
http://wrap.warwick.ac.uk/

Original citation:
Paterson, Michael S., Pippenger, N. and Zwick, U. (1990) Optimal carry save networks.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-166

Permanent WRAP url:
http://wrap.warwick.ac.uk/60861

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60861
mailto:publications@warwick.ac.uk

	Research report 166 	

OPTIMAL CARRY SAVE NETWORKS

M S PATERSON, N PIPPENGER,

U ZWICK

(RR166)

A general theory is developed for constructing the asymptotically shallowest networks and the asymptotically
smallest networks (with respect to formula size) for the carry save addition of n numbers using any given
basic carry save adder as a building block.

Using these optimal carry save additional networks the shallowest known multiplication circuits and the
shortest formulae for the majority function (and many other symmetric Boolean functions) are obtained.

In this paper, simple basic carry save adders are described using which multiplication circuits of depth 3.71 log
n (the result of which is given as the sum of two numbers) and majority formulae of size 0 (n'•") are
constructed. Using more complicated basic carry save adders, not described here, these results could be further
improved. Our best bounds are currently 3.57 log n for depth and 0 (n3.13) for formula size.

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom 	 October 1990

Optimal Carry Save Networks

Michael S. Paterson * 	Nicholas Pippenger t 	Uri Zwick

October 8, 1990

Abstract

A general theory is developed for constructing the asymptotically shallowest
networks and the asymptotically smallest networks (with respect to formula size)
for the carry save addition of n numbers using any given basic carry save adder as
a building block.

Using these optimal carry save addition networks the shallowest known
multiplication circuits and the shortest formulae for the majority function (and
many other symmetric Boolean functions) are obtained.

In this paper, simple basic carry save adders are described using which
multiplication circuits of depth 3.71 log n (the result of which is given as the sum of
two numbers) and majority formulae of size 0(n3.21) are constructed. Using more
complicated basic carry save adders, not described here, these results could be
further improved. Our best bounds are currently 3.57 log n for depth and 0(n3.13)
for formula size.

1. Introduction

The question 'How fast can we multiply?' is one of the fundamental questions in
theoretical computer science. Ofman-Karatsuba [9] and SchOnhage-Strassen [24] (see
also [1],[15]) tried to answer it by minimising the number of bit operations required, or
equivalently the circuit size. A different approach was pursued by Avizienis [2], Dadda
[6], Ofman [17], Wallace [28] and others. They investigated the depth, rather than the
size of multiplication circuits.

The main result proved by the above authors in the early 1960's was that, using a
process called Carry Save Addition, n numbers (of linear length) could be added in depth
O(log n). As a consequence depth O(log n) circuits for multiplication and polynomial
size formulae for all the symmetric Boolean functions are obtained.

*Department of Computer Science, University of Warwick, Coventry, CV4 7AL, England. This
author was partially supported by a Senior Fellowship from the SERC and by the ESPRIT II BRA
Programme of the EC under contract # 3075 (ALCOM).

tDepartment of Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada V6T 1W5. This author was partially supported by an NSERC operating grant and an ASI
fellowship award.

IDepartment of Computer Science, University of Warwick, Coventry, CV4 7AL, England. This
author was partially supported by a Joseph and Jeanne Nissim postdoctoral grant from Tel Aviv
University and by the ESPRIT II BRA Programme of the EC under contract # 3075 (ALCOM).

1

They all used a component called a '3 ---+ 2' Carry Save Adder (CSA3_,2) which reduces
the sum of three numbers (of arbitrary length) to the sum of only two in a (small)
constant depth. It is easy to see that using log3/2 n 0(1) levels of such CSA3_,2's it
is possible to reduce the sum of n numbers to the sum of only two. The resulting two
numbers could be added (if required) using a Carry Look Ahead Adder (see [3],[10]) with
additional depth (1 + o(1)) log m (where m is the length of the numbers).

In this paper we look more carefully at the construction of CSA-networks for carry save
addition. A moment's reflection shows that any CSA3_,2-network for the carry save
addition of n numbers will have at least log3/2 n levels of CSA3_,2's. Thus, if a CSA3-.2
is regarded as a black box to which the inputs should be supplied simultaneously and
which then after a fixed delay returns the two outputs simultaneously, then this naive
construction is optimal. It turns out however that, even for the best CSA3_,2's, some
of the inputs may be supplied after the others, without delaying the outputs, and that
one of the outputs is sometimes produced before the other. The task of constructing
networks with minimal total delay in such cases becomes much more interesting.

In general we assume that we are given a CSAk_,I whose delay characteristics are
described by a delay matrix M. The entry mi.; of the matrix gives the relative delay
of the i-th output with respect to the j-th input. In particular, if the k inputs to
a CSAk_,L are ready at times xl, , xk, we assume that the i-th output is ready at
time y, = maxi<j<k{mi; x j }. This corresponds to taking the {max, +} inner product
between M and x. We show how to extract from any delay matrix M the minimal
constant q such that CSAk,.1-networks for the carry save addition of n numbers with
delay (q o(1)) log n can be constructed using CSAk_,t's with delay matrix M. We
exhibit explicit constructions achieving this optimal behaviour.

For a given implementation of a CSAk_,I using Boolean circuitry, if we define mi.; to
be the length of the longest path from any bit of the j-th input number to any bit of
the i-th output number then the above result translates immediately to a result about
depth.

