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ABSTRACT

These notes consider the various topologies over metric sets generated by a

selection of the metric axioms given below. In particular we study the separabil-

ity properties of quasi & partial metric spaces.

Introduction

A metric set is defined to be a set S together with a function d : S x S +[0,-) which
satisfies a selection of the axioms given in the next section. Such d are called generalised

metrics, and have been studied by mathematicians [Ko88] as well as computer scientists.

de Bakker & Zacker ldB&2821use ordinary metric spaces to provide an altemative to partial

order flxed point semantics. This approach uses Banach's unique fixed point theorem instead.

Smyrtr [Sm87] generalises symmetry by removing the axiom (M6) in order to combine both par-

tial order & menic semantics (see below). In [Ma85] a generalised metric was used to reason

about the completeness of data objects by generalising the reflexive axiom (M1) to get ([42).

These notes are a study of the seperability properties of such generalisations.

Axioms for Metric Sets For any .r t ! ; z € S ,

(Ml) d(x,y)=0 (+ x=J (reflenviry)

(M2) d(x,y)=0 = x=! (partialreflenviry)

(M3) d(x,x) = d(x,y) = d(y,y) c+ x = J (iso reflexivity )

(M4) x=! => d(x,y)=0 (pseudorefleiviry)

(M5) d(x,y) = d(y,x) = 0 <+ x = ! (Smyth refleivity )

(M6) d(x ,Y ) = d(Y ,x) ( sYrnutrY )

(M7) d(x,z) < d(x,y) + d(y ,z) ( transitiviry )

(M8) d(x,z) 3 max{ d(x,y) , d(y,z) } ( ultra transitivity )

A metric satisfres axioms Ml, M6, & M7 . An ultramefric satisfles axioms Ml , M6, & M8. A
quasimetric satisfies axioms Ml & M7. A Smyth-metric satisifes axioms M5 & M7. A sem-

imetric satisfies axioms Ml & M6. A pseudometric sattsfres axioms M4, M6, &. it47. A
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partial-mefric satisifies axioms M2, M6, & M7. A partialultrametric satisfies axioms M2,

M6, & M8. An iso-metric satisfies axioms M3, M6, & M8.

Separation Properties

The separation properties to be used here for a toplogical space < .S , t ) il€,

(To) Yx*ye.l lGer xeG and YeG
or f G'er, y€ G'and xeG'

(Tr) Yx*ye S JGer xeG and YeG
and 3G'et, yeG'and xeG'

(T) Vx+ye S 1G,G'et
xeGandy€G'andGnG'=0

These properties hold for t iff they hold for any base for t .

Metric Spaces

First we consider the standard open ball topology xa s2s induced by a metric d on a set

S f . ra has the basis,

{ Br(x) | xe S and e>0 }

where the e-ball B.(x) is defined to be,

f yeS I d(x,y)<sJ
To see that ttre e-balls do indeed form a basis for a topology use the following standard result

lsi76l.

Theorem (BaseTheorem)
Let S+0,and Os2s. Then O isabaseforatoplogyon S iff, S=\JC),and,

Y81,B2e O xeBlnB2 => 183e O xeBteBIAB2

Theorem
The open balls induced by a metric form a base for a topology.

Proof: first note that (in a metric space) any e-ball 8.(x) contains x , and so, S = U Q.

Secondly, note that, if
z e Br(x) n Bo(y )

then,

z e B{r) c Br(x) n Bs(Y )

where,

f ,:= min{ e-d(x,z) ,6-d(Y,z) }

f for a standard introdlction to metric spaces see [Su75].
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tr
The open ball topology for metric spaces is 12 (i.e. Hausdorff), as for any x *y e S ,

x e Be(x ) and y e B.(y) and B.(:) n B.(y) = 0

where,

r ::= d( xr'v \

In fact, the separability of metric spaces is stronger i;rln ,r, however, for our purposes we do not
need to consider any notion of separability stronger than 12. The purpose of these notes is to
consider the questions of whether d generates a topology when the metric axioms are relaxed,

and, if so, what are the resultant separation properties.

