
http://wrap.warwick.ac.uk/

Original citation:
Chown, P., Walton, D. W. and Nudd, G. R. (1990) VLSI design of a pipelined CORDIC
processor. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-164

Permanent WRAP url:
http://wrap.warwick.ac.uk/60859

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60859
mailto:publications@warwick.ac.uk

Research report 164 	

VLSI DESIGN OF A PIPELINED CORDIC

PROCESSOR

P CHOWN, D W WALTON, G R NUDD

(RR164)

In this report we discuss the VLSI realisation of a pipelined CORDIC arithmetic unit to perform stable matrix
row operations for the solution of systems of linear equations. The algorithmic considerations of the
CORDIC process are highlighted and chip level architecture is derived from those to implement algorithm in a
pipelined manner. We then proceed to give details of the 2pm CMOS processor that has been designed to
implement that architecture.

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom October 1990

VLSI Design of a Pipelined CORDIC Processor

P. Chown, D.W. Walton, G.R. Nudd

Department of Computer Science,
University of Warwick,Coventry.

The Cordic Algorithm

The CORDIC (COordinate Rotation on a Digital Computer)
algorithm was first introduced by Voider [10] and provides
a unified method of performing vector rotations and
multiplication / division whilst performing only shift and
add operations. Volder's algorithm was generalised by
Walther [11] to include hyperbolic functions, exponentials
and square roots.

The CORDIC method is based on the following set of
iterative equations :-

Abstract

In this report we discuss the VLSI realisation of a
pipelined CORDIC arithmetic unit to perform stable
matrix row operations for the solution of systems of
linear equations. The algorithmic considerations of
the CORDIC process are highlighted and a chip level
architecture is derived from these to implement the
algorithm in a pipelined manner. We then proceed to
give details of the 2wri CMOS processor that has been
designed to implement that architecture.

Algorithm

Introduction

= xi + ai m Yi W
Y1+1 = Yi - ai Ili

Zi+1 = Zi a, ai

The CORDIC operation has been widely used in the
implementation of modern signal processing systems. This
is due to the many functions that can be computed using
the same hardware and the stability of the method
compared to traditional approaches. It has been applied to
many domains including the solution of linear equations
[1,2,3,4], filtering [5], Single Value Decomposition [2,6] and
direct matrix techniques such as the Faddeev Algorithm
[7,8,9].

This report describes the design of a pipelined CORDIC
processor to perform QR factorisation using Givens
rotations. The Givens method performs a matrix row
operation, replacing the traditional multiply and add
(Gaussian elimination) with a two dimensional rotation.
Traditionally an element of the matrix is reduced to zero
by adding a multiple of another row to the row containing
that element. The Givens method treats the two rows as a
series of two-dimensional vectors formed by the pairs of
points corresponding to a particular column. These vectors
are then rotated in such a way that one of the coordinates
in a particular vector becomes zero. All vectors are rotated
by the same angle. This method has the property of
increased numerical stability ; intuitively this is due to the
fact that the length of the vector does not change under a
rotation operation.

A more detailed description of the application of the
Givens technique to signal processing can be found in the
paper describing the iterative version of this processor [1].
We describe here the implementation of the pipelined
design proposed in that paper and discuss the architectural
problems encountered in the construction of such a
processor from the systems level to the design of a CMOS
circuit.

cci = (1/4m) arctan (.0m) 	: 	24

E{1,-1} : me {1 , 0, -1}

The equations perform a vector rotation operation in
terms of a series of smaller imperfect rotations, as described
in [12]. Each of the smaller rotations may be in either a
clockwise or anticlockwise direction selected by the value
of 	By allowing the direction to be chosen for each
iteration separately a number of functions may be
computed. The value of m is used to select either circular,
linear or hyperbolic space. (1, 0, -1 respectively). The value
of 1.4 is chosen to be 2-i with the result that each iteration
can be performed using only simple shift and add
operations.

On completion of the iteration various functions are
retained in the x,y,z registers depending on the different
values of ai and m . The available functions are
summarised in Figure 1.

Rotate z to zero

a - agn(Z)

Rotate y to zero

a . sgn(y) xor sg n(x)

Circular
m.1

K(xcosz+ysinz)
K(y cos z - x sin z)
0

K x+y
0
z -tan (y/x)

Linear
m.0

x

0 -)2

x
0
z - (y/x)

HYPorbdic
m.-1

K(x cceh z - y sinh z)
K(y cceh z - x sinh z)
0

K x+y
0
z - tanh &/x)

Figure 1 - CORDIC functions

The CORDIC processor that we describe in this paper
performs the circular subset of the algorithm only. Since
the implementation of Givens method requires only
circular rotations the additional functionality is not
required. Provision of the additional modes also carries an
overhead due to the increased connectivity between data
bits in successive stages of the pipeline. This will lead to
both hardware cost and corresponding decreases in circuit
speed.

K-factor Correction

Each of the iterations in the above equations introduces a
scale factor error due to the imperfection of the rotation
performed. These scale factors are multiplicative and
accumulate as the computation proceeds. The total scale
factor after N iterations is denoted by K and for the circular
mode is equal to

N-1
1

K =II cos(a art:tan 2-I)
i-0

N-1

scrt(1+ 2-2i). 1.646760...

