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IMAGE DATA COMPRESSION

M Todd, R Wilson

(RR128)

This report describes compression of the bandwidth required to represent digital images
using a hierarchical anisotropic predictive coder. The basic coder algorithm is recursive
binary nesting, which involves a recursive segmentation of the image into edge sharing
quadrants. Each recursive segmentation quarters the spatial area of the image sections being
considered and involves the predictive coding of the corner points of the new sections. The
segmentation of a section can be halted at any level, and the remaining pixels within the
section determined by an interpolation from the corner points. Because of the anisotropic
nature of images and the importance of oriented lines and edges in visual physiology, an
oriented interpolation is introduced at smaller spatial areas in those sections where a single
oriented line or edge feature exists. Four quadrature filters are used to estimate the strength
and orientation of single local line or edge features for each pixel in the image. A measure of
consistent orientation is used within a section to determine whether it contains a single
oriented feature, The quantised prediction errors and quantised section orientations are
coded using arithmetic entropy coding, with a dynamic estimation of the probability
distribution for each data stream. The results obtained compare favourably with those
reported elsewhere. In particular, at low bit rates the reconstructed images generally have a
'painted’ look to them.
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Image Data Compression s

Introduction

In its raw form digital image data usually consists of a 2-dimensional rectangular array of N by M
picture elements called pixels. Each pixel is a data sample representing the intensity or lumi-
nance and for colour images also the colour or chrominance of the image at the point in the
image defined by the co-ordinates {x,y} of the pixel. These images may be obtained from the
real world, via TV/video cameras and digitisation equipment, they may be medical images pro-
duced by X-ray or NMR equipment, or computer produced graphics images.

The quality of these digital images will depend on the number of pixels used to represent them
and the amount of information stored for each pixel. For monochrome images with approxi-
mately equivalent quality to TV transmissions an array of around 512 by 512 pixels is required
with 8-bits of information for each pixel ie. 256 different gray-levels. Thus
512x512x8 = 2,097,152 bits are required to represent a single mono-chrome image. Video pic-
tures require around 25 frames per second i.e. 52 million bits per second. The number of binary
bits of information required to represent the image defines the bandwidth of the image. The total
number of bits required by the image divided by the total number of pixels in the image is known
as the bit rate (in bits per pixel) for the image, and is the most common way of defining its
bandwidth.

Image data compression is the art of reducing the number of bits required to represent a digital
image whilst still retaining the necessary quality or fidelity of the hﬁége. This fidelity may vary
from being an exact representation of the original to a caricature depending on the application.
For medical images it may not be acceptable to lose a single nuance of information from the ori-
ginal, whereas for video telephones it may only be necessary that the visual perception of the
image remains roughly the same (i.e. the person at the other end of the phone can be recognized).

Data compression is possible because raw image data contains a large amount of redundancy.
The redundancy comes from the fact that most images have a considerable degree of structure,
and algorithms can be developed to use this structure to represent the image in a more compact
form. There are two categories for techniques which reduce redundancy, the first being those
which retain an exact representation of the original image by eliminating as much of the statisti-
cal redundancy as possible. This is known as noiseless coding, and restricts the amount of
compression that can be achieved. The second permit errors between the compressed image and
the original, which allows for a higher degree of compression, but which may introduce distor-
tions into the image. By considering some of the findings about how the human visual system
works the perceived distortions produced by these errors can be reduced. Thus a certain degree of
distortion will be allowed between the coded image and the original, and there will be a trade-off
between the compression factor that can be achieved and the degree of distortion of the image.
The maximum acceptable distortion of the image will depend on the application of the coding
scheme.

The coder algorithm takes the raw image data as input, and produces coded data streams for
transmission or storage. Since the only input to the decoder algorithm will be these data streams,
they must contain all the information necessary to rebuild the image, including any image
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Image Data Compression -4-

dependent control information used by the algorithm.
There are two main categories of coders/decoders.

(1) Predictive
These algorithms attempt to predict the pixel values from the pixels which have already
been coded, and then code the differences between the pixel and its predicted value. Thus
they only code new information, rather than information already known from the previously
coded pixels. The most common form is DPCM.

(2) Transform
These algorithms [10],[11],[12] involve transforming the pixel data into a different domain
to the original spatial domain. The aim is to find a domain which decorrelates the data.
Each domain will be characterized by a set of orthogonal basis functions for the domain.
The transforms to these domains are usually done first, then a coding algorithm is applied to
the data in the new domain. At the decoder, the decoding algorithm is performed, then the
inverse transform is performed. ey

The work described in this report is concemed with improving an existing algorithm recursive
binary nesting (RBN) developed at the British Telecom Research Labs (BTRL). Although RBN
is essentially a predictive system, it is spatially non-causal and can be considered therefore as
representing an intermediate form of coder between traditional predictive and transform systems
(see also [18],[19]). '
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1. Section 1 — Recursive Binary Nesting

1.1. Introduction

The recursive binary nesting algorithm was developed by BTRL[4] as a method of compressing
single frame images for transmission. The algorithm attempts to take account of the structure in
an image, and to code areas with a large degree of activity by using a high density of pixels and
areas with little activity by using a lower density of pixels. Activity refers to rapid and varying
changes in the image characteristics from pixel to pixel, which makes prediction difficult. Start-
ing with the entire image, the algorithm recursively segments the image into smaller sections, and
attempts to represent each section with a minimum amount of information. If the representation
is not sufficiently good, then that section is segmented further. The advantage of this method is
that it provides a simple and efficient method of having variable resolution within the image.
Although the basic algorithm for RBN is very simple, in order to achieve the highest compression
factors a number of more complicated (and computationally more expensive) techniques must be
used.

1.2. Algorithm

The general algorithm as shown in fig 1.1 involves some form of prediction which attempts to
predict the value of each pixel in a section of the image from the information known about that
section. The predicted values are then compared to the real values for the pixels and a decision is
made on the quality of the predictions. If the quality is sufficiently then no further information is
sent about that section. If it is insufficient then the section is segmented into four new sections
and extra information is extracted for each section. Each new section is considered in turn, with
the extra information used to produce a better prediction for the pixels within that section. The
algorithm continues recursively down each section until the quality of the whole image is accept-
able.

