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EIGENVECTOR DECOMPOSITION OF A
MULTIRESOLUTION OPERATOR

JUNE WONG, ROLAND WILSON -
(RR167) '

Pattern recognition using a multiresolution representation was investigated. This was addressed as an
eigenvalue problem. Eigenvector decomposition of a multiresolution operator enabled a low-pass pyramid
representation to be expressed in terms of the ‘eigenpatterns’ of the operator.

The findings show that different image features ‘emerge’ and can be recognised at different levels of the
multiresolution structure, i.¢ at different resolutions. The level depends on the feature size.

This work has implications in the design of a neural network for pattern recognition, namely that a network
could learn’ the eigenpattern of a multiresolution operator. Patterns recognition processing could proceed in a
top-down, hierarchical manner, beginning at a level of coarse features and using information from lower levels
in the multiresolution structure to guide the processing of finer detail.
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Introduction

Vision seems simple to us, the users. We are far better at perceiving objects in natural
scenes than modern computers, yet we are certainly not quicker or more precise.

People outperform today’s computers because the brain employs a basic com-
putational architecture that is more suited to dealing with the natural information
processing tasks that we are so good at. These tasks generally require the simultane-
ous consideration of many pieces of information or constraints. Each constraint may
be imperfectly specified or ambiguous, yet each can play a decisive role in determining
the outcome of processing. ' .

Artificial neural networks have received considerable interest in recent years since
they are able to tolerate ambiguities—as is the human brain. Each ‘neuron’, in such
systems, is a very simple computational element, yet a densely interconnected network
of these elements can achieve good performance in areas such as speech and image
recognition. '

The importance of multiresolution techniques to several image processing appli-
cations is discussed in Section 1, after a brief description of some of the principles
behind neural networks. At present, most neural network research into image anal-
ysis takes no account of the need for multiresolution methods. It is intended that
this work should examine the potential application of a multiresolution approach to
pattern recognition problems, with a view to implementing a neural network solution.

The second section deals with experimental findings arising from the use of a
multiresolution low-pass pyramid data structure to represent simple shapes.

The search for patterns which are invariant to_the multiresolution operator is
tackled from an eigenvector decomposition point of view in Section 3. Experimental
results are presented to illustrate the points made concerning the way pattern detail -
can be represented within a pyramid of low-pass filtered images. )

The concluding remarks in Section 4 comment on the way a multiresolution ap-
proach to pattern recognition could proceed. . - .. T

1 Learning in Neural Networks

Artificial neural net models are'composed of densely interconnected simple compita-
tional elements. In this respect their structure is based on present understanding of
biological nervous systems. The computational elements, or nodes, are intercbnnected
via weights that are typically adapted during use to improve performance based on
current results. The simplest example of a node is one which sums N wéightéd inbuts’
and passes the result through a nonlinearity. A A
Generally speaking, the behaviour of a network of artificial neurons is as follows:

¢ Fach node or unit, u;, has an associated activation value a,(t). .



e An output function (often some sort of threshold function) maps the current
state of activation to an output signal, 0;(t)

That is,
0j(t) = f;(a;(t))

e A set of such units feed their output signals, via weighted connections, to a unit
in the next layer. This unit, u;, sums the weighted signals coming in to it and
combines them with its current state of activation to produce a new state of
activation. In vector notation, the new state for the entire network is given by:

a(t+1) = F(a(t), Wo(?))

e The matrix W represents the pattern of connectivity; the absolute value of the
entry w;; represents the strength of the connection from u; to u;.

Neural net models have greatest potential in applications involving many compet-
ing hypotheses which are pursued in parallel; one such application is visual pattern
recognition.

Adaptation, or learning, is a maJor focus in neural net research. The ablhty to
adapt and continue learning is essential in pattern recognition, where training data
are limited and new images are constantly encountered. Learning, in this context,
requires the modification of the pattern of connectivity as a function of experience.
This entails adapting the strengths of the connections between units.

Neural net adaptation algorithms fall into two camps: supervised and unsupervxsed

learning.

1. Supervised Learning o S
The network is provided with side information or labels (by a ‘teacher’). Nets
trained with supervision act as either pattern classifiers or associative memories,

and are typically used with incomplete input patterns, or those corrupted by

noise or some other process.

