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Abstract 

A general theory is developed for constructing the asymptotically shallowest 
networks and the asymptotically smallest networks (with respect to formula size) 
for the carry save addition of n numbers using any given basic carry save adder as 
a building block. 

Using these optimal carry save addition networks the shallowest known 
multiplication circuits and the shortest formulae for the majority function (and 
many other symmetric Boolean functions) are obtained. 

In this paper, simple basic carry save adders are described using which 
multiplication circuits of depth 3.71 log n (the result of which is given as the sum of 
two numbers) and majority formulae of size 0(n3.21) are constructed. Using more 
complicated basic carry save adders, not described here, these results could be 
further improved. Our best bounds are currently 3.57 log n for depth and 0(n3.13) 
for formula size. 

1. Introduction 

The question 'How fast can we multiply?' is one of the fundamental questions in 
theoretical computer science. Ofman-Karatsuba [9] and SchOnhage-Strassen [24] (see 
also [1],[15]) tried to answer it by minimising the number of bit operations required, or 
equivalently the circuit size. A different approach was pursued by Avizienis [2], Dadda 
[6], Ofman [17], Wallace [28] and others. They investigated the depth, rather than the 
size of multiplication circuits. 

The main result proved by the above authors in the early 1960's was that, using a 
process called Carry Save Addition, n numbers (of linear length) could be added in depth 
O(log n). As a consequence depth O(log n) circuits for multiplication and polynomial 
size formulae for all the symmetric Boolean functions are obtained. 
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They all used a component called a '3 ---+ 2' Carry Save Adder (CSA3_,2) which reduces 
the sum of three numbers (of arbitrary length) to the sum of only two in a (small) 
constant depth. It is easy to see that using log3/2  n 0(1) levels of such CSA3_,2's it 
is possible to reduce the sum of n numbers to the sum of only two. The resulting two 
numbers could be added (if required) using a Carry Look Ahead Adder (see [3],[10]) with 
additional depth (1 + o(1)) log m (where m is the length of the numbers). 

In this paper we look more carefully at the construction of CSA-networks for carry save 
addition. A moment's reflection shows that any CSA3_,2-network for the carry save 
addition of n numbers will have at least log3/2  n levels of CSA3_,2's. Thus, if a CSA3-.2 
is regarded as a black box to which the inputs should be supplied simultaneously and 
which then after a fixed delay returns the two outputs simultaneously, then this naive 
construction is optimal. It turns out however that, even for the best CSA3_,2's, some 
of the inputs may be supplied after the others, without delaying the outputs, and that 
one of the outputs is sometimes produced before the other. The task of constructing 
networks with minimal total delay in such cases becomes much more interesting. 

In general we assume that we are given a CSAk_,I  whose delay characteristics are 
described by a delay matrix M. The entry mi.; of the matrix gives the relative delay 
of the i-th output with respect to the j-th input. In particular, if the k inputs to 
a CSAk_,L  are ready at times xl, , xk, we assume that the i-th output is ready at 
time y, = maxi<j<k{mi;  x j }. This corresponds to taking the {max, +} inner product 
between M and x. We show how to extract from any delay matrix M the minimal 
constant q such that CSAk,.1-networks for the carry save addition of n numbers with 
delay (q o(1)) log n can be constructed using CSAk_,t's with delay matrix M. We 
exhibit explicit constructions achieving this optimal behaviour. 

For a given implementation of a CSAk_,I  using Boolean circuitry, if we define mi.;  to 
be the length of the longest path from any bit of the j-th input number to any bit of 
the i-th output number then the above result translates immediately to a result about 
depth. 

Several basic designs of GSA's are described in the next section. Using these designs 
optimally we get U2-circuits (circuits over the unate dyadic basis U2  = B2 — {®,  
of depth 5.42 log n and B2-circuits (circuits over the basis B2  of all dyadic Boolean 
functions) of depth 3.71 log n for the carry save addition of n numbers. Using more 
complicated GSA's, not described here, these results could be improved to 5.02 log n 
and 3.57 log n respectively. As a consequence, we derive circuits of depth 6.02 log n and 
4.57 log n for the addition of n numbers (of linear length) or for the multiplication of 
two n bit numbers. This improves a previous result of Khrapchenko [14] and the naive 
estimates of Ofman and Wallace. 

Multiple addition circuits (of n numbers of n bits each) are necessarily of size SZ(n2). 
Our circuits are composed of 0(n) CSA's each of size 0(n) so they have this optimal 
size. 

The Schonhage-Strassen multiplication algorithm uses the Discrete Fourier Transform 
(DFT) to reduce dramatically the size of multiplication circuits. Since the computation 
of a DFT essentially involves multiple additions, carry save adders could be used to 
implement DFT's, and therefore the whole SchOnhage-Strassen algorithm, in logarithmic 
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depth (cf. [16],[29]). The implied constant factors however are much larger than those 
obtained here. 