Several basic designs of GSA's are described in the next section. Using these designs
optimally we get U2-circuits (circuits over the unate dyadic basis U2 = B2 — {®,
of depth 5.42 log n and B2-circuits (circuits over the basis B2 of all dyadic Boolean
functions) of depth 3.71 log n for the carry save addition of n numbers. Using more
complicated GSA's, not described here, these results could be improved to 5.02 log n
and 3.57 log n respectively. As a consequence, we derive circuits of depth 6.02 log n and
4.57 log n for the addition of n numbers (of linear length) or for the multiplication of
two n bit numbers. This improves a previous result of Khrapchenko [14] and the naive
estimates of Ofman and Wallace.

Multiple addition circuits (of n numbers of n bits each) are necessarily of size SZ(n2).
Our circuits are composed of 0(n) CSA's each of size 0(n) so they have this optimal
size.

The Schonhage-Strassen multiplication algorithm uses the Discrete Fourier Transform
(DFT) to reduce dramatically the size of multiplication circuits. Since the computation
of a DFT essentially involves multiple additions, carry save adders could be used to
implement DFT's, and therefore the whole SchOnhage-Strassen algorithm, in logarithmic

2

depth (cf. [16],[29]). The implied constant factors however are much larger than those
obtained here.

Another special case of multiple addition is bit counting. A counter for n bits could be
obtained by carry save adding the n input bits, treating each as a number, and then
adding the two output numbers. Note that the length of the two output numbers is
O(log n) so the additional depth required to add them up in this case is only O(log log n).
As a consequence we get depth 5.02 log n U2-circuits and depth 3.57 log n B2-circuits for
counting. Many symmetric Boolean functions, such as majority and MODk for any fixed
k, can be computed in depth o(log n) once the bit count is done, so we get the same
bounds for them as well.

An analogous theory is developed for formula size. We assume that the formula size
characteristics of a CSAk_,/ are described by an occurrence matrix N. The entry ni;
gives the number of appearances of the j-th input number in the formula for the i-th
output number. If the k inputs to a CSAk_,/ have formula sizes xl, , xk then the i-th
output number will have formula size yi = 	niixi. Note that this corresponds to
multiplying the matrix N by the vector x = (x1, . , k).

Again we show how to extract from the occurrence matrix the minimal q such that
CSAk_,L-networks of formula size n(9+0(1)) can be constructed and describe constructions
with optimal behaviour.

Using the CSA designs of Section 2 optimally we get U2-formulae of size 0(n4-70)
and /32-formulae of size 0(723.21) for each output bit in the carry save addition of n
numbers and for many symmetric Boolean functions as before. Again, using more
complicated GSA's, not described here, these bounds could be improved to 0(124')
and 0(n3.13) respectively. These constructions improve previous results of Khrapchenko
[13], Pippenger [21], Paterson [18] and Peterson [20].

Depth and the logarithm of formula size are closely connected. It is known for example
that log LB2 (1) 5_ DB,(f) _< 2.47 log LB, (f) (in fact even that Du, (f) _< 2.47 log LB2 (f))
and that log Lu2(f) < Du, (f) 5. 1.81 log Lu2(f) (see [4],[23],[25]). These relations are
insufficient for the derivation of optimal constants however, and we have to optimise
separately for depth and for formula size. The known connections between B2 and U2,
namely Dal (f) 5_ 2DB2(f) and Lug (f) < 0 ((LB2(f))1og3 10) (see [22]), are also too crude
to be of any help to us.

The theories developed for depth and formula size are analogous. However some
differences result from the fact that the usual {+, x} inner product is used in the formula
size case while the not- so-usual {max, -}-} inner product is used for depth. In particular,
while the parameters that should be optimised in the formula size case are continous,
some of them are discrete in the delay case. This changes the nature of the optimisation
problems involved.
A summary of the 'numerical' results obtained in this work together with the previously
known results is given in Table 1.1. The right columns give the dimensions of the GSA's
used. Results marked by a single star (*) are obtained using building blocks described
in this paper. Results marked with a double star (**) are obtained using building blocks
which will be described in a subsequent paper. In three out of the four cases we improve

3

U2-depth B2-depth

5.12 log n Khr[14] (1978) 7 -- 3 3.71 log n * (1990) 3 --► 2
5.07 log n * (1990) 7 • -> 3 3.57 log n ** (1990) 6 -4 3
5.02 log n ** (1990) 11 -4 4

U2-formula size /32-formula size

n' Pip[21] (1974) 3 ---). 2 n3-54 Pip[21] (1974) 3 --,, 2
n4.62 Khr[13] (1972) 7 --, 3 n3A7 Pat[18] (1978) 3 —+ 2
n4-6° * (1990) 7 —+ 3 n3' Pet[20] (1978) 3 —+ 2
n4.57

** (1990) 11 -+ 4 713'21 * (1990) 3 —+ 2
n3.16

** (1990) 7 -4 3
n3.13

** (1990) 6 —+ 3

Table 1.1. Results for multiple carry save addition.

a2 b2 c2
al bl c1 a0 b0 c0

Us 	Us
• • •

FA3

FA3

FA3 0

	I

u1 V
1

I

V
3

u
2

v
2

u
0 V0

Figure 2.1. Constructing a CSA3.2 using FA3's.

the previously known results even using the same CSA's used by the previous authors.
The improvements we get are quite marginal in some of the cases. Our results, however,
could only be improved by either designing improved basic carry save adders or by
designing circuits which are not constructed from carry save adders.

2. Carry Save Adders

A k-bit full adder (FAk) receives k input bits and outputs flog(k +1)1 bits representing,
in binary notation, their sum. Usually k is of the form 2-e — 1.

Arrays of FA's could be used to construct GSA's. A construction of a CSA3_,2 using
FA3's, for example, is illustrated in Fig 2.1. The depth of the CSA obtained is equal to
the depth of the FA used and is independent of the length of the numbers to be carry
save added.