If the segmentation process is restricted to splitting the section into four equal sized rectangular
quadrants, then the information required to represent each section can be restricted to its four
corner pixels, and the truncation of the algorithm can be coded by a single bit for each section
processed, which codes the decision whether to segment it further or not. The pixels within a sec-
tion are predicted by a linear interpolation from the four corner points.

A simple splitting criterion such as a maximum error for any pixel can then be used to determine
whether the section will be segmented further. Fig 1.2 shows that if it is, then five new pixels are
coded in order to provide the corner points to the new sections. However because neighbouring
sections are edge sharing some of these five pixels (those on the old section boundaries) may
already have been coded by the segmentation of adjacent sections, and need not be coded again.

A new pixel is coded by taking the prediction error from the interpolation, quantising this error
into a set number of quantisation buckets, and entropy coding the result. The entropy coding is
described in section 4, and involves a dynamic estimation of the probability distribution of the
quantisation buckets.
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1.3. Splitting Criteria

The decision whether to segment a section further or not depends on the quality of the interpola-
tion from the corner points, and the acceptable error in the final image, so a set of criteria must be
devised to determine this decision. Generally, the smaller the spatial area of the section being
considered, the larger the acceptable error is, and any criteria should take this into account.

Maximum Error

If the error for any pixel is greater than a particular threshold then the section must be split. The
threshold varies with the size of the section being predicted, since errors in smaller sections are
less visible. The maximum error criterion was found to be a good method of preventing quality
deteriorating below a given level. However it was inefficient in that it causes many sections to be
split which are adequately represented, except for an isolated pixel. This criterion performs very
badly (in terms of compression) if the image has noise added to it, since a single pixel which is
altered by noise can cause the local area to be split down to the lowest level, with a large number
of additional and unnecessary comer points being passed, simply in order to represent the "noise"
better.

In [4] a method of clustering local errors is used to prevent isolated errors from forcing a split.

Mean Squared Error

The mean squared error for a section of the image of size n by m is calculated from the equation:-
1 n—=1 m-1

e = e ¥ 3, )

(n—Dx(m-1) ;3 ;5

Where e(i,j) is the error for pixel {i,j}. This criterion is more robust to noise, but is an unreli-
able measure of quality since it takes no account of the distribution of the errors within the sec-
tion. Errors which are aligned in some way have a far more noticeable effect than errors which
are evenly distributed.

1.4. Distortions e

Blocking Effects

The nature of the algorithm gives rise to blocking, where distinct blocks can be seen in the image.

Blocking can be caused by the interpolation scheme used to reconstruct the image when different
sized sections are next to each other (fig 1.3). Since a neighbouring section has been split into
smaller sections, there are now extra pixels available on the edges of the current block. The
edges now have a difference in sampling rate which causes "T-shaped" block effects. In order to
eliminate these features the interpolation scheme must take into account any extra pixels on the
edges of a block being reconstructed. This can be done by waiting until all the information about
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the image is sent before attempting to interpolate the section, and using the pixels on the edges of
the section as well as the four corner points to interpolate the image.

They are also caused by the fact that the sections of the image are all rectangular, and a simple
interpolation scheme to reconstruct the image gives rise to gradient discontinuities at the boun-
daries of the sections. These occur where there is a sharp change of gradient in the image (but
not a discontinuity in the actual pixel values), which is picked up and emphasised in the human
visual cortex [14]. At low bit rates lines and edges become jagged as the splitting criteria allow
truncation over larger areas. This effect comes from using the cartesian axis as the directions for
the interpolation.

Breaking lines

This effect is similar to the blocking effect, but is produced when a thin line crosses several sec-
tion boundaries. If the line is not quite distinct enough to avoid the problem, then some of the
sections will be split further than others, and the reconstruction will section up the line, blurring
over some parts of it but not others. Again the effect is small but very visible. It splits what was
a distinct structure emphasised by the human visual cortex [14] into a less structured feature
which does not trigger the same response in the cortex, and so a distinct distortion is perceived.

The Case for Orientation

The two distortions mentioned are caused by the structure of the coder being aligned with the
cartesian axis, whereas the actual image is anisotropic. Since results from visual physiology sug-
gest that the visual cortex contains mechanisms for detecting oriented lines and edges any errors
which break these features cause an amplified effect on the perception on the image. In [1] it is
shown that errors in the vicinity of such features have an effect which depends on there alignment
with the orientation of the feature. Maximum distortion occurs when the error is aligned at 90
degrees to the feature. It would therefore be better to align the coder structure locally to the
image.

In order to do this a way of segmenting the image by curved boundaries and performing curved
interpolation is needed. One possibility would be to warp the axis of the image in such a way as
to align the local axes of the image with the features of the image. This was attempted but never
successfully implemented, the problems of discontinuities and the overhead of the feature orien-
tation information was not solved. The possibility of using tensor theory to achieve a solution
might be considered. A simpler solution is to keep the cartesian structure of the coder, but to use
an oriented interpolation in sections of the image containing single features. This was success-
fully implemented.
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2. Section 2 — The Use Of Local Orientation Within The RBN Algorithm

2.1. Introduction

The purpose of the orientation filters is to produce a description of the visually important features
in the image. Features are considered to be distinct lines or edges, or areas of texture where the
individual features are not distinct, but are part of a pattern of features. The orientation filters
used in the feature detector are those described by Knutsson, Wilson and Granlund in [1],[2], and
are designed to produce a local estimate of the strength and orientation of lines and edges in an
image. They also produce an estimate of the strength of non-oriented features such as textures.
The filters are described in more detail in [3]. This estimate, when suitably quantised, can be
passed to the coder and used to produce an interpolation, within the general RBN framework,
which is adaptive to local block orientation for any block satisfying a consistent orientation cri-
terion (fig 2.1).