The scale factor error inherent in the CORDIC process is an
important aspect to consider and may be dealt with in a
number of ways. The most direct method is to perform a
division operation after each CORDIC operation,
removing the scale factor directly. This can be expensive in
terms of hardware and may severely limit performance.
More popular methods solve the problem by incorporating
a number of extra iterations into the algorithm in order to
force K to be an integer power of the number radix (or
unity). Once the scale factor has been modified in this way
it may be removed by a simple shift operation.

Haviland [13] proposes that the additional scale factor
iterations take the form of the following fixed multiples :

X = XN - 21 xN = xN (1 - 2-1)
Y = YN - 2 YN = YN (1 -)

Each of these constant multiples may be formed by a single
shift and subtract operation and has a value slightly less
than one. K may be reduced to unity in this way by post
multiplying the results by a suitable set of these multiples.
The accuracy of the combined constant factor must be
sufficient to avoid the introduction of errors into the
results. For 32 bit integers 16 additional iterations are
required to reduce the results to their correct values.

Ahmed [4] has devised a method in which a number of
standard CORDIC iterations are repeated to force the value
of K to be equal to 2. To attain the required accuracy in this
case, again for 32 bit integers, an extra 28 iterations are
required.

The system that we have adopted is that proposed by
Delosme [14] which combines the ideas of Haviland and
Ahmed. For 32 bit integers his method requires an
additional nine iterations to reduce K to the value 2. Seven
extra CORDIC iterations (i values of 0, 1, 3, 5, 6, 8, 14) are
used in conjunction with two special iterations (1 - 2-2) and
(1 + 2-6).

Recent years have seen the development of CORDIC
implementations that make use of redundant number
systems. These employ a redundant digit set for a of (-1,0,1)
allowing faster circuits to be implemented that make use of
carry save addition/subtraction units. A consequence of
the use of redundant number techniques is that the delta
control circuitry must operate by making an estimate of the
signs of the values from the previous iteration, with the
additional option of deciding that the sign at this stage is
zero, deferring the decision to a later iteration.
Unfortunately this results in a value of K which is data
dependent since the selection of zero for a at a particular
stage effectively removes the scale factor contributed by
that stage. For the interested reader, some recent solutions
to this problem have been published called the double
rotation method [15], correcting rotation method [16],
Branching CORDIC [12] and online calculation [2].

Application to Givens Rotations

Two distinct operations are involved in the application of
a Givens rotation to a pair of matrix rows. The first
operation is the calculate of the rotation angle using the
relevant pair of values from the rows. The angle must be
selected such that a prespecified member of the pair is
reduced to zero. Given a vector <x,y> and rotating y to
zero, we must rotate by a total angle, Z of

Z= arctan (y/x)

In the second stage of the process this rotation is applied to
the remainder of the elements in the rows. It has been
noted by Deprettere [5] and Sung [17] that the sequence

an I is an equivalent representation of the rotation
angle Z Thus by storing the sequence of a values calculated
in the first stage, the second stage may be easily performed
by 'replaying' those values. This considerably reduces the
hardware requirements by not performing calculations
using stored values of Z and a4 but by stored a values. Due
to the bit-recursive nature of the a calculation each
pipeline stage has only to calculate and retain a single a
value.

CHIP-LEVEL ARCHITECTURE

Overall Structure

The CORDIC algorithm described above is an inherently
integer operation, and has been implemented as such by a
number of institutions [7,8,9] including the University of
Warwick [10]. This section will describe the architecture of
the Warwick Pipelined CORDIC Processor which extends
the operation of the algorithm to the IEEE 754 floating
point number system, and pipelines the iterations of the
algorithm to improve processor throughput. Using a
readily available CMOS process technology, namely the
2um process from ES2, it has been found possible to
implement such a device in a silicon area small enough
for commercial exploitation.

Floating point operation is achieved by making use of the
fact that each individual step of the algorithm consists
solely of additions and shifts. Therefore by aligning the
mantissas of the two input numbers and storing the
corresponding exponent it is possible to implement the
pipeline as though it were a simple integer CORDIC
system. The results of the computation must be post-
normalised and recombined with the common exponent
before they can be returned to the user as floating point
values.

Ey

0

SUB

Sign

ADD/SUB

• 4.•?.? 	:.•:•:•••:••••••

300030

.. Repeat for y

SUB

Vsx

Previous implementations of the CORDIC algorithm have
generally taken the form of registers for the x,y and z
variables. When performing the computation barrel
shifters are used to form the shifted versions of the x and y
values which are added to the original ones to form new
x,y values. The values of a needed in the z computations
are typically stored in a ROM either on the same processor
or as a separate unit. The algorithm is implemented by
repeating the iterations on these registers until the
computation on a set of values is complete. A number of
institutions [1,5] have explored the possibility of pipelining
the computation such that each stage of the pipeline
performs a single iteration of the algorithm.

Several properties of the CORDIC algorithm have been
used in the construction of our processor. The first is the
use of stored a values at each stage instead of the full value
of z, as described earlier. Each stage of the pipeline
computes a single a value and stores this. In addition, the
shifts at a particular stage of the iteration are fixed, and so
they can be hard wired rather than being performed by a
general shift unit.

Using these properties each pipeline stage performs a
single iteration of the algorithm taking as inputs the
values held in the registers of the previous stage. The
shifting of the x and y values is performed by a series of
point to point connections. This leads to space savings and
allows rapid operation of the pipeline. Despite the above
considerations some restrictions must still be imposed on
the functionality of the unit in order to place a complete
design on a realisable processor.

