
http://wrap.warwick.ac.uk/

Original citation:
Gibbons, A. M. (1988) Dynamic expression evaluation in one of a class of problems
which are efficiently solvable on mesh-connected computers. University of Warwick.
Department of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-131

Permanent WRAP url:
http://wrap.warwick.ac.uk/60827

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60827
mailto:publications@warwick.ac.uk

-Research
report 131

DYNAMIC EXPRESSION EVALUATION

IS ONE OF A CLASS OF PROBLEMS

WHICH ARE EFFICIENTLY SOLVABLE

ON MESH.CONNECTED COMPUTERS

A M Gibbons
(RRl3l)

Ler P bc r recursively desc.ibed and dislriburable problem of size n. We dcscribe I ,:ererri
sralegic apprcach which will often make m O(1n) paraliel time solutron of P possible on a l
dimensionirl mesh connecred compuler with O(n) PEs. Such a solution is time oprimai. It is
likeiv drat the class of such probiems is large and rviii conrain manv !har are non-ri\-ial. We
show tha! such a problem is dynamic expression evaluadon. The melhodology is easil-v
extendcd !o mesh-connected computers of arbitrary dimension to again obtain rime oplimal
soiutions using O[n) orocessors.

Department of Computer Science
Unive6iry of Warwick
Coventry CV4 7AL
I T^i.a,-l Li na'l^h

Seplember 1988

a

Dynamic expression evaluation is one of a class of problems

which are etticiently solvable on mesh-connected computers

A.M. cibbons
Department ot Computer Science,

LJniversity of Warwick, Coventry CV4 7AL, U,K.

Key Words: €fficiBnt paral€l algorilhms, m6sh'connected compurer. dynamic €xpr€ss on svaualof,

lst fankng problem, recognilion of bracket and input driven anguages, divide arcj conqu€r.

S1. Introduction.

Within lhe well'known P-RAM model of parallel compulalion, the class NC deiines lhe ciass cf

effjciently solvable problems (see [3] for example). Using a polynomial n!mber oi processors.

such problems can be solved in polylogarithmic parallel lime. Within the constraints of current

lechnoiogy, it is nol always possibie to attain such time complexities because a lower bound lor

feasibie parallel archilectures (e.9. shared memory SIMD machines such as lhe mesh-connecled

compuler) is naturally O(r), where r is the maximum palh length wilhin lhe architeclure over

whlch messages have to be passed between the co-operating processors. We show in 54 that the

probiem of dynamic expression evaluation belongs to a (probably large) class of problems

(defined in S3) which are efliciently solvable on mesh-connected compulers. Here, an

elliciently solvable prcblem is a problem which is solvabie in O(0 parallel time using Cln)

processors. The mesh-connected computer as a model ior parallel computation is well known

[1,2,6,7,8,10]. Our presentation will be for lwo'dimensionai mesh'connected compulers

(MCC2s), wherc r=O(./n). GeneraLisation lo arbitrary dimersion is slraightforward.

Let P, a probiem of size n, be djstriblted across a l,4CC2. The nodes of a graphical representaljon

ol P \lhe'prablem gaph') arc mapped onlo lhe processing elemenls (PEs) of a l./n-d.in-mesn.

Iniliaily each PE stores at most one node ol the problem graph. Along wilh such a node are

addresses of PEs where nodes adiacenl in the problem graph are stored {the problem graph js

usually of constant-bounded degree). There rnay also be capacily to slore a consianl vollme of

addilional informalion associated wilh a node. Now let P be recursively reducible to m smiar

problems, 1<m<b, each of size ([n/b]+c) where b>2 and c>O are inleger conslants. From the

point of view of delermining lhe time complexity Tin) for P, we generally need to solve a

recurrence relation. The delails of this recurrence, and therefore the explicit form oi T(n), will

depend upon precise details of the stralegy employed within lhis framework. ln 53' lor any

problem such as P, we emphasise certain strategic details lhal will often make an O(1'n) parallel

time implementation possible on a MCC2 wrth O(n) PEs.

3

S2. An introductory exam ple.

