce the effective cost of the computation.

It is easier to take scheduling decisions based on the syntactic units of a program
(eg, its processes) than on non-syntactic units as the latter have no fixed precedence
relation with program structure. But it would be possible for, say, a compiler to
divide the instruction space of a program into units of some chosen size, or for the
run-time system to do the same for the data space. Neither of these possibilities
is an attractive means of executing a large program in a small amount of memory:
compromises adopted in previous systems include the segmentation schemes used
in Multics (3] and some Burroughs systems [14], where a new syntactic boundary
(the segment) was devised to provide a higher-level unit of memory allocation than
either the syntactic unit of a program variable or the non-syntactic unit of the page.
In terms of our semantics, non-syntactic units would need to be delimited by special
combinators and then the model would be as applicable as for syntactic combinators.

7 Conclusions

A real-time system has to execute its actions in some relation to processes of the
external world and it has to do so with a limited set of resources. It is the real
limitations of these resources that make the essential difference between real-time
systems and other systems, not merely the introduction of time. The semantics
described here show how it is possible to model the execution of a program in
terms of different combinators, under a regime of limited resources, and it seems
clear that any semantics for real-time systems will need to take resource limitations
into account. Given such a semantics, it is possible to consider how other real-
time techniques, such as priority-based scheduling, can be modelled but that would
require a separate presentation.

References

(1] L.A. Belady, R.A. Nelson, G.S. Schedler, “ An Anomaly in Space-time Char-
acteristics of Certain Programs Running in a Paging Machine”, Comm. ACM,
12, 6, 1969, pp349-353.

2] G. Berry, L. Cosserat, “The ESTEREL Synchronous Programming Language
and its Mathematical Semantics”, LNCS 197, Springer-Verlag, 1985, pp389-449.

(3] J.B. Dennis, “Segmentation and the Design of Multiprogrammed Computer
Systems”, J. ACM, 12, 4, 1965, pp589-602.

(4] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
19786.

16

[5] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the The-
ory of NP-Completeness, W.H. Freeman, 1979.

(6] R. Gerth, A. Boucher, “A Timed Failures Model for Extended Communicating
Processes”, Tech. Rep. TR 4-4(1), Dept. of Mathematics and Computer Science,
Eindhoven University of Technology, 1987. .

[7] A. Goswami and M. Joseph, “A Semantic Model for the Specification of Real-
Time Processes”, Res. Rep. 121, Dept of Computer Science, Univ of Warwick,
Coventry, 1988.

(8] J. Hooman, “A Compositional Proof Theory for Real-Time Distributed Message
Passing”, Tech. Rep., Dept. of Mathematics and Computing Science, Eindhoven
Univ of Technology, Eindhoven, 1987.

[9] R. Koymans, W.-P. de Roever, “Examples of a Real-time Temporal Logic Spec-
ification”, LNCS 207, Springer-Verlag, 1985, pp232-252.

(10] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem”, Comm. ACM, 21, 7, 1978, pp558-565.

[11] L. Lee, V. Gehlot, “Language Constructs for Distributed Real-time Program-
ming”, Proc. IEEE RTS Symposium, 1985, pp57-66.

[12] A.K. Mok, Fundamental Design Problems of Distributed Systems for the Hard
Real-time Environment, Ph.D. Thesis, M.I.T., 1983.

[13] A.K. Mok, “SARTOR - a Design Environment for Real-time Systems”, Proc.
COMPSAC 85, 1985, pp174-181.

[14] E.I. Organick, Computer Systems Organization: The B5700/B6700 Series,
Academic Press, New York, 1973.

[15] G.M. Reed and A.W. Roscoe, “A Timed Model for Communicating Sequential
Processes”, LNCS 226, Springer-Verlag, 1986.

[16] J.A. Stankovic, A.K. Ramamritham, S. Cheng, “Evaluation of a Flexible Task
Scheduling Algorithm for Distributed Hard Real-time Systems”, IEEE Trans.
Comp., 34, 12, 1985, pp1130-1143.

17

3