2.2. Double Angle

If a vector is used to represent the strength and orientation of line and edge features within an
image, then there is a problem with the fact that the features in the image have an orientation
which only has a range of &, whereas the vector has a range of 2 xn. The vectors could be forced
into the correct range, but this leaves difficulties in any mathematical operations on the the vec-
tors. If two equal strength vectors at x radians and x-+n—8 radians (where 8 is small) are averaged
the result is a small vector at x+m/2-8/2 radians. However the two features represented by these
vectors have almost identical orientations, so this vector representation is not a useful way of pro-
cessing the orientations. The solution used in [3] is to have a vector whose angle is twice the
orientation of the feature. Thus two vectors which differ in angle by = represent two features
with orientations at right angles to each other.

2.3. Filter Definitions

In order to detect both lines and edges an analytical filter pair (quadrature filter pair) is required
(fig 2.2). This is a pair of filters which add together to give zero over half of the frequency
domain. This gives them the same response to both sine and cosine functions which means they
respond to both lines and edges. The equations of these filters in the spatial-frequency domain
are given in polar co-ordinate form:-

H,(p,8) = j sgn(cosB) exp—- iﬂ'izglln2 2 || cos?
In“B L Pc

H,(p,0) = exp—[ %lnz[—ﬁh cos?8

The choice of the functions H,(p,6) and H,(p.0) is constrained by the need to (i) provide an
unbiased interpolation of angles other than those of the filters, giving rise to the trigonometric
angular functions and (ii) to provide a reasonable match to the radial spectral content of typical
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images[3]. These are oriented line/edge detectors whose output will be a scalar quantity
representing the amount of local energy in the orientation of the positive x-axis. In order to get a
filter at an arbitrary orientation a rotation of the filter pair is introduced.

HY(p.0) = H,(p,6-6;) L

Hf(p.6) = Hy(p,6-0y)

The filter pair H* and Hf give an output which is a scalar quantity representing the amount of
local energy in the orientation defined by 6,. In order to get a per pixel vector of the energy, the
outputs from several differently oriented filter pairs will be combined to estimate the orientation
of the energy. Four filter pairs are used[3], each one being offset from the previous one by 45
degrees giving a table for 6,:-

k| 6
1 0
2 | 45
3 | 90
4 | 135

The outputs of these four filter pairs are combined into a vector which represents the oriented
local energy. If the spatial domain filters are Af and Af, and the image data is g (x,y), then two
quantities can be defined:-

se(y) = hi(xy)*g(x.y)

c(xy) = ki y)*g(x.y)

These are the outputs from the four filter pairs. Now define:-

Ep(x.y) = \silx.y) +cix.y)
Then E,(x,y) is a scalar quantity which represents the magnitude of the energy in the orientation

6,. The orientation vector a(x.y) for each pixel is defined by:-

o, (x.y) = Blx.y)xcos(2E(x,y)) = Ea(x,y) — Eslx.y)

o, (x,y) = Blx,y)xsin(2(x,y)) = E(x.y) — Estxsy)

o, (x,y)
o, (x,y)

a(x,y) = [
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Yx.y) = }E,Ek(x.y)

Where B(x.y) is the magnitude of the orientation vector and &(x,y) is the angle of orientation.
¥(x,y) is a measure of the total local activity, which includes both oriented and non-oriented
activity. Note that the equations give E(x,y) in the range 0 to = since the cos and sin equations
have double angles. This is because the feature angle can only be specified in this range, there
being no definable difference between a feature oriented at n/2 and one at 3w2. The X and Y
components of the orientation vector with the feature angle rather than the double angle can be
calculated from:-

X-component = B(x,y) cos(€(x.y))

Y-component = B(x,y) sin(E(x,y))

2.4. Implementation

The feature detector is implemented as a filtering operation, and its result is a per pixel measure
of the activity. The filtering operation can be done in either the spatial domain by a convolution
operation, or the spatial-frequency domain by a simple per pixel multiplication. The determining
feature for the method to be used is the speed of computation. For the convolution in the spatial
domain a filter of size n by m, must be designed. If the image is of size N by M pixels then the
computation in the convolution operation is of order nxm>¥NxM multiplications (the associated
additions, comparisons and loop indexing are ignored here as they are insignificant compared
with the multiplications). For the spatial-frequency domain method the major computational bur-
den is the transform from the spatial domain to the spatial-frequency domain and back. This is of
the order log,(X )xNxM, where X is the maximum of N and M. From this consideration, the

spatial-frequency domain is faster if log,(X )<nxm.

For images of 5122 or 256 pixels, log,(X) is 9 and 8 respectively. The size of the spatial filter that
would be required is at lest 8 by 8, so that the spatial-frequency domain is a factor of approxi-
mately 64/9 =8 faster than the spatial domain. However the spatial convolution method is very
adaptable to parallel processing techniques, and in the work of Knutsson et al [1],[2],[3] the spa-
tial domain was used on the available parallel processing GOP processor. In this work, a SUN-
3/160 with a 68881 floating point co-processor was used, so the spatial-frequency domain was
chosen.

The filtering operation is performed in the Fourier domain, so the image data g(x,y) is first
transformed using the fast Fourier transform, which is a fast implementation of the Fourier
transform equation, to give G (x,v), which is a complex variable. Then the filtering operation is
performed for each of the four filters (k=1..4), to give four complex filtered images FEuv).

Fiuw) = Guy) X (Hiu,v) + Hi(u,v))
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The four filtered images F*(u,v) are then transformed back into the spatial domain using the
inverse fast Fourier transform, to give f*(x,y), which are still complex images. Note that this
required four inverse transforms, one for each image, and therefore requires considerable compu-
tational time. The complex magnitudes of these images are then taken, to give four scalar images

Ep(x.y).

E (x.y) = VRe[f5x. ) + Um[fi(x.,y)])°

These are the E, (x,y) given in the theory in section 2.3, from which the parameters can be calcu-
lated. Fig 2.3 shows the general scheme of the implementation, and fig 2.4 to fig 2.7 show the
envelopes of the four filters.