Quasimetric Spaces

Using the same proof as above for merics, we can show that a quasimetric induces an open

ball topologyt. An example of a quasimetric space is the unit interval < [ 0 , 1 ] , d > , where,

d(x,y) ,,= h-' lf j=.r,

In this example Ur, ,-OuU, have the forms,

Br(x) = { y I x<y <x+e } ( e<1)
and,

Br(x) = [0,1] (e>l)
Under this topology the unit interval is actually 72, ds, if .r < y , and,

c ..-

then .8.(x) and Be@) are disjoint intervals containing x and y respectively. However, the

separability properties of quasimeuic spaces are a linle different from those of metric spaces.

Theorem

Quasimetric Spaces are T1 .

Proof: Suppose x*y e S. Then@yMl), d(x,y ) * 0,and d(y,x ) * 0 .

And so,

x e Br(x) and y e B.(x)

where,

e ::= d(y ,x )

Similarly,

y E Bs(y) and x e Bo(Y)

where.

t Quasimerics ae defned in [Si76]

6 ::= d(x ,y )



-4-

Thus quasmiteric spaces are ?r . E

Theorem
Any finite quasimetric space is T2 .

Proof: Suppose,

s - {n,x2, x,}
Foreach l<i <n ,Iet

min { d(xi,y) | y e S - {x;} }t; ::=

Then,

V I<i<n xi e Bq(x;)

and,

Y i*j Br,(xi ) n Br,(xj ) = 0

Thus, finite quasimetric spaces are T2.J

Theorem
Not all Quasimeuic spaces arc T2.

Proof: Considerthe quasimetric space < S, d > where,

,S := /0,1,2,...]
and,

d : S xS + f l,Yz,t/t,1/t, ...,0 J

where,

Supposethat x*ye S,andthat e,6>0
Let,

y := minf e ,6 J

Then we can always find z e S such that,

x<z and y<z and # <Y

that is, such that,

z e Br(x) n Bo(Y )

Thus this space cannot be Tz. tr

Smyth-metric Spaces

Mike Smyth has studied a weaker form of quasimeuic space which we shall calT a Smyth-

metric Space. These spaces have the same open ball topology as quasi spaces. A Symth-meuic

is Smyth reflexive (M5) and transitive M7). The earlier example of the quasi metric over the

Io x=r
V;r,y e S d(x,y) := i l/lg+2) x<Y

It x>Y
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unit interval is Smyth as it is quasi. Two examples of Smyth-metrics which are not quasi are the

following. A partial order < on a set S is equivalent to the Smyth-metric,

d(x,y) "= ]? :,;,"=1,
L

The usual open ball topology is the Alexandroff topology,

{ IA I A cS J

where the upper closure t a of a set A c S is given by,

tl, ::= f yeS I lxeA.x<y ]
To see this note that for each .r e S and t t 0,,

B,(x) =]l$'r $::i
and that for each A g,! ,

fl, ::= uf ar(.r) | xeA ]
ThisexampleisSmythbutnotquasias,if .r <y ,then d(x,y ) = 0 doesnotimply x=!

Another example is a Smyth-metric on y , the set of all finite and infinite sequences over

an alphabet E under the initial segment ordering.

Here the open ball topoiogy is a refinement of the Alexandrofftopology, and has the following as

a base.

{ I{x} t xeS and lxl<- }

This is an example of a Scott topology. A Scott topology r on a set S induced by a complete

partial order < on S is a sub-topology of the Alexandrofftopology such that,

V Ger VXES f nX =+ XaG + 0

Theorem
Every Symth space is Te.

Proot Suppose x *y rnaSmythspae < S ,d >. Then,

d(x,y ) + 0 or d(y,x) * 0

Suppose (wlog) that d( x,y ) * 0 . Then,

x e Br(x) and y e Br(x)

where,

e ::= d(x ,y )

Thus every Smyth space has been shown to be f0. n

Theorem
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A Smyth space is quasi iff it is Ir .

Let <S,d> beaSmythspace,andsuppose.r*y e S.
Fint, suppose < S , d > is quasi, then by Ml,

d(x,y ) * 0 and d(y,x) * 0

thus.

x e Br(x) and y e Br(x) and

y e 8s(y) and x e Ba(y)

whers,

e ::= d(x ,y ) and 6 ::= d(y ,x )

Thus < S , d > has been shown to be 11 .