2. Unsupervised Learning

No information concerning the correct class of the input pattern is prov1ded o

during training. Nets trained without supervision can be used to vector quantise
or cluster the inputs. They are capable of compressing the amount of data
without losing important information. The net result is that individual units
‘learn’ to ‘specialise’ on specific patterns and thus become ‘“feature detectors’.

Lippman [8] has written a very comprehensible review article in which he describes
six neural net models that can be used for pattern classification. He gives examples
of the use of both supervised and unsupervised training. See also the review by



Carpenter [4], who uses adaptive filter notation to describe some basic neural network
modules.

The work of neuropsychologist Donald Hebb, in 1949, has spawned many neural
network training rules - see, for example, {11]. Based on Hebb’s ideas on memory and
learning, these rules all employ the principle that the change in connection strength
contains a term proportional to the product of input and output activities at that

connection, ie
Aw,-,- = na;04

where a; is the activation of u; and o, is the output signal from u;.

Hebbian learning rules modify connection strengths according to the degree of
correlated activity between the input and output units [7]; they tend to maximise the
variance of the output units [12] [4].

Of particular note in the application of Hebbian-type rules in unsupervised learning

“has been the work of Linsker [7], in 1988, and Sanger [12], in 1989.

Linsker used a self-organising neural net to model how a perceptual system could
develop to recognise specific features of its environment, without being told which
features it should analyse. He used a Hebbian algorithm to adapt the connection
strengths and achieved minimum mean squared error in the linear reconstruction of
the input patterns, given the activities of the output nodes.

Sanger employed the same basic Hebbian learning algorithm, based on one first
proposed by Oja in 1982. He proved that his ‘Generalised Hebbian Algorithm’ com-
putes the eigenvectors of the input autocorrelation matrix. Sanger discussed the use-
fulness of eigenvector decomposition applied to neural networks, and demonstrated

the power of networks trained according to Hebbian principles when applied to i image™ " :

coding, feature extraction and texture analysis.

1.1 Multiresolution in Pattern Recogmtlon

The basic paradigm of a visual pattern recogmtxon system is shown in Flgure 1 In -
general, the goal of such a system is to analyse images of a given scene and to recognise
the content of the scene [19]. The aim is to obtain a representation consisting of a

set of symbols with appropriate relationships, eg “the object A is of class C'and =~ -

is located at position X”. It is widely recognised that this fundamental problem of
image analysis is affected by the Uncertainty Principle [18] [14]—that is, the ability to
resolve features spatially is constrained by the extent to which they may be resolved
spectrally.

The derivation of a symbolic description of an image necessitates the extraction of
meaningful features from the image data, such as lines, edges and texture elements.
These features, which must capture the important characteristics of the input data,
form the input to subsequent processing.



Both objects and features occur at many spatial scales. Marr [9] describes the
‘hierarchical organisation’ of an image:

“The spatial organisation of a surface’s reflectance function is often gener-
ated by a number of different processes, each operating at a different scale.”

Marr explains the task of vision using oriented lines and edges and blobs (ie local
features) as a basis. He points out that there is considerable psychophysical and neu- .
rophysiological evidence to suggest the importance of oriented line and edge features
in low-level mammalian visual processing [6].

The first step in detecting lines and edges is to blur the image. This is achieved by
performing a low-pass filtering operation on the image, thereby imposing an upper
limit on the rate at which intensity changes can take place. Since these changes occur
at different scales [9] in the original image, their optimal detection requires operators
of different sizes, ie filters of different bandwidths.

This multiresolution approach enables the spatial consistency of the outputs from
several different scales of filters to produce a more reliable estimate of feature position
than is possible from a single filtering operation.

A pyramidal data structure is used to represent the image data over a range of
spatial resolutions. This type of structure has found increasing usage in image process-
ing since it can match the multiresolution representation of images—a representation
recognised as valuable in a number of applications [2] [5] [16].

In the present work, a ‘low-pass pyramid’ is generated by filtering the image
with low-pass filters having a two-dimensional ‘raised-cosine’ frequency response, and
then subsampling. The frequency response of the filter is linearly separable; its one-
dimensional form is shown in Fig. 2. .. .