As a simple introduclory example we take lhe probiem of evaluating, al x=n. tne general
polynomial p(x) of degree n, where:

p(x) = a0+ a1x + a2x2+... + a^xf

For ease oi presentation we assume here lhal n=2k I for some integer k. We adopt a lamiiiar
mode of evaluation in which p(x) is recursively described as follows:

P(x) = P'(x)+x(n+1)zp'(x)

where p'(x) and p"(x) are similar polynomials of degree 2k-1,1. The following provides an
(equivalent) ilerative evaluation of p(x) at x=h.

I Xen

2 d 4n -1) t2

3 repeat until d=0

beg in
4 tor o<i<d in parallel do a (-2i+x a2i+l
c x(x_

6 d <d-1)/2
end

Consider implemenlation on an N4CC2. We provide each pE oi the n1,'2)ol,'2 mesn wtln one oi lhe

conslants ai and wilh lhe values of n and h. Within the computalion each processor repeated y

recompules tts a, x and d. When d=0 lhe resLtit of the complta|on is found in the regisler

storing ao. Each recohpulalion of x afd of d lakes conslant time. Each recomputalion ol ai

requires lhe values of a2j and a2t+1. These can be acquired from their associated pEs bV

successrve applications al the Randon Access,gead procedure (RAR) oi Nassirni and Sahni 16l_

1vr'e adopt the inpur convenlon thal pEr is associated with the parameter ai). Each appiicatlon of

RAR takes O(nl/2) parallel lime. Srnce the number of repjlitions involveo tn lne repeal
stalement ls O(Tog n), we have described an O(n1/2 log n) implemenlation. We can nowever do
beller than lhis. Notice lhat each iteration of ihe repeat slalement reduces the size, of lhe
problen (thal is, the number of processors ihat need to be active) by a faclor of 1/2. ll wiil be

convenienl lo conkive reduction by a factor of l/4. This is easily done by making each

ireration conrain two assignments oi the kind indicaled in line 4. Now take the pEs to be indexed

accordjng to shulfled row najor order (see for example Nassimi and Sahni [6]) lhen after each

Iterarion in which lhe problem size is reduced by a facror of 1/4, the active processing eremenls

are conslrained to occupy a square of the mesh which is 1/4 the original area. See figure 1. The

aflect of this in lhe ith ileration is to reptace the cost (O(n1/2)) ol applying lhe RAR procedure

hy O1n1/2/2i11. The complexity of the atgorilhm is now O1n1/211+i/2+1/4+.....)) which is

O(n1/21 and which is time,optimal and an improvemenl by a factor ol log n.

i/2xi/2
mesh of PE3

4

E]proceg!ors

E processors

Elproce3!ors

Elprocessors

mrde idle liter 1!t itersiion

mqde idle lfter 2nd iter€tion
m6de idle lfter 3rd ilerotion

m6de idle 6ft€r 4th iterrtion

53. A class ot efticiently solvable

We show here lhat many problems

observing certain stralegic delails, lo

forn lhe class defined here.

Figure l

problems

lhe genefai description gaven to p in S1 are likety, by

efticjentJy solvable on a MCC2. il is lhese prootems tnal

of

oe

The technlque employed in lhe eificient implementation of the algorithm described in 52 reLed

essentially upon shrinking (by a constant factor) the space physicaljy occupied by the problem

during each ireration of the body of a repeat sratement. lf at an arbitrary lime the problem size
ts s, the recurrence relalion for the parallel compulatlon lime, T(s), is given oy:

T (s) =T (s/4)+ O (s 1/2),

T{s)=0.
s>1, i)

As we saw T(n)= O(n1/2). Wilhln our example the compressron of successtvety proouceo

problems inlo smaLler sqlares was made possible by ndexing the processing elements accordjng
lo shuflled row majot otdet. For this problem we contrived lhat compression along with new
problem creation look O(1) time. New problem creation and compression may in generat be

separale processes. In general (for similarly solvable problems in which m=1. b>2, c=Ol we
can perform lhe conpression in O1s1/2) parallel tme ailer new problem crealton Lrsrng the

techniques of 16l. Provided new probtem crealjon also takes O(sl/2) parallel time, as will oilen

be the case, lhen (i) slill holds and we have aigorithms of optimal time compiexity using n pEs.

