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The Cordic Algorithm 

The CORDIC (COordinate Rotation on a Digital Computer) 
algorithm was first introduced by Voider [10] and provides 
a unified method of performing vector rotations and 
multiplication / division whilst performing only shift and 
add operations. Volder's algorithm was generalised by 
Walther [11] to include hyperbolic functions, exponentials 
and square roots. 

The CORDIC method is based on the following set of 
iterative equations :- 

Abstract 

In this report we discuss the VLSI realisation of a 
pipelined CORDIC arithmetic unit to perform stable 
matrix row operations for the solution of systems of 
linear equations. The algorithmic considerations of 
the CORDIC process are highlighted and a chip level 
architecture is derived from these to implement the 
algorithm in a pipelined manner. We then proceed to 
give details of the 2wri CMOS processor that has been 
designed to implement that architecture. 

 

Algorithm 

 

Introduction 

= xi + ai  m Yi W 
Y1+1 = Yi - ai Ili 

Zi+1 = Zi a,  ai 

 

The CORDIC operation has been widely used in the 
implementation of modern signal processing systems. This 
is due to the many functions that can be computed using 
the same hardware and the stability of the method 
compared to traditional approaches. It has been applied to 
many domains including the solution of linear equations 
[1,2,3,4], filtering [5], Single Value Decomposition [2,6] and 
direct matrix techniques such as the Faddeev Algorithm 
[7,8,9]. 

This report describes the design of a pipelined CORDIC 
processor to perform QR factorisation using Givens 
rotations. The Givens method performs a matrix row 
operation, replacing the traditional multiply and add 
(Gaussian elimination) with a two dimensional rotation. 
Traditionally an element of the matrix is reduced to zero 
by adding a multiple of another row to the row containing 
that element. The Givens method treats the two rows as a 
series of two-dimensional vectors formed by the pairs of 
points corresponding to a particular column. These vectors 
are then rotated in such a way that one of the coordinates 
in a particular vector becomes zero. All vectors are rotated 
by the same angle. This method has the property of 
increased numerical stability ; intuitively this is due to the 
fact that the length of the vector does not change under a 
rotation operation. 

A more detailed description of the application of the 
Givens technique to signal processing can be found in the 
paper describing the iterative version of this processor [1]. 
We describe here the implementation of the pipelined 
design proposed in that paper and discuss the architectural 
problems encountered in the construction of such a 
processor from the systems level to the design of a CMOS 
circuit. 

cci = (1/4m) arctan (.0m) 	: 	24 

E{1,-1} : me {1 , 0, -1} 

The equations perform a vector rotation operation in 
terms of a series of smaller imperfect rotations, as described 
in [12]. Each of the smaller rotations may be in either a 
clockwise or anticlockwise direction selected by the value 
of 	By allowing the direction to be chosen for each 
iteration separately a number of functions may be 
computed. The value of m is used to select either circular, 
linear or hyperbolic space. (1, 0, -1 respectively). The value 
of 1.4 is chosen to be 2-i with the result that each iteration 
can be performed using only simple shift and add 
operations. 

On completion of the iteration various functions are 
retained in the x,y,z registers depending on the different 
values of ai  and m . The available functions are 
summarised in Figure 1. 
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Figure 1 - CORDIC functions 

The CORDIC processor that we describe in this paper 
performs the circular subset of the algorithm only. Since 
the implementation of Givens method requires only 
circular rotations the additional functionality is not 
required. Provision of the additional modes also carries an 
overhead due to the increased connectivity between data 
bits in successive stages of the pipeline. This will lead to 
both hardware cost and corresponding decreases in circuit 
speed. 



K-factor Correction 

Each of the iterations in the above equations introduces a 
scale factor error due to the imperfection of the rotation 
performed. These scale factors are multiplicative and 
accumulate as the computation proceeds. The total scale 
factor after N iterations is denoted by K and for the circular 
mode is equal to 

N-1 
1  

K =II cos( a art:tan 2-I ) 
i-0 

N-1 

scrt(1+ 2-2i). 1.646760... 

The scale factor error inherent in the CORDIC process is an 
important aspect to consider and may be dealt with in a 
number of ways. The most direct method is to perform a 
division operation after each CORDIC operation, 
removing the scale factor directly. This can be expensive in 
terms of hardware and may severely limit performance. 
More popular methods solve the problem by incorporating 
a number of extra iterations into the algorithm in order to 
force K to be an integer power of the number radix (or 
unity). Once the scale factor has been modified in this way 
it may be removed by a simple shift operation. 