The base level of the pyramid is the original image; each higher level uses a filter
with half the bandwidth of the preceding level. This obtains versions of an image at
successively lower spatial resolutions (but higher spatial frequency resolutions), which
require fewer spatial samples and are thus ‘smaller’. '

The image is therefore represented as a series of low-passed images, each sampled
at successively lower densities. The result is a self-similar structure which exhibits
localisation in both space and spatial frequency. Each level of the low-pass pyra-
mid contains a blurred version of the original image; the degree of blurring, which
varies according to the pyramid level, is governed by the bandwidth of the low-pass
filter. Fig. 3 shows the original image of the girl, and levels 1 to 6 of its pyramidal
representation are given in Fig. 4.

On the whole, neural networks performing visual pattern recognition tasks have an
arbitrary scale imposed upon them. However, the many examples of the importance
of scale in image processing and analysis [2] [3] [5] [16] [15] suggest using a multires-
olution pyramid as input to a neural net to enable pattern recognition in the manner
of ‘successive refinement’.



Schalkoff comments: [13]

“A hierarchical processing approach parallels the operation of the human
visual system in that processing proceeds from a coarse descriptive level to
levels of increasing refinement. The hierarchical approach is applicable to
the tasks of segmentation, feature extraction, description and matching.”

One question of interest concerns the effects on patterns and features of this mul-
tiresolution operator. Intuitively, one would expect that a spatial scale exists at which
individual objects ‘merge’ and, therefore, at some levels of the pyramid single objects
are indistinguishable.

Some elementary investigations into the behaviour of images of several objects in
the low-pass pyramid representation are described in the following section.

2 Simple objects at various resolutions

In order to investigate the properties of the low-pass pyramid representation, images
were synthesized by placing a simple object, or pattern, at a number of spatial posi-
tions within a 512 x 512 pixel area. Four classes of simple object were used: spots,
squares, bars and triangles, of similar energy.

For each 512 x 512 pixel image a low-pass pyramid of 7 levels was constructed:
level 0 (the original image) has greatest spatial resolution; level 6 (8 x 8 pixels) has
lowest spatial resolution.

Each synthetic image of 512 x 512 pixels can be considered to be made up of an
8 x 8 array of ‘cells’, each of size 64 x 64 pixels. Thus, each pixel at the top level of ~
the pyramid (level 6) corresponds to one cell at the bottom level (level 0).

Each cell contains one simple object. The position of the object in relation to its
cell boundaries was varied in a systematic way over the entire image. The ‘exemplar’
for each class of object was the cell with the object centred withinit. - - -~

The low-pass pyramid representations were generated in order to address some
fundamental questions: - ' o R

e do all objects in a given image ‘appear’ at the same pyramid level?
e do all the shapes ‘appear’ at the same level?
¢ is the shape of the object recognizable at this level?

A quantitative measure of the similarity, or ‘overlap’ between two n X n regions of
pixels is given by the inner product of their intensity values, say, f(z,y) and ¢(z,y),
where 0 < z,y < n. :



That is

Ry = < f(z,¥),9(z,y) >

= Y f(z,9)9(z,y) (1)

(z.v)

where Ry, denotes the similarity measure, or correlation.

The results which follow were obtained by computing the inner product between
the exemplar and spatially shifted objects (for each class). In other words, we inves-
tigated how well objects at various spatial locations in a blurred image matched a
‘prototype’ filtered image.

This was repeated to examine the similarities between blurred objects from differ-
ent classes, and to determine whether the magnitude of the inner product could be
used as a criterion for differentiating between such objects, given only their blurred

representation in the low-pass pyramid.

Results

At level 4 the image size was 32 x 32 pixels and each cell occupied 4 x 4 pixels;
this was the lowest spatial resolution at which the objects were visible individually.
However, at this level the spots and squares were identical; the triangles and bars
were seen as ‘blobs’, slightly different in each cell. It was not possible to identify their
original shape , although there were differences between the triangles and the bars.

At the next higher spatial resolution (ie image size of 64 x 64 pixels) all of the
shapes were recognizable. 7 v )

The R values (see Equation 1) for the spots and triangles are presented, since
these two objects can be considered to have the least in common of the classes used
here. The distribution of the R values is given in histogram form for the following
comparisons:
spots with spots—Fig. 5;
triangles with triangles—F'ig. 6;
spots with triangles—Fig. 7.

The results shown were all computed using the representations from level 4 of the
pyramid; ie the objects were visible but their shape was indeterminate due to the
blurring by the low-pass filter.