Floating Point Circuitry

From the above discussion, it can be seen that the design of
the Pipelined CORDIC Processor falls naturally into two
areas. These are the floating point manipulation area and
the integer CORDIC pipeline. The floating point section of
the CORDIC processor must carry out a number of
functions. These functions are :

• Alignment of the mantissas of the two input
numbers according to the values of their
exponents.

• Storage of the exponent that corresponds to the
integer values in each stage of the CORDIC
pipeline (these values are stored in the Exponent
Pipeline).

• Post-normalisation of the results emerging from
the CORDIC pipeline and combination of the
normalised numbers with the value obtained
from the Exponent Pipeline.

• Detection and handling of error and overflow
conditions arising from the CORDIC operation.

The mantissa alignment for the two input numbers is
performed by subtracting the two exponent values
obtained from the input numbers. The magnitude of this
result is used to determine the right shift to be performed
on the smaller mantissa. The sign of the difference in
exponent values is used to select the correct mantissa for
shifting. The sign of the exponent difference is also used to
select the larger of the two exponent values for storage.
The selected exponent is passed to the Exponent Pipeline
where it keeps pace with the data passing through the
CORDIC pipeline. When the results emerge from the end
of the CORDIC Pipeline, the exponent corresponding to
those results will be available at the end of the Exponent
Pipeline ready for the post-normalisation operation.

The sign information contained within the floating point
input numbers must be combined with the mantissas to
form the signed integers needed by the CORDIC pipeline.
This operation is not carried out until after the mantissa
alignment operation has been performed. By keeping the
sign information separate in this way, we can restrict the
shift to unsigned numbers, simplifying the design of the
barrel shifter.

The post-normalisation operation is performed separately
on each of the two output values from the CORDIC
pipeline. For each number the following operations are
performed. Firstly the sign information is extracted from
the integer value, and this is placed into the sign bit of the
output floating point number. The resulting unsigned
number is then left shifted in a data-dependant manner
such that the left most bit of the shifted data is the most
significant '1' in the original number. The resulting left
adjusted number is then placed into the mantissa of the
floating point number to be output, losing the initial '1' as
this is supplied by default in the IEEE 754 standard. The
number of bits that this data had to be shifted is subtracted
from the exponent value supplied by the Exponent
pipeline and becomes the output exponent.

Figure 2 - Floating point circuitry

Li

r

K-Factor Correction Circuitry

As detailed previously, several additional stages are
needed within the CORDIC pipeline to eliminate the K-
factor that arises in the course of the computation. These
additional stages are similar in construction to the pipeline
stage already presented. If this were not the case then the
regular structure of the pipeline would be disturbed which
may cause layout problems. Since the construction of these
stages is not remarkably different from those already
described, no further details will be given here.

Floor Plan

The major part of the silicon area of the Pipelined CORDIC
processor is devoted to the integer pipeline and K-factor
correction circuitry. The large number of iterations, each
operating on two 32-bit integers, combined with the need
to perform K-factor correction and the large size of the
basic adder/subtractor cell, leads to this large area
requirement. Given that the integer pipeline is by far the
largest unit in the system this is the part of the design that
will determine the placement of the remaining circuits.
After some initial estimates of the size of the pipeline and
the size of the cells that would be used to construct it, a
rough floor plan of the cell was drawn, showing the flow
of data through the IC and the placement of the larger
units. This diagram is shown in Figure 5.

N--...

M
O

B
 	

io

.4
3 	

1/
//

//

..

\ \

sw,FreR ,
/

•
/

.
/ 	/../. 	/1/ 	• . 	• 	. 	J../ /

/ 	!/./: 	
, , 	•

• .,• ./ 	/ ,/••- 	.-

	

--,'''74 	., 	, / , ,,./ •

	

.„:-/- - 	, 	• • 	/-,./ , /7/ .i, /..,
. // 	•• ' a' '

/,
v.

' 	• 	- 	• • / 	• .7` -- "' Z./ 	. /:,/.., ,. 	/.. - 	• 	.

	

i" 	. ' 	..:'..!.,f 	/,, - Max -/ • , , • . 	. .• 4:// 	- '
• - 	• 	4/ /- 	/ 	/

A
T
C
14

N.
...„.

\\:N.

'‘' - 1'7 	./ •" i
' 	L

, ,
, 	•/'

/

ave.

EYRIkar

• j .• //' I / - 	/''///

Si / 	.1. 	37 tihs. 	: 	' , 	/,
-, 	/.:.-....:...,•/ ,,-,...'..._

• 	._. _

Figure 5 - Rough Floor Plan

Input and Output

The Pipelined CORDIC Processor may be packaged in a
number of ways, dependant on the choice of input/output
methods and control of the system The design of the
pipeline is such that on each step of the pipeline clock, two
floating point numbers are consumed and two are
produced.

