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ABSTRACT

These notes consider the various topologies over metric sets generated by a
selection of the metric axioms given below. In particular we study the separabil-
ity properties of quasi & partial metric spaces.

Introduction

A metric set is defined to be a set § together with a function 4 :S§ xS —[0,,c) which
satisfies a selection of the axioms given in the next section. Such d are called generalised
metrics, and have been studied by mathematicians [Ko88] as well as computer scientists.
de Bakker & Zucker [dB&Z82] use ordinary metric spaces to provide an alternative to partial
order fixed point semantics. This approach uses Banach’s unique fixed point theorem instead.
Smyth [Sm87] generalises symmetry by removing the axiom (M6) in order to combine both par-
tial order & metric semantics (see below). In [Ma85] a generalised metric was used to reason
about the completeness of data objects by generalising the reflexive axiom (M1) to get (M2).
These notes are a study of the seperability properties of such generalisations.

Axioms for Metric Sets Forany x, y,z € §,

(M1)  d(x,y)

0 & x =y ( reflexivity )
(M2) dix,y) =0 = x =y ( partial reflexivity )

(M3) d(x ,x) dix,y) =d(y,y) & x =y ( iso reflexivity )

(M4) x =y => d(x,y) =0 ( pseudo reflexivity )

It

(M5)  d(x.,y)
(M6)  d(x,y) = d(y,x) ( symmetry )
(M7) d(x,z)
(M8) d(x,z) € max{ d(x,y) , d(y.z) } ( ultra transitvity )

d(y,x) =0 & x =y ( Smyth reflexivity )

A

d(x,y)+d(y,z) ( transitivity )

A metric satisfies axioms M1, M6, & M7. An ultrametric satisfies axioms M1, M6, & M8. A
quasimetric satisfies axioms M1 & M7. A Smyth-metric satisifes axioms M5 & M7. A sem-
imetric satisfies axioms M1 & M6. A pseudometric satisfies axioms M4, M6, & M7. A
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partial-metric satisifies axioms M2, M6, & M7. A partialultrametric satisfies axioms M2,
M6, & M8. An iso-metric satisfies axioms M3, M6, & MS.

Separation Properties
The separation properties to be used here for a toplogical space <§ ,t> are,

(To) Vx#yeS . 3Ger . xe€ G and y ¢ G
or 3G et . ye G and x ¢ G
(Ty) Vx#yeS . 3Getr . xe G and y ¢ G
and 3G et . ye G and x ¢ G
(T2) Vx#2yeS§ . 3G6G,Gen
xe€ G and y e€e G and G n G = ¢
These properties hold for t iff they hold for any base for <.

Metric Spaces

First we consider the standard open ball topology 14 < 2% induced by a metric 4 on a set
§ f. 14 has the basis,

{ B{x) | xe€§ and € >0 }
where the e-ball B(x) is defined to be,
{ yeS§ | d(x,y)<¢e}

To see that the e-balls do indeed form a basis for a topology use the following standard result
[Si76].

Theorem ( Base Theorem )
Let S #¢,and Qc25. Then Q is a base fora toplogy on § iff, § = Q, and,

V B,,B, e Q . x € BinB; => I3 Bye Q . x € By ¢ By nB;

Theorem

The open balls induced by a metric form a base for a topology.

Proof: first note that (in a metric space) any e-ball Be(x) contains x, and so, §=Q.
Secondly, note that, if

z € Bgx) n Bs(y)
then,
z € Bfz) < Bdx) n Bs(y)
where,
Yy == min{ €-d(x,z) ,d-d(y,z) }

+ for a standard introduction to metric spaces see [Su75].



4
The open ball topology for metric spaces is T, (i.e. Hausdorff), as forany x#y € §,
x € Bg(x) and y € Be(y) and Bex) n Be(y) = ¢
where,
g u= d(x,

In fact, the separability of metric spaces is stronger than T, however, for our purposes we do not
need to consider any notion of separability stronger than T,. The purpose of these notes is to
consider the questions of whether d generates a topology when the metric axioms are relaxed,
and, if so, what are the resultant separation properties.