Suppose now that the Smyth space < S , d > is Tr , then,

3 B.(v) x e B.(v) and y e Br(v)

but.

d(v,y) = d(v,x)+ d(x,y)
thus d(x,y)+0
Thusithasbeenshownthat x * y = d(x,y ) + 0 ,i.e.M2. ThusMl followsfromM5.
Thus < S , d > has been shown to be quasi. tr

This last theorem shows that quasimenic & Smyth-metric are equivalent notions if we are work-

ing in a universe of T1 spaces, however, when we come to discuss Scott topologies we are in
general dealing with Io spaces.

Ultrametric Spaces

A non-archimedean space (introduced by A.F. Monna tM50l) is one for which there exists a

basis Q suchthat,

VBr,82ed) BrgBz or B2c'81 or 81n'82=$

It can easily be shown that the ultrametric spaces are non-archimedean.

Partial-metrics

A partial-metric [Ma85] is partially reflexive, symmetric, and transitive (M2+M6+M7). It
was introduced as a method of distinguishing between "partial" and "complete" objects in the

context of programming language semantics. An object r is said to be complete if
d(x ,x ) = 0 , otherwise it is said to be partial. And so, this distinction was introduced as the

"partial reflexive" axiom. We shall see later that, for separability reasons, this decision needs to

be refined. First, consider the following partial-metric on tr, the set of all finite and infinite

sequences over the alphabet E. 
.

d(x ,y) "= l';:' ':,;;1"

where, < is the initial segment ordering on E- , and,

min{n I xn*!n} ::= min / n I xr * Y, }



-7-

Here the complete objects are precisely the infinite sequences. < Y , d > can be used to model
dataflow semantics [Ka74] [Wa85]. This partial metric is in fact a partial-ultrarnetric, as d is
ultra transitive (i.e. M8). An intuitively pleasing property of partial-ultrametrics is that no point
can be closer to another than the point itself, i.e. for all .r , y € .S ,

d(x,x) 3 d(x,y)
as d is ultra transitive. Not all partial-metrics are ultra transitive, e.g. consider the following
partial metric defined on the set { a , b } .

d(a ,a ) ::= I , d(a ,b ) ::= t/z , d(b ,b ) ::= 0

Theorem
The set of open balls defined by a partial ultrametric forms a base for the usual open ball topol-
ogy, also, this topology is non-archimedean.

Proof: We use the "Base Theorem" employed earlier to show that the collection of all open balls
forms a base. Suppose that d is a partial-ultrametric on S . Fint note that S is the union of ail
the balls as, for each x e S ,

x e Br(x)

where.

t ::= d(x,x) + |

Instead of showing that,

zeBlnB2 => 3Bz zBzeBloB2

For any open balls B t , Bz, and B: , we prove the strongernon-archimedean propeny,

81 e Bz ol Bze Bt or 81 n'Bz = 0

Suppose that,

Br(x') n Bo(y) * 0

and ttrat (wlog) e s 6 . Then we can choose,

z e B.(x) n Bs(y )

Suppose p e Br(.r ),then(as d isultratransitive),

d(y,p) < max/ d(y,z), d(z,x), d(x,p) ]
thus, d(y,p)<6,
thus, p e Ba(y),
thus, Br(.r) Eao(y),
Thus we have shown that a partial-ultrametric deflnes a non-archimedean open ball topology. D

Corollary
llltrameuic spaces are non-archimedean.

These notes are an investigation into the separability properties of particular metric sets.

They are motivated by a belief that certain metric sets may be useful in programming language

semantics. To this end we are assuming that any zuch set must be at least Io. That is, any two
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distinct points must be separable by some open set, where we understand an open set to be afinite
property. Unfornrnately, partial-ultrametric spaces are not always Is . For example, consider the

following partial-ultrametric on the set { a, b } .

d(x ,x ) tt= d(x ,y ) tt= d(y ,y ) ,t= I

However, we can define the following equivalence relation on partial-ultrametric spaces.

x = y ::= d(x ,x) = d(x,) ) = d(Y ,Y )

Theorem
Two points in a partial-ultrametric space are equivalent iff they are inseparable (i.e. every open

set containing one point must contain the other).