Haviland [13] proposes that the additional scale factor 
iterations take the form of the following fixed multiples : 

X = XN - 21 xN = xN ( 1 - 2-1) 
Y = YN - 2 YN = YN ( 1 - ) 

Each of these constant multiples may be formed by a single 
shift and subtract operation and has a value slightly less 
than one. K may be reduced to unity in this way by post 
multiplying the results by a suitable set of these multiples. 
The accuracy of the combined constant factor must be 
sufficient to avoid the introduction of errors into the 
results. For 32 bit integers 16 additional iterations are 
required to reduce the results to their correct values. 

Ahmed [4] has devised a method in which a number of 
standard CORDIC iterations are repeated to force the value 
of K to be equal to 2. To attain the required accuracy in this 
case, again for 32 bit integers, an extra 28 iterations are 
required. 

The system that we have adopted is that proposed by 
Delosme [14] which combines the ideas of Haviland and 
Ahmed. For 32 bit integers his method requires an 
additional nine iterations to reduce K to the value 2. Seven 
extra CORDIC iterations (i values of 0, 1, 3, 5, 6, 8, 14) are 
used in conjunction with two special iterations (1 - 2-2) and 
(1 + 2-6). 

Recent years have seen the development of CORDIC 
implementations that make use of redundant number 
systems. These employ a redundant digit set for a of (-1,0,1) 
allowing faster circuits to be implemented that make use of 
carry save addition/subtraction units. A consequence of 
the use of redundant number techniques is that the delta 
control circuitry must operate by making an estimate of the 
signs of the values from the previous iteration, with the 
additional option of deciding that the sign at this stage is 
zero, deferring the decision to a later iteration. 
Unfortunately this results in a value of K which is data 
dependent since the selection of zero for a at a particular 
stage effectively removes the scale factor contributed by 
that stage. For the interested reader, some recent solutions 
to this problem have been published called the double 
rotation method [15], correcting rotation method [16], 
Branching CORDIC [12] and online calculation [2]. 

Application to Givens Rotations 

Two distinct operations are involved in the application of 
a Givens rotation to a pair of matrix rows. The first 
operation is the calculate of the rotation angle using the 
relevant pair of values from the rows. The angle must be 
selected such that a prespecified member of the pair is 
reduced to zero. Given a vector <x,y> and rotating y to 
zero, we must rotate by a total angle, Z of 

Z= arctan (y/x) 

In the second stage of the process this rotation is applied to 
the remainder of the elements in the rows. It has been 
noted by Deprettere [5] and Sung [17] that the sequence 

an I is an equivalent representation of the rotation 
angle Z Thus by storing the sequence of a values calculated 
in the first stage, the second stage may be easily performed 
by 'replaying' those values. This considerably reduces the 
hardware requirements by not performing calculations 
using stored values of Z and a4  but by stored a values. Due 
to the bit-recursive nature of the a calculation each 
pipeline stage has only to calculate and retain a single a 
value. 

CHIP-LEVEL ARCHITECTURE 

Overall Structure 

The CORDIC algorithm described above is an inherently 
integer operation, and has been implemented as such by a 
number of institutions [7,8,9] including the University of 
Warwick [10]. This section will describe the architecture of 
the Warwick Pipelined CORDIC Processor which extends 
the operation of the algorithm to the IEEE 754 floating 
point number system, and pipelines the iterations of the 
algorithm to improve processor throughput. Using a 
readily available CMOS process technology, namely the 
2um process from ES2, it has been found possible to 
implement such a device in a silicon area small enough 
for commercial exploitation. 

Floating point operation is achieved by making use of the 
fact that each individual step of the algorithm consists 
solely of additions and shifts. Therefore by aligning the 
mantissas of the two input numbers and storing the 
corresponding exponent it is possible to implement the 
pipeline as though it were a simple integer CORDIC 
system. The results of the computation must be post-
normalised and recombined with the common exponent 
before they can be returned to the user as floating point 
values. 
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Previous implementations of the CORDIC algorithm have 
generally taken the form of registers for the x,y and z 
variables. When performing the computation barrel 
shifters are used to form the shifted versions of the x and y 
values which are added to the original ones to form new 
x,y values. The values of a needed in the z computations 
are typically stored in a ROM either on the same processor 
or as a separate unit. The algorithm is implemented by 
repeating the iterations on these registers until the 
computation on a set of values is complete. A number of 
institutions [1,5] have explored the possibility of pipelining 
the computation such that each stage of the pipeline 
performs a single iteration of the algorithm. 

Several properties of the CORDIC algorithm have been 
used in the construction of our processor. The first is the 
use of stored a values at each stage instead of the full value 
of z, as described earlier. Each stage of the pipeline 
computes a single a value and stores this. In addition, the 
shifts at a particular stage of the iteration are fixed, and so 
they can be hard wired rather than being performed by a 
general shift unit. 