Another special case of multiple addition is bit counting. A counter for n bits could be 
obtained by carry save adding the n input bits, treating each as a number, and then 
adding the two output numbers. Note that the length of the two output numbers is 
O(log n) so the additional depth required to add them up in this case is only O(log log n). 
As a consequence we get depth 5.02 log n U2-circuits and depth 3.57 log n B2-circuits for 
counting. Many symmetric Boolean functions, such as majority and MODk for any fixed 
k, can be computed in depth o(log n) once the bit count is done, so we get the same 
bounds for them as well. 

An analogous theory is developed for formula size. We assume that the formula size 
characteristics of a CSAk_,/  are described by an occurrence matrix N. The entry ni;  
gives the number of appearances of the j-th input number in the formula for the i-th 
output number. If the k inputs to a CSAk_,/  have formula sizes xl, , xk then the i-th 
output number will have formula size yi  = 	niixi. Note that this corresponds to 
multiplying the matrix N by the vector x = (x1, . , k). 

Again we show how to extract from the occurrence matrix the minimal q such that 
CSAk_,L-networks of formula size n(9+0(1)) can be constructed and describe constructions 
with optimal behaviour. 

Using the CSA designs of Section 2 optimally we get U2-formulae of size 0(n4-70) 
and /32-formulae of size 0(723.21) for each output bit in the carry save addition of n 
numbers and for many symmetric Boolean functions as before. Again, using more 
complicated GSA's, not described here, these bounds could be improved to 0(124') 
and 0(n3.13) respectively. These constructions improve previous results of Khrapchenko 
[13], Pippenger [21], Paterson [18] and Peterson [20]. 

Depth and the logarithm of formula size are closely connected. It is known for example 
that log LB2  (1) 5_ DB,(f) _< 2.47 log LB, (f) (in fact even that Du, (f) _< 2.47 log LB2 (f)) 
and that log Lu2(f) < Du, (f) 5. 1.81 log Lu2(f) (see [4],[23],[25]). These relations are 
insufficient for the derivation of optimal constants however, and we have to optimise 
separately for depth and for formula size. The known connections between B2 and U2, 
namely Dal  (f) 5_ 2DB2(f) and Lug  (f) < 0 ((LB2(f))1og3  10) (see [22]), are also too crude 
to be of any help to us. 

The theories developed for depth and formula size are analogous. However some 
differences result from the fact that the usual {+, x} inner product is used in the formula 
size case while the not- so-usual {max, -}-} inner product is used for depth. In particular, 
while the parameters that should be optimised in the formula size case are continous, 
some of them are discrete in the delay case. This changes the nature of the optimisation 
problems involved. 
A summary of the 'numerical' results obtained in this work together with the previously 
known results is given in Table 1.1. The right columns give the dimensions of the GSA's 
used. Results marked by a single star (*) are obtained using building blocks described 
in this paper. Results marked with a double star (**) are obtained using building blocks 
which will be described in a subsequent paper. In three out of the four cases we improve 
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U2-depth B2-depth 

5.12 log n Khr[14] (1978) 7 -- 3 3.71 log n * (1990) 3 --►  2 
5.07 log n * (1990) 7 • -> 3 3.57 log n ** (1990) 6 -4  3 
5.02 log n ** (1990) 11 -4 4 

U2-formula size /32-formula size 

n' Pip[21] (1974) 3 ---). 2 n3-54  Pip[21] (1974) 3 --,, 2 
n4.62 Khr[13] (1972) 7 --, 3 n3A7  Pat[18] (1978) 3 —+ 2 
n4-6° * (1990) 7 —+ 3 n3' Pet[20] (1978) 3 —+ 2 
n4.57 

** (1990) 11 -+ 4 713'21  * (1990) 3 —+ 2 
n3.16 

** (1990) 7 -4 3 
n3.13 

** (1990) 6 —+ 3 

Table 1.1. Results for multiple carry save addition. 
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Figure 2.1. Constructing a CSA3.2  using FA3's. 

the previously known results even using the same CSA's used by the previous authors. 
The improvements we get are quite marginal in some of the cases. Our results, however, 
could only be improved by either designing improved basic carry save adders or by 
designing circuits which are not constructed from carry save adders. 

2. Carry Save Adders 

A k-bit full adder (FAk) receives k input bits and outputs flog(k +1)1 bits representing, 
in binary notation, their sum. Usually k is of the form 2-e — 1. 

Arrays of FA's could be used to construct GSA's. A construction of a CSA3_,2  using 
FA3's, for example, is illustrated in Fig 2.1. The depth of the CSA obtained is equal to 
the depth of the FA used and is independent of the length of the numbers to be carry 
save added. 
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Figure 2.2. An optimal depth implementation of a B2-FA3. 

A B2-implementation of an FA3  is given in Fig. 2.2(a). The delay matrix of this FA3  
which describes the relative delay of each output with respect to each input is easily seen 
to be (1 

3  
2 

3
2) .  The delay characteristics of the CSA3_,2  obtained are also described by k 2  

this delay matrix. 