2.5. Oriented Interpolation

The simple linear operation employed in this scheme operates by calculating the intersection of a
vector in the direction of the orientation of the section from the interior pixel being coded to the
edge boundaries. At these intersections a value is obtained by linear interpolation from the two
nearest pixels for the value at the point of intersection. Each interior pixel has two boundary
intersections, and a linear interpolation from these two gives the predicted value for the pixel. In
order to be a reasonable prediction the orientation of the features within a block must be con-
sistent. This simple anisotropic interpolator will not work if a given block contains two oriented
features at different angles.

2.6. Local Consistency

Consider a rectangular section of the image of size nx m pixels at a particular stage of the RBN
splitting algorithm (fig 2.8). Each pixel {i,j} in the section has an estimate for magnitude and
orientation of any local line or edge features in the form of the vector a(i,j). Where the magni-
tude of «(i,j) represents the strength of the feature and the angle of a(i,j) is twice the orientation
of the feature. An average value for the orientation vector o of the section can be determined
from the vector summation of a(i,j) within the section.

i« 1 a=1 m=1 .
“T ek 5 560D

In order to determine if the section can be fepresanted by an oriented interpolation the con-
sistency of the local orientation within the section must be determined. One measure of con-
sistency is to compare the magnitude of the average vector with the average magnitude of the
individual vectors. The average magnitude of the vectors is given by

1 n=1 m-1

e loi,j)!
B= Goxm D 2 ;E, /)
The ratio of the two gives a coefficient ¢, which lies between 0 and 1, and which is a measure of
the consistency of the individual orientations weighted by their magnitudes.

lel

cC =

=
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The more consistent the dominant vectors (i.e. those with relatively large magnitudes) are, the
closer the value of ¢ will be to 1, and a threshold can be determined to provide a decision on the
consistency of orientation , and therefore the coding strategy for the section. Note that because of
the double angle representation, vectors which cancel each other out, i.e. have equal magnitude
but with 180 degree difference in angle are equivalent to equal strength features at right angles to
each other.

In addition, B gives a measure of the total strength of the features within the section, which can be
used to determine if there are any significant features within the section. If there are no strong
features then the average orientation of any weak features (even if it is not very consistent) can be
used to interpolate the section rather than aligning the interpolation along the cartesian axis. This
gives an area which is close to a feature but does not include it, an "orientation" which tends to be
aligned with the feature and which can give the image a "painted” look at low bit rates.

The value of & for each section is quantised to a given number of different orientations. The
quantised value can then be entropy coded.

2.7. Block Edges

Once a section satisfies the criteria for consistent orientation, it is interpolated along the direction
defined by the average orientation vector o. However, the interpolation scheme requires all the
pixels on the section boundaries to be known and so these pixels must be coded first. They are
coded with a 1-dimensional RBN algorithm along each section edge. Since adjacent sections
share edges, and these edges need only be coded once, approximately half the pixels will already
have been coded. Even so, this is a major cost (in terms in bit rate) for the overall algorithm.

An altemnative strategy for coding the edges of the section is to predict the edge pixels from any
pixels already coded on the edge in the direction of the orientation vector (fig 2.9). This strategy
has a problem in that for large areas of the image which have adjacent sections with acceptable
orientation, any quantisation error in an edge at one end of the area will be used in the prediction
right across the area, leading to a spreading of the error across the whole area. These linear errors
are aligned with the image orientation, but are distinct from the actual image, and are a substan-
tial distortion. In particular, at low bit rates they make the image look at if it has been badly
painted with a large brush.

2.8. Interpolation

Once all the edge pixels of a section have been coded, the oriented interpolation of the interior
pixels can be performed. The interpolation for each pixel involves finding the intersection
between the orientation from that pixel and two of the section edges (fig 2.10). The two edge pix-
els nearest to the intercept are used to give a linear interpolation at the point of intercept (which
will generally not fall exactly at a pixel co-ordinate). The two values at the points of intercept are
then linearly interpolated to give the value at the pixel co-ordinate being coded.
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3. Section 3 — Entropy Coding

3.1. Introduction

The function of the entropy coder within the overall system is to perform a noiseless coding on
the data produced by the general RBN algorithm. The coding performs the elimination of the sta-
tistical redundancy in the data.

A data stream consists of a sequence of discrete data values. If each possible data value is
assigned a unique symbol i, then the set of all possible symbols {i} is the alphabet for the data
stream. For a data stream with an alphabet of N symbols, a simple binary code can be devised for
each symbol with [ log,(N)| bits per symbol. @ e

Each symbol in the alphabet will have a particular probability P (i) of occurring, and set of proba-
bilities for all the symbols {P (i)} is the probability distribution for the alphabet. If the set {P (i)}
is non-uniform then a compression over the simple binary code can be achieved by entropy cod-
ing the symbols. This is achieved by using more bits for the least probable symbols and fewer
bits for the more probable symbols. The optimum number of bits for a symbol i with probability
P (i) is given by its entropy, which is defined as —log,(P (i)].

A codeword is built up for the data stream by combining the codes for the symbols that occur in
the stream. For Huffman coding this simply involves devising unique binary codes for each sym-
bol with the number of bits in the code for a symbol i determined by log,[P (i)]. The codes for the
symbols which occur in the data stream are then concatenated in the order in which they occur
into a single codeword. For arithmetic coding the codeword is built up by combining the codes
for each symbol into the codeword using an arithmetic operation.