Using these properties each pipeline stage performs a 
single iteration of the algorithm taking as inputs the 
values held in the registers of the previous stage. The 
shifting of the x and y values is performed by a series of 
point to point connections. This leads to space savings and 
allows rapid operation of the pipeline. Despite the above 
considerations some restrictions must still be imposed on 
the functionality of the unit in order to place a complete 
design on a realisable processor. 

Floating Point Circuitry 

From the above discussion, it can be seen that the design of 
the Pipelined CORDIC Processor falls naturally into two 
areas. These are the floating point manipulation area and 
the integer CORDIC pipeline. The floating point section of 
the CORDIC processor must carry out a number of 
functions. These functions are : 

• Alignment of the mantissas of the two input 
numbers according to the values of their 
exponents. 

• Storage of the exponent that corresponds to the 
integer values in each stage of the CORDIC 
pipeline (these values are stored in the Exponent 
Pipeline). 

• Post-normalisation of the results emerging from 
the CORDIC pipeline and combination of the 
normalised numbers with the value obtained 
from the Exponent Pipeline. 

• Detection and handling of error and overflow 
conditions arising from the CORDIC operation. 

The mantissa alignment for the two input numbers is 
performed by subtracting the two exponent values 
obtained from the input numbers. The magnitude of this 
result is used to determine the right shift to be performed 
on the smaller mantissa. The sign of the difference in 
exponent values is used to select the correct mantissa for 
shifting. The sign of the exponent difference is also used to 
select the larger of the two exponent values for storage. 
The selected exponent is passed to the Exponent Pipeline 
where it keeps pace with the data passing through the 
CORDIC pipeline. When the results emerge from the end 
of the CORDIC Pipeline, the exponent corresponding to 
those results will be available at the end of the Exponent 
Pipeline ready for the post-normalisation operation. 

The sign information contained within the floating point 
input numbers must be combined with the mantissas to 
form the signed integers needed by the CORDIC pipeline. 
This operation is not carried out until after the mantissa 
alignment operation has been performed. By keeping the 
sign information separate in this way, we can restrict the 
shift to unsigned numbers, simplifying the design of the 
barrel shifter. 

The post-normalisation operation is performed separately 
on each of the two output values from the CORDIC 
pipeline. For each number the following operations are 
performed. Firstly the sign information is extracted from 
the integer value, and this is placed into the sign bit of the 
output floating point number. The resulting unsigned 
number is then left shifted in a data-dependant manner 
such that the left most bit of the shifted data is the most 
significant '1' in the original number. The resulting left 
adjusted number is then placed into the mantissa of the 
floating point number to be output, losing the initial '1' as 
this is supplied by default in the IEEE 754 standard. The 
number of bits that this data had to be shifted is subtracted 
from the exponent value supplied by the Exponent 
pipeline and becomes the output exponent. 

Figure 2 - Floating point circuitry 
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K-Factor Correction Circuitry 

As detailed previously, several additional stages are 
needed within the CORDIC pipeline to eliminate the K-
factor that arises in the course of the computation. These 
additional stages are similar in construction to the pipeline 
stage already presented. If this were not the case then the 
regular structure of the pipeline would be disturbed which 
may cause layout problems. Since the construction of these 
stages is not remarkably different from those already 
described, no further details will be given here. 

Floor Plan 

The major part of the silicon area of the Pipelined CORDIC 
processor is devoted to the integer pipeline and K-factor 
correction circuitry. The large number of iterations, each 
operating on two 32-bit integers, combined with the need 
to perform K-factor correction and the large size of the 
basic adder/subtractor cell, leads to this large area 
requirement. Given that the integer pipeline is by far the 
largest unit in the system this is the part of the design that 
will determine the placement of the remaining circuits. 
After some initial estimates of the size of the pipeline and 
the size of the cells that would be used to construct it, a 
rough floor plan of the cell was drawn, showing the flow 
of data through the IC and the placement of the larger 
units. This diagram is shown in Figure 5. 
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Figure 5 - Rough Floor Plan 

Input and Output 

The Pipelined CORDIC Processor may be packaged in a 
number of ways, dependant on the choice of input/output 
methods and control of the system The design of the 
pipeline is such that on each step of the pipeline clock, two 
floating point numbers are consumed and two are 
produced. 