Quasimetric Spaces

Using the same proof as above for metrics, we can show that a quasimetric induces an open
ball topologyt. An example of a quasimetric space is the unit interval <[0,1],d > , where,

. y—x if x<y
d(x,y) u= {1 if y<x

In this example the e-balls have the forms,

Bg(x) = {y | x<y <x+¢ } (e<1l)
and,
Be(x) = [0,1] (e>1)

Under this topology the unit interval is actually T, as, if x <y , and,

s::=—L5i—

then B¢(x) and B(y) are disjoint intervals containing x and y respectively. However, the
separability properties of quasimetric spaces are a little different from those of metric spaces.

Theorem

Quasimetric Spaces are T .

Proof: Suppose x #y € S . Then(byM1), d(x,y) #0,and d(y,.x) =0.
And so,

x € Bdx) and y € Bex)

where,
€ = d(y.,x)
Similarly,
y € Bsy) and x & Bsy)
where,

8§ = d(x,y)

+ Quasimetrics are defined in [Si76]



Thus quasmiteric spaces are T; .

Theorem
Any finite quasimetric space is T.
Proof: Suppose,

S = {x1,x2, " X}
Foreach 1<i<n,let
min {f d(x;,y) | y € § —{x}}
2

€ =

Then,

V 1<i<n . xi € Be(x)

and,

Vi#j . Be(x) n Be(x) = ¢

Thus, finite quasimetric spaces are T, .

Theorem
Not all Quasimetric spaces are T;.
Proof: Consider the quasimetric space <S§ ,d > where,

S = {0,1,2, ...}
and,
d :SxS8S {1, %%, %, ...,0]}
where,
0 x=y
Vx,yeS§ . dix,y) = 1/(y+2) x <y
1 x>y

Supposethat x#y € § ,andthat ¢,6 > 0 .
Let,

Y = min{ €, 9]
Then we can always find z € § suchthat,

x <z and y <z and z_}-Z<Y

that is, such that,
z € Be(x) N Byy)
Thus this space cannotbe T,. O

Smyth-metric Spaces
Mike Smyth has studied a weaker form of quasimetric space which we shall call a Smyth-

metric Space. These spaces have the same open ball topology as quasi spaces. A Symth-metric
is Smyth reflexive (MS5) and transitive (M7). The earlier example of the quasi metric over the
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unit interval is Smyth as it is quasi. Two examples of Smyth-metrics which are not quasi are the
following. A partial order < on aset § is equivalent to the Smyth-metric,

d(x,y) == {(1) gthe:fisye
The usual open ball topology is the Alexandroff topology,
{TA | AcS }
where the upper closure TA ofaset A c§ is given by,
TA == {yeS | JxeA .x<y }

To see this note that foreach x € § and £€>0,

peo - (M e

and that foreach A < § ,
TA o= U{ Bi(x) | xe A}
This example is Smyth but not quasi as, if x <y ,then d(x,y) = 0 doesnotimply x =y .

Another example is a Smyth-metric on ==, the set of all finite and infinite sequences over
an alphabet £ under the initial segment ordering.

0 if x<y
d(x,y) u= 2t if y<x
2 otherwise, where n = min{n | x, #y,}

Here the open ball topology is a refinement of the Alexandroff topology, and has the following as
a base.

{ T{x} | xe€§ and lxl <o }

This is an example of a Scott topology. A Scott topology t ona set § induced by a complete
partial order < on S is a sub-topology of the Alexandroff topology such that,

V Get . ¥V Xc§ . I nX = XnG # ¢

Theorem
Every Symth space is Ty.
Proof: Suppose x #y ina Smyth space < S ,d >. Then,

d(x,y) = 0 or diy,x) # 0
Suppose (wlog) that d(x ,y) # 0 . Then,
x € Bex) and y & Bgx)
where,
€ = d(x,y)
Thus every Smyth space has been shownto be T,o.