In order to provide a single I/O pin for each input or
output signal 128 pins would be required. In addition other
pins are required for power, ground and control signals,
leading to an estimated total of 145 pins. By multiplexing
the inputs and outputs to the processor it is possible to
reduce the pin requirement, although this leads to less
flexibility when interfacing the processor to a system and a
reduction in the speed of the pipeline. By multiplexing all
of the four input and output numbers onto a single 32 bit
port a minimum figure of approx. 45 pins is obtained. The
speed of the pipeline here is 1/4 that of the external bus.
We have chosen an intermediate solution where both
inputs are multiplexed onto one port and both outputs
onto another port. As a compromise between a very large
pin count and a very slow pipeline, this choice also allows
a fair amount of flexibility in the architecture supporting
the processor. This solution leads to 81 pins allocated as
follows :

64 Data Pins
8 Power/GND pins
1 Clock input
1 Output Invalid pin
1 Pipeline halt pin?
1 Delta Set input
1 Chip enable pin
1 Output Enable
1 Input Latch Enable
1 Input register select
1 Output register select

-81 Pins Total

Cell Layout and Design

Overview

The design of the Warwick Pipelined CORDIC Processor
was performed on a number of networked SUN
Workstations using the MAGIC design tools from the
University of California, Berkeley. These tools provide a
number of useful features for the designer of VLSI circuits,
notably the use of a symbolic design style and the
provision of an interactive design rule checker that
operates on designs as they are entered. The symbolic
nature of the tools arises from the fact that only key layers
are used to perform the design itself. Layers that can be
derived from the basic layers are derived using a large
number of rules given to the MAGIC package. For example
where a p-fet is formed by passing polysilicon over p-
diffusion, an n-well is automatically formed around the
transistor to accommodate it. The additional layers are
normally invisible unless viewed explicitly which helps to
keep the design uncluttered.

The CORDIC processor consists of a small number of cells
that are iterated over the majority of the silicon area,
which is the reason that the circuitry could be
implemented by a small design team in a short time. Most
of the cells are fairly standard designs adapted for use in
our application and so only brief notes are given here on
their construction. Some circuit elements have required
more work than is detailed here and where appropriate
other documents have been written describing those
details. References to these are given at the end.

Compute/Apply In

---t-

FF

Compute/Apply Out

Sign Information

a control

Clod(

Addistthi.4

	1r

The block diagram for the circuitry that is used to perform
the floating point input and output operations is shown in
Figure 2.

In addition to the circuitry used to perform the floating
point to integer conversions for the CORDIC pipeline, it is
also necessary to provide a certain amount of random logic
that can detect overflow, underflow and error conditions
within the processor. The outputs from this circuitry can
be used either to activate an error flag that is output with
the results or to cause particular values to be output in
place of the calculated one. Typical conditions that need to
be detected and handled are :

• Invalid number (NAN) given as an input
• Zero has been input on one or both inputs
• INF has been input on one or both inputs
• Number has been reduced to Zero
• Number has become INF

These are the major conditions that need to be detected.
The actions that should be taken in each case can be
deduced by examining the representations of numbers
within the IEEE 754 standard and the behaviour of the
CORDIC algorithm. The circuitry to perform these
functions consists of a small amount of random logic that
can be laid efficiently using a silicon compiler. The design
of this section has not yet been completed although the ES2
Solo tools have been selected for the compilation,
producing designs conforming to the ES2 21.1m CMOS
rules.

Structure of the CORDIC Pipeline

An integer pipeline stage from the rotation processor
implements a single step in the CORDIC iteration
described previously. This operation involves a single
add/subtract for each of the x and y values, followed by a
shift, preparing the input values for the next iteration of
the algorithm. Since the shifts are constant at each stage of
the algorithm, the shifts can be hard wired into the
pipeline avoiding the need for a full barrel shifter at each
stage. Since the add/subtract and register cells have been
designed specifically without the use of the second metal
layer, it is possible to use the same area to perform both the
calculation and shifting in the same area. The shifts are
implemented by taking the signals onto the the second
metal layer above the pipeline, performing the shift and
then bringing them back down for the next stage. The block
diagram for a single pipeline stage is shown in Figure 3.

Each stage within the pipeline consists of two 32-bit adder /
subtractors plus the associated delta control and clock
driver circuitry. Although the mantissas contained in the
floating point input numbers are only 24 bits long, 32 bit
adders are used for the following reasons ; firstly in order
that the truncation error arising from the right shift of the
smaller mantissa does not corrupt the result, 6 bits are
retained from the truncation, corresponding to 26 or 64
times the truncation error. Since there are only 39
additions taking place in the pipeline this error is easily
accommodated. In addition there are two bits at the high
end of the number to allow for expansion. Assuming that
the input number is a binary fraction with a maximum
value of 1, the maximum output value is given by the
expression

max = 2 + 1 +2-1 + 2-2 + 	4

which can be accommodated by two additional bits.

Delta Control Circuitry

The specification of the algorithm states that at each
iteration, a decision has to be made about which direction
the data should be rotated. This decision is represented in
the CORDIC equations by the choice of the value of a,
which is in turn determined by the values of x, y, z and the
mode in which the CORDIC algorithm is being operated.
As has already been discussed, the choice of a has been
simplified in our implementation by restricting the
CORDIC algorithm to the circular mode of operation, and
by using a-values obtained from one pair of input values
to determine the rotations that are to be performed on the
data that follows them.

The circuitry that performs the selection of the a values,
the Delta Control section, takes sign information from the
data values of the previous stage and generates a single
Add/Subtract signal. This signal is passed to all of the
adder/subtractor cells in that stage of the pipeline. The
Delta Control circuitry also makes use of a Compute/Apply
signal that is also pipelined to keep pace with the data
items to which it corresponds. Using this signal the control
circuit will either generate a a-value from the signs of the
input numbers or apply a previously calculated a-value
(circuit shown in Figure 4). Since the Compute/Apply
signal is also pipelined it is not necessary to wait for the
pipeline to be flushed before the operation of the Delta
circuits can be changed.