In order to provide a single I/O pin for each input or 
output signal 128 pins would be required. In addition other 
pins are required for power, ground and control signals, 
leading to an estimated total of 145 pins. By multiplexing 
the inputs and outputs to the processor it is possible to 
reduce the pin requirement, although this leads to less 
flexibility when interfacing the processor to a system and a 
reduction in the speed of the pipeline. By multiplexing all 
of the four input and output numbers onto a single 32 bit 
port a minimum figure of approx. 45 pins is obtained. The 
speed of the pipeline here is 1/4 that of the external bus. 
We have chosen an intermediate solution where both 
inputs are multiplexed onto one port and both outputs 
onto another port. As a compromise between a very large 
pin count and a very slow pipeline, this choice also allows 
a fair amount of flexibility in the architecture supporting 
the processor. This solution leads to 81 pins allocated as 
follows : 

64 Data Pins 
8 Power/GND pins 
1 Clock input 
1 Output Invalid pin 
1 Pipeline halt pin? 
1 Delta Set input 
1 Chip enable pin 
1 Output Enable 
1 Input Latch Enable 
1 Input register select 
1 Output register select 

-81 Pins Total 

Cell Layout and Design 

Overview 

The design of the Warwick Pipelined CORDIC Processor 
was performed on a number of networked SUN 
Workstations using the MAGIC design tools from the 
University of California, Berkeley. These tools provide a 
number of useful features for the designer of VLSI circuits, 
notably the use of a symbolic design style and the 
provision of an interactive design rule checker that 
operates on designs as they are entered. The symbolic 
nature of the tools arises from the fact that only key layers 
are used to perform the design itself. Layers that can be 
derived from the basic layers are derived using a large 
number of rules given to the MAGIC package. For example 
where a p-fet is formed by passing polysilicon over p-
diffusion, an n-well is automatically formed around the 
transistor to accommodate it. The additional layers are 
normally invisible unless viewed explicitly which helps to 
keep the design uncluttered. 

The CORDIC processor consists of a small number of cells 
that are iterated over the majority of the silicon area, 
which is the reason that the circuitry could be 
implemented by a small design team in a short time. Most 
of the cells are fairly standard designs adapted for use in 
our application and so only brief notes are given here on 
their construction. Some circuit elements have required 
more work than is detailed here and where appropriate 
other documents have been written describing those 
details. References to these are given at the end. 
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The block diagram for the circuitry that is used to perform 
the floating point input and output operations is shown in 
Figure 2. 

In addition to the circuitry used to perform the floating 
point to integer conversions for the CORDIC pipeline, it is 
also necessary to provide a certain amount of random logic 
that can detect overflow, underflow and error conditions 
within the processor. The outputs from this circuitry can 
be used either to activate an error flag that is output with 
the results or to cause particular values to be output in 
place of the calculated one. Typical conditions that need to 
be detected and handled are : 

• Invalid number (NAN) given as an input 
• Zero has been input on one or both inputs 
• INF has been input on one or both inputs 
• Number has been reduced to Zero 
• Number has become INF 

These are the major conditions that need to be detected. 
The actions that should be taken in each case can be 
deduced by examining the representations of numbers 
within the IEEE 754 standard and the behaviour of the 
CORDIC algorithm. The circuitry to perform these 
functions consists of a small amount of random logic that 
can be laid efficiently using a silicon compiler. The design 
of this section has not yet been completed although the ES2 
Solo tools have been selected for the compilation, 
producing designs conforming to the ES2 21.1m CMOS 
rules. 

Structure of the CORDIC Pipeline 

An integer pipeline stage from the rotation processor 
implements a single step in the CORDIC iteration 
described previously. This operation involves a single 
add/subtract for each of the x and y values, followed by a 
shift, preparing the input values for the next iteration of 
the algorithm. Since the shifts are constant at each stage of 
the algorithm, the shifts can be hard wired into the 
pipeline avoiding the need for a full barrel shifter at each 
stage. Since the add/subtract and register cells have been 
designed specifically without the use of the second metal 
layer, it is possible to use the same area to perform both the 
calculation and shifting in the same area. The shifts are 
implemented by taking the signals onto the the second 
metal layer above the pipeline, performing the shift and 
then bringing them back down for the next stage. The block 
diagram for a single pipeline stage is shown in Figure 3. 

Each stage within the pipeline consists of two 32-bit adder / 
subtractors plus the associated delta control and clock 
driver circuitry. Although the mantissas contained in the 
floating point input numbers are only 24 bits long, 32 bit 
adders are used for the following reasons ; firstly in order 
that the truncation error arising from the right shift of the 
smaller mantissa does not corrupt the result, 6 bits are 
retained from the truncation, corresponding to 26  or 64 
times the truncation error. Since there are only 39 
additions taking place in the pipeline this error is easily 
accommodated. In addition there are two bits at the high 
end of the number to allow for expansion. Assuming that 
the input number is a binary fraction with a maximum 
value of 1, the maximum output value is given by the 
expression 

max = 2 + 1 +2-1  + 2-2  + 	4 

which can be accommodated by two additional bits. 