Theorem



A Smyth space is quasi iffitis T, .
Let < S ,d > be a Smyth space, and suppose x #y € § .
First, suppose <S ,d > is quasi, then by M1,

dix,y) # 0 and d(y,x) # 0
thus,
x € Bg(x) and y e Be(x) and
y € Bs(y) and x € By(y)
where,
e u= d(x.,y) and § = d(y.x)

Thus < S ,d > hasbeenshowntobe T, .
Suppose now that the Smyth space < S ,d > is Ty, then,

J B(v) . x € Beg(v) and y ¢ Bg(v)
but,
d(v,y) £ d(v,x)+d(x.,y)

thus d(x,y)=#0.
Thus it has been shown that, x # y = d(x,y) # 0 ,i.e. M2. Thus M1 follows from MS5.
Thus < S ,d > has been shown to be quasi. [

This last theorem shows that quasimetric & Smyth-metric are equivalent notions if we are work-
ing in a universe of T, spaces, however, when we come to discuss Scott topologies we are in
general dealing with T, spaces.

Ultrametric Spaces
A non-archimedean space (introduced by A.F. Monna [M50]) is one for which there exists a
basis Q such that,
VBl,Bzeg . Blng or Bz(;_Bl or BIF\Bz:(D

It can easily be shown that the ultrametric spaces are non-archimedean.

Partial-metrics
A partial-metric [Ma85] is partially reflexive, symmetric, and transitive (M2+M6+M7). It
was introduced as a method of distinguishing between "partial” and "complete” objects in the
context of programming language semantics. An object x is said to be complete if
d(x ,x) = 0, otherwise it is said to be partial. And so, this distinction was introduced as the
"partial reflexive” axiom. We shall see later that, for separability reasons, this decision needs to
be refined. First, consider the following partial-metric on ==, the set of all finite and infinite
sequences over the alphabet Z.

2751 if x<y
d(x,y) == {2‘” otherwise
where, < is the initial segment ordering on X~ , and,

mn{nlx,.#2y,}) == min{ n | x4 # Yy }
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Here the complete objects are precisely the infinite sequences. < X*,d > can be used to model
dataflow semantics {Ka74] [Wa85]. This partial metric is in fact a partial-ultrametric, as d is
ultra transitive (i.c. M8). An intuitively pleasing property of partial-ultrametrics is that no point
can be closer to another than the point itself, i.e. forall x ,y € §,

dix,x) < d(x,y)

as d is ultra transitive. Not all partial-metrics are ultra transitive, e.g. consider the following
partial metric defined onthe set {a ,b }.

d(a,a) =1 , d(a,b) == ¥ , d(b,b) == 0

Theorem

The set of open balls defined by a partial ultrametric forms a base for the usual open ball topol-
ogy, also, this topology is non-archimedean.

Proof: We use the "Base Theorem" employed earlier to show that the collection of all open balls
forms a base. Suppose that 4 is a partial-ultrametric on § . First note that § is the union of all
the balls as, foreach x € § ,

x € Bgx)
where,
€ = d(x,x)+1
Instead of showing that,
z € Binn By => 3 Bs . z Bs ¢ By n By
For any open balls B, B,, and B3, we prove the stronger non-archimedean property,
B, ¢ B, or By, ¢ B, or B, n By, = ¢
Suppose that,
Be(x) mn Bg(y) = ¢
and that (wlog) £<8. Then we can choose,
z € Bex) N Bs(y)
Suppose p € Be(x ), then (as d is ultra transitive),
d(y,p) < max{ d(y,z) , d(z,x) , d(x.,p)}

thus, d(y.,p) <6,

thus, p € Bs(y ),

thus, Be(x) < Bs(y)

Thus we have shown that a partial-ultrametric defines a non-archimedean open ball topology. [

Corollary
Ultrametric spaces are non-archimedean.

These notes are an investigation into the separability properties of particular metric sets.
They are motivated by a belief that certain metric sets may be useful in programming language
semantics. To this end we are assuming that any such set must be at least To. That is, any two
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distinct points must be separable by some open set, where we understand an open set to be a finite
property. Unfortunately, partial-ultrametric spaces are not always To. For example, consider the
following partial-ultrametric on the set {a ,b }.

dix,x) == d(x,y) == d(y,y) == 1
However, we can define the following equivalence relation on partial-ultrametric spaces.
x =y = d(x,x) = d(x,y) = d(y.y)

Theorem

Two points in a partial-ultrametric space are equivalent iff they are inseparable (i.e. every open
set containing one point must contain the other).