Notice that x1  may be supplied to this FA3  one unit of time after x2  and x3  are supplied, 
and that yo  is obtained one unit of time before yi. Thus, the FA3  can be represented 
schematically by the 'gadget' appearing in Fig. 2.2(c). 

The two formulae obtained by expanding the circuit of Fig 2.2(a) are given in Fig 2.2(b). 
The formula for yi  has size 5. The variable x1  appears only once in it while each of the 
variables x2, x3  appear twice. We therefore say that the occurrence vector of the formula 
is (1, 2,2). The occurrence vector of the formula for yo  is (1,1,1). Combining these 

( 	1 2 11 vectors we get that the occurrence matrix of the implementation is 

An alternative B2-implementation of an FA3  is given in Fig. 2.3. This implementation 
1 2 2 1 has a worse delay matrix (3 3  3) but a better occurrence matrix 	3). It can be  

checked that no other B2-implementation has a better delay or occurrence matrix than 
those given. 

Both the implementations of Fig. 2.2 and Fig. 2.3 are also minimal with respect to circuit 
size. This, however, will not happen in general. Since we are not concerned here with 
the size of the circuits (which will always be 0(n2)) we can think of an implementation 
of an FA as a set of formulae, one for each output bit. This also stresses the fact that 
we may try to optimise the structure of each formula separately. 

4 
3
4) A U2-implementation of an FA3  is given in Fig. 2.4. It has delay matrix (22 3 	and 

2 4 4) . occurrence matrix ( 	It could be checked that both these are optimal. Note kl 2 2 
that this time it is not clear how to schedule the inputs to this unit. If x1  is supplied 
two units of time after x2 , x3  then delays are introduced in the circuitry for yi; if x1  is 
supplied one unit of time after x2, x3, then delays will be introduced in the yo  circuitry. 
These alternatives give rise to the two gadgets shown on the right in Fig. 2.5. This is a 
simple example of non-modularity. 
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Figure 2.3. An optimal formula size implementation of a B2-FA3. 

Figure 2.4. U2-implementation of an FA3  
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Figure 2.5. Example of non-modular formulae 
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Using the implementation of Fig. 2.2 we get depth 3.71 log n B2-circuits for carry save 
addition and using that of Fig. 2.3 we can get 0(70.21) B2-formulae for each output bit 
of carry save addition. With the implementation of Fig. 2.4 we get depth 5.42 log n U2" 
circuits and O(n4• 70) formulae for carry save addition. These are the best results possible 
using FA3's. The better results stated in the previous section are obtained using more 
complicated building blocks. 

The construction of the building blocks that are used to get our best results is technically 
involved. Since we want to concentrate on the general theory we will not describe their 
construction here. These details will appear in a forthcoming paper. We would just 
point out here that GSA's could be built using any bit adder, not necessarily using full 
adders. Our currently best U2 results for example are obtained using a bit adder that 
adds 7 bits with weight 1 together with 4 bits of weight 2. It is also not necessary for 
the result to be supplied in a non-redundant form. 

3. GSA-networks 

A CSA is regarded henceforth as a black box with k inputs and., outputs (t < k) with 
the property that the sum of its outputs is always equal to the sum of its inputs. The 
delay and formula size characteristics of a CSA are described by its x k delay and 
occurrence matrices. 

We assume that all the entries in the delay matrix are positive and that all the entries 
in the occurrence matrix are at least 1. This corresponds to the assumption that every 
output depends on every input and that no computation is instantaneous. 

A more general setting could allow the outputs to depend on subsets on the inputs. In 
such cases, —co entries will appear in the delay matrices and 0 entries will appear in the 
occurrence matrices. Almost all the results of this paper could be extended to cover this 
more general situation. The complete proofs of these results are much longer however, 
and although we do need these generalisations in order to get our best results mentioned 
in Table 1.1 we will not present them here. Some will appear in the planned subsequent 
paper. 

In the sequel, whenever a delay matrix is considered, it is assumed that all its entries 
are positive and whenever an occurrence matrix is considered it is assumed that all its 
entries are at least one. 

A CSA-network is an acyclic network composed of CSA units of a fixed type. An 
inductive argument shows that any CSA-network has the property that the sum of its 
outputs is equal to the sum of its inputs. 

Using the delay and occurrence matrices, M and N respectively, of the CSA unit used 
we can assign a delay and (formula) size to each 'wire' in the network. The inputs 
to a network are assigned delay 0 and size 1. If the k inputs to a CSA have delays 
xl, 	, xk then the i-th output of this CSA will have delay yi  = maxi<j<k{nli; si}. 
We express this by y = M o x where the o denotes the {max, d-} inner product. If the 
k inputs to a CSA have sizes xl, 	, xk  then the i-th output of this CSA will have size 
yi k  nix We abbreviate this by writing y = Ns where this time the usual 	x} 
inner product is used. The delay (respectively, size) of a network is the maximum of the 
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Figure 3.1. Optimal n -k 2 networks for n = 4, 5, 6, 7,8. 

delays (respectively, sizes) of its outputs. 