In the building or decoding of the codeword the entire codeword may have to be stored until the
last symbol in the data steam has been dealt with. It is more efficient if only the end of the code-
word must be stored, so that the codeword only needs to be stored to a finite precision and the
decoding can be started before the codeword is complete. For a concatenation coder such as a
Huffman coder this is clearly possible. However, for arithmetic coding, where the codeword is
built up by an arithmetic combination of all the symbols in the data stream, there is a problem
with the precision (in bits) to which the codeword must be held. This is the infinite precision
problem, since the precision required is undefinable if the number of symbols in the data stream
is not known. A problem related to the infinite precision problem is the carry-over problem,
where the codeword may contain an arbitrarily long sequence of 1’s to which an addition may
cause a carry through the length of the sequence. In order to do this the codeword would have to
be held to the length of the maximum possible such sequence, which for an unknown number of
symbols is undefined. A further problem is the increasing precision problem, which occurs when
two finite precision probabilities are multiplied together. The result will generally require more
bits precision than either of the original probabilities, and since arithmetic coding involves such a
calculation for each event, the precision required will be constantly increasing.
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Entropy Of Sequences

The entropy for an symbol i with a probability P [i] is given by,
entropy (i) = —loga[P (i)]

The optimal number of bits required for a binary codeword to represent such a symbol is equal to
its entropy. In addition the codeword must be unique to that symbol, such that given the code-
word and the set {P (i)} the symbol i can be uniquely determined. Since only an integer number
of bits can be used in any practical codeword, the entropy for the symbol must be approximated
by an integer, resulting in a loss of optimality. Huffman coding is a well known method of devis-
ing such a set of unique codewords, which are the best approximation possible given the integer
constraint. However under certain conditions, the deviation from the optimal can be quite large.

Example

symbol || number of occurrences | P(i) | logy[P(i)] | Huffmancodes | nrof bits N(i)
a 9000 0.9 0.152 0 1
b 500 0.05 4.323 10 2
c 500 0.05 4,323 | 2

Entropy perevent= ¥ P (i)xlog,[P (i)] = 0.9*0.152+0.05* 4.323+0.05* 4.323 = 0.5691

For the Huffman codes, the average number of bits per event is given by,

Y N (i) x P (i) =0.9* 1+0.05* 2+0.05*2 = 1.1000
The entropy for a sequence of two events (i,, i,) is given by,

entropy (i1, i) = —10gy[P (i, ip)]

Where P (iy,iy) = P(i) X P(i,liy)
and, P (i,1i,) is the conditional probability of i, being the second event given that {; was the first.

If the events are independent then the equation reduces to,
P(inip = PIE)XP3)

If there are N possible symbols for each event, then there are N possible combinations of two
events in sequence. The probabilities P (i, ;) can be calculated for each sequence, and a set of
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integer length codewords devised using the huffman coding method to represent each sequence.
These codes lead to an average number of bits per event which is closer to the theoretic entropy
than the single event codes, since the probabilities P (i,, i;) are smaller than either P (i;) or P (i),
the approximation of —log,[P (i,, i)] to an integer contains a smaller percentage error. In addition
the single event codes concatenate this percentage error for two events, whereas the double event
codes have only a single percentage error for each pair of events.

Example (assuming events are independent)

symbol PUDXPip=P() log,(P(i)] | Huffman codes | N(j)
aa 09*0.9=0.81 0.304 0 1
ab 0.9 *0.05 =0.045 4.475 1100 E
ac 0.9 *0.05 =0.045 4.475 1101 4
ba 0.05*0.9=0.045 4.475 111 3
bb 0.05 * 0.05 = 0.0025 8.646 10010 S
be 0.05 * 0.05 = 0.0025 8.646 10011 5
ca 0.05 * 0.9=0.045 4.475 101 3
cb 0.05 * 0.05 = 0.0025 8.646 10000 5
cc 0.05*0.05=0.0025 | 8.646 10001 5
The entropy per double event is now,
entropy (i1, i) = 3, P(j) X logy[P (j)] = 1.1382
i
: 1.1382
Therefore the entropy per single event= ——— = 0.5691 as before.
The average number of bits per double event is now,
T NG)XP() = 149
J
Therefore the average number of bits per symbol is now % = 0.745, which is closer to the

entropy.

The entropy for a sequence of n events is,
entropy (i1, * ) = —l0g,[P (i1, - - - .iy)]
Where P(i,---,i,) = PU)XPli)x - - XP@E, 1, i)
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Again if the events are independent this reduces to

P(ih”'7in) =P(il)x XP(I.»\)

If n is the length of the entire sequence of events to be coded, then the integer approximation of
this entropy is the optimal number of bits required to code the sequence. In theory Huffman cod-
ing can be used to derive the unique codeword to represent the sequence. However in practice the
use of the standard Huffman coding algorithm would involve computing the N" possible
P(iy, - ,i,), which for large n is clearly impractical. What is required is an algorithm which
computes a unique codeword of length —log,[P (i,, - . P (i,)] given the sequence (iy, - ,i,) and
(P(iy), P (i,)). Onesimple algorithm is arithmetic coding. It is particularly efficient when the
events are not independent.

3.2. Modeling Arithmetic Coding - The Number Line

The Arithmetic coding process can be viewed as a method of segmenting a section of the real
number line between 0.0 and 1.0 into intervals representing each symbol, the size of each interval
depending on the probability of the symbol. e.g. S s

for the symbols a | b c d
with probabilities (P;) || Y4 | Y2 | & |

To give the line segment shown in fig 3.1.

The starting point and length of each interval are represented by binary fractions, so

interval || start | startinbinary | length | length in binary
a 0 0.0 Ya 0.01
b Ya 0.01 Y 0.1
c Ya 0.11 3 0.001
d % 0.111 3 0.001

To code an event "b", 0.01 is selected for the codeword C with an associated interval size A of
0.1. Any point within the range C to C+A (excluding C+A) can be used to represent the string
"b". Within this interval a unique point can be chosen whose position can be defined with a
number of bits given by given by [ -log,(4)] . Since the length of the interval for symbol i is
equal to the probability P (i) the number of bits required for the symbol i is [ ~log,[P (i)]] i.e. its
entropy. For the case of symbol "b" this point is 0.1. Note that the zero before the decimal place
is not included in the bits needed to define the point.

To code the next symbol, the b-interval is split into new intervals, again based on the probabili-
ties of the symbols, The next line segment is shown in fig 3.2.
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The starting points for each interval are now,

interval start length
ba 0.01 0.001
bb 0.011 0.01
bc 0.101 0.0001
bd 0.1011 | 0.0001

Thus the codeword for "bb" is 0.011 with interval size 0.01.