Figure 3 - Pipeline Stage Block Diagram

Our implementation consists of a fully parallel pipelined
system and due to the large number of repeated stages in
the pipeline each stage should occupy as small an area as
possible. There remains a compromise between circuit
complexity (i.e. area) and cycle time. Techniques such as
redundant number systems reduce cycle time at the cost of
dramatically increasing circuit area. Due to the limitations
on processor area and design time, a simpler conventional
method was used to implement the stages.

Figure 4 - Delta Control Block Diagram

Ch P Sum Gout

0 0 	0 	Z
0 1 	1 	0

1 0 1 Z

1 1 0 1

C

K K

SUm

Generate
the P term

UseG & K
to generate
and kill the
Cout atgnal

Generate Sum
and Gout from
Cin signal

Ai 48

Generate the
G and K terms.

tout 	To cout Cin

Pipeline Adder

In choosing an adder implementation for any system a
compromise must be made between speed and circuit size.
In our application the adder cell is replicated a great
number of times and so the size of the adder is the most
important factor to be considered. Taking into account the
size constraint we have chosen to make the Manchester
Carry Adder the focus of our design. Once the basic design
work had been carried out, the circuit was optimised for
multibit addition by fine tuning transistor sizes.

The Manchester Carry Adder [18] differs from a standard
ripple adder through the way in which the carry
information is passed along the calculation. Consider one
stage of a Manchester Carry adder. Under differing input
conditions, the 'carry in' signal may be allowed to pass
unchanged to the next stage, or be forced to a '1' or a '0'.
The central idea behind the Manchester Carry adder is to
detect the condition where the carry input is equal to the
carry output and in this case feed it directly through a pass
gate. By doing this we attempt to speed the propagation of a
carry signal which is the limiting factor in a conventional
adder.

cm 	 cout

Zr
K

P

Figure 6: Carry Propagation

The circuit to implement the carry chain of a Manchester
adder is shown in Figure 6. We have used the concepts of
kill (K), generate (G) and propagate (P) in addition to the
carry in and carry out signals. If we analyse the logic tables
describing a full adder then it can be seen that when the
two inputs are both low the carry output will always be low
and this represents killing the carry. Similarly when both
inputs are high a high carry output will always be
generated. When the two inputs are different the carry is
simply propagated to the next stage. The K,G and P signals
are high when the respective conditions are asserted.

F B 	 B A K G °out

0 0 0

0 1 0 z
1 0 0 z
1 1 0 0 1

Figure 7 - Generate and Kill signals

The generate and kill control signals are produced by the
simple NOR and NAND circuits shown in Figure 7. The
propagate signal can be logically derived from the input
signals by making use of an XOR gate but is produced more
efficiently from the kill and generate signals. A structure
similar to the classic 6 transistor XOR cell is used but with
only 5 transistors, shown in Figure 8.

P

0

0

The last piece of circuitry contained in the adder is that
which deals with carry propagation and sum generation. In
the case of a multibit adder the total calculation time is
made up of two components. Initially the kill, generate
and propagate signals for all of the adders are calculated,
taking a small constant time. The majority of the
calculation time is taken up by the propagation of the
longest carry through the adder chain. It is therefore the
propagation path between the carry in and carry out signals
that should be optimised first to achieve the most benefit.

Figure 9 - Carry and Sum Circuitry

The sum at a particular stage is formed from the propagate
and carry in signals by a pass gate and two extra transistors.
The carry out signal is simply the carry in passing though a
pass gate controlled by the propagate signal, as shown in
Figure 9. For a carry signal to be passed through a single
stage of the Manchester Carry adder, the following circuit
elements must be either charged or discharged :

Two transistor gates
Two conducting transistor channels
Two output capacitances of OFF transistors

The complete Manchester Carry adder is constructed using
23 transistors and is layed out in a horizontal brick shape as
shown in Figure 10. In order to provide both add and
subtract operations, a single XOR gate is positioned at one
of the inputs to provide a selective inversion of that input.
By inverting the input and altering the carry into bit 0
respectively, subtraction is obtained. The basic pipeline cell
thus contains an adder, an XOR gate and a flip flop to
buffer the data between pipeline stages. This pipeline cell is
duplicated to obtain a structure with the functionality
shown in the block diagram of Figure 3.

Figure 10 - basic shape of adder

When a long carry chain occurs in a Manchester Carry
adder of the type described above the capacitance of the
carry path becomes large as does the number of transistors
through which the signal must pass. This results in a
significant reduction in speed or even incorrect operation
of the circuit. In order to solve this problem buffers have to
be inserted into the carry path at regular intervals to
restore signal levels. If there was sufficient room for the
additional hardware then a mechanism known as carry
skip could be implemented which detects a long
propagation path and provides a shorter alternative route
for the carry signal.

A .I

B

A —I

K p

a
T

0 0

0
0

B A 	K

0
0 0

z 0

z
z
z

Pa Po

FiguTe 8 - Propagate signal

Xor I FF
X

Xor I FF

Xor I FF

Xor I FF

Clock

Shift Connections 	 X XOR Y 	c/a()

The shift operation is performed within the pipeline by
providing point to point hard wired connections using the
second metal layer available in the ES2 2um process. To
implement a shift structure as shown in schematic form in
Figure 3 would not be practical because the wires from the
two registers are forced to cross over each other. Since we
are attempting to restrict ourselves to the second metal
layer only, this approach is not suitable. In order to cross,
vias are needed to the first metal layer which would
interfere with the pipeline stages beneath.