Delta Control Circuitry 

The specification of the algorithm states that at each 
iteration, a decision has to be made about which direction 
the data should be rotated. This decision is represented in 
the CORDIC equations by the choice of the value of a, 
which is in turn determined by the values of x, y, z and the 
mode in which the CORDIC algorithm is being operated. 
As has already been discussed, the choice of a has been 
simplified in our implementation by restricting the 
CORDIC algorithm to the circular mode of operation, and 
by using a-values obtained from one pair of input values 
to determine the rotations that are to be performed on the 
data that follows them. 

The circuitry that performs the selection of the a values, 
the Delta Control section, takes sign information from the 
data values of the previous stage and generates a single 
Add/Subtract signal. This signal is passed to all of the 
adder/subtractor cells in that stage of the pipeline. The 
Delta Control circuitry also makes use of a Compute/Apply 
signal that is also pipelined to keep pace with the data 
items to which it corresponds. Using this signal the control 
circuit will either generate a a-value from the signs of the 
input numbers or apply a previously calculated a-value 
(circuit shown in Figure 4). Since the Compute/Apply 
signal is also pipelined it is not necessary to wait for the 
pipeline to be flushed before the operation of the Delta 
circuits can be changed. 

Figure 3 - Pipeline Stage Block Diagram 

Our implementation consists of a fully parallel pipelined 
system and due to the large number of repeated stages in 
the pipeline each stage should occupy as small an area as 
possible. There remains a compromise between circuit 
complexity (i.e. area) and cycle time. Techniques such as 
redundant number systems reduce cycle time at the cost of 
dramatically increasing circuit area. Due to the limitations 
on processor area and design time, a simpler conventional 
method was used to implement the stages. 

Figure 4 - Delta Control Block Diagram 
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Pipeline Adder 

In choosing an adder implementation for any system a 
compromise must be made between speed and circuit size. 
In our application the adder cell is replicated a great 
number of times and so the size of the adder is the most 
important factor to be considered. Taking into account the 
size constraint we have chosen to make the Manchester 
Carry Adder the focus of our design. Once the basic design 
work had been carried out, the circuit was optimised for 
multibit addition by fine tuning transistor sizes. 

The Manchester Carry Adder [18] differs from a standard 
ripple adder through the way in which the carry 
information is passed along the calculation. Consider one 
stage of a Manchester Carry adder. Under differing input 
conditions, the 'carry in' signal may be allowed to pass 
unchanged to the next stage, or be forced to a '1' or a '0'. 
The central idea behind the Manchester Carry adder is to 
detect the condition where the carry input is equal to the 
carry output and in this case feed it directly through a pass 
gate. By doing this we attempt to speed the propagation of a 
carry signal which is the limiting factor in a conventional 
adder. 

cm 	 cout 
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P 

Figure 6: Carry Propagation 

The circuit to implement the carry chain of a Manchester 
adder is shown in Figure 6. We have used the concepts of 
kill (K), generate (G) and propagate (P) in addition to the 
carry in and carry out signals. If we analyse the logic tables 
describing a full adder then it can be seen that when the 
two inputs are both low the carry output will always be low 
and this represents killing the carry. Similarly when both 
inputs are high a high carry output will always be 
generated. When the two inputs are different the carry is 
simply propagated to the next stage. The K,G and P signals 
are high when the respective conditions are asserted. 
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Figure 7 - Generate and Kill signals 

The generate and kill control signals are produced by the 
simple NOR and NAND circuits shown in Figure 7. The 
propagate signal can be logically derived from the input 
signals by making use of an XOR gate but is produced more 
efficiently from the kill and generate signals. A structure 
similar to the classic 6 transistor XOR cell is used but with 
only 5 transistors, shown in Figure 8. 
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The last piece of circuitry contained in the adder is that 
which deals with carry propagation and sum generation. In 
the case of a multibit adder the total calculation time is 
made up of two components. Initially the kill, generate 
and propagate signals for all of the adders are calculated, 
taking a small constant time. The majority of the 
calculation time is taken up by the propagation of the 
longest carry through the adder chain. It is therefore the 
propagation path between the carry in and carry out signals 
that should be optimised first to achieve the most benefit. 

