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DYNAMIC EXPRESSION EVALUATION
IS ONE OF A CLASS OF PROBLEMS
WHICH ARE EFFICIENTLY SOLVABLE
ON MESH-CONNECTED COMPUTERS

A M Gibbons
(RR131)

Let P be a recursively described and distributable problem of size n. We describe a general
strategic approach which will often make an O(vn) parallel time solution of P possible on a 2-
dimensional mesh-connected computer with O(n) PEs. Such a solution 1s ime-optimal. It is
likely that the class of such problems is large and will contain many that are non-trivial. We
show that such a problem 1s dynamic expression evaluation. The methodology is easily
extended to mesh-connected computers of arbirarv dimension to again obtain time-optimal
solutions using O(n} processors.
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Dynamic expression evaluation is one of a class of problems

which are etficiently sclvable on mesh-connected computers
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§1. Introduction.

Within the well-known P-RAM model of parallel computation, the class NC defines the class of
efficiently solvable problems (see [3] for example). Using a polynomial number of processors.
such problems can be solved in poiyicgarithmic parallel time. Within the constraints of current
technology, it is not always possible to attain such time complexities because a lower bound for
feasible parallel architectures (e.g. shared memory SIMD machines such as the mesh-connecied
computer) is naturally O(r), where r is the maximum path length within the architecture over
which messages have o be passed between the co-operating processors. We show in §4 ihat the
problem of dynamic expression evaluation beiongs to a {probably large) class of problems
{defined in §3) which are efficiently solvable on mesh-connected computers. Here, an
efficiently scivable problem is a problem which is solvabie in O(r) parallel time using C{n)
processors. The mesh-connected computer as a maodel for parallel computation is well known
(1,2,6,7,8,10]. Our presentation will be for two-dimensional mesh-connected computers
(MCCgs }, where r=0(¥n}. Generalisation to arbitrary dimension is straightforward.

Let P, a problem cf size n, be distributed across a MCC2. The nodes of a graphical representation
of P (the ‘problem grapf) are mapped onto the processing elements (PEs) of a[vn i ~¥nimesh.
initiaily each PE stores at most one node of the problem graph. Along with such a node are
addresses of PEs where nodes adjacent in the problem graph are stored (the problem graph is
usually of constant-bounded degree). There may also be capacity to stere a constant volume of
additional information associated with a node. Now let P be recursively reducible to m similar
prohlems, 1<ms<b, each of size {n/bl+c) where b>2 and c20 are integer constants. From the
peint of view of determining the time complexity T(n) for P, we generally need to solve a
recurrence relation. The details of this recurrence, and therefore the explicit form of T(n}, will
depend upon precise details of the strategy employed within this framework. In §3, for any
problem such as P, we emphasise certain strategic details that will often make an O(vn) parallel

time implementation possible on a MCC? with O(n) PEs.



§2. An introductory example.

As a simple introductory example we take the problem of evaluating, at x=h, the general
polynomial p(x} of degree n, where:

Pix) = 8 + 84X + 8yxZ + ... + A, X"
For ease of presentation we assume here that n=2K-1 for some integer k. We adopt a famiiiar
mode of evaluation in which p(x) is recursively described as follows:

p(x} = p'(x)+x(M12pr(x)

where p'(x} and p"{x) are similar polynomials of degree 2% 1.1, The following provides an
{equivalent) iterative evaiuation of p{x) at x=h.

1 X<h
2 d«{n-13}/2
3 repeat until d=0
begin
for 0<i<d in parallel do 8) ¢&pi+X ani, 1
X e x2
5 d «{d-1}/2
end

Consider implementation on an MCC?. We provide each PE of the n*2:n "2 mesh with one of the

constants a; and with the values of n and h. Within the computation each processor repeatedly
recomputes its a;, x and d. When d=0 the resuit of the computation is found in the register
storing a,. Each recemputation of x and of d takes constant time. Each recomputation of a,

requires the values of a,; and dn;,1- 1hese can be acquired from their associated PEs by

successive applications of the Random Access Read procedure {RAR) of Nassimi and Sahni [8].