Given a fixed CSAk_,1  with delay matrix M and occurrence matrix N, our task is to 
construct using these units networks with n inputs and £ outputs with minimal delay or 
formula size. We denote by DM(n) the minimal delay of such an n t network and by 
-FN(n) the minimal (formula) size of such a network. Strictly speaking, n 	t networks 
exist only if (k — .01 (n — £) (and then use exactly (n —t)1(k — t) GSA's). This is relaxed 
however by allowing constant zero inputs. Such dummy inputs will also simplify the 
presentation of the constructions described in Sections 7 and 8. 

The optimal networks for some small values of n, constructible using the CSA 3-42 of 
Fig. 2.2, are shown in Fig. 3.1. For every fixed CSA unit there is a polynomial time 
algorithm which constructs for every n the set of n 	networks with minimal delay. 

We are interested in the asymptotic behaviour of the functions DM(n) and FN(n). The 
next theorem states that DM(n) behaves logarithmically and FN(n) polynomially. 

Theorem 3.1 For every delay matrix M and occurrence matrix N there exist constants 

8(M) and e(N) such that 

(i) DM(n) = (8(M) o(1)) log n; 

(ii) FN(n) = nt(N)+°(1). 

Proof : By collapsing first the columns then the rows of an n x m array of inputs, we 
see that 

DM(nm) < DM(n) DM(m) DM(i2). 

It follows that the function DM(n) DM(t 2) behaves sub-additively (as its argument 
n multiplies), and thus the limit 8(M) = limn_,,„, DM(n)/ log n exists. By a similar 
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argument we get that the limit e(M) = limn„, log FN(n)/ log n exists. These two 
constants satisfy the required conditions. 

Our goal in the next sections will be to determine 8(M) and e(N) as functions of M and 
N. 

4. Lower bounds 

Define the following functions : 

8'(M) = max{8 > 0 : 

e(N) = maxle > 0 : 

V x E Rk  and y=Afoxi 
Eil=1 2rils  _<EL1 21416  

V x E (Rik  
IlxIlii 5_ IINxIlve 

Lemma 4.1 The maxima in the definitions of P(M) and e'(N) exist. 

Proof : For every x E Rk  and y=Mox let A„ = {6 > 0 : > 2 'i/6  < E 2Yi/s}. 
It is easy to see that the set A's  = Az  U {0} is closed. Denote A = nzERk Ax, = 
nxERkAiz  = A U {0}. The set A', being an intersection of closed sets is also closed. 
Let m be the maximal entry in M. If we choose x = 0 then yi  < m. If 6 E Ao  then 
k = E 2x2 /6  < E n16  < £2m/6  and as a consequence S < m/ log(k/1). Thus A0  and 
therefore A' are bounded. Thus A' is compact and has a maximum. It is easy to check 
that max A' > 0 and therefore max A = max A' and their common value is 6'(M). 

The existence of e'(N) is proved in a similar manner. 

More direct proofs for the existence of these maxima could be derived from the arguments 
used in Sections 5 and 6. 

In this section we show that 6'(M), e'(N) are lower bounds for 6(M), e(N). In Sections 5 
and 6 we show that they are also upper bounds, thus establishing that 8(M) = 61(M) 
and e(N) = e'(N). 

Theorem 4.2 

(i) Dm(n)?_ e(M)log(n/t); 

(ii) FN(n) > (nlirN). 

Proof : Consider an n —+ t network composed of GSA's with delay matrix M. 
If the inputs to a CSA in the network have delays xl, 	, sk  then the outputs will 
have delays yi, , yt  where y = M o x. The definition of 8 = 61(M) ensures that 
E",.1  2s;/6  < 	2Y.A. Using induction we get a similar relation for the inputs and 
outputs of the whole network. The n inputs have delay 0. If the outputs all have delay 
at most d then we get that n < £2 1̀/6  or equivalently d > S log(n I t). 

Similarly, if the GSA's in the network have occurrence matrix N we get that the 
sizes of the inputs and the outputs to every CSA in the network satisfy the relation 

iixiiiie < 
	where e = e'(N). Using induction we get a similar relation for the whole 
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network. The n inputs have size 1. If the £ outputs all have size at most f then we get 
that f > (n/t)`. 	 0 

The argument used in this proof is similar to the one used in a proof that a binary tree 
of depth t can have at most 21  leaves using Kraft's inequality (E 2-4  < 1 where the 
are the depths of the leaves in a binary tree). 

As an immediate consequence we get 

Corollary 4.3 

N 61(M) < 5(M); 

(ii) e(N) 5_ e(N). 

5. The delay problem 

In this section we show that in order to compute SW) we need only consider a finite 
number of points x E Rk. This provides a practical way of computing 81(M). We will 
also gain some insight into how a CSA with delay matrix M could be used optimally. 