Figure 9 - Carry and Sum Circuitry 

The sum at a particular stage is formed from the propagate 
and carry in signals by a pass gate and two extra transistors. 
The carry out signal is simply the carry in passing though a 
pass gate controlled by the propagate signal, as shown in 
Figure 9. For a carry signal to be passed through a single 
stage of the Manchester Carry adder, the following circuit 
elements must be either charged or discharged : 

Two transistor gates 
Two conducting transistor channels 
Two output capacitances of OFF transistors 

The complete Manchester Carry adder is constructed using 
23 transistors and is layed out in a horizontal brick shape as 
shown in Figure 10. In order to provide both add and 
subtract operations, a single XOR gate is positioned at one 
of the inputs to provide a selective inversion of that input. 
By inverting the input and altering the carry into bit 0 
respectively, subtraction is obtained. The basic pipeline cell 
thus contains an adder, an XOR gate and a flip flop to 
buffer the data between pipeline stages. This pipeline cell is 
duplicated to obtain a structure with the functionality 
shown in the block diagram of Figure 3. 

Figure 10 - basic shape of adder 

When a long carry chain occurs in a Manchester Carry 
adder of the type described above the capacitance of the 
carry path becomes large as does the number of transistors 
through which the signal must pass. This results in a 
significant reduction in speed or even incorrect operation 
of the circuit. In order to solve this problem buffers have to 
be inserted into the carry path at regular intervals to 
restore signal levels. If there was sufficient room for the 
additional hardware then a mechanism known as carry 
skip could be implemented which detects a long 
propagation path and provides a shorter alternative route 
for the carry signal. 
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The shift operation is performed within the pipeline by 
providing point to point hard wired connections using the 
second metal layer available in the ES2 2um process. To 
implement a shift structure as shown in schematic form in 
Figure 3 would not be practical because the wires from the 
two registers are forced to cross over each other. Since we 
are attempting to restrict ourselves to the second metal 
layer only, this approach is not suitable. In order to cross, 
vias are needed to the first metal layer which would 
interfere with the pipeline stages beneath. 

Figure 11 - Schematic of a single pipeline stage 

In order to solve this problem the two adders 
corresponding to the x and y values from the CORDIC 
iteration are put on top of each other instead of next to 
each other. The crossing of the data lines is then performed 
locally in metal one. A single complete pipeline stage is 
shown in Figure 11. It contains two arrays of cells each of 
which contains an adder, XOR gate and a flip flop. All 
control signals for a particular pipeline stage are routed 
between the two adders of that stage. 

The delta control circuitry is placed at the left edge of the 
stage and the clock circuitry is placed at the right edge. Vias 
are placed on the output of each flip flop to facilitate the 
hard wired shift connections that will be made when the 
pipeline is assembled. The interconnect that performs the 
shift is routed between this row of flip flop vias and the 
next stage in the pipeline. Two identical shifts per pipeline 
stage are implemented in this fashion, corresponding to 
the shifted versions of the x and y values in the CORDIC 
equations. 

Delta Control Circuitry 

This circuitry provides the value of a required in the 
CORDIC iterations and passes it to the processing elements 
of a single pipeline stage. It is passed to the pipeline in the 
form of a delta control signal. This signal controls the 
operation of the pipeline adders, performing either an 
addition or a subtraction by means of the XOR gate 
provided. The circuit that derives the delta control signal is 
shown in Figure 12. The circuit comprises a flip flop to 
store the compute/apply bit, a flip flop to store a computed 
delta bit and a multiplexor. The multiplexor selects either 
the precomputed delta or a newly computed value which 
and passes this to the flip flop to be stored for the next 
cycle. As has already been described, the value of delta is 
obtained in our implementation by taking the XOR of the 
sign bits of the two previous data values. 

delta 
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Figure 12 - Main delta control circuitry 

A large buffer is also included in the delta control circuit to 
provide enough drive for the delta control line. Since the 
shifted versions of data values must be sign extended, two 
more buffers are added to boost the sign bits arriving at 
each pipeline stage and pass them to the most significant 
bits of the current stage. A block outline of the delta cell is 
shown in Figure 13. The sign bits and compute/apply 
signal run vertically and the delta signal runs horizontally 
across the middle of the cell. 
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Figure 13 - Block diagram of delta cell 

Barrel Shifter 

A complete description of the options currently available 
for the design of Barrel Shifters and details of the 
implementation chosen for our application is described 
elsewhere 118]. We summarise here the results of that 
paper and describe in addition the design of the decoder 
circuits that are required in a complete design. 

A single level switching network is used as the core of the 
shifter, routing the data path through a right angled turn 
while performing the shift operation. The shifter operates 
in a precharged manner, the entire network being 
precharged to +5V and then selectively discharged under 
control of the input values and the shift control signals. 
The use of a precharged scheme both speeds the operation 
of the circuit and allows the array to be designed using only 
n type switching elements. If a precharged scheme were 
not used then it would be necessary to use transmission 
gates as the switching elements since both high and low 
voltage levels need to be passed. This would lead to a 
much larger and slower shift network. The circuit for the 
main data path through the array is given in Figure 14. 
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The shift operation is performed within the pipeline by 
providing point to point hard wired connections using the 
second metal layer available in the ES2 2p.m process. To 
implement a shift structure as shown in schematic form in 
Figure 3 would not be practical because the wires from the 
two registers are forced to cross over each other. Since we 
are attempting to restrict ourselves to the second metal 
layer only, this approach is not suitable. In order to cross, 
vias are needed to the first metal layer which would 
interfere with the pipeline stages beneath. 