Now consider the case in which m>1 ('divide and conquer'). Lt is trivial io observe that anv
problem ol size s which ai each level of recursion is djvided into 4 (or less) slmilar problems of

size at most s/4 will satisfy (i) provided thal this divisjon of the problem and the subsequent

assjgnment of each crealed problem lo its own quaner of the pE mesh can be achieved in O(s112)

parallel time. In 52 a specious method was used to concentrale the newly created problem. ln ihe
general case, the problem ot assjgning each of ihe created problems lo iheir own quaner of the

processing mesh can be solved by an applicalion of the connected components algorithm of

Nassimi and Sahni [7]. This is because the connecled componenls of lhe probtem graph

correspond to lhe subproblems. Unlonunately lhis takes O(s1/2 log s) parallel time on a MCC2

for graphs of arbilrary bul fixed maximum degree a. There is an exception (see fl) when a=2,

for then ihe complexity is O1s1/2; and (i) still holds. However in general, lne use of lhis

connected componenls procedure will lead lo a complexlty of least O(s1/2 tog s) which is no

5

improvement over lhe cas€ without ,compression'. lJsing lhe besl known connecled components

algorilhm brings no improvemenl untess A=2 for which case we shonty glve (in a more general

selling) an example. Of course, individuaily, lhere may exisi specious melhods ior effjcient
compression just as lhere was for the exampte of 92.

A modified shuffled rov msjor
i ndexing 3uilEble for b=3

Figure 2

A natural generaisatlon of lhe foregoing wth m>1 (we have dealt with m=1) ls lo replace lhe
factor of 1,'rt n (i) by 1/b where b>2 is a conslanl lnleger. Here, within each tevel of the
recursion. a problem of size s is replaced with {upto) b sirnilar problems in O(s1i2) paratlel

1ime, each probiem ls of sjze at most s/b (without loss of qenerality we can take s=bl for some

integer l). The initial diiiicuny wilh this is how to panition the processing etement mesn

sysremarrcalry so that each recursively created problem occupies a square and such that overail

n PEs are slili sufficieft for an Olsl/21 time computalon. Now no onger daes lhe shulfled raw
major irdex ng based on binary consideralions wilh an allendant recursive division ot the

processing elemeft mesh inlo a 2\2 matrix serve us well. flowever a modilied shut'fled rcw
malat rdextrg sutis our needs. What we require ls an indexlng such lhat lhe square area (of s

PEs) is recursiveLy djvided into a b xb malrix, each sub-square of the mesh occupytng an area

of consecutively indexed s/b2 PEs. Each such sub square may then be occupted by one of the
problems produced afler a double apptica|on of the problem division procedure wilhoul an

overall demand for more PEs. Figure 2 shows lhe indices of the first few processing elements for

such an ndexing wilh b=3.

We now consider the general case thal each probiem oi size s is recursively replaced by at rnost b

similar problerns each of size at most : s/bl+c where b and c are conslant integers, b>2 and e1.
We molivate our constderations by descrjbing a simple but neverthetess architypal exampie

known as the list rcnking ptablem.

Given a lisl of elemenls, the list rankjng problem is to associate with each elemenl ia parameler

L(i) such that L(i) is lhe dislance irom ito rhe head of the tist. lhe standard P-RAM technique

that places the problem ol list ranking in NC is thal ot recursive doubling on lhe list pointers.

Figure 2 shows lhe technique for a list of seven elemenls. The ith elemedt has an associated

pointer P(i) which inilially points to lhe next element of lhe tist. With p(i) we associate L(i),

which is lhe currenl dislance along lhe llsl lrom the elemenl i to lhe elemenl which p(i) points

to. At the outset ol the computation lhe situalion is then as illustrated at lhe lop of iigure 3. Here

0 1 2 9 10 ll l8
5 12 21

6 1 I 15 11
27 29

b

L(i) labels P(i) The same figure then shows the p(i) and L(i) after successrve rterations
wilhin the aigorithm. ln each iteration, fo. all i in parallel and provided each particular p{i)

does not yel poinl 10 the head of the list, lhe processor associaled with element I makes the