It is obvious from these histograms that a considerable spread of R values was ob-
tained, even when objects from the same class were compared. Hence, the magnitude
of the inner product did not convey sufficient information to differentiate objects from
different classes. It follows that a neural unit trained to identify one such pattern
would be unable to discriminate this pattern from the other patterns. ,

This raises the next question—whether any patterns exist (and if so, what are



they?) that remain unchanged under low-pass filtering and therefore could be recog-
nised at any spatial resolution.

3 Eigenvector Analysis of the Low-Pass Trans-
form |

The question raised in the preceding section concerned patterns or objects which are
invariant to low-pass filtering. Invariance in this context means that a pattern at
level n of the low-pass pyramid can be projected down to level 0 (maximum spatial
resolution) by suitable interpolation, and then taken back up to level n again without
being changed ‘significantly’.

Finding such patterns is an eigenvector problem which entails representing the
filtering operation as a linear transform. In view of the fact that the 2-d low-pass
filter is linearly separable, it is possible to solve the eigenvalue/eigenvector problem
in the one-dimensional case; the two-dimensional solutions are then given by the
products of the corresponding one-dimensional solutions.

Notation

Matrix notation is adopted as being the most concise. The following conventions have

been adopted:

1. Linear operators are represented by capital letters and are taken to be 2™ x 2™
matrices

A=(a)k1 N
0<kil<2™

2. Signal vectors are 2™ x 1 column vectors and are denoted by lower case boldface
letters, eg v. '

3. Common matrix operations are:

!: transpose
* : adjoint (conjugate transpose)

Thus, the inner product of two vectors will be written as:
2m -1

Vius= ) wp
k=0



The matrix F is the discrete Fourier transform (DFT) operator; F* is the inverse

DFT operator.
Ty is a truncation operator; it ensures spatial limiting and is defined by:

Tniw = éu 0<k<N
2"~ N<k<g2™
= 0 otherwise

Note also that Ty = IT'n.
The low-pass pyramid transform, in one-dimensional space, can be modelled:

TNF*HipFTyv = Av : (2)
Since T (the truncation operator) is also a projector {10] then
TNTn = TnTn = TN
Premultiplying both sides of Equation 2 by Ty obtains:
TnF*H}pFTnv = XNV

Av = Myv
The non-trivial solution is
v=TNnV (3)
This implies that
vp =0 N<k<2™~-N (4)

H;p is the frequency response operator of the low-pass filter. Since it is used twice
(as a low-pass and as an interpolation filter) it appears as Hip in Equation 2.
If we write

F*HY.F=H

then
(H)u=ho(k 1) (5)

where
e hy(n), 0<n < 2™ are the filter impulse response coefficients

o (k —1) is calculated modulo-2™.

Thus Equation 2 becomes
THTv = Av (6)

It .can be shown that

(THT ) = (H)i = ho(k - 1) (7)

10



0<kiI<N, 2"-N<El<2m

In other words, the operator represents the effect of taking a spatially localised or
truncated pattern (of 2N samples) at some level of the pyramid, projecting it onto
the image and then constructing the pyramid based on that image. Eigenvectors of
these operators are ‘eigenpatterns’ of the multiresolution representation—only their
length changes when they are subjected to these operations. The eigenpatterns of
the pyramid are, in a sense, invariants of the representation.

Now, the H operator is a 2™ x 2™ matrix. If all the zero-valued rows and columns
are removed we are left with a 2N x 2N matrix; correspondingly, the eigenpattern v
can be reduced to 2N dimensions without any loss of information (see Equation 4).

In fact, these eigenpatterns are closely related to a set of vectors well known in
signal processing and used in a number of image processing applications—the prolate
spheroidal sequences. The finite prolate spheroidal sequences (FPSS) [17] combine
spatial and frequency domain locality in an optimal way, since they maximise the
energy in a finite interval of one domain while truncating in the other. The FPSS is

the eigenvector, go, in the following problem:
BT'go = Aogo (8)
where T is the truncation operator and B is the bandlimiting operator, defined as
B=F'TF 9)

and )o is the largest eigenvalue. In this case, the FPSS is defined to be exactly
bandlimited and optimally concentrated in a finite spatial region.

The problem addressed in Equation 2 differs in that bandlimiting is achieved by
using the low-pass filter, Hrp, with a ‘raised-cosine’ frequency response, whereas the
FPSS problem requires an ‘ideal’ rectangular filter. Although it is possible to use
ideal low-pass filters to construct a pyramid, these have large sidelobes in the spatial
domain which make them insufficiently localised for most applications. -

3.1 Eigenvalues of the Low-Pass Transform

The reduced operator THT is a real symmetric matrix; hence, the 2N eigenvalues
and eigenvectors are purely real, and the eigenvectors form a mutually orthogonal
basis [10].