Figure 11 - Schematic of a single pipeline stage

In order to solve this problem the two adders
corresponding to the x and y values from the CORDIC
iteration are put on top of each other instead of next to
each other. The crossing of the data lines is then performed
locally in metal one. A single complete pipeline stage is
shown in Figure 11. It contains two arrays of cells each of
which contains an adder, XOR gate and a flip flop. All
control signals for a particular pipeline stage are routed
between the two adders of that stage.

The delta control circuitry is placed at the left edge of the
stage and the clock circuitry is placed at the right edge. Vias
are placed on the output of each flip flop to facilitate the
hard wired shift connections that will be made when the
pipeline is assembled. The interconnect that performs the
shift is routed between this row of flip flop vias and the
next stage in the pipeline. Two identical shifts per pipeline
stage are implemented in this fashion, corresponding to
the shifted versions of the x and y values in the CORDIC
equations.

Delta Control Circuitry

This circuitry provides the value of a required in the
CORDIC iterations and passes it to the processing elements
of a single pipeline stage. It is passed to the pipeline in the
form of a delta control signal. This signal controls the
operation of the pipeline adders, performing either an
addition or a subtraction by means of the XOR gate
provided. The circuit that derives the delta control signal is
shown in Figure 12. The circuit comprises a flip flop to
store the compute/apply bit, a flip flop to store a computed
delta bit and a multiplexor. The multiplexor selects either
the precomputed delta or a newly computed value which
and passes this to the flip flop to be stored for the next
cycle. As has already been described, the value of delta is
obtained in our implementation by taking the XOR of the
sign bits of the two previous data values.

delta

c/a(i+1)

Figure 12 - Main delta control circuitry

A large buffer is also included in the delta control circuit to
provide enough drive for the delta control line. Since the
shifted versions of data values must be sign extended, two
more buffers are added to boost the sign bits arriving at
each pipeline stage and pass them to the most significant
bits of the current stage. A block outline of the delta cell is
shown in Figure 13. The sign bits and compute/apply
signal run vertically and the delta signal runs horizontally
across the middle of the cell.

Delta
	

XOR gate
	

Multi-
Buffer
	

for Delta 	plexor

Delta Flipflop

	 ...DELTA

Compute/apply Flipflop

Sign Y Sign X
Buffer Buffer

Figure 13 - Block diagram of delta cell

Barrel Shifter

A complete description of the options currently available
for the design of Barrel Shifters and details of the
implementation chosen for our application is described
elsewhere 118]. We summarise here the results of that
paper and describe in addition the design of the decoder
circuits that are required in a complete design.

A single level switching network is used as the core of the
shifter, routing the data path through a right angled turn
while performing the shift operation. The shifter operates
in a precharged manner, the entire network being
precharged to +5V and then selectively discharged under
control of the input values and the shift control signals.
The use of a precharged scheme both speeds the operation
of the circuit and allows the array to be designed using only
n type switching elements. If a precharged scheme were
not used then it would be necessary to use transmission
gates as the switching elements since both high and low
voltage levels need to be passed. This would lead to a
much larger and slower shift network. The circuit for the
main data path through the array is given in Figure 14.

Delta
Circuitry

Xor I FF

Xor I FF

Xor I FF

Xor I FF

Clock

The shift operation is performed within the pipeline by
providing point to point hard wired connections using the
second metal layer available in the ES2 2p.m process. To
implement a shift structure as shown in schematic form in
Figure 3 would not be practical because the wires from the
two registers are forced to cross over each other. Since we
are attempting to restrict ourselves to the second metal
layer only, this approach is not suitable. In order to cross,
vias are needed to the first metal layer which would
interfere with the pipeline stages beneath.

Figure 11 - Schematic of a single pipeline stage

In order to solve this problem the two adders
corresponding to the x and y values from the CORDIC
iteration are put on top of each other instead of next to
each other. The crossing of the data lines is then performed
locally in metal one. A single complete pipeline stage is
shown in Figure 11. It contains two arrays of cells each of
which contains an adder, XOR gate and a flip flop. All
control signals for a particular pipeline stage are routed
between the two adders of that stage.

The delta control circuitry is placed at the left edge of the
stage and the clock circuitry is placed at the right edge. Vias
are placed on the output of each flip flop to facilitate the
hard wired shift connections that will be made when the
pipeline is assembled. The interconnect that performs the
shift is routed between this row of flip flop vias and the
next stage in the pipeline. Two identical shifts per pipeline
stage are implemented in this fashion, corresponding to
the shifted versions of the x and y values in the CORDIC
equations.

Delta Control Circuitry

This circuitry provides the value of a required in the
CORDIC iterations and passes it to the processing elements
of a single pipeline stage. It is passed to the pipeline in the
form of a delta control signal. This signal controls the
operation of the pipeline adders, performing either an
addition or a subtraction by means of the XOR gate
provided. The circuit that derives the delta control signal is
shown in Figure 12. The circuit comprises a flip flop to
store the compute/apply bit, a flip flop to store a computed
delta bit and a multiplexor. The multiplexor selects either
the precomputed delta or a newly computed value which
and passes this to the flip flop to be stored for the next
cycle. As has already been described, the value of delta is
obtained in our implementation by taking the XOR of the
sign bits of the two previous data values.