Again a point can be chosed within this interval which is defined by —log,| of the interval size.
The interval size is P (i1, i5), and so the number of bits required is again the entropy. In the exam-
ple, for string "bb",

“log,(A )= —log,[P (b ,b)]=—log,[P (b) X P (b | b)]=—log,[P (b) X P (b)]=—log,(4s* /2)= —10g,(0.01)=2.

This means a point can be found within the interval 0.011 to 0.101 with 2 bits, which uniquely
represents the string "bb". The point is 0.10.

This process is continued until the all n events have been coded. The interval size A is now equal
to P (i, -~ ,i,), and so —log,(4) is the entropy for the entire sequence. A point can now be chosen
with [ logy(A)] bits which is unique to that sequence. The binary representation of this point is
the final unique codeword for that particular sequence of » events.

To decode the codeword the line is segmented in the same manner as the coder, and the interval
boundaries are compared with the codeword to see which interval it lies in. This interval will
determine which symbol is decoded, and provided the probabilities are the same at the encoder
and decoder, it will be the same symbol that was coded.

The advantage of this method over an extended Huffman coding algorithm is that only the proba-
bility for the entire sequence is being calculated, and the probabilities for all the other possible
sequences are not needed. In addition, the algorithm works just as efficiently for events which
are not independent, provided a separate statistics unit produces the same probabilities for both
the encoder and decoder. For huffman coding of single events, this would require a set of huff-
man tables for each possible probability distribution.

3.3. Algorithmic View Of Model

The segmentation of the number line can be described by a set of equations on two registers,
which will be treated as binary fractions of infinite precision (between 0 and 1). To initialise the
algorithm, the interval size register A is set to 1.0, and the codeword register C is set to 0.0. P (i)
will represent the probability of the symbol i and P, (i) will represent the cumulative probability
for symbol i,

j=i-1

P.G)= 2 P()

j=1
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At each stage a single symbol is coded into the codeword, by splitting up the current interval.
From the diagram of the general number line model (fig 3.3) equations can be derived for the new
values of C and A when an event { is coded:-

C = C+P,(i)*A;
A = A*P(i);

The value P, (i }*A is called the augend, and represents the step along the current segment to the
start of the interval for the symbol being coded. If the {P (i) } are conditional on previous sym-
bols, then to achieve the entropy, {P (i)} must be adjusted at each stage. After all the symbols
have been coded, C will define a unique codeword for the data, and —logy(A) will define the preci-

sion that C must be held to.

To decode the string, the algorithm is initialised with A=1.0 and C equal to the codeword. Then
for each stage, the codeword C is examined to see which of the new intervals it lies in. This is
done by finding the symbol i for which P, ({)*A <C <P (i—1)*A4, giving,

i =0;

while(C <P (i) xA) i++;
decode symbol i;
C = C-P.(i)*A;
A = A*P(i);

Multi-symbol vs Binary Arithmetic Coding

A significant simplification of the algorithm is achieved if the events are restricted to a binary
rather than multi-symbol alphabet[6]. i.e. There are only two possible events at each stage, the
more probable symbol (MPS) and the less probable symbol (LPS), and a probability Q is
assigned to the LPS and 1-Q to the MPS. Any multi-symbol alphabet can be broken down into a
sequence of binary events for each code symbol, so no generality is lost in the binary arithmetic
coder, by using a binary decision tree. A binary tree is devised with the same number of leaf
nodes as there are symbols in the alphabet. The symbols are then assigned to the leaf nodes. The
paths from each node to its two children are assigned the symbols MPS and LPS, and a probabil-
ity is assigned to each path. The path from the root node to the leaf node associated with a sym-
bol determines the binary events used to code it. Note that the probabilities for each of these
binary events can be calculated from the probabilities for the symbols, as shown in fig 3.4. The
table of symbols now has only two elements,

symbol | PG) | P.G)
LPS 0 0
MPS 1-Q 0
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and the coder algorithm is =X
if the event is MPS
C = C+Q*A;
A = A*(1-Q);
else {eventis LPS}
C =C+0;
A = A*Q;
the decoder is
if C20
MPS decoded
C = C-0*A;
A = A*(1-Q);
else
LPS decoded
C =C-0;
A = A*(@Q);

This is the general form of the binary arithmetic coder, with @ determined by a separate statistics
unit, which provides the same value to both the coder and decoder.

Increasing Precision Problem

If the A and Q values are stored to a finite precision, then in general the result of the multiplica-
tion A*Q will require twice this precision. In order to prevent this precision expanding
indefinitely, the answer can be truncated to a fixed precision. In the line model this simply
represents placing the boundary of the LPS/MPS segments in slightly the wrong place. But since
the precision is the same at both encoder and decoder, they will both place the boundary in the
same place, so the model is still valid. This increasing precision solution simply represents an
approximation which reduces the compression slightly.

Finite Precision Problem

As the coding progresses through the string of symbols, A will get smaller and smaller, and only
the last few digits will be active in the calculations. Thus although in theory infinite precision
registers are required, in practice a window onto the last few binary digits is needed. The only
problem with this is when a carry occurs in C ,-and propagates past the edge of the window. This
is called the carry over problem.
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Carry Over - A Buffering Problem

The window on the C-register into which Q is added on a MPS covers the end of the C-register
bit stream and ensures that the bits before it are not required for the processing. However if a
stream of successive 1’s occur in the codeword, then there may be a problem with a carry which
will propagate all the way through the stream. This tends to imply that the buffered bits from the
C-register must be held to an arbitrary precision and compute the entire codeword before sending
it. However two points can be made which clarify the nature of the problem, and lead to an easy
solution[6].

1.  Consider the number line shown in fig 3.5.

No further coding of symbols can cause C to be greater than or equal to C+A. Thus once a carry
propagation occurs at any bit position which represents a value greater than A on the codeword,
to get a second carry at that position a number greater than A would have to be added to the code-
word. This can never occur, so once a carry has occurred at a particular bit position greater than
A, there can never be a second carry at that position. Thus only a single carry must be accounted
for.