Proof: We have to show that for any x , ) e S ,

x=y iff Yze S,e>0 . xeBr(z) = Y€Br(z)
and y e Br(t) = x e Br(z)

Supposefirstthat x = y,andthat x e B.(z ) .

then, d(x ,x ) < e as d(x ,x) < d(x ," )
Thus, d(x ,y ) < e as d(.r ,x) = d(x ,Y ) .

Now, d(z,y) < max{ d(z,x) , d(x,y) } .

Thus, d(z,y)<e
Thus, y e Br(z)
Similarly, we can show that,

YzeS,e>0 yeBr(z) + xeBr(z)
Thus, x and y have been shown to be inseparable.

Now for the second half of the theorem. Suppose that .r and y are inseparable. Then,

Y ze S,e>0 . x e Br(z) => Y € Br(z)

but,if d(x,x) + d(x,y) then d(.r,t ) < d(x,y ) ,giving,

x e Br(x) and y E Br(x)

where, e::= d(x,l) ,?contradiction. Andso, d(x,x) = d(x,y)
Similarlywecanshowftrat d(y ,y) = d(y,'r) ,andso,wehaveshownthat x =y'E

If we regard = ?s computational equivalence, then the topology can be regarded as one

describing the computational structure of some class of objects. However, if the topology is to be

one describing the strucue of a class of computable objects then it is reasonable to assume that

objects are completely specified by their computability properties. And so, we consider a more

restrictive version of partial-ultrametric spaces called iso-metric spaces, where the reflexive

axiom M2 is tightened to get M3,

x = J (? d(x,x) = d(x,)) = d(y,y)

We can thus define the following partiat order for iso-metric spaces.

x < Y ::= d(x,x) = d(x,Y)

Theorem
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The open ball topology ra induced by a partial-ultrametric d is a sub-topology of the Alexandr-

off topology t1 .

Proof: Suppose < S, d > is apartial-ulrametric space.

We show that,

V G e ra G = v{ f {x} | x e G }
Suppose x,l E S & Gera aresuchthat.rcy and xeG
Thenthereexist z€S and e>0 suchthat,

x e Br(z) c G

Now, d(.r,r) < e as d(x,x) < d(x,z) < e.
thus, d(y,r)<e as r<y
Thus, d(y ,z ) -< max { d(y ,x) , d(x,z) } < e .

Thus, y e Be( z ),andso y e G

Thus, Ger4.-

Theorem
Not every iso-metric space has the fi.rll Alexandroff topology.

Proof : In the iso-metric space < Z- , d > given above the singleton sets consisting of maximal

objects (i.e. the infinite sequences) are open in the Alexandroff topology, but not in the open ball

topology. D

Theorem
In an iso-poset (i.e. a poset with an ordering derivable from an iso-metric) objects are consistent

iffthey are comparable. That is,

Yx,J (3, a1z andy<z ) <+ xSY or Y<x
Proof: Comparability trivially implies consistency.

Suppose x ,y e S are consistent objects in an iso-poset derived from an iso-metric d . Then we

canchoose z e S suchthat r sz and y <z .

Thus,

d(x ,x) = d(x ,z ) and d(Y ,Y ) = d(Y ,z )

Thus,

d(x,y) < max{ d(x,z) , d(y,z) } = max{ d(x,x) , d(y,y) }

Thus,

d(x ,y ) = d(x ,x) or d(x ,Y ) = d(Y ,Y )

Thus, x <y or y <r .!
Note that the consistency relation is not transitive as the following example shows.

d(y,y) = d(z,z) - 0 , d(Y'z) = 1/z

d(Y,x) = d(x,x) = d(x,z) = 1

y isnotconsistentwith z although x isconsistentwith y,and y isconsistentwith z. In
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generai though consisterrcy is relfexive and symmetric.

Foreachpoint .r, { { xJ is atotal order.

Theorem
Iso-metric spaces are T6 .

Proof: Suppose that < S ,d > is an iso-metric space, and that x +y e S

Then @y M3),

d(x,x) < d(x,y) or d(y,y) < d(x,y)
Suppose (wlog) d(x ,x) < d(x ,y ) .