The eigenvectors are the one-dimensional patterns which undergo only multiplica-
tion by a scalar under the low-pass transform. The amount of energy retained by each
eigenvector after filtering is given by the magnitude of its corresponding eigenvalue,

in the sense that
VAV =JAv'v=]A

11



The graph plotted in Fig. 13 shows the magnitudes of the first three eigenvalues
(Ao, A1, A2) against the bandwidth of the low-pass filter operator, HLp.

These results were obtained using 2™ = 256 and N = 8; they show that, for a given
filter bandwidth, the magnitudes of the eigenvalues, | Ai |, decrease very quickly with
increasing index, k. Therefore, most of the energy is concentrated in the first few
eigenvectors; indeed, at higher levels in the pyramid (ie narrower bandwidths) only
the first eigenvalue, Ag, is ‘significant’.

The transform as a whole passes a certain amount of the total signal energy. At
a particular pyramid level, this amount is given by the sum of all 2N eigenvalues. A
percentage of this ‘transformed energy’ is passed by each eigenvalue, according to its
magnitude. Previous findings (see Fig. 13) have shown that the number of eigenvalues
having ‘significant’ magnitude is dependent on the pyramid level. Therefore, most
of the ‘transformed energy’ is passed by only a proportion of the total number of
eigenvalues; this is shown in Fig. 14. As an extreme example, consider the case at
level 6: only about 6% of the eigenvalues account for over 99% of the ‘transformed
energy’. As might be expected, increasing the bandwidth requires a larger proportion
of the number of eigenvalues in order to maintain the same percentage of ‘transformed
energy’.

Fig. 15 shows the magnitude of Ay as a function of bandwidth for N=§ N=16
and N = 32. These plots show that each doubling of N has the same effect as dou-
bling the bandwidth. Therefore, for a particular eigenvalue, the product of N and
bandwidth is a constant.

This implies that there is more energy at higher pyramid levels if N is increased.
The value of N indicates the initial level from which the pattern is projected onto the
image in order to construct the pyramid. Thus, a larger value of N is equivalent to
‘starting off” from a lower level of the pyramid structure. I

The Two-Dimensional Case

Because the 2-d operator is separable, its eigenvalues and eigenvectors are easily
related to the 1-d case. : ’ ‘
The two-dimensional eigenvalues are given by

A,‘_.,' = /\.'/\j
If, in the one-dimensional case, the 2N eigenvectors of the transform are given by
vi, 0<i1<2N

then the 2V x 2N two-dimensional eigenvectors can be written as
eij(z,y) = vi(z)v;(y)

12



These form a mutually orthogonal basis because any 2-d ‘pattern’ can be expressed
as a linear combination of these 2-d basis vectors. For a given bandwidth, if the 2-d
eigenvectors are weighted by the corresponding 2-d eigenvalues, the result is equivalent
to passing the ‘patterns’ through a low-pass filter of that bandwidth. Only some of the
patterns ‘survive’, since the eigenvalue distribution favours the first few eigenvectors.

The 2-d eigenvectors when N = 8 are shown in Figs. 8 - 11. The first of these
figures shows all of the eigenvectors (or eigenpatterns) at level 1 of the pyramid.
The remaining figures show how the number of significant eigenpatterns varies with
pyramid level when they are weighted by their corresponding eigenvalues; they also
give an indication of how many significant eigenpatterns there are at different pyramid
levels. .

Thus at the lowest bandwidth, ie the highest pyramid level, only one significant
eigenpattern is seen (Fig. 11). As the bandwidth increases on successive levels, more
patterns having significant residual energy can be seen. As might be expected, the
effective dimensionality of the signal increases—more and more details become visible
(see Fig. 9). This is a direct consequence of the distribution of eigenvalues at different
bandwidths, as discussed in Section 3.1, since a greater proportion of the eigenvalues
are large enough to be ‘significant’ as the bandwidth increases. For example, at
high pyramid levels only the first eigenvalue is significant. Consequently the low-pass
filtering at this level ‘destroys’ those eigenpatterns which convey detail.