2.  In order to start decoding it is not necessarily to have the carry propagate to its natural end.
The value it represents at a particular bit position must however not be lost and it must complete
its propagation by the time the symbol that caused it is decoded. i.e. At each MPS Q*A is added
into the codeword in the encoder, and is looked for at the decoder to indicate the symbol that was
coded. The carry propagation can never change the codeword in such a way as to effect the
decoders decision about whether this is present for any symbol which precedes the symbol which
caused the carry. So the carry need not be propagated until it reaches the first bit in the carry
stream in the decoder. This leads to a solution to the carry-over problem, called bit-stuffing.

Bit Stuffing

The solution to the carry problem is to add an extra zero bit to the code stream after each
sequence of 1’s which could cause a problem. This 0 will absorb any subsequent carry in the
coder and since from the first point there will never be a second carry, thus the problem has been
solved for the encoder.

The decoder must know when a bit was stuffed and so the criterion to stuff a bit is a sequence of
n 1's in a row. When such a sequence occurs, the next bit is assumed to be the stuffed bit, and if
it is a 1, the carry is propagated in the decoder. Since from the second point the carry does not
need to be propagated until the symbol that caused it is being decoded, and when it is propagated
in this scheme it has not yet got to that symbol, the problem has been solved for the decoder.

This process adds an extra bit to the bit rate every time a sequence of » consecutive 1’s appear
out of the coder. Assuming that the {1,0} output is random (if it is not, the output is not fully
compressed), a stuffed bit is expected every 2" bits. In order to deal with bit stuffing in practice,
the output from the Q-coder must be buffered to at least » bits before it is passed to the decoder.
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3.4. Q-coder i

Elimination Of The Multiply

In order to prevent A becoming arbitrarily small it can be scaled up (renormalised) to approxi-
mately 1 whenever it gets too low. Provided C and A are scaled in synchronization, this can be
viewed as a rescaling of the entire line segment, which causes no alteration to the model. This
method was developed at IBM for an application involving DPCM coding of images [8],[9].

The normalisation scheme chosen is a multiplication by 2 whenever the A register falls below
0.75 after coding a symbol, and continuing the multiplication until A is greater then or equal to
0.75. This gives us a value of A which is always in the range 1.5>A4 >0.75 before each symbol is
coded. Since a multiply by 2 is a shift of one bit to the left, a single bit will be shifted out of our
C register each time it is renormalised. These bits will be stored in a buffer, and when the buffer
is full, it will be passed to the decoder together with any bit stuffing. Thus the decoder can start
decoding before the coder has finished coding the entire string.

With A in the range 1.5>A20.75 the approximation A=1 can be made and the equations in the
algorithm simplified by eliminating the multiply, giving for the coder algorithm,

if event=MPS
C =C+0;
A =A-0;
else {event=LPS}
A =0;

and for the decoder,

ifC2Q
MPS decoded
C =C+0Q:
A =A-0;
else
LPS decoded
A=0;

Where A*Q has been approximated to Q and A*(1-Q) to A-Q. A*(1-Q) is approximated to
A—Q rather than 1-Q, since the lengths of the two new segments add up to the length of the pre-
vious one.

Probability Estimation
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One of the advantages of arithmetic coding is its ability to change the probabilities between suc-
cessive symbols without changing the basic algorithm or the complexity of the calculations.
Thus substantial extra compression can be achieved for non-stationary data if the probabilities
can be estimated at each stage. Since the estimated probability (Q,) must be identical for both
the encoder and decoder, the estimating technique must depend on data known to both the
encoder and decoder, and it should estimate the probability for each event, so the estimation pro-
cess must be reasonable fast. One method would be to count the previous symbols and estimate
the probability from these events.

The Q-coder provides a simple solution to estimating Q, which involves the ratio of MPS to LPS
events, and which adjusts its estimate of Q, every time a renormalization occurs[9]. It is based
on having a fixed number N of possible probability values for the LPS event, denoted by ok
Each QF will be represented using a set number b of bits. This means that the minimum probabil-
ity estimate that can be represented is 27%, and the N values will be spread across the range
Q! =05 to QY = 2%, Note that if the probability estimate becomes greater than 0.5, the
definitions of LPS and MPS will be swapped round, so 0.5 is the maximum probability that needs
to be represented.

If a LPS occurs A will be assigned Q,, and since Q, is less than 0.5, it will force a renormaliza-
tion. The estimation process assumes that since the least probable event has occurred, the esti-
mate of 0, is too low and k is decremented by 1, taking the estimate Q, from Q% to Q%' Ifa
MPS occurs A will have Q, subtracted from it. After a sequence of »n successive MPS’s, A will
go below 0.75 and cause a renormalization. The process now assumes that since the more prob-
able event has occurred, the estimate of Q, is too high and # is incremented by 1, taking Q, from
0F to 0**'. Note that at 0¥ a MPS can not increment £ any further, so it is left as it is. However
if a LPS occurs at Q! then the LPS and MPS events must be swapped round (i.e.
{LPS=0,MPS=1} to {LPS=1,MPS=0} ), and k£ remains the same. The value of Q, is therefore
being continuously updated, and it is possible to show that it reaches a dynamic equilibrium at
approximately the correct probability, and will track this probability as it changes. An approxi-
mate proof of this result is given in [9]. ks

This process can be viewed as a finite state machine, with each state representing a particular pro-
bability value Q% Thus a renormalization caused by a LPS will take it to a state with slightly
greater Q,, and a renormalization caused by a MPS will take it to a state with a slightly smaller
Q,. If a LPS occurs in the state with the largest Q, value (which will be just under 0.5) then the
definition of the LPS and MPS are swapped round. The set of values used for Q¥ must be deter-
mined from experience to give a good distribution (so that Q, can be estimated accurately) and a
fast dynamic response to a changing probability distribution. These two factors oppose each
other, and in order to improve the dynamic response for a given granularity of 0, values, a rate
variable could be used to determine how many states are jumped for each renormalization.