4

-o

1

2

3

y1
(a)
	

(b)
	

(c)

Figure 2.2. An optimal depth implementation of a B2-FA3.

A B2-implementation of an FA3 is given in Fig. 2.2(a). The delay matrix of this FA3
which describes the relative delay of each output with respect to each input is easily seen
to be (1

3
2

3
2) . The delay characteristics of the CSA3_,2 obtained are also described by k 2

this delay matrix.

Notice that x1 may be supplied to this FA3 one unit of time after x2 and x3 are supplied,
and that yo is obtained one unit of time before yi. Thus, the FA3 can be represented
schematically by the 'gadget' appearing in Fig. 2.2(c).

The two formulae obtained by expanding the circuit of Fig 2.2(a) are given in Fig 2.2(b).
The formula for yi has size 5. The variable x1 appears only once in it while each of the
variables x2, x3 appear twice. We therefore say that the occurrence vector of the formula
is (1, 2,2). The occurrence vector of the formula for yo is (1,1,1). Combining these

(1 2 11 vectors we get that the occurrence matrix of the implementation is

An alternative B2-implementation of an FA3 is given in Fig. 2.3. This implementation
1 2 2 1 has a worse delay matrix (3 3 3) but a better occurrence matrix 	3). It can be

checked that no other B2-implementation has a better delay or occurrence matrix than
those given.

Both the implementations of Fig. 2.2 and Fig. 2.3 are also minimal with respect to circuit
size. This, however, will not happen in general. Since we are not concerned here with
the size of the circuits (which will always be 0(n2)) we can think of an implementation
of an FA as a set of formulae, one for each output bit. This also stresses the fact that
we may try to optimise the structure of each formula separately.

4
3
4) A U2-implementation of an FA3 is given in Fig. 2.4. It has delay matrix (22 3 	and

2 4 4) . occurrence matrix (It could be checked that both these are optimal. Note kl 2 2
that this time it is not clear how to schedule the inputs to this unit. If x1 is supplied
two units of time after x2 , x3 then delays are introduced in the circuitry for yi; if x1 is
supplied one unit of time after x2, x3, then delays will be introduced in the yo circuitry.
These alternatives give rise to the two gadgets shown on the right in Fig. 2.5. This is a
simple example of non-modularity.

5

x2 x3
x2 x3

t
yo

(a)

(a)
	

(b)

Figure 2.3. An optimal formula size implementation of a B2-FA3.

Figure 2.4. U2-implementation of an FA3

yo yi
	

yo

(b)
	

(c)

0

i

2

3

4

Figure 2.5. Example of non-modular formulae

6

Using the implementation of Fig. 2.2 we get depth 3.71 log n B2-circuits for carry save
addition and using that of Fig. 2.3 we can get 0(70.21) B2-formulae for each output bit
of carry save addition. With the implementation of Fig. 2.4 we get depth 5.42 log n U2"
circuits and O(n4• 70) formulae for carry save addition. These are the best results possible
using FA3's. The better results stated in the previous section are obtained using more
complicated building blocks.

The construction of the building blocks that are used to get our best results is technically
involved. Since we want to concentrate on the general theory we will not describe their
construction here. These details will appear in a forthcoming paper. We would just
point out here that GSA's could be built using any bit adder, not necessarily using full
adders. Our currently best U2 results for example are obtained using a bit adder that
adds 7 bits with weight 1 together with 4 bits of weight 2. It is also not necessary for
the result to be supplied in a non-redundant form.

3. GSA-networks

A CSA is regarded henceforth as a black box with k inputs and., outputs (t < k) with
the property that the sum of its outputs is always equal to the sum of its inputs. The
delay and formula size characteristics of a CSA are described by its x k delay and
occurrence matrices.

We assume that all the entries in the delay matrix are positive and that all the entries
in the occurrence matrix are at least 1. This corresponds to the assumption that every
output depends on every input and that no computation is instantaneous.

A more general setting could allow the outputs to depend on subsets on the inputs. In
such cases, —co entries will appear in the delay matrices and 0 entries will appear in the
occurrence matrices. Almost all the results of this paper could be extended to cover this
more general situation. The complete proofs of these results are much longer however,
and although we do need these generalisations in order to get our best results mentioned
in Table 1.1 we will not present them here. Some will appear in the planned subsequent
paper.

In the sequel, whenever a delay matrix is considered, it is assumed that all its entries
are positive and whenever an occurrence matrix is considered it is assumed that all its
entries are at least one.

A CSA-network is an acyclic network composed of CSA units of a fixed type. An
inductive argument shows that any CSA-network has the property that the sum of its
outputs is equal to the sum of its inputs.

Using the delay and occurrence matrices, M and N respectively, of the CSA unit used
we can assign a delay and (formula) size to each 'wire' in the network. The inputs
to a network are assigned delay 0 and size 1. If the k inputs to a CSA have delays
xl, 	, xk then the i-th output of this CSA will have delay yi = maxi<j<k{nli; si}.
We express this by y = M o x where the o denotes the {max, d-} inner product. If the
k inputs to a CSA have sizes xl, 	, xk then the i-th output of this CSA will have size
yi k nix We abbreviate this by writing y = Ns where this time the usual 	x}
inner product is used. The delay (respectively, size) of a network is the maximum of the

7

Figure 3.1. Optimal n -k 2 networks for n = 4, 5, 6, 7,8.

delays (respectively, sizes) of its outputs.