If x E Rk, y E Rt  we define 

k 

Px,y(A) = E — E AYi. 
J.1 	i=1 

Lemma 5.1 If max x; < min yi and £ < k then the equation Px,y(A) = 0 has a unique 
root A(x, y) in the interval (1, oo). 

Proof : If A = 1 then Pz,v(1) = k — t > 0 and if A —* oo then Px,y(A) 	—oo. Thus 
the equation has at least one root in the interval (0, oo). 

Since a translation of x and y by the same amount leaves the roots invariant, we 
may assume, without loss of generality that max xi  < 0 < min yi. Every positive 
contribution to Pz,y(A) is now decreasing in A while every negative contribution is 
increasing. Therefore Pz,y(A) as a whole is decreasing and the uniqueness of the root is 
guaranteed. 	 0 

If x E Rk  and y E Rt, we denote by y — xT the t x k matrix whose elements are yi  — x j. 

Matrices of this form are called modular. If M', M are two matrices and 	> mid  for 

every i, j, we say that M' dominates M and we write M' > M. 

If we replace S in the definition of 5'(M) by A = 21/6  then since y = M o x implies 

y — xT > M, we get that e(M) = 1/ log A(M) where 

A(m) minf A  > 1 	xERk,y Efe,y—xT  >M 

Ar'< ELi AY' 

If M is a delay matrix with positive entries and y—XT > M then clearly maxi  xi  < mini  yi  

and the uniqueness of A(x, y) follows. We therefore get that E Axi < E A'  holds if and 

only if A > A(x, y). We can thus state the definition of A(M) in the following form 

A(M) = max{A(x, y) : y — 5T  > M, x E Rk , y E Rt }. 
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A pair (x, y) of vectors x E Rk  and y E Re satisfying y — xT > M will be called a 
schedule for M. If we impose the additional requirement that xl  = 0 we get a one-
to-one correspondence between schedules and modular matrices dominating M. This 
set of modular matrices dominating M will be denoted by P(M) and will be called the 
modular polyhedron over M. 
If M = b — aT is a modular matrix and y — xT  > M then y, > maxici<k{bi  — a;  +xi } = 
bi-Fc where c = maxi<;<k{x; —ai}. If we define ei  = c-Fa; then we still have y—xiT  > M, 
although x' > x and therefore A(x', y) > A(x, y). Since translating both x and y by the 
same amount leaves the roots invariant, we may assume that c = 0. So x' = a, y = b, 
and we have proved the following Theorem. 

Theorem 5.2 If M is modular, M = b — aT say, then A(M) = A(a,b). 

As an immediate consequence of this theorem we get that 

A(M) = max{A(M') : M' E P(M)}. 

The set P(M) is defined using a finite set of linear inequalities and it is therefore a 
polyhedron. As mentioned before, we can identify a point M' E P(M) with the unique 
schedule (x, y) which satisfies x1  = 0 and y — xT  = M' . 

For every schedule (x, y), define a bipartite graph r(s, y) in which the elements of x 
and y are the nodes and in which x; and yi are connected by an edge if and only if 
yi  — x;  = mii. It is easy to check that (x, y) is a vertex of the polyhedron if and only if 
the graph P(x, y) is connected. A vertex of a polyhedron is an extremal point of it, that 
is, a point which is not a convex combination of any other two points in the polyhedron. 
The polyhedron P(M), has only a finite number of vertices. We denote this finite set of 
vertices by P*(M). Our aim is to prove that the maximum in the definition of A(M) is 
attained at some vertex of P*(M). 

Suppose that (x, y) E P(M) is not a vertex of P(M), so the graph F(x, y) is disconnected. 
We will show that there exists a schedule (x', y') such that r(e, y') is connected and 
A(x', y') > A(x, y). Suppose that A is the set of variables in the nonempty connected 
component of P(x, y) containing xl. Let B denote the complementary set of variables. 
We can break the definition of Px,y(A) in the following way 

Px,y(A) = E Ax' — E Ash) + E Ax' — E Ain) 
EA 	y; EA 	 x1 EB 	yi EB 

PAN 	 PB(A) 

Let A = A(x, y), so that Pr,y(A) = 0. If PB(A) is negative, then increasing the variables 
of B by a common constant decreases PB(A). While if PB(A) is non-negative, then 
decreasing these variables by a common constant does not increase PB(A). In either 
case the variables of B can be shifted in the appropriate direction until one more of the 
constraints yi — x; > mi;  is satisfied with equality. The result is a schedule (x', y') for 
which F(x', y') has all the edges of F(x, y) together with at least one edge between A 
and B. Furthermore Pz,,y,(A) < 0 for A = A(x, y), so that A(x', y') > A(x, y). 
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By repeating this procedure we arrive at a schedule for which the graph is connected 
(so that the schedule corresponds to a vertex of P(M)), without ever decreasing A. 