Then,

x e Br(x) and y I Br(x)

where, e::= d(x,y) .D

Theorem
Aniso-metricspace <S,d> is Tr iff

V x,y e S x < ) (+ x = y

Proof: asforall x <y e S ,andballs Br(t) ,

x e Br(z) + y e Br(z)

tr

Corollary
Any I, iso-metric space is T2.

Iso-metric spaces arefirst countable, that is, there is a countable local base for each point,

e.g. for each x e S , the set of all e-balls for rational e forms a local base at .r .

A topological space is said tobe separable if it has a countable dense subset, while it is said

tobesecondcountableif ithasacountablebase. Aspace <S,t> issaidtobelrsrcountableif
for each x e S there exists a local base rx c. a zuch that,

YGer 3G'er, xeG'e G

A standard result is that every second countable topological space is separable. Suppose that

{Bnln>0J isabaseforasecondcountablespace. I*t, {xn In>0J besuchthatforeach
n ) 0 , xn e Bn. Then it can be shown tsi76l that tttis is a countable dense subset.

Theorem
Iso-metric spaces are f,rst countable.

Proof: let r € S be apoint in an iso-metric space <.!,t > . Thenit canbe shownthat,

{ Br(x) | qelt and q>0 J

is a local base for .r . D

f "Q" denotes the set of all non-negative rational numbers. We assume that "q" always denotes such a ra-

tional.
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Theorem
Aset A sS inanisometricspace <S,r> isdensein S (i.e. A =S )iff

Vxe,S,e>0 1 aeA d(x,a) < d(x,x)+e
Proof: Note the following standard properry of any topological space with a base O.

xeA iff VBeQ . xeB = AaB * O

For open ball meuic set topologies this is equivalent to saying that for any x e ,S and

B6(y)et,
x e Bs(y) - 1 a e A a e Bs(y)

Suppose first that A is dense in S .

LetxeS,ande>0.
Let, 6::= d(x,x)+e.
Then, x e Bo(x).
Thus we can choose a e A such that a e Bs(r ) .

Thus d(a,x) < 6 i.e. d(a,x) < d(x,.r)+e
Thus the first part of the theorem is proved"

Suppose now that the following condition in the theorem holds.

VxeS , e>0 iaeA d(a,x)
We will show that A is dense in S .

Supposethatforsome r e S and 8o(y ), x € Ba(y ) .

Let rri=6-d(x,x).
Then we can choose a e A zuch that.

d(a,x) < d(r,x)+e
i.e. d(a,x)<0.
but,

d(a,y) 3 max{ d(a,x) , d(x,y) }

Thus, d(a,y) < 6,andso, c e B5(y) .E

Convergence
In [Ma85] we used a partial-metric (i.e. a metric set with M2, M6, & lv{7) to generalise Banach's

contraction mapping theorem. For this the following notion of convergence used in metric spaces

was sufflcient.

"lTLd(X",y 
) = 0

This served the purpose for sequences whose limits are intended to be complete i.e.

d(y ,y ) = 0 . In these notes we generalise the metric space notion of convergence to iso-

metric spaces so that it is the same as topological convergence, and so allows convergence to par-

tial limits as well as complete ones.

Asequence X e oS is said to conyergeto apoint y e S inatopologicalspace < S,t>
if,

YGer yeG -1k Yn>k XneG
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For an iso-metric space < S , d > this is equivalent to,

V e>0 1k Y n>k d(X",y)

i.e.

,qld(Xn,J) = d(y,y)

Nl Tz spaces have unique limit points, however, the following example shows that not all Zr

spaces have unique limits.
Let,

be the 11 space with base,

{ {0} v { n I n>k } | n22 }

r.r{ {l} v { n I n>-k } | n>-2 }
v{ { n I n>k } | n22 }

Inthis T1 topologythesequence ),. n . n+2 convergestobottt 0 and 1.

The set of limit points of a space X is denoted Iim(X ) . Although the above definition of con-

vergence for iso-meuics is the narural anologue to the usual one for metric spaces it's properties

are weaker. For example, as metric spaces are T2 limits of sequences are unique, however, iso-

metric spaces are in general only Ts. The following example shows that limits of sequences in

iso-metricspacesarenotnecessarilyunique. Let < {a ,b },d > besuchthat,

d(a,a) = d(a,b) - I , d(b,b ) = 0

(i.e. a <b). Let X ::= 7,n.b . Then X convergestoboth a and b. Wedo,however,have

the following results to relate limit points.