Given a fixed CSAk_,1 with delay matrix M and occurrence matrix N, our task is to
construct using these units networks with n inputs and £ outputs with minimal delay or
formula size. We denote by DM(n) the minimal delay of such an n t network and by
-FN(n) the minimal (formula) size of such a network. Strictly speaking, n 	t networks
exist only if (k — .01 (n — £) (and then use exactly (n —t)1(k — t) GSA's). This is relaxed
however by allowing constant zero inputs. Such dummy inputs will also simplify the
presentation of the constructions described in Sections 7 and 8.

The optimal networks for some small values of n, constructible using the CSA 3-42 of
Fig. 2.2, are shown in Fig. 3.1. For every fixed CSA unit there is a polynomial time
algorithm which constructs for every n the set of n 	networks with minimal delay.

We are interested in the asymptotic behaviour of the functions DM(n) and FN(n). The
next theorem states that DM(n) behaves logarithmically and FN(n) polynomially.

Theorem 3.1 For every delay matrix M and occurrence matrix N there exist constants

8(M) and e(N) such that

(i) DM(n) = (8(M) o(1)) log n;

(ii) FN(n) = nt(N)+°(1).

Proof : By collapsing first the columns then the rows of an n x m array of inputs, we
see that

DM(nm) < DM(n) DM(m) DM(i2).

It follows that the function DM(n) DM(t 2) behaves sub-additively (as its argument
n multiplies), and thus the limit 8(M) = limn_,,„, DM(n)/ log n exists. By a similar

8

argument we get that the limit e(M) = limn„, log FN(n)/ log n exists. These two
constants satisfy the required conditions.

Our goal in the next sections will be to determine 8(M) and e(N) as functions of M and
N.

4. Lower bounds

Define the following functions :

8'(M) = max{8 > 0 :

e(N) = maxle > 0 :

V x E Rk and y=Afoxi
Eil=1 2rils _<EL1 21416

V x E (Rik
IlxIlii 5_ IINxIlve

Lemma 4.1 The maxima in the definitions of P(M) and e'(N) exist.

Proof : For every x E Rk and y=Mox let A„ = {6 > 0 : > 2 'i/6 < E 2Yi/s}.
It is easy to see that the set A's = Az U {0} is closed. Denote A = nzERk Ax, =
nxERkAiz = A U {0}. The set A', being an intersection of closed sets is also closed.
Let m be the maximal entry in M. If we choose x = 0 then yi < m. If 6 E Ao then
k = E 2x2 /6 < E n16 < £2m/6 and as a consequence S < m/ log(k/1). Thus A0 and
therefore A' are bounded. Thus A' is compact and has a maximum. It is easy to check
that max A' > 0 and therefore max A = max A' and their common value is 6'(M).

The existence of e'(N) is proved in a similar manner.

More direct proofs for the existence of these maxima could be derived from the arguments
used in Sections 5 and 6.

In this section we show that 6'(M), e'(N) are lower bounds for 6(M), e(N). In Sections 5
and 6 we show that they are also upper bounds, thus establishing that 8(M) = 61(M)
and e(N) = e'(N).

Theorem 4.2

(i) Dm(n)?_ e(M)log(n/t);

(ii) FN(n) > (nlirN).

Proof : Consider an n —+ t network composed of GSA's with delay matrix M.
If the inputs to a CSA in the network have delays xl, 	, sk then the outputs will
have delays yi, , yt where y = M o x. The definition of 8 = 61(M) ensures that
E",.1 2s;/6 < 	2Y.A. Using induction we get a similar relation for the inputs and
outputs of the whole network. The n inputs have delay 0. If the outputs all have delay
at most d then we get that n < £2 1̀/6 or equivalently d > S log(n I t).

Similarly, if the GSA's in the network have occurrence matrix N we get that the
sizes of the inputs and the outputs to every CSA in the network satisfy the relation

iixiiiie <
	where e = e'(N). Using induction we get a similar relation for the whole

9

network. The n inputs have size 1. If the £ outputs all have size at most f then we get
that f > (n/t)`. 	 0

The argument used in this proof is similar to the one used in a proof that a binary tree
of depth t can have at most 21 leaves using Kraft's inequality (E 2-4 < 1 where the
are the depths of the leaves in a binary tree).

As an immediate consequence we get

Corollary 4.3

N 61(M) < 5(M);

(ii) e(N) 5_ e(N).

5. The delay problem

In this section we show that in order to compute SW) we need only consider a finite
number of points x E Rk. This provides a practical way of computing 81(M). We will
also gain some insight into how a CSA with delay matrix M could be used optimally.

If x E Rk, y E Rt we define

k

Px,y(A) = E — E AYi.
J.1 	i=1

Lemma 5.1 If max x; < min yi and £ < k then the equation Px,y(A) = 0 has a unique
root A(x, y) in the interval (1, oo).

Proof : If A = 1 then Pz,v(1) = k — t > 0 and if A —* oo then Px,y(A) 	—oo. Thus
the equation has at least one root in the interval (0, oo).

Since a translation of x and y by the same amount leaves the roots invariant, we
may assume, without loss of generality that max xi < 0 < min yi. Every positive
contribution to Pz,y(A) is now decreasing in A while every negative contribution is
increasing. Therefore Pz,y(A) as a whole is decreasing and the uniqueness of the root is
guaranteed. 	 0

If x E Rk and y E Rt, we denote by y — xT the t x k matrix whose elements are yi — x j.

Matrices of this form are called modular. If M', M are two matrices and 	> mid for

every i, j, we say that M' dominates M and we write M' > M.

If we replace S in the definition of 5'(M) by A = 21/6 then since y = M o x implies

y — xT > M, we get that e(M) = 1/ log A(M) where

A(m) minf A > 1 	xERk,y Efe,y—xT >M

Ar'< ELi AY'

If M is a delay matrix with positive entries and y—XT > M then clearly maxi xi < mini yi

and the uniqueness of A(x, y) follows. We therefore get that E Axi < E A' holds if and

only if A > A(x, y). We can thus state the definition of A(M) in the following form

A(M) = max{A(x, y) : y — 5T > M, x E Rk , y E Rt }.