Proof: We have to show that forany x .,y € § ,

x =Yy iff VzeS ,e>0 . x € Bgfz) = y € Bez)
and y € Bfz) = x € Bgz)
Suppose firstthat x = y ,andthat x € Be(z) .
then, d(x,x) <€ as d(x,x)<d(x,z).
Thus, d(x,y) <& as d(x,x)=d(x,y).
Now, d(z,y) <max{ d(z,x),d(x,y)}.
Thus, d(z,y) <¢.
Thus, y € Be(z) .
Similarly, we can show that,

VzeS ,e>0 . y e Bz) = =x € Bgz)

Thus, x and y have been shown to be inseparable.
Now for the second half of the theorem. Suppose that x and y are inseparable. Then,

VzeS ,e>0 . x € Bgfz) => y € Be(z)
but,if d(x,x) # d(x,y) then d(x,x) < d(x,y) ,giving,
x € Bg(x) and y & Beg(x)

where, € ::= d(x,y) ,acontradiction. Andso, d(x,x)=4d(x,y) .
Similarly we can show that d(y,y ) = d(y ,x ) ,and so, we have shown that x =y . [

If we regard = as computational equivalence, then the topology can be regarded as one
describing the computational structure of some class of objects. However, if the topology is to be
one describing the structure of a class of computable objects then it is reasonable to assume that
objects are completely specified by their computability properties. And so, we consider a more
restrictive version of partial-ultrametric spaces called iso-metric spaces, where the reflexive
axiom M2 is tightened to get M3,

x =y & d(x,x)=d(x,y)=4d(y.y)
We can thus define the following partial order for iso-metric spaces.

x £y = d(x,x) = d(x,y)

Theorem
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The open ball topology 7, induced by a partial-ultrametric d is a sub-topology of the Alexandr-
off topology 74 .

Proof: Suppose < S ,d > is a partial-ultrametric space.

We show that,

YV Getw . G =uf{T{x} 1 xeCG}

Suppose x,y € § & Gerty aresuchthat x<y and xe G .
Then there exist z € § and &> 0 such that,

x € Bg((z) ¢ G

Now, d(x,x) <€ as d(x,x)<d(x,z)<¢e.
thus, d(y ,x) <& as x<y .

Thus, d(y,z)<max{d(y,x).,d(x,z)} <¢e.
Thus, y € Be(z) ,andso y € G .

Thus, G € 7, .0O

Theorem

Not every iso-metric space has the full Alexandroff topology.

Proof: In the iso-metric space < X~,d > given above the singleton sets consisting of maximal
objects (i.e. the infinite sequences) are open in the Alexandroff topology, but not in the open ball
topology. OJ

Theorem
In an iso-poset (i.e. a poset with an ordering derivable from an iso-metric) objects are consistent
iff they are comparable. That is,

Vx,y . (3z . x<z and y<z ) & x<y or y<x

Proof: Comparability trivially implies consistency.
Suppose x ,y € § are consistent objects in an iso-poset derived from an iso-metric 4 . Then we
canchoose z € § suchthat x <z and y<z.

Thus,
d(x,x) = d(x,z) and d(y,y) =4d(y,z)
Thus,
d(x,y) < max{ d(x,z) , d(y,z)} = max{ d(x,x) , d(y,y) }
Thus,

d(x,y) = d(x,x) or d(x,y)=d(y.y)
Thus, x <y or y<x.[
Note that the consistency relation is not transitive as the following example shows.
d(y,y) =d(z,z) =0 , d(y,z) =%
d(y,x) = d(x,x) =d(x,z) =1

y is not consistent with z although x is consistent with y, and y is consistent with z. In
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general though consistency is relfexive and symmetric.
For each point x , { {x } is a total order.

Theorem

Iso-metric spaces are T .

Proof: Suppose that < S ,d > is an iso-metric space, and that x #y € § .
Then (by M3),

d(x,x) < d(x,y) or d(y,y) < d(x,y)

Suppose (wlog) d(x.,x) <d(x,y) .
Then,

x € Bg(x) and y ¢ Bg(x)
where, ¢ = d(x,y) .0
Theorem
An iso-metric space <§ ,d > is T, iff

Vx,yeS§S . x=<y & x =1y

Proof: asforall x <y € § ,andballs Bgz) ,

x € Bz) = y € Bgz)
O

Corollary
Any T, iso-metric spaceis T;.