Theorem
For each sequen@ X in a topological space, lim(X ) is closed.

Proof: SupposeX isasequenceinatopologicalspace<S,t>,andthaty'eS & Ge:'are
such that,

y e tin4XlaC
Then lim(X)nG *q.
Thus we can choose y e lim(X ) n G

Thus 1k Yn>k XneG,asYelim(X).
Thus y' e lim(X ) .

Thus ii*6j e tim(X )
Thus lt^6j = tim(X) .D

Theorem
Two points belonging to the same limit set are consistent.

Proof: Suppose | ,!' e lim(X ) .

Then (wlog) we can assume that d(y ,y ) > d(y' ,y') .

Let e > 0. Then wecanchoose,t suchthat for each n > k,
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d(X^,t) < d(y,))+e and d(X,,y'\ < d(y',y')+e
thusforeachn>k,

d(y ,y') s max{ d(y ,X,) , d(X",y') }

= d(y,y) + e

Thus, d(y,y) = d(y,y') as d(y,y) < d(y,y') .

Thus y S y' , and so y and y' Te consistent. E

Theorem
x and y are consistent iff they have a common limit set i.e. if there exists an X such that

x,JElim(X).
Proof: The previous theorem shows that any pair of points in a common limit set must be con-

sistent. Suppose that x and y are consistent, then (wlog) x sy . It just remains to show that x
and y have a common limit set.

Let X ::= )un.y
Then it can be shown that r ,y e lim(X ) . O

Theorem
Any approximation to a limit is also a limit i.e. if y' e lim(X ) and y <y', then
y e lim(X ) ,i.e. Iim(X) = JIim(X) "

Proof: Suppose y'e lim(X ),and e>0.
Then we can choose t zuch that.

Y n>k d(X^,y')

Suppose also that y is such that y < y' .

Then, d(y ,Y) = d(Y ,Y') > d(Y',Y') .

Thus,foreachn>k,

d(x" ,y )

= d(y,y)+e
Thus, y e lim(X).O

Theorem
If the lub of a set (in an iso-metric space) exists then the set is a total order, and so is directed (i.e.

every finite subset has a lub).

The range of limits which may exist in a limit set can be deceptively large, and so of little
use. For example, if an iso-metric space has a least element then every sequence converges to

that least elemenl If the ordering is to be understood as an information ordering then limits

should preserve information content, i.e. if y e lim(X ) then we should also insist on,

= ,lim*d(Xn ,X") = d(y ,y )
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in other words w also need,

Ve>0 lN Vz>N d(y,y)-e < d(X",X") < d(y,y)+e
We say that y is a proper limit of X . A sequence having a proper limit is said to be properly

convergent.

Theorem
hoper limits are unique.

Proof: Suppose that ! , ! e lim(X ) are both proper limits.

Then (by aprevious result) y and y' arecomparable.

if y = y' there is nothing to prove, thus suppose (wlog) that y < y'
Then d(y ,y) > d(y',y')
Thus y and y' cannotbothbeproperlimits for X , acontradiction. D

Theorem
If asequence X properlyconvergesto y then y = lub(lim(x)) .

Proof:
Suppose tlrat X properly converges to y . Suppose also that y' e lim(X ) .

We show that y' < y
Suppose this is not the case, then y < y'
Now,let e >0 , then we can choose N such that for each n > N ,

d(X",y) < d(y,y) + e

and.

d(y,y ) - e

And so,

d(Y Y ) - e 

:'{tjlr :rr ;,',,.,r; i,,
= d(Y,Y ) + e

Thus.

,bgyd(X^ ,y') = d(y ,y )

Thus, d(y,Y ) = d(Y',Y') .

Thusy=y'.fl

Theorem
Not every convergent sequence in an iso-metric space is properly convergent.