10

A pair (x, y) of vectors x E Rk and y E Re satisfying y — xT > M will be called a
schedule for M. If we impose the additional requirement that xl = 0 we get a one-
to-one correspondence between schedules and modular matrices dominating M. This
set of modular matrices dominating M will be denoted by P(M) and will be called the
modular polyhedron over M.
If M = b — aT is a modular matrix and y — xT > M then y, > maxici<k{bi — a; +xi } =
bi-Fc where c = maxi<;<k{x; —ai}. If we define ei = c-Fa; then we still have y—xiT > M,
although x' > x and therefore A(x', y) > A(x, y). Since translating both x and y by the
same amount leaves the roots invariant, we may assume that c = 0. So x' = a, y = b,
and we have proved the following Theorem.

Theorem 5.2 If M is modular, M = b — aT say, then A(M) = A(a,b).

As an immediate consequence of this theorem we get that

A(M) = max{A(M') : M' E P(M)}.

The set P(M) is defined using a finite set of linear inequalities and it is therefore a
polyhedron. As mentioned before, we can identify a point M' E P(M) with the unique
schedule (x, y) which satisfies x1 = 0 and y — xT = M' .

For every schedule (x, y), define a bipartite graph r(s, y) in which the elements of x
and y are the nodes and in which x; and yi are connected by an edge if and only if
yi — x; = mii. It is easy to check that (x, y) is a vertex of the polyhedron if and only if
the graph P(x, y) is connected. A vertex of a polyhedron is an extremal point of it, that
is, a point which is not a convex combination of any other two points in the polyhedron.
The polyhedron P(M), has only a finite number of vertices. We denote this finite set of
vertices by P*(M). Our aim is to prove that the maximum in the definition of A(M) is
attained at some vertex of P*(M).

Suppose that (x, y) E P(M) is not a vertex of P(M), so the graph F(x, y) is disconnected.
We will show that there exists a schedule (x', y') such that r(e, y') is connected and
A(x', y') > A(x, y). Suppose that A is the set of variables in the nonempty connected
component of P(x, y) containing xl. Let B denote the complementary set of variables.
We can break the definition of Px,y(A) in the following way

Px,y(A) = E Ax' — E Ash) + E Ax' — E Ain)
EA 	y; EA 	 x1 EB 	yi EB

PAN 	 PB(A)

Let A = A(x, y), so that Pr,y(A) = 0. If PB(A) is negative, then increasing the variables
of B by a common constant decreases PB(A). While if PB(A) is non-negative, then
decreasing these variables by a common constant does not increase PB(A). In either
case the variables of B can be shifted in the appropriate direction until one more of the
constraints yi — x; > mi; is satisfied with equality. The result is a schedule (x', y') for
which F(x', y') has all the edges of F(x, y) together with at least one edge between A
and B. Furthermore Pz,,y,(A) < 0 for A = A(x, y), so that A(x', y') > A(x, y).

11

By repeating this procedure we arrive at a schedule for which the graph is connected
(so that the schedule corresponds to a vertex of P(M)), without ever decreasing A.

We have thus proved

Theorem 5.3 For any delay matrix (with positive entries), A(M) = max{A(M') :
M' E P* (M)}

In Section 7 we will see that the lower bounds of the previous section are tight.
Theorem 5.3 thus says that if M is a non-modular matrix then there exists a modular
matrix M' that dominates it (and is a vertex of the modular polyhedron over M) such
that asymptotically, we can do as well using M' as we can using M. In Fig. 2.5 we tried
to describe the behaviour of a non-modular CSA. The two gadgets in Fig. 2.5(b)(c)
turn out to be the vertices of the modular polyhedron. The gadget in (c) turns out to
be the optimal. As we noted in Section 2, internal delays are inevitable when using a
non-modular gadget. Apriory, it might seem that the ability to delay some of the inputs
in some cases and others in other cases is advantageous. This however is not the case.
In order to get optimal performance we should always choose the same internal delays.
In the example of Fig 2.5, for instance, we should always delay x1 internally and use the
gadget shown in (c).

The results of this section could be generalised to cover the case in which a finite set
of basic gadgets, each with an associated delay matrix, is given to us. In order to get
optimal performance it is always enough to use only one of the available gadgets.

6. The formula size problem

Our aim in this section is to prove that if N is an occurrence matrix and e = e'(N) then
there exists a unique direction x E (Rik for which 11x111/6 = 	II II,. Furthermore, all
the components of this direction are strictly positive. The existence of such a positive
direction will be needed in Section 8 where constructions achieving the lower bound on
formula size from Section 4 are obtained.

We will need the following lemma.

Lemma 6.1 If N is an occurrence matrix then e'(N) > 1.