Iso-metric spaces are first countable, that is, there is a countable local base for each point,
e.g. foreach x € § , the set of all e-balls for rational ¢ forms a local base at x .

A topological space is said to be separable if it has a countable dense subset, while it is said
to be second countable if it has a countable base. A space <§ ,1> is said to be first countable if

foreach x € S there exists a local base 1, — t such that,

VGetr . 3Ge1n, . xe G cG

A standard result is that every second countable topological space is separable. Suppose that
{B, | n >0} is a base for a second countable space. Let, {x, | n 20} be such that for each
n>0, x, € B, . Then it can be shown [Si76] that this is a countable dense subset.

Theorem
Iso-metric spaces are first countable.

Proof: let x € § be apoint in an iso-metric space <S§ ,t>. Then it can be shown that,

{ B(x) | geQt and ¢>0 )

is a local base for x . (]

+ "Q" denotes the set of all non-negative rational numbers. We assume that "q
tional.

always denotes such a ra-
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Theorem
Aset A S inan isometric space <§ ,7> isdensein § (ie. A =S )iff

VxeS§ ,e>0 . T aeA . dix,a) <d(x,x)+¢
Proof: Note the following standard property of any topological space with a base Q.

x € A iff VBeQ . xeB = AnNnB =z ¢

For open ball metric set topologies this is equivalent to saying that for any xe § and
Bs(y)e 1,
x € Bs(y) = Jda e A . a e Bsy)

Suppose first that A isdensein § .

Let xeS,and >0 .

Let, 8 == d(x.,x)+¢.

Then, x € Bs(x).

Thus we can choose a € A suchthat a € Bg(x) .

Thus d(a,x) < & ie. d(a,x) <d(x,x)+¢.

Thus the first part of the theorem is proved.

Suppose now that the following condition in the theorem holds.

VxeS ,e>0 . ddaeA . d(la,x) < d(x,x)+¢

We will show that A is densein S .
Suppose that forsome x € § and Bs(y ), x € Bs(y) .
Let ¢ == 8 —-d(x,x).
Then we can choose a € A such that,
d(a,x) < d(x,x)+¢

ie. d(a,x)<3§d.
but,

d(a,y) < max{ d(a,x) , d(x,y) }
Thus, d(a,y) <8 ,andso, a € Bs(y) .00

Convergence
In [Ma85] we used a partial-metric (i.e. a metric set with M2, M6, & M7) to generalise Banach’s
contraction mapping theorem. For this the following notion of convergence used in metric spaces

was sufficient.
nli_gnwd(Xn 5] = 0

This served the purpose for sequences whose limits are intended to be complete i.e.
d(y,y) = 0. In these notes we generalise the metric space notion of convergence to iso-
metric spaces so that it is the same as topological convergence, and so allows convergence to par-
tial limits as well as complete ones.
Asequence X e ©§ issaid to convergeto apoint y € § in a topological space <§ ,t>
if,
VGetr . yeG = Ik . Vn>k . X,eGC
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For an iso-metric space <8 ,d > this is equivalent to,
Ve>0 . Jk . Vn>k . dX,,y) < d(y,y)+e
ie.
Jim d(X,,y) = d(y.y)

All T, spaces have unique limit points, however, the following example shows that not all T,
spaces have unique limits.
Let,

uf{ {1} uf{n il nzk} | nz22
Jf{ {n tnz2k} ! n22}
In this T; topology the sequence A n . n+2 convergestoboth 0 and 1.

The set of limit points of a space X is denoted lim(X ). Although the above definition of con-
vergence for iso-metrics is the natural anologue to the usual one for metric spaces it’s properties
are weaker. For example, as metric spaces are T, limits of sequences are unique, however, iso-
metric spaces are in general only To. The following example shows that limits of sequences in
iso-metric spaces are not necessarily unique. Let <{a ,b },d > be such that,

d(a,a) =d(a,b) =1, d(b,b) =0

(i.e. a<b). Let X ::=2An.b . Then X convergestoboth a and b . We do, however, have
the following results to relate limit points.

Theorem
For each sequence X in a topological space, lim(X ) is closed.
Proof: Suppose X is a sequence in a topological space <§ ,t>,and that y’e § & G e © are

such that,
y € lim(X)nG

Then lim(X)nNn G # ¢.