{We adopt the input convention that PE, is associated with the parameter a;}. Each application of

RAR takes O{n'/2) parallel time. Since the number of repititions involved in the repeat
statement is O(log n), we have described an O(n'"2 log n} implementation. We can however do
better than this. Notice that each iteration of the repeat statement reduces the 'size' of the
problem (that is, the number of processors that need to be active) by a factor of 1/2. It wiil be
convenient to contrive reduction by a factor of 1/4. This is easily done by making each
teration contain two assignments of the kind indicated in line 4. Now take the PEs to be indexed
according to shuffled row major order (see for example Nassimi and Sahni [8]) then after each
iteration in which the problem size is reduced by a factor of 1/4, the active processing elements
are constrained to occupy a square of the mesh which is 1/4 the original area. See figure 1. The
aftect of this in the ith iteration is to replace the cost (O(n”z)} of applying the RAR procedure
by O(n'/2/211). The complexity of the algorithm is now O(n'/2(1+1/241/4+.....}) which is
O(n'/2) and which is time-optimal and an improvement by a factor of log n. '
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Figure 1

§3. Aclass of efficiently solvable problems

We show here that many problems of the general description given to P in §1 are likely, by
observing certain strategic details, to be efficiently soivable on a MCCZ. it is these problems that
form the class defined here.

The technique employed in the efficient implementation of the algorithm described in §2 relied
essentially upon shrinking (by a constant factor} the space physically occupied by the problem
during each iteration of the body of a repeat statement. If at an arbitrary time the problem size
is s, the recurrence relation for the parallel computation time, T(s), is given by:
T(s)=T(s/4)+0(s'/2), s>1, {0)
T{s}=0, s=1
As we saw T(n)= O(n'/2), Within our example the compression of successively produced
problems into smaller squares was made possible by indexing the processing elements accarding
to shuffled row major order. For this problem we contrived that compression along with new
problem creation took O(1) time. New problem creation and compression may in general be
separate processes. In general (for similarly solvable problems in which m=1, b22, c=0) we
can perform the compression in Ofs'/2) parallel time after new problem creation using the
techniques of [6]. Provided new problem creation also takes 0(5”2) parailel time, as will often
be the case, then (i} still holds and we have aigorithms of optimal time compiexity using n PEs.

Now consider the case in which m=>1 {'divide and conquer). It is trivial to observe that any
problem of size s which at each level of recursion is divided into 4 {or less) similar problems of
size at most s/4 will satisfy (i) provided that this division of the probiem and the subsequent
assignment of each created problem ta its own quarter of the PE mesh can be achieved in O(s'3)
parallel time. In §2 a specious method was used to concentrate the newly created problem. In the
general case, the problem of assigning each of the created problems to their own quarter of the
processing mesh can be sclved by an application of the connected components algorithm of
Nassimi and Sahni (7], This is because the connected components of the problem graph
cofrespond to the subproblems. Unfortunately this takes O{s'’2 log s) parailel time on a MCC?
for graphs of arbitrary but fixed maximum degree a. There is an exception (see [7]) when a=2,
for then the complexity is O(s'/2) and (i) still holds. However in general, the use of this
connected components procedure will lead to a compiexity of least O(s!/2 log s) which is no
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improvement over the case without 'compression’. Using the best known connected components
algorithm brings no improvement unless 4=2 for which case we shortly give (in a more general
setting) an example. Of course, individually, there may exist specious methods for efficient
compression just as there was for the exampie of §2.

oClt1i2]910|11118]. ..
A modified shuffled row major 31415]12]13]14/21
. . . _ el 7|8HS{16NT] ...
indexing suitable for b=3 5728291
30

Figure 2

A natural generalisation of the foregoing with m>1 (ive have dealt with m=1) is to replace the
factor of 1/4 in (i} by 1/b where b>2 is a constant integer. Here, within each level of the
recursion, a problem of size s is replaced with (upto) b similar problems in O(s'/2) parallel
time, each problem is of size at most s/b (without loss of generality we can take s=b! for some
integer j). The initial difficulty with this is how to partition the processing element mesh
systematically so that each recursively created problem occupies a square and such that overail
n PEs are still sufficient for an O(s'/2) time computation. Now no longer does the shuffled row

mejer indexing based on binary considerations with an attendant recursive division of the
processing element mesh into a 2x2 matrix serve us well. However a madified shuffled row
major indexing suits our needs. What we require is an indexing such that the square area {of s
PEs} is recursively divided into a b xb matrix, each sub-square of the mesh occupying an area
of consecutively indexed s/b? PEs. Each such sut-square may then be occupied by one of the
problems produced after a double application of the problem division procedure without an

overall demand for more PEs. Figure 2 shows the indices of the first few processing elements for
such an indexing with b=3.

We now consider the general case that each probiem of size s is recursively replaced by at most b
similar problems each of size at most 's/bl+c where b and ¢ are constant integers, b=2 and c>1.

We motivate our considerations by describing a simple but nevertheless architypal exampie
known as the /ist ranking problem.