3.2 Oriented Patterns and the Low-Pass transform

In order to investigate the effects of the low-pass pyramid transform on oriented
patterns and objects, a set of synthetic images was designed, based on elliptical,
curved elliptical, and circular Gaussian intensity distributions. Each pattern occupies
a 2N x 2N pixel area; the patterns are shown in the first column of Fig. 12.

Any pattern, f(z,y), can be expressed as a weighted sum of the orthonormal basis:

f(z,y) = ) aijeis(z,y)
()]

with
e a;; : coefficients in the linear expansion;
e ¢;;(-) : 2-d eigenvector (orthonormal basis).

The weights, a;;, are given by the inner product of the pattern and the 2-d eigen-
vector; that is:

< f(z,v), eii(z,y) >
) (@, y)ei(z",y)

a,-_,-

13



Now, if the eigenvectors, e;;(z,y), are weighted by their 2-d eigenvalues, A;j, the
resulting pattern is given as

f(z,y) = Z:)aiiA-’jeij(zay)
(4,

or, equivalently

fF=(THD)f
and shows how much of the shape and orientation of the original pattern, f(z,y), is
preserved under the low-pass transform. _

With reference to Fig. 12, the representations at pyramid levels 1 to 6 are shown
in columns 1 to 6, with the original Gaussian patterns in column 0.

As might be expected, at levels 3 and above all of the patterns are seen as roundish
‘blobs’—the low-pass operator has destroyed the ‘orientedness’ of the originals.

It has already been shown (Fig. 11) that eigenpatterns with small eigenvalues lose
most energy under the low-pass transform. This is the case for all but the first few
eigenpatterns, particularly at higher levels (ie lower bandwidths) of the pyramid.
Obviously, the eigenpatterns necessary to convey the ‘orientedness’ of an object are
lost after the first couple of levels, whereas enough eigenpatterns survive to indicate
the ‘presence’ of an object at much higher levels. '

The next section deals with a more quantitative analysis of the pyramid repre-
sentation of oriented objects, in terms of the errors introduced and the amount of
orientedness lost due to the low-pass operator.

Preservation of Anisotropy

The theory of moments of inertia [1] permits analysis of a system, often encountered
in mechanics, of point masses rotating about a fixed axis. It is possible to determine
the principal axes of such a system, and to obtain an estimate of the degree of mass
concentration. A related problem is an analysis of the dispersion of a set of (weighted)
points with respect to the centroid of the set, and the determination of the principal
axes [3].

Thus, by viewing the Gaussian pattern as a set of weighted points it is possible to
use the moments of inertia to determine the principal axes of the filtered pattern and
hence obtain a quantitative measure of anisotropy , or ‘orientedness’.

Define the set of points by the position vector [zy]’; the origin is assumed to be the
centre of the 2N x 2N pixel area in which the Gaussian pattern, f(z,y), is located.

The ‘inertia tensor’ is then given by [1]

T=3 |f(z.9)|[zy)zy]

(=)

14



where | f(z,y) | is the ‘weight’ associated with the point whose position vector is
[zy]".

Since T is real symmetric, its eigenvectors are orthogonal, and it can be shown that
the principal axis is given by the eigenvector corresponding to the smallest eigenvalue,
Mo; it defines the direction of minimum dispersion. In other words, the principal axis
is given by the eigenvector corresponding to the largest eigenvalue, A;.

A measure of anisotropy, 6, of the pattern can be obtained as follows:

_ (A=A
(A1 + o)

By comparing the anisotropy measures before and after the pyramid operator, it is
then possible to see how much of the initial anisotropy remains after the operator.

The ratio

é

p== (10)
where
e &' : anisotropy of the filtered pattern
e § : anisotropy of the original pattern.

is a convenient measure of how much anisotropy of the Gaussian patterns is preserved

at various levels in the low-pass pyramid.

Similarly the overall error introduced by the pyramid operator can be defined to
be the sum of the squared differences between the original Gaussian pattern and the
low-pass filtered version, over all the pixels in the 16 x 16 area containing the pattern.

That is, the error, E is given by:

E = ) (aij— i)

(ivJ)
= 3 af(1- ;)
('.’J')

E = |f-71P (11)

Results

The amount of ‘orientedness’ retained (cf Equation 10) at various levels of the pyramid
is shown in Fig. 16 for the Gaussian ellipse and curve (the orientation of a circular
object is zero both before and after filtering.). There is almost no orientation left by
level 3, and none at all at higher levels of the pyramid. This confirms the qualitative
assessment of Fig. 12.