__-r....--.__--j.....-- . t _ /\. (Y](y r-_+__l lC

' \-/

4- -,------)^----<
' t-------t1=--I---"--

o ;-=-...----/\,J

Figure 3

assignmenls L(i)eL(i)+L(p(i)) and p(i)ep(p(j)). Atter i iterarions we have rhat p(k),

unless it poinls to the head ol the tist, pornts 2i elemenls along lhe jst kom L Thus afler rtog2nl

iterations all P(i) poinl ro lhe head oj ihe tist. Moreover, R(j)=p{i) for a i. Thus on a p RAl,l

the list ranking problem is easily sotved in O(log n) time with n processors (detaits ot the
rnplemenlation are obviO!s).

lf j is at the head ol the list, after each iteration within lhe algorlthm descrlbed alt the pi)
except P(j) forrn a number of directed paths termirating at j. After each doubling operatjon, the
nurnber ol these palhs is al most dolbled. lr is natural to ulilise this ln a recursrve sorulon ro

the llsl ranklng problem. Each ol the probtems oi size s at one levet of lhe recursion gel divided

inlo al most two problenrs of size al rnosl is/2]+1. To obtain stric y disjoini problems we just

have to copy lhe element al the head of the original list into each newly created list. Nolice also

that the problem graph will have A=2. Here then is a simple example of th€ type of probtem

which has pararnelers b=2 and c=1. As for the problem in 52 we can easily contrive that b=4.

Lel us return to lhe generalised lorm of the problem. At the outset we have a problem of size n.

the tirst level ol recursion each of lhe (up to) b problems have size ([n/bl+c)<(n/b+c+I),

lhe second level of size at mosl n/b2+{c+1)(l+1/b) and so on. In general, at the ilh level

recursion each of the bi problems has size bounded by ps{i):

-- r:r ^,ri., ^. .,sps(r)=n/D'+(c+1)2ii_9 1o ,_1(1/b)r= n/br+k(1,1/br) where k = b(c+1)/(b-1)

oi

(ii)

7

Notice that below a ceriain level of the recursion, this estirnate does nol reduce lhe lintearat)

oroolem si2e. A mrnimum is reached when r'1-,()/bis1 2. al wnich pornl:

i: logb2(n-k) and psm n " ik (ii0

This provides the value of ial which the recu.sion botloms-out and at wnich the residuai
problem is solvable in constant time. Consider now implementation on a [,4CC2. At lhe ith tevei of

recursion, as ior the case with c=0, we store each problem of size ps(i) over lr/bi pEs arranged

ln a sub-square of the mesh. In lhe case that c+0 however, instead of a singie node oi the prob em

g.aph being stored at each PE, we now store up lo k nodes of this graph at each pE. In other words

lhe problem, of size ps(i)< n/bi+k, is stored over nlbi pEs and we nole that it is an easy

technicai problern to store the additional <k nodes evenly over lhese pEs. Now, wilhin each

appllcation of lhe problem division procedure, each pE (in parallel wiih the olher pEs)

processes in sequential fashion the nodes of lhe problem graph thal are stored at thai pE. S nce

there are at most a conslant number of nodes slored at each pE, lhe order of lhe lme complex[y

oi executing the problem division procedure will be the same as if a single node of ihe problem

graph were stored at each PE. Nolice the inconsequential lechnical difticutty that wrthin lhe
process ol sequentiajly handling nodes of the problem graph, care has 10 be taken that the eiiect
is the same as if they had been handled in para lel. This is easily achieved (at the expense ol

Increasrng tne slorage space reqlired at each PE by at nost a constant) by (in eiiect) keeping and

not corruptjng a copy of the problem graph oulpul trom lhe prevous appiicalion of the problem

division process whist conslructing lhe oulp!l from lhe current apoLicalion.

The foregoing paragraph justifies the ctaim thal. using the same number of processors, the order

ot lhe parallel I nre compjexily of a problem with lhe integer parameter c>0 is lhe same as lor a

similat problem with c=0. Thus, for example, our list ranking problem has an efJiclent sotulion

because ils equivalenl problem with c=0 has a problem graph with a=2.