A large buffer is also included in the delta control circuit to
provide enough drive for the delta control line. Since the
shifted versions of data values must be sign extended, two
more buffers are added to boost the sign bits arriving at
each pipeline stage and pass them to the most significant
bits of the current stage. A block outline of the delta cell is
shown in Figure 13. The sign bits and compute/apply
signal run vertically and the delta signal runs horizontally
across the middle of the cell.

Delta
	

XCR gate
	

Multi-
Buffer for Doha 	plexor

Delta Flipflop

	 .DELTA

Compute/apply Flipflop

Sign Y
	

Sign X
Buffer
	

Buffer

Figure 13 - Block diagram of delta cell

Barrel Shifter

A complete description of the options currently available
for the design of Barrel Shifters and details of the
implementation chosen for our application is described
elsewhere [18]. We summarise here the results of that
paper and describe in addition the design of the decoder
circuits that are required in a complete design.

A single level switching network is used as the core of the
shifter, routing the data path through a right angled turn
while performing the shift operation. The shifter operates
in a precharged manner, the entire network being
precharged to +5V and then selectively discharged under
control of the input values and the shift control signals.
The use of a precharged scheme both speeds the operation
of the circuit and allows the array to be designed using only
n type switching elements. If a precharged scheme were
not used then it would be necessary to use transmission
gates as the switching elements since both high and low
voltage levels need to be passed. This would lead to a
much larger and slower shift network. The circuit for the
main data path through the array is given in Figure 14.

Delta
Circuitry

X XOR Y 	c/a(i)

delta

cla(i+1)

Figure 12 - Main delta control circuitry

Figure 14 - Barrel Shifter Data Path

The design of the switch cells that comprise the barrel
shifter network passed through a number of revisions
from a full transmission gate to a single transistor. The
final version of this cell is shown in Figure 15. There are
several important points to note from this design. Firstly
the shift control lines are run in polysilicon. Although this
causes the delay for charging the shift lines to be increased
relative to delay for metal, the charging of the shift lines
can be performed in parallel with the precharging of the
data lines. The second point to note is that only one of the
two metal layers is used rather than both. This decision
both reduces the area needed for the cell and allows
routing to be performed in the second metal layer over the
top of the barrel shifter. The support circuits are also
designed without using the second metal layer for this
reason. Thirdly, since only one transistor is used in the
design, it is not necessary to include both types of substrate.
The area savings arising from this are very large.

Figure 15 - Barrel Shifter Cell

In order to complete the design of the barrel shifter, it is
necessary to provide signals for the Shift Control lines.
This is achieved by performing some sort of decode
operation on another piece of data to produce a set of data
signals in which at most one signal is high at any
particular time. In the case of the barrel shifter at the input
of the processor the data to be decoded is the unsigned
difference between the two exponents. In the case of the
output barrel shifters the signal is the data itself, the shift
lines being decoded in such a manner that the most
significant 'V in the input number is shifted to the left
hand end. In the latter case a binary number must also be
produced indicating the number of bit positions by which
the input was shifted. The circuitry to perform these
functions is described in the next section.

Shift Decode Circuitry

The shift signals that control the flow of data through the
barrel shifters take the form of a number of data lines, only
one of which may be set to a '1' at any particular time. The
selection of the control signal that must be activated is
made by converting from other data generated within the
processor. For the mantissa alignment circuitry, the data
determining the shift is the unsigned difference between

the two input exponents. For the post normalisation
shifters, the control information is derived from the data
itself such that the most significant '1' is shifted to the
most significant digit position.

For the input decoder, the binary input from the exponent
subtract circuitry is converted to 1 of N form by making use
of an AND gate for each shift control line. Both the true
and inverted forms of each input bit are supplied to this set
of gates, forming a direct 1 of N decoder. The circuit that
we have implemented is probably at the limits of this sort
of approach, as the pull up logic of an AND gate consists of
a direct chain of p-transistors. Since the exponent
difference is represented by five bits, we have five
transistors in series which drastically slows the circuit. This
has been slightly compensated for by making the pull up
transistors wider but this cannot be continued indefinitely.

The decoder for the post normalisation shifter is a little
more complicated. The selection of the most significant
digit in a number is essentially a carry chain type of
operation, as the information about more significant digits
must be passed down before any particular digit can make
the decision about whether or not it is the most significant
one. This circuitry is likely to be slower than that of the
input decoder for those reasons. Similar techniques to
those applied to the improvement of carry chain
performance in adders could be applied here also, but the
circuit presented here satisfied our performance
requirements and so no such addition was necessary.

By considering a number of approaches to the
implementation of this operation, we arrived at a solution
in which each bit position makes a decision based on its
own data bit (D), and a flag from the next most significant
digit that indicates whether or not a '1' has been found
(Fin). Using this information, a Shift control bit (5) is
produced and a value Fout is passed to the next bit
position. Diagrammatically this is shown in figure 16.

0—pa

0

Ri

R, S

S

Fat

S-D. FlI

Faut.Fn*D

0
0
1
1

0
1
0
1

0
0
1
0

0
1
1
1

Figure 16 - Normalisation Decoder

By using a transmission gate to attempt to speed the
operation of the carry chain, the following circuits have
been designed that implement the truth table shown in
figure 16 above. There is also inverters to produce the
normal and inverted forms of the values D and Fin that
are required, which are not shown. Since it is possible for
the F signal to be passed through a number of stages, level
restoring buffers are placed after every four decode units.