Proof:
Consider the space of finite sequences over o with the usual iso-metric. Every sequence con-

verges to the null sequence, however, the sequence given by,
(
| <> if n =oXn ::= 1a1,2, ,il) otherwise\
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X has no proper limit as there are no infinite sequences in this space. n
Proper limits give us a natural way to define the iso-metric analogue to the Cauchy

sequence found in metric spaces. A Cauchy Sequence is a sequence X zuch that,

I 
"_hg_d( 

Xn ,X^)

Theorem
Every chain in an iso-metric space is Cauchy

Proof:
Suppose X isachain, and n <m

Then Xn 3 X^ .

Thus, d(Xn,X") > d(X^,X^) .

Thus X i d(Xi ,Xi ) is a decreasing sequence, and so converges as it is bounded below by
0.

But d(X" ,X^) = d(Xn ,Xo) ,

Thus.

= "I\_o(X",X^)
tr

Theorem
Every properly convergent sequence is Cauchy.

Proof:
Suppose X is properly convergent, then,

,kgyd(X" ,y ) = ,lim d(X" ,x" ) = d(y ,y )

Let e>0,thenwecanchoose N suchtthatforeach z >N,

d(X" ,J )
d(y,y) - e < d(X^,X,) < d(y,y) + e

Thusforall n,m > N ,

d(y,y ) - e

<maxf d(X",y ) , d(y ,X^) ]

Thus.

I 
"_HT_d 

(Xn ,X^)

tr

Completeness
Unfornmately, the connection between the <-convergence properties of a chain and it's ta-

convergence properties is rather weak. Consider the iso-metric space < or- , d > of all finite

and infinite sequeces over o.
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(

d(- -.\ .l o tf -x=Y ' and hl =-lx,Y) ::= 
| t+f" otherwise

where n ::= min{ m I x^ *y^ }
Let X : o -r co- be defined by,

(
| <> if n =0X, ::= 1 a f ,2 ,--. ,f, ) otherwise

Let, }, ::= <1,2 ,"'t. fnanX isachain<-converglngto y.However,X doesnot

r-converge to y as

y€B{y),ildVn>0XneB{y)
Thus chain convergence does not always imply topological convergence. The problem with this

example is that the convergence of X is not proper, i.e.

,hgyd(X" ,X") + d(y ,y )

The following two theorems show that if we restrict ourselves to proper convergence then we can

describe chain completeness in terms of the proper convergence of chains.

Theorem
If a chain in an iso-metric space properly converges then ttre proper limit is an upper bound of the

chain.
Proof:
Suppose X is a chain properly converging to y .

Let n >0
As X is a chain with proper convergence we can show that,

7r i d(Xi,Xi)
decreases to y , and so,

d(y ,y )

Suppose first that,

d(y ,y )

Then as X converges to y we can choose m > n such that,

d(y ,y )

thus,

d(x^,v )

= max{ d(Xn,Xo ), d(X^,y ) }

= d(X",X")
thus, d(X,, Y ) = d(X",X")
thus, Xo S y
Suppose now that, d( y , ) ) = d( X" , X" )

Let m)n ,then,

d(X^ ,1 )



)
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) , d(X",Y ) ]max{ d( Xn , Xn

d(X",1 )

max{ d(Xn,X^
max{ d(X,,X,
max{ d(y ,y )

d(x^ ,y )

V m)n

, d(xn,
, d(x^,
d(x^,t

v) 1

y)]

)J

Thus,

thus,

d(X" ,y ) = d(X^,y )

d(X",y) = d(y,y)
as x convergesto y. Thus,

d(y,y) = d(x",x") = d(x",y)
Thus, Xn=l ,andso Xo3y.n

We can now define the notion of completion for iso-metric spaces. A complete iso-metric
space is one in which every Cauchy sequence properly converges. We thus have the following
interesting result.

Theorem
Complete iso-metric spaces are chain complete.