54. Dynamic expression evaluation.

Consider now the problem oJ dynamlc expresston evaluailon. We shall see that I fails wilhin our

class oi efticiently solvable problems on a MCC2. Dynamic expressron evaiuation js the prob em

of evalualing an expression with no free preprocessing. This problem has been considered in

lerms of lhe P-RA|\,4 by f,4iller & Reif [5] and by cibbons & RyIer {41. The algorithrn of [.1] can

be made to run on a P-RA|\,4 in O(log n) paratlel time using O(n/log n) processors. We brjeily

outline a simple version here which would run in the same time on a P,RAM using O(n)

processors. As we shall see, such a version of lhe algorithm has a MCC2 impternentation taking

O1n1/21 paratlel lime with O(n) processors.

The input

from lelt

to the

lo righl

algorithm is the expression lree. The iirst lask is to rank lhe teaves of the tre€

before presentation to lhe algorithm proper. Such a preprocessed input is

o

shown in figure 5(a). wilhin rhat figure each leaf has an associated integer (its rank) and rhe

number shown in brackets is lhe value associated with thal leaf. The rankino or the reaves is

easily achieved by an application of the Euler tour technique of Tarjan and Vishkin ([9], also
described in l3l). wilhin this technique we first construct the so,caled traversar rist or rhe
expression lree (if we associale a processor with each of the nodes of rhe binary-rree of the
expression, this rakes constanr time on a r,{cc2). Each leaf appears exactly once on thrs risl
(other nodes appear three times each) also the leaves appear in lhe same order as their reft 10

right ranking in the lree. we'mark'the leaf elemenrs and then, by a simple adaprarion of the list
ranking procedure, we rank lhe marked elemenls on the lisl to complele ihe pre-processing. All
lhis takes O(n1/2) parallel time with O(n) processors on a MCC2.

The algorithm now consisls of repealedty applying a so_called leaves-cutting operation, within
each such operation the number oi leaves in the lree is reduced by a iacror oi one hall. Evenlualry

the tfee is reduced to a single node at which time the expression has been evalualed. A sing e

leaves'cufiino operation consisrs (as we shair see) of the paraler removar oi some reaves of the
rree. we rherelore introduce lhe operation by firsr describino how a single leaf may be removed

,,d..u.
(f.t,D

,/ ,,,'K',"o1(fr{x)) vr(c)

Figure 4

by a tocat reconstruclion of the lree. Such a local reconstruction s illustrated ln fjg.4. This

ligure shows the removal the single leai v2. At each internal node vi of the tree we slore an

associared funcrion' fi(x), which (when evalualed ar x=[value ot rhe sub-expressron assoclared

wilh lhe sub-tree rooted at vj) represents lhe vajue to be passed to fathe(vJ in the evaluation

ol the expression. ln the course of the compulalion, it is an invariant (we only consider the

operalions +,-,' and /) thal each ii(x) has the generaj form fi(x)= (atx+bi)/(d x+ei) where

ai, bi, di and ei are nunerical conslanls which are recomputed whenever a leat (which is a

brolher oi vi) is cut. Thus we can represenl each fi(x) by sloring four numbers. lnitially, for

all i, ai=ei=1 and bi=di=0. Thereafter, if we have thal fj(x)= (a1x+b1)/(d1x+e1)and f3(x)=

(agx+b3)/(d3x+e3) and if a single cutting of a leaf requires (see figure 4) that we recompute

the conslants defining f1(x)=f3(f1(x)oc), then this is done in constant lime as follows:

cut(vz)

a1=((asoc) a1+b3dt) bj=((a3oc) ar+b3or)

d1=((a3oc) a1+b3dl) e1=((a3cc) a,+o.0,1

where o is the operalion at iathe(v2). When lhe tree is localy reccnsliucled icorresponoLng to

the cutling of leaf v2 of figure 4) by lhe movement of a (conslani) numoer ot falher-son

poinrers, these recompuled constants ensure that the varle represefted byrhe newtree isthe

+

(e)

,(>

//+\
s(3) 7(2)

tl,rr.\
3(r) 4(1)

r)

14(3) 15(1)

\"

/ \ e(2)

(1)

// \ r3(4)

1At2) 12(1)

,)-{t'

\>
6<2Y

8(1)

I

ta<D /
(1)

(b)

/x\ 6(2)

+\ s(3)

4(1)

,'-\.-'

/t\.
16.")