Given a list of elements, the list ranking problem is to associate with each element i a parameter
L{i) such that L(i} is the distance from i to the head of the list. The standard P-RAM technique
that places the problem of kst ranking in NC is that of recursive doubling on the list pointers.
Figure 2 shows the technique for a list of seven elements. The ith element has an associated
pointer P(i} which initially points to the next element of the list. With P(i} we associate L(i},
which is the current distance along the list from the element i to the element which P(i} points
to. At the outset of the computation the situation is then as illustrated at the top of figure 3. Here
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L{i) iabels P(i}. The same figure then shows the P(i) and L{i} after successive iterations
within the algorithm. In each iteration, for all i in parallel and provided each particular P{i)
does not yet peint to the head of the list, the processor associated with elementi makes the

Figure 3

assignments  L{)eL()+L{P{i}) and P()«P(P(}). After i iterations we have that Pk},
unless it points to the head of the list, points 2' elements along the list frem i. Thus after ?log2ni

iterations alf P(i) point to the head of the list. Moreover, R(i}=P{i) for all i. Thus on a P-RAM

the list ranking problem is easily solved in O{log n) time with n processers (details of the
implementation are obviocus).

If | is at the head of the list, after each iteration within the aigorithm described ail the P(i}
except P(j} form a number of directed paths terminating at j. After each doutling cperation, the
number of these paths is at most doubled. It is natural to utilise this in a recursive solution to
the fist ranking problem. Each of the problems of size s at one level of the recursion get divided
into at most two problems of size at most is/21+1. To obtain strictly disjcint problems we just
have to copy the element at the head of the original list into each newly created list. Notice also
that the probiem graph will have A=2. Here then is a simple example of the type of problem
which has parameters b=2 and c=1. As for the problem in §2 we can easily contrive that b=4.

Let us return to the generalised form of the problem. At the outset we have a problem of size n. At
the first level of recursion each of the (up to) b problems have size (n/bl+c)<(n/b+c+1), at

the second level of size at most nfb2+(c+1)(1+1fb) and so on. In general, at the ith level of
recursion each of the b problems has size bounded by ps{i):

ps(i)=mfbi+(c+1)2i=0 1o iq(1/BH = nblek(1-1/b)  where k = bc+1)/(b-1) (ii)
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Notice that below a cenain level of the recursion, this estimate does not reduce the {integral)
problem size. A minimum is reached when (n-k)ibis1f2, at which peint:

r
|

Ik

—

i= logy2(n-k)  and PSmin = (iii}
This provides the value of i at which the recursion bottoms-out and at which the residual
problem is solvable in constant time. Consider now implementation on a MCGC2. At the ith level of
recursion, as for the case with ¢c=0, we store each problem of size ps(i} over n/b! PEs arranged
in a sub-square of the mesh. in the case that cz0 however, instead of a singie node of the problem
graph being stored at each PE, we now store up to k nodes of this graph at each PE. In other words
the problem, of size psfi}< n/bl+k, is stored over n/bl PEs and we note that it is an easy
technical problem to store the additional <k nodes eveniy over these PEs. Now, within each
application of the problem division procedure, each PE (in parallel with the other PEs}
processes in sequential fashion the nodes of the problem graph that are stored at that PE. Since
there are at most a constant number of nodes stored at each PE, the order of the time complexity
of executing the problem division procedure will be the same as if a single node of the problem
graph were stored at each PE. Notice the inconsequential technical difficulty that within the
process of sequentially handling nodes of the problem graph, care has 10 be taken that the effect
is the same as if they had been handled in paraliel. This is easily achieved {at the expense of
increasing the storage space required at each PE by at most a constant) by (in effect) keening and
not corrupting a copy of the problem graph output from the previous application of the problem

division process whist constructing the output from the current application.

The foregoing paragraph justifies the claim that, using the same number of processors, the order
of the parailel time complexity of a problem with the integer parameter ¢>0 is the same as for a
similar problem with ¢=0. Thus, for example, our list ranking problem has an efficient solution

because its equivalent problem with ¢=0 has a problem graph with A=2.

§4. Dynamic expression evaluation.

Consider now the problem of dynamic expression evaluation. We shall see that it fails within our
class of efficiently solvable problems on a MCC?2. Dynamic expression evaluation is the problem
of evaluating an expression with no free preprocessing. This problem has been considered in
terms of the P-RAM by Miller & Reif [5] and by Gibbons & Rytter {4]. The algorithm of [4] can
be made to run on a P-RAM in Oflog n} parallel time using O(n/log n) processors. We briefly
outline a simple version here which would run in the same time on a P-RAM using Q(n)
processors. As we shall see, such a version of the algorithm has a MCC2 implementation taking
O(n'/2y parallel time with O(n) processors.