Thus we canchoose y € Iim(X)n G

Thus 3 k . Vn>k . X,€e G ,a8 y € lim(X) .
Thus y € lim(X) .

Thus lim(X) < lim(X) .

Thus lim(X) = lim(X) .0O

Theorem

Two points belonging to the same limit set are consistent.
Proof: Suppose y .,y € lim(X) .

Then (wlog) we can assume that d(y ,y) 2 d(y",y") .
Let £ > 0. Then we can choose k£ such that foreach n >k,
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d(X.,y) < d(y,y)+e and d(X,,y) < d(y,y)+e
thus foreach n >k,
d(y,y') £ max{ d(y.Xx) , d(X.,y") }
< max{ d(y,y)+e , d(y,y)+¢e]
= d(y,y)+e

Thus, d(y,y)=d(y.,y) as d(y,y)<d(y.,y).
Thus y <y’,and so y and y" are consistent. (]

Theorem

x and y are consistent iff they have a common limit set i.e. if there exists an X such that
x,y € lim(X).

Proof: The previous theorem shows that any pair of points in a common limit set must be con-

sistent. Suppose that x and y are consistent, then (wlog) x <y . It just remains to show that x

and y have a common limit set.

Let X == An.y.

Then it can be shown that x ,y € lim(X ) .0

Theorem

Any approximation to a limit is also a limit ie. if y € Iim(X) and y<y’, then
y € lim(X) ,ie. lim(X)=dlim(X).

Proof: Suppose y € lim(X ) ,and £¢>0.

Then we can choose & such that,

Vn>k . d(X.,y) < d(y,y) + ¢

Suppose also that y issuchthat y <y’.
Then, d(y.y)=4d(y.y)2d(y.y).
Thus, foreach n >k,

d(X,,y) < max{ d(X,,y) . d(y.,y) }
< max{ d(y,y')+e ,d(y,y)}

IA

max{ d(y,y)+¢ , d(y,y) }

d(y.y) +¢
Thus, y € lim(X) .O

Theorem
If the 1ub of a set (in an iso-metric space) exists then the set is a total order, and so is directed (i.e.
every finite subset has a lub).

The range of limits which may exist in a limit set can be deceptively large, and so of little
use. For example, if an iso-metric space has a least element then every sequence converges to
that least element. If the ordering is to be understood as an information ordering then limits
should preserve information content, i.e. if y € lim(X ) then we should also insist on,

3 nli_l;nwd(xn » Xn ) = d()‘ vy)
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in other words w also need,
Ve>0 . IN . V>N . diy,y) — € < d(X,,X,) < d(y,y) + ¢

We say that y is a proper limit of X . A sequence having a proper limit is said to be properly
convergent.

Theorem

Proper limits are unique.

Proof: Suppose that y , " € lim(X) are both proper limits.
Then (by a previous result) y and y’ are comparable.

if y =y  there is nothing to prove, thus suppose (wlog) that y < y .
Then d(y,y) > d(y.y) .

Thus y and y’ cannot both be proper limits for X , a contradiction. (]

Theorem

If a sequence X properly convergesto y then y = ub(lim(X)) .

Proof:

Suppose that X properly convergesto y . Suppose also that y’ € lim(X) .
We show that y <y .

Suppose this is not the case, then y <y’ .

Now, let £ >0, then we can choose N such that foreach n >N,

d(X,,y) < d(y,y) + ¢

and,
d(y,y) — & < d(Xa,Xs) < d(y.y) + ¢
And so,
d(y,y) — & < d(X,,X,)
< d(Xa,y')
< max{ d(X,,y) ., d(y.y) }
< max{ d(y,y)+¢e , d(y,y) ]
= d(y,y) + ¢
Thus,
Jimd(X,,y) = d(y,y)

Thus, d(y,y) = d(y,Y") .
Thus y =y .0

Theorem
Not every convergent sequence in an iso-metric space is properly convergent.

Proof:
Consider the space of finite sequences over ® with the usual iso-metric. Every sequence con-

verges to the null sequence, however, the sequence given by,

o <> if n=20
Xo = <1,2, =+ ,n > otherwise
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X has no proper limit as there are no infinite sequences in this space. [

Proper limits give us a natural way to define the iso-metric analogue to the Cauchy
sequence found in metric spaces. A Cauchy Sequence is a sequence X such that,

3, lim d(Xe . Xn)

Theorem

Every chain in an iso-metric space is Cauchy

Proof:

Suppose X isachain,and n<m .

