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EIGENVECTOR DECOMPOSITION OF A

MULTIRESOLUTION OPERATOR

JUNE WONG, ROLAND WILSON

(RR167)

pattern recognition using a multiresolution representation was investigated' This was addressed as an

eigenvalue problem. riglenvecror decomposition of a multiresolution operaor enabled a low-pass pyramid

relresenration to be expressed in terms of the 'eigenpatlen$' of the operatc.

The findings show that different image features 'emerge' and can be recognised at different levels of the

multiresolution structure, ie at different resolutions The level depends on tlre feanrre size'

This work has implications in fhe design of a neural network for pattem recognition, namely that a network

could 
,learn, the eigenpanem of a multiresolution operaror. Patrerns recognirion processing could proceed in a

bpdow* hierarchical manner, beginning at a level of cmrse featr:res and usilig information from lower levels

in the multiresolution strucnre to guide ttre processin! of finer detail
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Introduction
Vision seeE$ simple to us, tbe users. We are far better at perceiving objects in natulal

scenes than modern computers, yet we ate certainly not quicker or more precise'

people outperform today's computers because the braio employs a basic com-

putational architecture that is more suiied to deaiing with the natural information

proce"riog tasks that we are so good at. These tasks geoerally require the simultane-

ous consideratiou of many pieces of information or constraints. Each constraint may

be imperfectly specified or ambiguous, yet each can play a decisive role in determining

the outcome of Processing-
Artificial oeural networks have received considerable interest in recent years since

they are able to tolerate ambiguities-as is the human brain. Each 'neuron', in such

systerns, is a very simple computational elerrent, yet a densely intercot''tected network

of these elements can achieve good performance in areas such as speech and image

recognition.
The importance of multiresolution techniques to several image processing appli-

cations is discussed in Section 1, after a brief description of some of the principles

behind neural networks. At present, most neural network reseanch into image anal-

ysis takes ao accorlnt of the need for multiresolution methods. It is intended that

this work should examine the potential application of a multiresolution approach to

pattern recogaition proble.',", with a view to implementing a neural network solution.

The second section deals with experimental findingp arising from the use of a
multiresolution low-pass pyramid data structure to represent simple shapes.

The search for patterns which are invariant to -the multiresolution operator is

tackled from an eigenvector decomposition point of view in Section 3. Experimental

results are presented to illustrate the points -^de concerning the way,pattern detail

can be represented within a pyramid of lorv-pass filtered images.

The concludilg remarks in Section 4 comrnent on the way a mrrltiresolution aq-

proach to pattern recognition could proceed.

1 Learning in Neural Networks

Artificial neural net models are cbmpori of d"*ely interconreected Simple cOmtuta-

tional elements. In this respect their structure is ba.sed on present understanding of

biological Dervous systerns. The computational elements, or nodes, are interconnected

via weights that are typically adapted during use to improve performance b#ed on

current results. The simplest example of a node is one which sums N weighted inputs.
and passes the result through a nonlinearity.

Generally speaking, the behaviour of a network of artificial neurons is as follows:

o Each node or unit, u;, has an associated activation value oi!).



An output function (ofteo some sort of threshold function) *tpt the curreot

state of acti''ration to an output sigoal, o;(t)
That is,

o;(t) - f;@i?))

r A set of such units feed their output signals, via weighted connections, to a uait
in the next layer. This unit, u;, sums the weighted signals coming in to it and

combines them with its current state of activation to produce a new state of
activation. In vector notation, the new state for the entire network is given by:

a(r* 1) - F(a(t),wo(t))

o The '.'rtrix W represents the pattero of connectivity; the absolute value of the

entry ur;; represents the strength of the connection from u; to u;.

Neural net models have greatest potential in applications involving many compet-

ing hypotheses which are pursued in parallel; one such application is visual pattern

recogaition.
Adaptation, or learning, is a major focus in neural net research. The ability to

adapt and continue learning is essential in pattern recognition, where training data
are limited and new images are constantly encountered. Learning, in this context,

requires the modification of the pattern of connectivity as a function of experience.

This entails adapting the strengths of the connections between uaits.
Neural net adaptation algorithrnq fall into two carnps: supervised and unsupervised

learning.

1. Supervised Learoing
The net*'ork is proi-ided with side information or labels (Uv " 'teachlr'). Nets

. trained with supervision act as either pattern classifiers or associative memories,

and are typically used with incomplete input patterns, or those bornrpted by
noise or some other process.