Multi-context Q-coder

For every binary event the Q-coder deals with, there must be an estimate Q, of the events proba-
bility. A single Q, could be used for all events the coder deals with, however this will not
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achieve the highest compression rate if the binary events have different probabilities. The events
are split up into different contexts, with each context having a separate estimate for Q,. Clearly
there should be different context for the prediction error and orientation data. Within multi-
symbol events such as the prediction errors where a binary tree is used to convert is to binary
events, each branch of the tree will generally have a different probability and so a separate con-
text should be used for each branch. In addition the data statistics will vary with the recursion
level of the RBN algorithm, so separate contexts can be used for the various levels of recursion.

In the finite state machine representation, this requires a separate machine for each context. In
practice there is a separate pointer into the finite state tables for each context.

3.5. Arithmetic Coding Within RBN

The arithmetic entropy coding scheme is used to compress the data stream from the truncation
addressing, prediction error and orientation information. Each is coded with a different context
scheme.

3.6. Context Schemes

Prediction errors

The probability distribution of the prediction error is generally biased toward zero, and tails of
towards larger errors. The binary decision tree used is shown in (fig 3.6) and is an attempt to
minimise the computation involved in coding it.

Orientation

The data stream for the orientation information consisted of the quantised orientation vectors
rather than any prediction errors, and thus a simple complete binary tree was used as the binary
decision tree (fig 3.7). The number of orientations allowed by the quantisation scheme will deter-
mine the size of the tree.
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4. Results

Photos 6.1 to 6.18 show the results of the work on three common images For the lower bit rates,
the images were pre-filtered using an anisotropic low-pass filter controlled by the quantised aver-
age orientation a for a window surrounding each pixel. For areas with no consistent orientation,
an isotropic low-pass filter is used. No post-filtering is done on the images shown.

The characteristics of the local features in these three images are different, and since the coder is
attempting to account for these features, the performance for the images is different. The "GIRL"
(photo 6.3), which is the least complicated of the three, has large areas where there are either no
substantial features or a single edge feature of a particular orientation. The areas with no substan-
tial features are highly compressible with the simple RBN algorithm, whereas those areas with a
single feature can be compressed with the oriented interpolation. Areas such as the feathers, hair
and eyes contain more detail and require coding to a relatively small block size. The "BOATS"
(photo 6.2) image contains a large number of line features in the masts and ropes which are con-
sistently oriented, but require accurate coding of the section boundaries for an oriented interpola-
tion to be used. The image has some texture in the sand below the boat, and areas of no substan-
tial feature in the sky. The "BARBARA" (photo 6.1) image is the the most difficult to code. It
has large regions of stripes on the trousers and shawl which have- a-high spatial frequency, and
which have folds in the garments leading to abrupt changes in the orientation and frequency of
the features. The oriented interpolation is suitable for coding such areas provided they do not
include one of these folds. In addition, the stripes in the table cloth and the wicker chair contain
two distinct orientations at all but the smallest block sizes. Since the orientation filters can only
detect a single dominant orientation, these areas are particularly difficult to code. Photo 6.4-6.6
show the X and Y components of the feature orientations as defined in section 2.3.

Photos 6.7-6.10 show the results of coding "BARBARA" at various bit rates. At 0.36 bits per
pixel (bpp) (photo 6.8) the stripes on her knee and the lower left comer of the shawl have started
to merge into her arm. This is a failure to detect a feature boundary occurring in an oriented
region. For areas where this boundary has the same orientation as the feature, such as the left
hand edge of the shawl, this is not a problem however when the boundary is at right angles to the
feature the oriented interpolation is no longer valid. An improvement to the coder would be to
distinguish between these two cases. The right hand face of the tablecloth has been reduced from
a cross pattern to a stripe pattern. At 0.23 bpp more of the stripes have merged with the arms, and
the two parts of the tie are starting to merge. The wicker chair has become a single stripe rather
then a cross pattemn, but the most noticeable distortion (because of its significance to the viewer
rather than the absolute error) is the loss of detail in the eyes, which make her appear to be squint-
ing. At 0.16 bpp the most of the stripes are not present and there is some merging between the
regions.

Photos 6.10-6.14 show the results of coding the "BOATS" image at various bit rates. At 0.31 bpp
the texture of the sand has been smoothed out, and it now looks more like water. The ropes have
been blurred slightly and at some of the edges their intensities gradually merge with the back-
ground. There are some breaks in the ropes. At 0.26 bpp the merging and breaking of the ropes
has increased, and there is a large smear at the top of the central mast. At 0.13 bpp most of the
features are smeared, any nearly all the ropes have disappeared, the large smear is still present at
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the top of the mast.

Photos 6.15-6.18 show the results of coding the "GIRL" image at various bit rates. At 0.20 bpp
the mouth is distorted at the right edge, and the whole image looks like it has been "painted"”.
This is a feature of the oriented interpolation of local blocks. Any errors near distinct features are
"painted" out in the same orientation as the feature. At 0.12 bpp the black band on the right of
the picture has some smears in it, and the nose and mouth are slightly distorted. At 0.08 bpp the
whole image is slightly blurred, and features such as the eyes, mouth and nose are smeared.
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5. Discussion of Results

One possibility for improvement is in the coding of the section edges for consistently oriented
sections. The method used ignores the fact that adjacent edges in-a -section, and indeed in its
neighbouring sections will generally contain similar information. e.g. in "barbara" (photo 6.1),
sections in the trousers will all have similar edge information, however each edge will cost a rela-
tively large number of bits, since it has a sinusoidal variation. Thus if the edges are coded with
no reference to each other, the coding of the edges in this area of the image will be costly. One
method which was attempted was to use the known orientation for the block to attempt to predict
the edge from an adjacent edge, however this lead to considerable distortions. An alternative to
coding the edges using a 1-dimensional RBN algorithm is to use a 1-dimensional orthogonal
transform, such as a discrete cosine transform (DCT). This may lead to a better method of relat-
ing the edges to each other.

The images have not been post-filtered, and the pre-filtering used is fairly simplistic. There is
considerable scope for improving the pre- and post-filtering of the images.
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fig 2.4
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fig 2.5
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photo 6.7
BARBARA at 0.65 bpp
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BARBARA at 0.23 bpp
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