En

is

it

Figure 17 - Normalisation Decoder Circuit

ataOut

En Fat

Exponent Pipeline

The exponent pipeline is simply an eight bit wide storage
path made up of the same number of pipeline stages as the
main CORDIC pipeline so that the exponent keeps pace
with the data to which it corresponds. The units that make
up the pipeline are simply flip flops, of the same design as
that used in the main pipeline so they will not be described
in any more detail here.

Input and Output Circuits

The input and output circuitry was relatively simple to
design as the pad layouts were supplied by ES2 and were
simply used in that form to provide the external interface.
The signals that were taken from the inputs pads and sent
to the output pads have to be multiplexed due to our
choice of interface schemes. This has been accomplished
through the use of standard flip flops and multiplexers.

Putting It All Together

With the design of the major cells completed, it was
necessary to combine them all into one design that
performed the complete CORDIC algorithm as originally
conceived. A first version of the processor has been
produced by laying in the interconnect by hand which is
necessary through the majority of the circuit as the
constraints on the dimensions of the circuit are too tight to
enable automatic routers to be used. With hindsight a fair
amount of the larger scale routing through the Floating
Point area of the chip could have been done with an
automatic routing tool. The layout of the complete circuit
has shown that the floating point circuitry is far more
sparsely packed than it could be. This would probably be
remedied by redesigning the barrel shifters to perform the
shift operation in a straight through topology rather than
the right angle turn that is currently implemented. The
pipeline itself has been designed with only a small amount
of unused space due to the routing of the shifts above the
pipeline circuitry.

The full CORDIC circuit has not been tested completely
due to the lack of a means of obtaining a correspondence
between a logic level simulation and the silicon layout
level. Even a full logic level simulation of the processor
would be a difficult task. It is intended that a small scale
test chip will be produced that will test the functionality of
the basic building blocks described in this paper. Work will
also proceed on a logic level simulation of the full
processor, using those elements, that will verify that our
implementation of the algorithm is correct under all
circumstances. The full layout of the CORDIC processor is
shown in Figure 18.

References

1. K.Lismore, G.J.Vaudin, "Design and Application of a
CORDIC Processor for Real Time Signal Processing",
Warwick University Dept. of Computer Science, 1988.

2. M.Ercegovac, T.Lang, "Redundant and Online
CORDIC: Application to Matrix Triangularisation and SVD",
Computer Science Dept., UCLA, 1987.

3. K.Jainandunsing, E.Deprettere, "Solving Sets of
Linear Equations for Real Time Signal Processing", Proc
EUSIPCO-86.

4. H.M..Ahmed, "Signal Processing Algorithms and
Architectures", Ph.D. Thesis, Dept. of Electrical Eng,
Stanford University, 1982.

5. F.Deprettere, P.Dewilde, "Pipelined CORD IC
Architectures for fast VLSI Filtering and Array Processing",
Proc. ICASSP-84, pp 41.A.6.1-41.A.6.4, 1984

6. J.R.Cavallaro, F.T.Luk, "CORDIC Arithmetic for a SVD
Processor", 8th Symposium on Computer Arithmetic, pp
215-22, 1987.

7. J.Nash, S.Hansen, "Modified Faddeev Algorithm for
matrix Manipulation", SPIE Real Time Signal Processing
VII, pp 39-46, 1984.

8. J.H. Moreno, T.Lang, "On Partitioning the Faddeev
Algorithm", Proc. Int. Conf. Systolic Arrays, pp125-134, 1988.

9. D. W.J. Walton, "Increased stability of the Faddeev
Algorithm using Semi-CORDIC operations", Computer
Science Dept, Warwick University, Research Report.

10. J.E.Volder, "The CORDIC Trigonometric computing
Technique", IRE Trans on EC, Vol EC-8,No3, 330-334.

11. J.S.Walther, "A unified Algorithm For Elementary
Functions",Proc. Spring Joint Computer Conf. pp 379-385.

12. J.Duprat, J.M.Muller, "The CORDIC Algorithm: New
Results for Fast VLSI Implementation", Laboratoire LIP,
Ecole Normale Superieure de Lyon, Janvier 1990.

13. G.L.Haviland, A.A.Tuszynski, "A CORDIC Arithmetic
Processor Chip", IEEE Trans Comp. C29, pp 68-79, 1980.

14. J.M.Delosme, "VLSI Implementation of Rotations in
Pseudo Euclidean Spaces", IEEE Int. Conf. Acoustics,
Speech & Signal Processing 2, pp 927-930, Boston, 1983.

15. N.Takagi, T.Asada, S.Yajima, "A Hardware Algorithm
for Computing Sign and Cosine using Redundant Binary
Representation", Systems and Computares in Japan, Vol 18,
No 8, pp 1-9, Aug 1987.

16. N.Takagi, T.Asada, S.Yajima, "Redundant CORDIC
Methods with a constant scale factor", Submitted to IEEE
Trans. on Computers.

17. T.Y.Sung, Y.H.Hu, H.J. Yu, Doubly Pipelined CORDIC
array for Digital Signal Processing", Proc. ICASSP, pp
22.6.1-22.6.4.

18. P.M.Chown, "Design of a Barrel Shifter for the
Warwick Pipelined CORDIC Processor", Warwick University
Dept. of Computer Science, Internal Report, 1990.