The input to the algorithm is the expression tree. The first task is to rank the leaves of the tree
from left to right before presentation to the algorithm proper. Such a preprocessed input is
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shown in figure 5(a). Within that figure each leaf has an associated integer (its rank) and the
number shown in brackets is the value associated with that leaf. The ranking of the leaves is
easily achieved by an application of the Euler tour technique of Tarjan and Vishkin ([2], also
described in [3]). Within this technigue we first construct the so-called traversal list of the
expression tree (if we associate a processor with each of the nodes of the binary-tree of the
expression, this takes constant time on a MCC2). Each leaf appears exactly once on this list
{other nodes appear three times each) alsc the leaves appear in the same order as their left to
right ranking in the tree. We 'mark’ the leaf elements and then, by a simple adaptation of the list
ranking procedure, we rank the marked elements on the list to complete the pre-processing. All
this takes O(n'/2) parailel time with O(n) processors on a MCC2,

The algorithm now consists of repeatedly applying a so-called leaves-cutting operation, within
each such operation the number of feaves in the tree is reduced by a factor of one half. Eventually
the tree is reduced to a single node at which time the expression has been evaiuated. A single
leaves-cutting operation consists (as we shall see) of the parallel removai of some leaves of the

tree. We therefore introduce the operation by first describing how a single leaf may be removed

Va4

CUt(V2>
O V3 (f3{)<))

/ \ :> /\q(QxJOC)

CASH BN

/N

by a local reconstruction of the tree. Such a local reconstruction is illustrated in fig.4. This

Figure 4

figure shows the removal the single leaf v,. At each internal node v; of the tree we store an
associated function, fi{(x}, which (when evaluated at x=[value of the sub-expression associated

with the sub-tree rooted at vi]) represents the value to be passed to father(v,) in the evaluation
of the expression. in the course of the computation, it is an invariant (we only consider the

operations +,-," and /) that each f(x) has the general form fiix}= (ax+b;)/(dx+e;) where
a;, b, d; and e; are numerical constants which are recomputed whenever a leaf {which is a
brother of v;} is cut. Thus we can represent each fi(x) by storing four numbers. Initially, for
alt i, a=e;=1 and b;=d;=0. Thereafter, if we have that fy(x)= (a;x+b4)/(dyx+e¢) and f3{x)=
(a3x+b3)f(d3x+es) and if a single cutting of a leaf requires (see figure 4) that we recompute

the constants defining fy (x)=f5(fy{x)oc}, then this is done in constant time as follows:
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where © is the operation at father(v,). When the tree is iocally recenstructed {corresponding to

the cutting of leaf v, of figure 4) by the movement of a (constant) number of father-son

pointers, these recomputed constants ensure that the vaiue represented by the new tree is the
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Figure 5

same as that represented by the original. Having described how a single leaf may be cut, we now

describe the operation of parallel leaves-cutting. Referring to figure 4, if we define
involved(vy)={v,,v,,v3} then we say that two operations cut(v} and cut(v') are independent if
involved(v) N invoived(v)=2. Any set of pairwise independent cut operations can be performed
in parallel. A sufficient condition that cut{v) and cut(v') are independent is that both v and v'

are non-consecutive leaves and that both right or both left sons. We therefore define the
operation of parallel leaves-cutting to consist of the three steps:
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1. In parallet cut all odd numbered leaves which are left sons

2. in parallel cut all odd numbered leaves that are right sons

3. in parallel divide the 'rank’ of each leaf by two.
On the left of figure 5(b) is the result of applying step 1 to the expression tree of figure 5(a).
The result of then applying step 2 is shown on the right . Step 3 ensures that the leaves of the
new tree are ranked from left to right before the next iteration. Steps 1 and 2 are clearly
achievable O(n”z} parallel time with n processors on a MCCZ2, since both are achieved with a
finite number of the RAR and RAW ocperations of [6]. Step 3 takes constant time. In the execution
of steps 1 and 2 we mark as 'dead' those nodes which do not figure in the newly constructed tree.
It takes O(n”z) parallel time (using technigues from [6]) to ‘compress’ the new tree
(consisting of the live nodes only) before the next iteration. In fact, if we perform two
leaves-cutting operations before each compression operation, then the recurrence relation for
the time-complexity T(s) of the whole algorithm (for.a tree of size s), satisfies (i) and so we
have the result for dynamic expression evaluation stated in §1. It follows that there are efficient

MCC2 algorithms also for the recognition of bracket and of input-driven languages (see [4]).
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