We have thus proved 

Theorem 5.3 For any delay matrix (with positive entries), A(M) = max{A(M') : 
M' E P* (M)} 

In Section 7 we will see that the lower bounds of the previous section are tight. 
Theorem 5.3 thus says that if M is a non-modular matrix then there exists a modular 
matrix M' that dominates it (and is a vertex of the modular polyhedron over M) such 
that asymptotically, we can do as well using M' as we can using M. In Fig. 2.5 we tried 
to describe the behaviour of a non-modular CSA. The two gadgets in Fig. 2.5(b)(c) 
turn out to be the vertices of the modular polyhedron. The gadget in (c) turns out to 
be the optimal. As we noted in Section 2, internal delays are inevitable when using a 
non-modular gadget. Apriory, it might seem that the ability to delay some of the inputs 
in some cases and others in other cases is advantageous. This however is not the case. 
In order to get optimal performance we should always choose the same internal delays. 
In the example of Fig 2.5, for instance, we should always delay x1  internally and use the 
gadget shown in (c). 

The results of this section could be generalised to cover the case in which a finite set 
of basic gadgets, each with an associated delay matrix, is given to us. In order to get 
optimal performance it is always enough to use only one of the available gadgets. 

6. The formula size problem 

Our aim in this section is to prove that if N is an occurrence matrix and e = e'(N) then 
there exists a unique direction x E (Rik  for which 11x111/6  = 	II II,. Furthermore, all 
the components of this direction are strictly positive. The existence of such a positive 
direction will be needed in Section 8 where constructions achieving the lower bound on 
formula size from Section 4 are obtained. 

We will need the following lemma. 

Lemma 6.1 If N is an occurrence matrix then e'(N) > 1. 

Proof : It is clear that if N' > N then e'(N') > c'(N). The k x I occurrence matrix 1 
all of whose entries are 1 is dominated by every other k x £ occurrence matrix. A direct 
computation shows that e (1) = logqi  k > 1. 	 0 

We are now ready to prove 

Theorem 6.2 If N is an occurrence matrix and e = e'(N) then there exists a unique 
direction x E (R>°)k  for which 

Proof : Consider the function 

.f(x) (liNxilve)11e  =E(Eniixi)lit  
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over the set B = 	E (R+ )k  11x111/e = 1}. The function f is continous and the 
set B is compact so the function f has a minimal point x* in B. If f(x*) < 1 we 
get a contradiction to the requirement that lixliv, < IINxillie  for every x E (R+)k. If 
f(x*) > 1 we get a contradiction to the maximality of 6. Therefore f(x*) = 1. This 
establishes the existence of a direction with the required property. 
In order to prove the uniqueness of x*, define ei  = x.1/' and reti  = n,1-31t. We now have 

f(x) = f 1(x1) = 	(niiixfi)E)iA 

and the domain is B' = {x E (Rik  : Ei xii  = 1}. A minimum point of f on B 
corresponds to a minimum point of f' on B'. Lemma 6.1 tells us that f > 1. It is 
well known that for e > 1 the L, norm, 11xIlt = (Ea isinlic, is strictly convex, that is, 
!lax + (1 — 	< allxil, -I- (1 — a)II Yllt  for 0 < a < 1, provided that x is not a scalar 
multiple of y. For every i the function fl(x') = 	(reixDt)lif  is obtained from 11x11, 
by scaling and it is therefore also strictly convex. The function fl(e) is obtained by 
summing strictly convex functiOns and it is therefore strictly convex also. The set B' is 
convex and therefore f' has a unique minimum point on it. 

Finally, we would like to prove that the minimum point x* lies in the interior of B' so 
that none of its co-ordinates is 0. Let fAx1) = [fi(xl)r = Ei(n'ijej)t. Suppose, on the 
contrary, that one of the co-ordinates of x* is 0. We know of course that at least one of 
the co-ordinates of x* is non-zero. Without loss of generality assume that xi = 0, x; > 0. 
It is easy to check that the function (niiA)e (ni2(x2 — Ant has a negative derivative 
at A = 0. For small values of A we would therefore get that ff(4) < ff(x*), or 
equivalently Mel) < fl(x*), where 4 = (A, x2  — A, , x,„). Since this holds for every 
i we get that for sufficiently small A, f'(4) < f(x*) which contradicts the minimality 
of x*. 	 0 

The strict convexity of the functions involved makes the numerical task of finding 
= e' (N) and the direction x = x(N) satisfying 11x111/, = iiNx hie a very easy one. 

As we shall see in Section 8, the components of the direction x(N) give the ratios between 
the sizes of the inputs that should be fed into this gadget if it is to be used optimally. 

7. Depth constructions 

As we saw in Section 5, for every delay matrix M there exists a modular delay matrix 
M' which dominates it and for which A(M) = A(M'). It is therefore enough to 
consider in this section only modular gadgets. A general modular gadget is shown 
in Figure 7.1. It has the modular delay matrix M = b — aT where we assume that 
0 = al  < a2  < ak  < bi  < b2  < 	< bt  and < k. We assume here that all the 
outputs are produced after all the inputs were supplied which is always the case if all 
the entries in the delay matrix are positive. As mentioned in Section 3, the results of 
this section could be extended to cover more general cases but we shall not do so here. 