Figure 11 - Schematic of a single pipeline stage 

In order to solve this problem the two adders 
corresponding to the x and y values from the CORDIC 
iteration are put on top of each other instead of next to 
each other. The crossing of the data lines is then performed 
locally in metal one. A single complete pipeline stage is 
shown in Figure 11. It contains two arrays of cells each of 
which contains an adder, XOR gate and a flip flop. All 
control signals for a particular pipeline stage are routed 
between the two adders of that stage. 

The delta control circuitry is placed at the left edge of the 
stage and the clock circuitry is placed at the right edge. Vias 
are placed on the output of each flip flop to facilitate the 
hard wired shift connections that will be made when the 
pipeline is assembled. The interconnect that performs the 
shift is routed between this row of flip flop vias and the 
next stage in the pipeline. Two identical shifts per pipeline 
stage are implemented in this fashion, corresponding to 
the shifted versions of the x and y values in the CORDIC 
equations. 

Delta Control Circuitry 

This circuitry provides the value of a required in the 
CORDIC iterations and passes it to the processing elements 
of a single pipeline stage. It is passed to the pipeline in the 
form of a delta control signal. This signal controls the 
operation of the pipeline adders, performing either an 
addition or a subtraction by means of the XOR gate 
provided. The circuit that derives the delta control signal is 
shown in Figure 12. The circuit comprises a flip flop to 
store the compute/apply bit, a flip flop to store a computed 
delta bit and a multiplexor. The multiplexor selects either 
the precomputed delta or a newly computed value which 
and passes this to the flip flop to be stored for the next 
cycle. As has already been described, the value of delta is 
obtained in our implementation by taking the XOR of the 
sign bits of the two previous data values. 

A large buffer is also included in the delta control circuit to 
provide enough drive for the delta control line. Since the 
shifted versions of data values must be sign extended, two 
more buffers are added to boost the sign bits arriving at 
each pipeline stage and pass them to the most significant 
bits of the current stage. A block outline of the delta cell is 
shown in Figure 13. The sign bits and compute/apply 
signal run vertically and the delta signal runs horizontally 
across the middle of the cell. 
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Barrel Shifter 

A complete description of the options currently available 
for the design of Barrel Shifters and details of the 
implementation chosen for our application is described 
elsewhere [18]. We summarise here the results of that 
paper and describe in addition the design of the decoder 
circuits that are required in a complete design. 

A single level switching network is used as the core of the 
shifter, routing the data path through a right angled turn 
while performing the shift operation. The shifter operates 
in a precharged manner, the entire network being 
precharged to +5V and then selectively discharged under 
control of the input values and the shift control signals. 
The use of a precharged scheme both speeds the operation 
of the circuit and allows the array to be designed using only 
n type switching elements. If a precharged scheme were 
not used then it would be necessary to use transmission 
gates as the switching elements since both high and low 
voltage levels need to be passed. This would lead to a 
much larger and slower shift network. The circuit for the 
main data path through the array is given in Figure 14. 
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Figure 12 - Main delta control circuitry 



Figure 14 - Barrel Shifter Data Path 

The design of the switch cells that comprise the barrel 
shifter network passed through a number of revisions 
from a full transmission gate to a single transistor. The 
final version of this cell is shown in Figure 15. There are 
several important points to note from this design. Firstly 
the shift control lines are run in polysilicon. Although this 
causes the delay for charging the shift lines to be increased 
relative to delay for metal, the charging of the shift lines 
can be performed in parallel with the precharging of the 
data lines. The second point to note is that only one of the 
two metal layers is used rather than both. This decision 
both reduces the area needed for the cell and allows 
routing to be performed in the second metal layer over the 
top of the barrel shifter. The support circuits are also 
designed without using the second metal layer for this 
reason. Thirdly, since only one transistor is used in the 
design, it is not necessary to include both types of substrate. 
The area savings arising from this are very large. 

Figure 15 - Barrel Shifter Cell 

In order to complete the design of the barrel shifter, it is 
necessary to provide signals for the Shift Control lines. 
This is achieved by performing some sort of decode 
operation on another piece of data to produce a set of data 
signals in which at most one signal is high at any 
particular time. In the case of the barrel shifter at the input 
of the processor the data to be decoded is the unsigned 
difference between the two exponents. In the case of the 
output barrel shifters the signal is the data itself, the shift 
lines being decoded in such a manner that the most 
significant 'V in the input number is shifted to the left 
hand end. In the latter case a binary number must also be 
produced indicating the number of bit positions by which 
the input was shifted. The circuitry to perform these 
functions is described in the next section. 