Then X, £ X. .

Thus, d(Xp,Xn) 2 d(Xm ,Xm) .

Thus A i . d(X;,X:) is a decreasing sequence, and so converges as it is bounded below by
0.

But d(X,,Xm) =d(Xx,Xs),

Thus,
3, Jim d(Xa,Xn)

O
Theorem
Every properly convergent sequence is Cauchy.
Proof:
Suppose X is properly convergent, then,

limd(X,,y) = lmd(X,,X.) = d(y.,y)

Let € > 0, then we can choose N sucht that foreach n >N,
d(X.,y) < d(y,y) + ¢
d(y,y) — ¢ < d(X:.,X,) < d(y.y) + ¢
Thus forall n,m > N,
d(y.,y) — ¢ < d(X:.,Xs)
< d(Xn,Xm)
smax{ d(X,,y) , d(y.Xn) }
< d(y,y) + ¢

Thus,

3 lim d(X,,Xn)
a
Completeness

Unfortunately, the connection between the <-convergence properties of a chain and it’s t4-
convergence properties is rather weak. Consider the iso-metric space < w~,d > of all finite
and infinite sequeces over ®.
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d(x,y)

0 if X =Y, and Ix|=°°
1+2 otherwise

where n == min{ m | xn # ym } .
Let X : w— o~ be defined by,

<> if n =0
<1,2 ,--- ,n > otherwise

Let, y == < 1,2 ,--- > . Then X is a chain <-converging to y . However, X does not
T-convergeto y as

y € B(y) , and V n 20 . X, ¢ By(y)

Thus chain convergence does not always imply topological convergence. The problem with this
example is that the convergence of X is not proper, i.e. '

Jim d(X, ,X,) # d(y.y)

The following two theorems show that if we restrict ourselves to proper convergence then we can
describe chain completeness in terms of the proper convergence of chains.

Theorem

If a chain in an iso-metric space properly converges then the proper limit is an upper bound of the
chain.

Proof:

Suppose X is a chain properly converging to y .

Iet n 20 .

As X is a chain with proper convergence we can show that,

AioLd(Xi, X )
decreasesto y , and so,
d(y ,y) < d(Xa,Xys)
Suppose first that,
d(y ,y) < d(X.,Xn)
Then as X convergesto y we canchoose m >n such that,
d(y ,y) < d(Xm,y) S d(Xa,Xs)
thus,
d( X, ,y) < max{ d( X, ,Xn) , d(Xn .y )}
max{ d( X, ,Xs ) , d(Xm ,¥ ) }
d( X, , X» )

thus, d( X, ,y) = d( X, ,Xy)

thus, X, <y

Suppose now that, d(y ,y ) = d( X. , Xa )
Let m 2n ,then,

d(Xm ,y) < max{ d(Xs ,Xm ) , d(Xs .,y )}
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= max{ d( X, ,Xa,) , d( X ,y )}
= d(X,,y)
< max{ d(Xpn ., Xm ) , d( Xm ,y ) }
= max{ d( X, , X, ) , d(Xm .y )}
= max{ d(y ,y ), d( Xm .,y )}
= d(Xm ,y)
Thus,
Vm2n . d(X,,y) = d(Xm,y)
thus,
d(X, ,y) = d(y.y)
as X convergesto y . Thus,
d(y .y) = d(Xs ,Xpn) = d(Xa,y)

Thus, X, =y ,andso X, <y .0

We can now define the notion of completion for iso-metric spaces. A complete iso-metric
space is one in which every Cauchy sequence properly converges. We thus have the following
interesting resulit.

Theorem

Complete iso-metric spaces are chain complete.