The characteristic equation of this gadget is 

E — E Abi = o. 
i=1 
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a2 
al  

a2 	  a3 	 

bi 	 

b2 	bbl  ' 

2 

Figure 7.1. A general modular gadget. 

We know that this equation has a unique root in the interval (1, oo) which we denote 
by A = A(a,b). 

Our goal in this section is to prove the following theorem 

Theorem 7.1 If M = b— aT is a modular delay matrix then DM(n) < (1 + o(1)) logy n 
where A = A(a, b). 

This immediately gives us 

Corollary 7.2 For every delay matrix M 

V x E Rk  and y=Mox S(M) = (M) = max{S > 0 : E2zi 15 < ai 2V`16 .i   }. 

Proof (of Theorem 7.1) : 

We first consider an important special case. 

Case 1. The elements of a, b are integral. 

A CSA is said to lie at level d in a network iff its inputs are supplied at times 
d al, 	, d + a k. Its outputs are then available at times d b 	, d bt. Since 
we assume here that all the delays are integral we only have to consider integral levels. 

We can describe the essentials of a network by specifying the number Cd  of level-d GSA's 
used in it. The balance of the number of signals generated and consumed at time d is 
given by 

Bald = E Cd-a, E Cd-b, • 
j=1 	i=1 
consumed 	generated 

If Bald  > 0 then the network accepts Bald new inputs at time d. If Bald  < 0 then the 
network yields IBaldI outputs at time d. Note that any network specified in such a way 
uses every signal immediately after it is generated. 

Choosing Cd  = nA-d would yield Bald  -s: 0. This therefore describes an equilibrium. At 
each time the number of signals produced is equal to the number of signals consumed. 

14 



The number of signals processed at time d is anA-d where a = E Aai = E Abi. The 
number of signals processed at time 0 is therefore 0(n) and the number of signals 
processed at time log), n is 0(1). This however does not correspond to a concrete 
construction for two reasons. First, the above process is infinite, it begins at time 
-oo and never ends. Secondly, the number of gadgets that should be used at each time 
unit is generally not integral. These problems are however easily overcomed. 

We choose 

C - rnA-d cl 
d 	0 

if 1 < nA-d < n, 
otherwise, 

where c = (1-1)/(k-,).  

We now verify the following facts. 

(i) If 0 < d < th then 

Bald  = E irotai-d + cl > n.1-d, 
aj <d 

so we may input at least n inputs at time 0, and even some more at times 
1,...,ak. 

(ii) If lh < d < Llog A n] then 

Bald .2. EinAaj-d + — ELnabi-d+Cl  
j=1 	 i=1 

> (71A-d Aci.0 kc - (n.\ -d EAbo — t(c + 1) 
j=1 	 i=1 

= kc - t(c +1) = -1. 

Since Bald  is integral we get that Bald  > 0. In other words no outputs are 
produced at times less than or equal to [logy nj 

(iii) If I Jog), n j < d < [log), nj bt  then 

Bald > - E C d—bi 
i=1 

> 	EinAbi _d 
i=1 

> —A-di > Ab. — f(c + 1) where di  = d - ilogi  n-1 . 
i=1 

We therefore get a total of at most L = Al  El=i  A 1'1  ibt(c + 1) outputs at 

times less than or equal to LlogA  nj N. Note that L is fixed, independent 

of n. 

(iv) Finally, if d > LlogA  nj b1 then Bald = 0 so no more outputs are produced. 
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A final stage could now be used to reduce the L outputs obtained to only 1. Thus, if 
a, b are integral then we even have DM(n) < log), n + 0(1). 

Note that without the assumption that al  < a2 < 	< ak < bl  < 	< b1  this 
construction may fail. It will not always be guaranteed that Bald > 0 for 1 < d < b1. 

Case 2. The elements of a, b are arbitrary positive real numbers. 

Consider the integer schedule 

= (Lqad , Lqad , 	, 

b = (1011 , 1021, - • , 

where q = q(n) 	oo as n 	oo. Note that X = A(Ti,b) 	Alh as q —+ co. The 
construction given in Case 1 produces L = 0(q) outputs, all within time [logs  +It  = 
q(logA  n +0(1)). Reducing the timescale in this construction by a factor of q throughout, 
produces a network of delay log), n + 0(1) with O(q) outputs. The final stage to reduce 
these outputs to t requires a delay of 0(log q). This construction satisfies the Theorem 
provided that q is chosen so that log q = o(log n). 

8. Formula size constructions 

Let N be an occurrence matrix with entries greater than or equal to one. Choose a 
vector x E (0, oo)k  and define the following two vectors 

ai  = log xi 	 1 < j < k, 
bi  = log Mi  niix; 	1 < i < t. 