Proof : It is clear that if N' > N then e'(N') > c'(N). The k x I occurrence matrix 1
all of whose entries are 1 is dominated by every other k x £ occurrence matrix. A direct
computation shows that e (1) = logqi k > 1. 	 0

We are now ready to prove

Theorem 6.2 If N is an occurrence matrix and e = e'(N) then there exists a unique
direction x E (R>°)k for which

Proof : Consider the function

.f(x) (liNxilve)11e =E(Eniixi)lit

12

over the set B = 	E (R+)k 11x111/e = 1}. The function f is continous and the
set B is compact so the function f has a minimal point x* in B. If f(x*) < 1 we
get a contradiction to the requirement that lixliv, < IINxillie for every x E (R+)k. If
f(x*) > 1 we get a contradiction to the maximality of 6. Therefore f(x*) = 1. This
establishes the existence of a direction with the required property.
In order to prove the uniqueness of x*, define ei = x.1/' and reti = n,1-31t. We now have

f(x) = f 1(x1) = 	(niiixfi)E)iA

and the domain is B' = {x E (Rik : Ei xii = 1}. A minimum point of f on B
corresponds to a minimum point of f' on B'. Lemma 6.1 tells us that f > 1. It is
well known that for e > 1 the L, norm, 11xIlt = (Ea isinlic, is strictly convex, that is,
!lax + (1 — 	< allxil, -I- (1 — a)II Yllt for 0 < a < 1, provided that x is not a scalar
multiple of y. For every i the function fl(x') = 	(reixDt)lif is obtained from 11x11,
by scaling and it is therefore also strictly convex. The function fl(e) is obtained by
summing strictly convex functiOns and it is therefore strictly convex also. The set B' is
convex and therefore f' has a unique minimum point on it.

Finally, we would like to prove that the minimum point x* lies in the interior of B' so
that none of its co-ordinates is 0. Let fAx1) = [fi(xl)r = Ei(n'ijej)t. Suppose, on the
contrary, that one of the co-ordinates of x* is 0. We know of course that at least one of
the co-ordinates of x* is non-zero. Without loss of generality assume that xi = 0, x; > 0.
It is easy to check that the function (niiA)e (ni2(x2 — Ant has a negative derivative
at A = 0. For small values of A we would therefore get that ff(4) < ff(x*), or
equivalently Mel) < fl(x*), where 4 = (A, x2 — A, , x,„). Since this holds for every
i we get that for sufficiently small A, f'(4) < f(x*) which contradicts the minimality
of x*. 	 0

The strict convexity of the functions involved makes the numerical task of finding
= e' (N) and the direction x = x(N) satisfying 11x111/, = iiNx hie a very easy one.

As we shall see in Section 8, the components of the direction x(N) give the ratios between
the sizes of the inputs that should be fed into this gadget if it is to be used optimally.

7. Depth constructions

As we saw in Section 5, for every delay matrix M there exists a modular delay matrix
M' which dominates it and for which A(M) = A(M'). It is therefore enough to
consider in this section only modular gadgets. A general modular gadget is shown
in Figure 7.1. It has the modular delay matrix M = b — aT where we assume that
0 = al < a2 < ak < bi < b2 < 	< bt and < k. We assume here that all the
outputs are produced after all the inputs were supplied which is always the case if all
the entries in the delay matrix are positive. As mentioned in Section 3, the results of
this section could be extended to cover more general cases but we shall not do so here.

The characteristic equation of this gadget is

E — E Abi = o.
i=1

13

a2
al

a2 	 a3 	

bi 	

b2 	bbl '

2

Figure 7.1. A general modular gadget.

We know that this equation has a unique root in the interval (1, oo) which we denote
by A = A(a,b).

Our goal in this section is to prove the following theorem

Theorem 7.1 If M = b— aT is a modular delay matrix then DM(n) < (1 + o(1)) logy n
where A = A(a, b).

This immediately gives us

Corollary 7.2 For every delay matrix M

V x E Rk and y=Mox S(M) = (M) = max{S > 0 : E2zi 15 < ai 2V`16 .i }.

Proof (of Theorem 7.1) :

We first consider an important special case.

Case 1. The elements of a, b are integral.

A CSA is said to lie at level d in a network iff its inputs are supplied at times
d al, 	, d + a k. Its outputs are then available at times d b 	, d bt. Since
we assume here that all the delays are integral we only have to consider integral levels.

We can describe the essentials of a network by specifying the number Cd of level-d GSA's
used in it. The balance of the number of signals generated and consumed at time d is
given by

Bald = E Cd-a, E Cd-b, •
j=1 	i=1
consumed 	generated

If Bald > 0 then the network accepts Bald new inputs at time d. If Bald < 0 then the
network yields IBaldI outputs at time d. Note that any network specified in such a way
uses every signal immediately after it is generated.

Choosing Cd = nA-d would yield Bald -s: 0. This therefore describes an equilibrium. At
each time the number of signals produced is equal to the number of signals consumed.

14

The number of signals processed at time d is anA-d where a = E Aai = E Abi. The
number of signals processed at time 0 is therefore 0(n) and the number of signals
processed at time log), n is 0(1). This however does not correspond to a concrete
construction for two reasons. First, the above process is infinite, it begins at time
-oo and never ends. Secondly, the number of gadgets that should be used at each time
unit is generally not integral. These problems are however easily overcomed.

We choose

C - rnA-d cl
d 	0

if 1 < nA-d < n,
otherwise,

where c = (1-1)/(k-,).

We now verify the following facts.

(i) If 0 < d < th then

Bald = E irotai-d + cl > n.1-d,
aj <d

so we may input at least n inputs at time 0, and even some more at times
1,...,ak.

(ii) If lh < d < Llog A n] then

Bald .2. EinAaj-d + — ELnabi-d+Cl
j=1 	 i=1

> (71A-d Aci.0 kc - (n.\ -d EAbo — t(c + 1)
j=1 	 i=1

= kc - t(c +1) = -1.

Since Bald is integral we get that Bald > 0. In other words no outputs are
produced at times less than or equal to [logy nj

(iii) If I Jog), n j < d < [log), nj bt then

Bald > - E C d—bi
i=1

> 	EinAbi _d
i=1

> —A-di > Ab. — f(c + 1) where di = d - ilogi n-1 .
i=1

We therefore get a total of at most L = Al El=i A 1'1 ibt(c + 1) outputs at

times less than or equal to LlogA nj N. Note that L is fixed, independent

of n.