2. Unsupervised Learniug
No information conce*iog the correct class of the input pattera is provided
during training. Nets trained without supeivision can be used to vector quantise
or cluster the inputs. They are capable of compressing the amount of data
without losing important information. The net result is that individual units
'learn' to 'specialise' on specific patterns and thus become'feature detectorst.

Lippman [8] has writtea a very comprehensible review article in which he describes
six neural net models that can be used for pattern classification. He gives examples
of the use of both supervised and unsupervissd f1aining. See also the review by
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Carpenter [4], who uses adaptive filter notation to describe some basic neural network
modules.

The work of ner.rropsychologist Donald Hebb, in 1949, has spawned many neural
network training rules - see, for sl(:mple, [11]. Based on Hebb's ideas on memory and

learning, these rules all employ the priaciple that the change in co''.ectioo strength
contains a term proportional to the product of input aud output activities at that
connection, ie

Lu;5 = la;o;

where o; is the activation of u; aad o; is the output signal from u;.

Hebbian learning rules modify conaection strengths according to the degree of
correlated activity between the input and output units [7]; they tend to maximise the
variance of the output units [12] [4].

Of particular note in the application of Hebbian-type rules in unsupervised learning
has been the work of Linsker [7], io 1988, and Sanger [12], in 1989.

Linsker used a self-organisiog neural net to model how a perceptual system could
develop to recogqise specific features of its environment, without being told which
features it should analyse. He used a Hebbian algorithm to adapt the connection
strengths and achieved minimum meatr squared error in the linear reconstructiou of
the input patterns, givea the activities of the output nodes.

Sanger employed the same basic Hebbian learning algorithm, based on one first
proposed by Oja in 1982. EIe proved that his 'Generalised Hebbian Algorithm' com-
putes the eigenvectors of the input autocorrelation me trix. Sanger discussed the use-

fulness of eigenvector decomposition applied to neural networks, and demonstrated
the power of networks trained according io Hebbiau priociples when applied to image -'

coding, feature extraction and texture analysis.

1.1 Multiresolution in Pattern Recoglition
The basic paradigm of a visual pattern recognition slatem is shown in Figure 1. In
general, the goal of such a system is to analyse images of a given scene and to recognise
the content of the scene [19]. The aim is to obtain a represexrtation consisting of a
set of symbols with appropriate relationshipsr eB "the object A is of class C and
is located at position X". It is widely recognised that this fundamental problem of
image aoalysis is affected by the Uncertainty Principle [18J [l4]-that is, the ability to
resolve features spatially is constrained by the extent to which they may be resolved
spectrally.

The derivatiou of a symbolic description of an image necessitat-es the extraction of _

meaningf'ul features from the i-age data, such 35 line5, edges and texture elements.
These features, which must capture the important characteristics of the input data,
form the input to subsequent processing.



Both objects and features occur at many spatial scales. Marr [9J describes the
'hierarchical organisation' of an image:

"The spatial organisation of a surface's reflectance function is often genet-
ated by a number of difrerent plocesses, each operating at a differeot scale."

Marr explains the task of vision using oriented lines and 
"dgo 

and blobs (ie local
features) as a basis. Ee points out that there is considerabie psychophysical and neu-
rophysiological evidence to suggest the importrnce of oriented line and edge features
in low-level marnrnalian visual processing [6].

The first step in detecting lines and udg* is to blur the image. This is achieved by
performing a low-pass filtering operation on the image, thereby imposing an upper
limit on the rate at which inte''"ity changes can take place. Since these changes occur
at different scales [9] in the original image, their optimal detection requires operators
of different sizes, ie fllters of different bandwidths.

This multiresolution approach enables the spatial consistency of the outputs from
several diferent scaies of filters to produce a more relable estimate of feature position
than is possible from a single fiitering operation.

A pyramidal data structure is used to represent the image data over a range of
spatial resolutions. This type of structure has found increasing usage in image process-
ing since it can match the multiresolution representation of irnages-a rel2resentation
recognised as valuable in a number of applications [2] [S] [16].

In the present work, a 'low-pass pyramid' is generaied by filtering the image
with low-pass filters having a two-dimensional 'raised-cosinet frequency response, and
then subsampling. The frequeacy response of the fllter is linearly separable; its one-
dimensional form is shown in Fig. 2.

The base level of the pyramid is the original image; each higher level uses a filter
with half the bandwidih of the preceding level This obtains versions of an image at
successively lower spatial resolutions (but higher spatial frequency resolutions), which
require fewer spatial semples and are thus 'smaller,.