Associate with every CSA with occurrence matrix N a delay matrix M(x) = b — aT.  
Note that all the entries of M(x) are positive. 

Suppose that is a network composed of GSA's with occurrence matrix N, and therefore 
with delay matrix M(x). To every wire w in r we can now assign both a size f(w) and 
a delay d(w). We can generalise the observation that the size of a formula is at most 2 
to the power of its depth. 

Lemma 8.1 For any wire w in r we have f(w) < 2d(w). 

Proof : If w is an input wire then f(w) = 1 and d(w) = 0 so the relation holds 
with equality. Suppose now that u1,... , uk are the inputs of some CSA in the network, 
that f(u;) < 2d(u3) for every j, and that 	, are the outputs of this CSA. Let 
t = maxi{d(u;) — ai }. Then t may be regarded as the time at which this CSA is 
activated. The delays of the inputs satisfy d(u;) < t a; while the delays of the outputs 
satisfy d(vi) = t bi. The size of vi will now be 

	

Atli) < E ni j2t+aj  = 2t \---, 	= 2t+bi = 2d(vi). f(vi) = E ni; f (u;) < Enii2 	 La  niix; 
i 	 i 	 .i 

Thus the claim of the lemma follows by induction. 	 o 

Let x E (Rik  be the vector which satisfies Ilxilii, = iiNxilvc where e = e'(N). The 
existence of such a vector was proved in Section 6. The constructions of the previous 
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section give (n 1)-networks composed of GSA's with delay matrix M = M(x) (and 
occurrence matrix N) with depth (8(M) + o(1)) log n. Using the previous Lemma we 
get that these networks have formula size n6(M)+o(1)  

Finally, noticing that if 	= 	then M = M(x) satisfies 5(M) = 8'(M) = 
e(N) we get 

Theorem 8.2 For every occurrence matrix N we have FN(n) < ne(N)+0(1). 

An immediate consequence is the following result. 

Corollary 8.3 For every delay matrix N 

e(N) = e(N) = max{e > 0 : V x E (R+)k, 11x111/, 

9. Numerical examples 

The delay matrix of the FA3  described in Fig. 2.1 is the modular matrix M = 
(2 3)T  — (1 0 0). Therefore A(FA3) is the unique positive root of the cubic equation 
A3  -I- A2  — A — 2 = 0. We can verify that A 1.2056 and that logy  nL•,_ 3.71 log n. 

The delay matrix of the FA3  described in Fig. 2.4 is the non-modular matrix (22 43  43). 

The two vertices of the modular polyhedron are (22  44  44) = (4 4)T  — (2 0 0) and 

43  `) = (4 3)T  — (1 0 0) (compare with Fig. 2.5). The characteristic equation of 

the first vertex is 2A4  — A2  — 2 = 0 and its solution is Al  =  	1.1317. The 
characteristic equation of the second vertex is A4  + A3  — A — 2 = 0 and its solution is 
A2 	1.1365. The second posibility is clearly better and the circuits that we would build 
would have depth log),, n 5.42 log n. 

4 	6 6 	6 
Khrapchenko [14] designed a U2-FA7  with delay matrix 

( 6 	6 	6 
5 6 6 7 7 7 7) . Using 
5 6 6 6 6 6 6 

ad hoc methods he was able to construct with it networks of depth 5.12 log n. The 
delay matrix of Khrapchenko's FA7  is non-modular. The optimal vertex in the modular 

(5 6 6 6 6 6 6 
polyhedron of this matrix is 6 7 7 7 7 7 7) and therefore a(FA7 ) is the unique 

5 6 6 6 6 6 6J 
positive root of the equation A7  + 2A6  — A — 6 = 0. We find that A 1.1465 and that 
log), n 5.07 log n. We can thus improve Khrapchenko's construction even using his own 
gadget. We can reduce the depth of the U2-circuits to 5.02 log n using a novel design of 
a CSA 11-44. 

The size of the optimal formulae for multiple carry save addition that can be obtained 
using GSA's based on the FA3  described in Fig. 2.2 is n'+'(1) where 

1 	 Vxi, X2, X3  > 0 
e = max S : 

p xi
p  
 + 4 + 4 < (x, + x2 + x3)P + (x1 + x2 + 3x3)P 

A numerical solution gives e 	3.2058 and equality is achieved when x1  = x2  = 1 , 
x3 	0.3926. This yields formulae of size 0(n3.21). As mentioned before we can get 
better results using more complicated GSA's. 
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10. Concluding remarks 

Many related open problems still remain. The hardest of them all is probably to 
determine the exact depth and formula size of multiplication, multiple addition and 
multiple carry save addition. In this paper upper bounds on these complexities were 
obtained. Although these bounds may be close to the real values, we believe that they 
may be further improved by devising better basic building blocks. 

A more tractable problem, perhaps, is the question of whether or not the optimal depth 
and formula complexities of the above mentioned problems can be obtained, or at least 
approached, using carry save networks. 
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