(iv) Finally, if d > LlogA nj b1 then Bald = 0 so no more outputs are produced.

15

A final stage could now be used to reduce the L outputs obtained to only 1. Thus, if
a, b are integral then we even have DM(n) < log), n + 0(1).

Note that without the assumption that al < a2 < 	< ak < bl < 	< b1 this
construction may fail. It will not always be guaranteed that Bald > 0 for 1 < d < b1.

Case 2. The elements of a, b are arbitrary positive real numbers.

Consider the integer schedule

= (Lqad , Lqad , 	,

b = (1011 , 1021, - • ,

where q = q(n) 	oo as n 	oo. Note that X = A(Ti,b) 	Alh as q —+ co. The
construction given in Case 1 produces L = 0(q) outputs, all within time [logs +It =
q(logA n +0(1)). Reducing the timescale in this construction by a factor of q throughout,
produces a network of delay log), n + 0(1) with O(q) outputs. The final stage to reduce
these outputs to t requires a delay of 0(log q). This construction satisfies the Theorem
provided that q is chosen so that log q = o(log n).

8. Formula size constructions

Let N be an occurrence matrix with entries greater than or equal to one. Choose a
vector x E (0, oo)k and define the following two vectors

ai = log xi 	 1 < j < k,
bi = log Mi niix; 	1 < i < t.

Associate with every CSA with occurrence matrix N a delay matrix M(x) = b — aT.
Note that all the entries of M(x) are positive.

Suppose that is a network composed of GSA's with occurrence matrix N, and therefore
with delay matrix M(x). To every wire w in r we can now assign both a size f(w) and
a delay d(w). We can generalise the observation that the size of a formula is at most 2
to the power of its depth.

Lemma 8.1 For any wire w in r we have f(w) < 2d(w).

Proof : If w is an input wire then f(w) = 1 and d(w) = 0 so the relation holds
with equality. Suppose now that u1,... , uk are the inputs of some CSA in the network,
that f(u;) < 2d(u3) for every j, and that 	, are the outputs of this CSA. Let
t = maxi{d(u;) — ai }. Then t may be regarded as the time at which this CSA is
activated. The delays of the inputs satisfy d(u;) < t a; while the delays of the outputs
satisfy d(vi) = t bi. The size of vi will now be

	

Atli) < E ni j2t+aj = 2t \---, 	= 2t+bi = 2d(vi). f(vi) = E ni; f (u;) < Enii2 	 La niix;
i 	 i 	 .i

Thus the claim of the lemma follows by induction. 	 o

Let x E (Rik be the vector which satisfies Ilxilii, = iiNxilvc where e = e'(N). The
existence of such a vector was proved in Section 6. The constructions of the previous

16

section give (n 1)-networks composed of GSA's with delay matrix M = M(x) (and
occurrence matrix N) with depth (8(M) + o(1)) log n. Using the previous Lemma we
get that these networks have formula size n6(M)+o(1)

Finally, noticing that if 	= 	then M = M(x) satisfies 5(M) = 8'(M) =
e(N) we get

Theorem 8.2 For every occurrence matrix N we have FN(n) < ne(N)+0(1).

An immediate consequence is the following result.

Corollary 8.3 For every delay matrix N

e(N) = e(N) = max{e > 0 : V x E (R+)k, 11x111/,

9. Numerical examples

The delay matrix of the FA3 described in Fig. 2.1 is the modular matrix M =
(2 3)T — (1 0 0). Therefore A(FA3) is the unique positive root of the cubic equation
A3 -I- A2 — A — 2 = 0. We can verify that A 1.2056 and that logy nL•,_ 3.71 log n.

The delay matrix of the FA3 described in Fig. 2.4 is the non-modular matrix (22 43 43).

The two vertices of the modular polyhedron are (22 44 44) = (4 4)T — (2 0 0) and

43 `) = (4 3)T — (1 0 0) (compare with Fig. 2.5). The characteristic equation of

the first vertex is 2A4 — A2 — 2 = 0 and its solution is Al = 	1.1317. The
characteristic equation of the second vertex is A4 + A3 — A — 2 = 0 and its solution is
A2 	1.1365. The second posibility is clearly better and the circuits that we would build
would have depth log),, n 5.42 log n.

4 	6 6 	6
Khrapchenko [14] designed a U2-FA7 with delay matrix

(6 	6 	6
5 6 6 7 7 7 7) . Using
5 6 6 6 6 6 6

ad hoc methods he was able to construct with it networks of depth 5.12 log n. The
delay matrix of Khrapchenko's FA7 is non-modular. The optimal vertex in the modular

(5 6 6 6 6 6 6
polyhedron of this matrix is 6 7 7 7 7 7 7) and therefore a(FA7) is the unique

5 6 6 6 6 6 6J
positive root of the equation A7 + 2A6 — A — 6 = 0. We find that A 1.1465 and that
log), n 5.07 log n. We can thus improve Khrapchenko's construction even using his own
gadget. We can reduce the depth of the U2-circuits to 5.02 log n using a novel design of
a CSA 11-44.

The size of the optimal formulae for multiple carry save addition that can be obtained
using GSA's based on the FA3 described in Fig. 2.2 is n'+'(1) where

1 	 Vxi, X2, X3 > 0
e = max S :

p xi
p
 + 4 + 4 < (x, + x2 + x3)P + (x1 + x2 + 3x3)P

A numerical solution gives e 	3.2058 and equality is achieved when x1 = x2 = 1 ,
x3 	0.3926. This yields formulae of size 0(n3.21). As mentioned before we can get
better results using more complicated GSA's.