Proof:
By previous results, every chain is Cauchy, and every properly converging chain is <-convergent.

tr

Lucid & fso-metrics

Much of this work on metric sets is motivated by the need to obtain a beuer understanding

of proof theory forlazy dataflow languages such as the functional programming language Lucid

tW&A851. This language has sequences (i.e. mebers of 'S as it's primitive data objects, and so

suggests a metric treatment. However, topologically it is a f0 space, and so requires a general-

ised metric. The Lucid model of computation is a hybrid. It uses both Kahn's model as well as

lazy evaluation. Although operationally both models appear to be very different we can show

that it does make sense to embed Kahn dataflow into lazy evaluation. Let D be our domain of
atomic objects (think of D as ro ). T\e Kahn Domain (i.e. the Kahn dataflow domain) is the

poset < D* ,< > poset of all finite and inflnite sequences over D under the initial segment ord-

ering" let Dr be the poset < D v {L}, <>, where,

x<y::=x=Iorx=!
Thenthe LucidDomainistheposet < t(Dr) ,3 ) ,where,

x<y Vn>0 xn3y,

It is easy to embed the Kahn Domain into the Lucid Domain (wrt partial orderings) by,

t(: )
I, hl = -
Lr@.a,I, "') atherwise
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Operationally we can understand Kahn dataflow as a lazy evaluation algorithm with the addi-

tional constraint that each daton must be fully evaluated before we can begin evaluating the next

one. Conversely, we can regard lazy evaluation as an extended form of dataflow in which we

now allow datons to be evaluated in any order.

The Cycle Surn Test of Ashcroft & Wadge tW&A851 is used to prove that certain Kahn

dataflow networks tKa74] will not deadlock. A proof of this test was given in [Ma85] using the

iso-metric approach, in essence a generalisation of the Banach Contraction Mapping Theorem to

iso-metric spaces. We cannot however extend ttris test to the Lucid Domain, as it is not an iso-

set, e.g. consider,

< L,2,3
<1,r,3

x and y arc consistent but not comparable, and so this ordering is not derivable from an iso-

metric. So can we redefine the ordering on o( D1 ) in order to make the Lucid Domain an iso-

set ?

Lucid is a lazy language, and so has total results derived from partially defined objects, e.g.

nen(x ) where r = x fW 3; end

has a well defined result. In other words, As we are not interested in the first value of x it is rea-

sonable to use a model of computation in which we can compute with undefined values i.e. com-

pute with J-. What we would like to be able to do is have an extended Kahn model in which
"somehow" we have undefined elements in a network as oppossed to Kahn's model where

deadlock occurs. For example, we need alazy operational semantics for,

Tlte lazon (lazy daton) I is not produced by any node, but is somehow "produced" as the meet

of all possible solutions to the network Instead of regarding the meaning of the network as the

limit of finite approximations generated by processes, we take it to be the meet of all possible

solutions.

Further Work I

t_

3

3
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The following question needs to be answered. Is there a non-uivial iso-metric for the Lucid
Domain which induces a sub-ordering of the usual pointwise one ? If so, then we have a lazyflow
semantics for Kahn networks, and so formalised an intuitively useful programming notion If not
then we have clarified a fundamental distinction between the concepts of data flow and lazy

evaluation.

Further Work 2
This work on iso-metrics has shown that the usual definition of a sequence X converging to a

point y ,

VGea yeG SkVn>kXneG

needs to be looked at again. Presumably it was originally introduced for work in 12 spaces such

as the real numbers where limits wonld be unique. However, we have shown above that Ir
spaces do not (in general) have unique limits, let alone T2 spaces. It would be desirable though

to have a topological definition of convergence for 16 spaces which does give unique limits.
The following is a possible candidate which ne€ds to be examined more closely, especially with
respect to partial metrics.

VGex yeG lkVn>kXoeG
This adds the following constraint to the earlier condition. If X is eventually in an open set then

it's limit must also be in that set. This is too strong for the reals, for example, consider the

sequence,

Vn>0

Thisextraconstraintdoesnotholdfor G =(0,1) ,as 0e (0,1) However,Scotttopo-
logies are certainly not 72, and not even T1 . Under this new definition of convergence limits
are unique for any Ts space. This seems appropriate for iso-metric spaces, however, this has yet

to be proved"

Further Work 3
This work on iso-metric spaces needs to be extended to partial metric spaces, in particular to the

Lucid domain. This domain has the usual (fychonoff) producl For example, the ro product

'(Dr ) overthe flat domain Dr has the base with sets of the form,

xo rr= ;lT

{x
for each finite set of di * L
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