Proof:

By previous results, every chain is Cauchy, and every properly converging chain is <-convergent.
O

Lucid & Iso-metrics

Much of this work on metric sets is motivated by the need to obtain a better understanding
of proof theory for lazy datafiow languages such as the functional programming language Lucid
[W&A85]. This language has sequences (i.e. mebers of ©§ as it’s primitive data objects, and so
suggests a metric treatment. However, topologically it is a T space, and so requires a general-
ised metric. The Lucid model of computation is a hybrid. It uses both Kahn’s model as well as
lazy evaluation. Although operationally both models appear to be very different we can show
that it does make sense to embed Kahn dataflow into lazy evaluation. Let D be our domain of
atomic objects (think of D as ). The Kahn Domain (i.e. the Kahn dataflow domain) is the
poset <D=,<> poset of all finite and infinite sequences over D under the initial segment ord-
ering. let D, betheposet < D u{l} , <> , where,

x <y = x =1L or x =Yy
Then the Lucid Domain is the poset < ®(D,) , < > , where,
x <y = VYV n20 . x4 £y

It is easy to embed the Kahn Domain into the Lucid Domain (wrt partial orderings) by,

_ o x k| = oo
i(x) = x@<1,L, --- >  otherwise
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Operationally we can understand Kahn dataflow as a lazy evaluation algorithm with the addi-
tional constraint that each daton must be fully evaluated before we can begin evaluating the next
one. Conversely, we can regard lazy evaluation as an extended form of dataflow in which we
now allow datons to be evaluated in any order.

The Cycle Sum Test of Ashcroft & Wadge [W&AS8S] is used to prove that certain Kahn
dataflow networks [Ka74] will not deadlock. A proof of this test was given in [Ma85] using the
iso-metric approach, in essence a generalisation of the Banach Contraction Mapping Theorem to
iso-metric spaces. We cannot however extend this test to the Lucid Domain, as it is not an iso-
set, e.g. consider,

x = <1,2,3 - >
y = <1,1,3 - >
x and y are consistent but not comparable, and so this ordering is not derivable from an iso-
metric. So can we redefine the ordering on ®(D,) in order to make the Lucid Domain an iso-
set ?
Lucid is a lazy language, and so has total results derived from partially defined objects, €.g.

next( x ) where x = x fby 3 ; end

has a well defined result. In other words, As we are not interested in the first value of x it is rea-
sonable to use a model of computation in which we can compute with undefined values i.e. com-
pute with L. What we would like to be able to do is have an extended Kahn model in which
"somehow" we have undefined elements in a network as oppossed to Kahn’s model where
deadlock occurs. For example, we need a lazy operational semantics for,

The lazon (lazy daton) L is not produced by any node, but is somehow "produced” as the meet
of all possible solutions to the network. Instead of regarding the meaning of the network as the
limit of finite approximations generated by processes, we take it to be the meet of all possible

solutions.

Further Work 1
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The following question needs to be answered. Is there a non-trivial iso-metric for the Lucid
Domain which induces a sub-ordering of the usual pointwise one ? If so, then we have a lazyflow
semantics for Kahn networks, and so formalised an intuitively useful programming notion. If not
then we have clarified a fundamental distinction between the concepts of data flow and lazy
evaluation.

Further Work 2
This work on iso-metrics has shown that the usual definition of a sequence X converging to a

point y ,
vV Getr . yeG = 3k .V n>k . X,€eG

needs to be looked at again. Presumably it was originally introduced for work in T, spaces such
as the real numbers where limits would be unique. However, we have shown above that T,
spaces do not (in general) have unique limits, let alone T, spaces. It would be desirable though
to have a topological definition of convergence for To spaces which does give unique limits.
The following is a possible candidate which needs to be examined more closely, especially with
respect to partial metrics.

YV Get1t . yeG & Tk .V n>k.X,¢€G

This adds the following constraint to the earlier condition. If X is eventually in an open set then
it’s limit must also be in that set. This is too strong for the reals, for example, consider the

sequence,

‘v’nZO.X,.::=ni1

This extra constraint does not hold for G = (0,1) ,as 0 e (0,1) . However, Scott topo-
logies are certainly not T, and not even T;. Under this new definition of convergence limits
are unique for any T, space. This seems appropriate for iso-metric spaces, however, this has yet
to be proved.

Further Work 3

This work on iso-metric spaces needs to be extended to partial metric spaces, in particular to the

Lucid domain. This domain has the usual (Tychonoff) product. For example, the ® product
o(D,) overthe flat domain D, has the base with sets of the form,

{ x 1 VY 1<i<k . x=4d )}

for each finite setof d; # L .
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