17

10. Concluding remarks

Many related open problems still remain. The hardest of them all is probably to
determine the exact depth and formula size of multiplication, multiple addition and
multiple carry save addition. In this paper upper bounds on these complexities were
obtained. Although these bounds may be close to the real values, we believe that they
may be further improved by devising better basic building blocks.

A more tractable problem, perhaps, is the question of whether or not the optimal depth
and formula complexities of the above mentioned problems can be obtained, or at least
approached, using carry save networks.

References

[1] Aho A.V., Hoperoft J.E., Ullman J.D., The design and analysis of computer
algorithms. Addison-Wesley, 1974.

[2] Avizienis A., Signed-digit number representation for fast parallel arithmetic. IEEE
Trans. Elec. Comp. Vol. EC10 (1961), pp. 389-400.

[3] Brent R., On the addition of binary numbers. IEEE Trans. on Comp., Vol. C-19
(1970), pp. 758-759.

[4] Brent R., Kuck D.J., Maruyama K., The parallel evaluation of arithmetic
expressions without division. IEEE Trans. on Comp., Vol. C-22 (1973), pp. 532-
534.

[5] Chin A., Shallow circuits for the counting functions. To appear in Information
Processing Letters.

[6] Dadda L., Some schemes for parallel multipliers. Alta Frequenza, Vol. 34 (1965),
pp. 343-356.

[7] Dadda L., On parallel digital multipliers. Alta Frequenza, Vol. 45 (1976), pp. 574-
580.

[8] Dunne P.E., The complexity of Boolean networks. Academic Press, 1988.

[9] Karatsuba A., Ofman Y., Multiplication of multidigit numbers on automata. Soviet
Physics Dokl., Vol. 7 (1963), pp. 595-596.

[10] Khrapchenko V.M., Asymptotic estimation of addition time of a parallel adder.
Problemy Kibernet., Vol. 19 (1967), pp. 107-122 (in Russian). English translation
in Syst. Theory Res., Vol. 19 (1970), pp. 105-122.

[11] Khrapchenko V.M., Complexity of the realization of a linear function in the class of
7r-circuits. Mat. Zametki, Vol. 9 (1971), pp. 35-40 (in Russian). English translation
in Math. Notes Acad. Sciences USSR, Vol. 9 (1971), pp. 21-23.

[12] Khrapchenko V.M., Methods of determining lower bounds for the complexity of r-
schemes. Mat. Zametki, Vol. 10 (1972), pp. 83-92 (in Russian). Math. Notes Acad.
Sciences USSR, Vol. 10 (1972), pp. 474-479 (English translation).

[13] Khrapchenko V.M., The complexity of the realization of symmetrical functions by
formulae. Mat. Zametki Vol. 11 (1972) pp. 109-120 (in Russian). English translation

18

in Mathematical Notes of the Academy of Sciences of the USSR Vol. 11 (1972) pp.
70-76.

[14] Khrapchenko V.M., Some Bounds for the Time of Multiplication. Problemy
Kibernet., Vol. 33 (1978), pp. 221-227 (in Russian).

[15] Knuth D.E., The art of computer programming, Vol. 2, Seminumerical algorithms
(second edition). Addison-Wesley.

[16] Mehlhorn K., Preparata F.P., Area-Time Optimal VLSI Integer Multiplier with
minimum computation time. Information and Control, Vol. 58 (1983), pp. 137-156.

[17] Ofman Y., On the algorithmic complexity of discrete functions. Doklady Akadernii
Nauk SSSR, 145 pp. 48-51 (in Russian). English translation in Soy. Phys. Doklady,
Vol. 7 (1963) pp. 589-591.

[18] Paterson M.S., New bounds on formula size. Proc. of 3rd GI conference on
Theoretical Computer Science 1977, Lecture Notes in Computer Science 48,
Springer-Verlag 1977, pp. 17-26.

[19] Paterson M.S., Pippenger N., Zwick U., Faster circuits and shorter formulae for
multiple addition, multiplication and symmetric Boolean functions. Proceedings of
the 31st FOCS, St. Louis 1990.

[20] Peterson G.L., An Upper Bound on the size of formulae for symmetric Boolean
functions. Technical Report No. 78-03-01, University of Washington.

[21] Pippenger N., Short formulae for symmetric functions. IBM report RC-5143,
Yorktown Heights, NY (November 20, 1974).

[22] Pratt V.R., The effect of basis on size of Boolean expressions. Proc. 16th IEEE
Symposium on FOGS (1975), pp. 119-121.

[23] Preparata F.P., Muller D.E., Efficient parallel evaluation of Boolean expressions.
IEEE Trans. Comp., Vol. C-25 (1976), pp. 548-549.

[24] Schonhage A., Strassen V., Schnelle Multiplikation grosser Zahlen. Computing,
Vol. 7 (1971), pp. 281-292.

[25] Spira P.M., On time-hardware complexity tradeoffs for Boolean functions. Proc. 4th
Hawaii Int. Symp. on System Sciences (1971), pp. 525-527.

[26] Valiant L.G., Short monotone formulae for the majority function. Journal of
Algorithms, Vol. 5 (1984), pp. 363-366.

[27] Van Leijenhorst D.C., A. note on the formula size of the "mod k" functions. Info.
Proc. Letters, Vol. 24 (1987) pp. 223-224.

[28] Wallace C.S., A suggestion for a fast multiplier. IEEE Trans. Electronic Comp.
EC-13 (1964) pp. 14-17.

[29] Wegener I., The complexity of Boolean functions. Wiley-Teubner Series in Computer
Science, 1987.

19