The irnege is therefore represeoted as a series of low-passed i",ages, @d sampled
at successively lower densities. The result is a self-similar structure which exhibits
localisation in both space and spatial frequency. Each level of the low-pass pyra-
mid contains a blurred version of the original image; the degree of blurring, which
varies according to the pyramid level, is governed by the bandwidth of the io*-p"",
filter. Fig. 3 shows the original image of the girl, and levels 1 to 6 of its pyramidal
representation are grven in Fig. 4.

On the whole, neural networks performing visual pattern recogqition tasks bave an
arbitrary scale imposed upon thern- Horrever, the many examples of the importance
of scale in image processing and analpis [2] t3] t5] [16] [1b] suggest using a multires-
olution pyramid as input to a neural net to enable pattern recognition in the manner
of 'successive refinement'.



Schalkof comments: [13]

"A hierarchical processing approach parallels the operation of the human

visual system io that processing proceeds from a coarse descriptive level to

Ievels of increasiog reflnement. The hierarchicai approach is applicable to
the tasks of segmentatioo, feature ecrtraction, description asd rnafqhing.'

One questioa of interest concerns the effects on patterns and features of this mul-

tiresolution operator. Intuitively, one would expect that a spatial scale exists at which

individual objects 'merge' and, therefore, at some levels of the pyrarnid single objects

are indisti'' guishable.
Some elementary investigations into the behaviour of i-ages of several objects in

the low-pass pyramid representation are described in the following section.

2 Sirnple objects at various resolutions

In order to investigate the properties of the low-pass pyramid representation, images

were synthesized by placing a simple object, or pattern, at a number of spatial posi-

tions within a 512 x 512 pixel area. Four classes of simple object were used: spots,

squares, bars and triangles, of similal energy.

For each 5L2 x 512 pixel image a low-pass pyramid of 7 levels was constructed:

levei 0 (the original image) has greatest spatial resolutionl level 6 (8 x 8 pixels) has

lowest spatial resolution.
Each synthetic image of 512 x 512 pixels can be considered to be made up of an

8 x 8 array of 'cells', each of size 64 x 64 pixels. Thus, each pixel gt th9 top level of
the pyramid (level 6) corresponds to one cell at the bottom level (level 0).

Each cell 6qsfsins ooe simple object. The posiiion of the object in relation to its
cell bouadaries was varied in a systematic way over the entire image. The'exemplar'
for each class of object was the cell with the object ceotred within it.

The low-pass pyramid representations were generated in order to address some

fundamental questions:

o do all objects in a given irnage'appear' at the same pyramid leve{ , . .

o do all the shapes 'appear' at the same level?

oistheshapeoftheobjectrecogaizab]eatthislevel?

A quantitative measure of the similarity or 'overlap' between two n x n regions of
pixels is given by the i''.er product of their intensity values, say, f (x,y) and g(z,g),
where0(r,y<n.



That is

R t o : Yr;,;;,) ;fli",')i (1)
(",v)

where .Ryo denotes the similarity measure' or correiation.
The results which foilow were obtaioed by computing the inner product between

the exemplar and spatially shifted objects (for each class). In other words, we inves-

tigated how well objects at various spatial locations in a blurred image matched a

'prototype' flltered image.

This was'repeated to ocamine the similarities between blurred objects from difer-
ent classes, and to determine whether the magnitude of the inner product could be

used as a criterion for diferentiating between such objects, given only their blurred
representation io the low-pass pyramid.

Results

At level 4 the image size was 32 x 32 pixels and each cell occupied 4 x 4 pixels;

this was the lowest spatial resolution at which the objects were visible individually.
However, at this level the spots and squares were identical; the triangles and bars

were seen as 'blobs', slightly different in each cell. It was not possible to identify their
original shape , although there were diferences between the triangles and the bars.

At the next higher spatial resolution (ie image size of 64 x 64 pixels) all of the
shapes were recognizable.

The .R values (see Equation 1) for the spots and triangles are presented, since
these two objects can be considered to have the least in corrmon of the classes used

here. The distribution of the .R values is given in histogram form for the following
comparisons:
spots with spots-Fig. 5;

triangles with triangles-Fig. 6;
spots with triangles-Fig. 7.

The results shown were all computed using the representations from level 4 of the
pyramid; ie the objects were visible but their shape was indeterrninate due to the
blurring by the low-pass filter.

It is obvious from these histograrns that a considerable spread of -Elralues was ob-
tained, eveo when objects from the same class were compared. Elence, f,he magnitude
of the inner product did not convey suficient infor"'ation to differentiate objects from
different classes. It follows that a neural unit trained to ideniify one such pattern
would be unable to discriminate this pattern from the other patterns.