./\ r+<:1

;'\ \+.(+x+:)
,/ r B(2) ,/ \,/ -r^ ./ \

, t/3"1 ""' to'2) 1 2l1)

2(1) 4(1)

Figure 5

same as thal represented by the original. Naving descrlbed how a sinqle leai may be cut, we no!!

describe lhe operation of parallei leaves-cutting. Beferring to iigure 4, if we detine

involved(v2)-{v1,v2,v3} lhen we say that two operalions cul(v) and cul(v.) are independenl lf

involved(v) n lnvotved(v)=9. Any set oi paiMise independent cut operations can be performed

in parallel. A sulficienl condition that cut(v) and cul(v') are independeni is that both v and v

are non-consecutive leaves and thal bolh righl or bolh left sons. We therefore detine the

operation of parallel leaves-cu lng to consist ot the three sleps:

'1 0

f. in parallel cut all odd numbered leaves which are lett sons

2. in parallel cut all odd numbered Jeaves that are right sons

3. in para el divide the 'rank' ot each leaf by lwo.

On the leil of figure 5(b) is lhe resutt of applying step 1 lo the expression kee of figure 5(a).
The result of then applying step 2 is shown on lhe righl . Slep 3 ensures lhal the teaves of lhe
new tree are ranked kom lefl to .ight before the next jleration. Sleps j and 2 arc cleaiy
achievable O(nl/2; parallel time with n processofs on a f,4CC2, since both are achieved with a

iinile number of rhe RAR and RAW operations oi [6]. step 3lakes constant lime. ln lhe execu|on
of steps 1 and 2 we mark as'dead'rhose nodes which do not ligure in the newly constructed tree.
It lakes O(n1/2) parallel lime (usjng iechniques from [6]) to 'compress lne new tree
(consisling of the live nodes oniy) before lhe next iteration. In fact, if we perform two
leaves'cultlng operallons before each compression operalion, lhen lhe recurrence retalion tor
lhe time-complexity T(s) ot lhe whole algonlhm (for a tree ot size s), salistres (i) and so we
have the resun for dynamic expression evaruarion stated in s1. rt forows that rnere are erticient
MCC2 algorithms also for the recognition of brackel and of inpufdriven languages (see {4j).

Reterences

[1] M.J.Atallah & S.E.Hambrusch. Solvlng tree problems on a mesh connected processor array.
Proceedings of the IEEE Symposium on the Foundations of Computer Science (1985).

[2] M.J.Alallah & S.R.Kosaraju. Graph problems on a mesh connected processor array. JAClvt.
Voi.31. No.3, 649-667 (1984).

[3] A.M.cibbons & W.Bytter. Efflcient para el Algorilhns. Cambridge University press

(1sBB).

[4] A.l"l.cibbons & W.Flylter. Oplimat parallel Algorithms ior Dynamlc Expression Evaualjon
and ContexfFree Recognition. To appear in Information and Controt {j988).

[5] G.L.Miller & J.Reif. Parairer rree conrracrion and its apprications. proceedifqs of the rEEE

Symposium on lhe Foundations of Compuler Science (j985).

16l David Nassimi & Sanaj Sahni. Data Broadcasting in Sll\,4D Computers. tEEE Transacrions on

Compulers. Vol. c-30, No.2, Februarv 198i.

[7] David Nassimi & Sartaj Sahni. Finding Connected Components and Connected Ones on a

L4esh-Connected Computer. SIAM Journal of Computing , 744-757 (1|g11l.

[8] Y.N.Srikanl. Patallel parsing ot arilhmetic expressions. IEEE Inlernalionar conrerence on

parallel computing (1987).

[9] R.E.Tarjan & U.Vishkin. Finding biconnected components and computing t.ee tunclions in

logarilhmic parallel time. Proceedings of the IEEE Symposium on the Foundaljons of Computer

Science {1984).

110l C.Thompson & H.Kung, Sorting on a mesh-connecled parallel computer. CACM, 263-271

{1987)