Shift Decode Circuitry 

The shift signals that control the flow of data through the 
barrel shifters take the form of a number of data lines, only 
one of which may be set to a '1' at any particular time. The 
selection of the control signal that must be activated is 
made by converting from other data generated within the 
processor. For the mantissa alignment circuitry, the data 
determining the shift is the unsigned difference between 

the two input exponents. For the post normalisation 
shifters, the control information is derived from the data 
itself such that the most significant '1' is shifted to the 
most significant digit position. 

For the input decoder, the binary input from the exponent 
subtract circuitry is converted to 1 of N form by making use 
of an AND gate for each shift control line. Both the true 
and inverted forms of each input bit are supplied to this set 
of gates, forming a direct 1 of N decoder. The circuit that 
we have implemented is probably at the limits of this sort 
of approach, as the pull up logic of an AND gate consists of 
a direct chain of p-transistors. Since the exponent 
difference is represented by five bits, we have five 
transistors in series which drastically slows the circuit. This 
has been slightly compensated for by making the pull up 
transistors wider but this cannot be continued indefinitely. 

The decoder for the post normalisation shifter is a little 
more complicated. The selection of the most significant 
digit in a number is essentially a carry chain type of 
operation, as the information about more significant digits 
must be passed down before any particular digit can make 
the decision about whether or not it is the most significant 
one. This circuitry is likely to be slower than that of the 
input decoder for those reasons. Similar techniques to 
those applied to the improvement of carry chain 
performance in adders could be applied here also, but the 
circuit presented here satisfied our performance 
requirements and so no such addition was necessary. 

By considering a number of approaches to the 
implementation of this operation, we arrived at a solution 
in which each bit position makes a decision based on its 
own data bit (D), and a flag from the next most significant 
digit that indicates whether or not a '1' has been found 
(Fin). Using this information, a Shift control bit (5) is 
produced and a value Fout is passed to the next bit 
position. Diagrammatically this is shown in figure 16. 
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Figure 16 - Normalisation Decoder 

By using a transmission gate to attempt to speed the 
operation of the carry chain, the following circuits have 
been designed that implement the truth table shown in 
figure 16 above. There is also inverters to produce the 
normal and inverted forms of the values D and Fin that 
are required, which are not shown. Since it is possible for 
the F signal to be passed through a number of stages, level 
restoring buffers are placed after every four decode units. 
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Exponent Pipeline 

The exponent pipeline is simply an eight bit wide storage 
path made up of the same number of pipeline stages as the 
main CORDIC pipeline so that the exponent keeps pace 
with the data to which it corresponds. The units that make 
up the pipeline are simply flip flops, of the same design as 
that used in the main pipeline so they will not be described 
in any more detail here. 

Input and Output Circuits 

The input and output circuitry was relatively simple to 
design as the pad layouts were supplied by ES2 and were 
simply used in that form to provide the external interface. 
The signals that were taken from the inputs pads and sent 
to the output pads have to be multiplexed due to our 
choice of interface schemes. This has been accomplished 
through the use of standard flip flops and multiplexers. 

Putting It All Together 

With the design of the major cells completed, it was 
necessary to combine them all into one design that 
performed the complete CORDIC algorithm as originally 
conceived. A first version of the processor has been 
produced by laying in the interconnect by hand which is 
necessary through the majority of the circuit as the 
constraints on the dimensions of the circuit are too tight to 
enable automatic routers to be used. With hindsight a fair 
amount of the larger scale routing through the Floating 
Point area of the chip could have been done with an 
automatic routing tool. The layout of the complete circuit 
has shown that the floating point circuitry is far more 
sparsely packed than it could be. This would probably be 
remedied by redesigning the barrel shifters to perform the 
shift operation in a straight through topology rather than 
the right angle turn that is currently implemented. The 
pipeline itself has been designed with only a small amount 
of unused space due to the routing of the shifts above the 
pipeline circuitry. 

The full CORDIC circuit has not been tested completely 
due to the lack of a means of obtaining a correspondence 
between a logic level simulation and the silicon layout 
level. Even a full logic level simulation of the processor 
would be a difficult task. It is intended that a small scale 
test chip will be produced that will test the functionality of 
the basic building blocks described in this paper. Work will 
also proceed on a logic level simulation of the full 
processor, using those elements, that will verify that our 
implementation of the algorithm is correct under all 
circumstances. The full layout of the CORDIC processor is 
shown in Figure 18. 
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