15



Gaussian ellipses at three different orientations are compared in Fig. 17. The
slight difference between these is due to the cartesian separable nature of the pyramid
operator; if a more nearly circular filter had been used, this would not have been seen.

As might be expected, thinner versions of the Gaussian patterns at the same
orientations gave rise to identical results.

The amount of error introduced (cf Equation 11) by the low-pass operator is shown
in Fig. 18 for circular, elliptical and curved Gaussian ‘blobs’. Unlike the anisotropy
measurements, the orientation of the elliptical blob had no effect on the errors intro-
duced. Unsurprisingly, the thinner blobs suffered greater errors at all pyramid levels
in comparison to their ‘large’ counterparts. )

All of the above results relate to a spatial dimension of N = 8, ie there were 16
eigenvectors of 16 elements. It is of interest to note the effect of changing the di-
mensionality of the pattern: Fig. 19 compares the errors introduced into the low-pass
representations of circular blobs for N = 8 and N = 4. (In the latter case the circular
object was scaled to fit within an 8 x 8 pixel area.) Thus, twice the bandwidth is
required to keep the error constant if the value of N is halved.

The most significant finding is that there is a simple relation between the size
of an isotropic feature and the pyramid level at which its anisotropy emerges (the
‘orientation level’) and this is not the same as the level at which the feature can be
seen at all (the ‘detection level’). This may be expressed quantitatively as follows:

Detection level = log, N
Orientation level =~ detection level 4+ 1

4 Conclusions

In mammals, visual information is processed in stages. Edges are detected and edge
orientation is analysed in the earlier stages; later processing is concerned with more
complex aspects of form. The intention of this work has been to investigate how
progressively more and more detail can be represented, such that pattern recognition
processing could begin at a level of very coarse features and proceed, making use of
current information to guide the processing of finer detail.

With this in mind, a multiresolution linear operator was examined to find out
what sort of patterns can and cannot be represented at various levels of a low-pass
pyramid. :

There is a pyramid level at which any simple image pattern—circle, line or curve—
will first appear. At this level, all such patterns appear as more or less circular blobs.
The level depends only on the feature size, as one would expect. The relation between
size and pyramid level is that, roughly speaking, halving the size of a feature requires
going down one level in the pyramid in order for the feature to first appear.
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At levels below this, features originally having some anisotropy are preserved, so
that orientation as a feature property can be defined and measured in a consistent
way. Still further down, new properties, such as curvature emerge and so a broader
class of patterns can be meaningfully represented.

It follows that in designing neural networks for multiresolution pattern recognition,
it is necessary to allow patterns to ‘emerge’ or be recognised in a top-down hierarchical
manner, in which first the existence of ‘something’ (ie a blob) is detected. This can be
refined by adding patterns from lower levels, but now conditioned on those features
already detected. This is similar in many ways to the segmentation by Spann and

Wilson [16).

Proposals for future work

A network of artificial neurons could ‘learn’ the invariants of a multiresolution oper-
ator. It is not yet apparent whether a supervised or unsupervised learning algorithm
would be most appropriate in this context. Linsker [7] and Sanger [12] both used un-
supervised learning and succeeded in training networks to compute the eigenvectors
of the correlation matrix of the inputs to a layer of neurons. In this case, however, the
eigenpatterns of a multiresolution operator are sought, together with ways of using
them to successively refine the pattern recognition process. The design and devel-
opment of such a network and its learning regimes offers scope for a great deal of
interesting work to follow.
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Figure 1: Basic pattern recognition paradigm
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Figure 2: Frequency response of one-dimensional low-pass filter
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Figure 4: Low-pass pyramid repreéentation of the ‘girl‘ image (levels 1 to 6)
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Figure 8: Level 1 eigenpatterns
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Figure 12: -Oriented Gaussian patterns (L to R: original ‘blobs’; Levels 1 - 6 of low-pass
pyramid) : .
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Figure 13: Magnitudes of first three eigenvalues
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Figure 14: Amount of energy retained in first few eigenvectors
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- Anisotropy retained in filtered pattern
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Figure 16: Preservation of anisotropy for Gaussian ellipse and curve
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Figure 17: Preservation of anisotropy for Gaussian ellipses at various orientations
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Error in filtered pattern
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Figure 18: Errors in various Gaussian blobs for N = 8

34