This raises the next question-whether any patterns exist (and if so, what are



they?) that rernain unchanged under low-pass filteriag and therefore could be recog-

nised at anY sPatial resolution.

3 Eigenvector Analysis of the Low-Pass Trans-

forrn
The question raised in the preceding section concerned patterns or objects which are

invariant to low-pass filtering. Invariance in this context meaDs that a pattern at

level n of the low-pass pyramid can be projected down to level 0 (maximum spatial

resolution) by suitable interpolation, and theo taken back up to level n again without

being changed'significantlY'.
Findingluch patteros is an eigenvector problem which entafu representing the

fi1tering operation as a linear transforn In view of the fact that the 2-d low-pass

fllter is linearly separable, it is possible to solve the eigenvalue/eigenvector problem

in the one-dimensional case; the twedimensional solutions are then given by the

products of the corresponding one-dimensional solutions.

Notation
Matrix notation is adopted as being the most concise. The following couventions have

been adopted:

are represented by capital letters and are taken to be 2 x 2^

n - (o)n
0 ( &,1 <2^

2. Signal vectors are2^ x 1 colu:nn vectors and are denoted by lower case boldface

letters, eg v.

3. Cornmon matrix operations are

' : transpose
* : adjoint (conjugate transpose)

Thus, the inner product of two vectors will be written as:

2m-l
v'u: D u.ri

t=0

1. Linear operators
matrices



The ",atrix F is the discrete Fourier transform (DFT) operatorl F' is the inverse

DFT operator.
?iv is a truncation operator; it ensures spatial limiting and is defined by:

Tnu: 6u 0<h<N
2^-N<k<2^

= 0 otherusise

Note also that Tft - TN.
The low-pass pyramid transform, in ooe'dimensional space, can be modelled:

TkF HZpFlyv: )v (2)

Since fiy (the truncation operator) is also a projector [10] then

ThT*:TNT|-Tn

emultiplying both sides of Equation 2 by Tv obtains:

TyF HlpFTyv : )?ivv
)v : lTrvv

The non-trivial solution is

v: ?Nv (3)

This implies that
ur:O /V<&<2^-N (4)

Hpp is the frequency response operator of the low-pass fllter. Since it is used trvice
(as a low-pass and as an interpolation fi.lter) it appears as II2t p ia Equation 2.

If we write
F HI.F=H

. then
(H)u : hz(k - t) (5)

where

o h2(n), 0 S n 12^ arethe filter impulse response coefrcients

. (f - l) is calculated modulo-2^.

Thus Equation 2 becomes

THTv = lv (6)

It can be shown that
(THT)H - (.F/)rr : hz(k - t) (7)
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o<k,l<rf, 2^--N<k,I<2^
In other words, the operator rePlesetrts the effect of taking a spatially localised or

truncated pattern (of 2N samples) at some level of the pyra'nid, projecting it onto

the image aod then constructing the pyramid based on that image' Eigenvectors of

these operators are 'eigenpatterns' of the multiresolution representation---oniy their

iength'.hrogo when ll"y tr" subjected to these operations' The eigeopatterns of

thJpyramiJ.r", in a sense, invariants of the representation.

tio*, the I/ operator is a 2- x 2- matrix. If all the zero-valued rows and columns

are removed we are left with a 2N x 2N matrix; corresPondingly, the eigenpattern v

can be reduced to 2N dimensions without any loss of information (see Equation 4)'

In fact, these eigenpatterns are closely related to a set of vectors well known in

signai processing uJd *"d in a number of image processing applications-the prolate

spheroidal seguences. The finite prolate spheroidal segueDces (FPSS) [17] combine

spatial and frequency domain localiry in an optimal way, since they maximise the

energy in a finite interval of one domain while truncating in the other' The FPSS is

the eigenvector, go, in the following problem:

BTgo = )ogo (8)

where ? is the truncation operator and B is the bandlimiting operator, defined as

B=FTF (9)

and )6 is the largest eigenvalue. In this case, the FPSS is defined to be exactly

bandlimited and optirnally concentrated in a finite spatial region.

The probl.-.Jdrosed in Equation 2 differs in that bandlimiting is achieved by

using the low-pass fllter, Hpp,with,a traised-cosine'frequency response, whereas the

FpSb problem requires an 'ideal' rectangular filter. Although it is possible to use

ideal low-pass .filters to construct a pyramid, these bave large sidelobes in tle spatial

domain which make them insuficieotly localised for most applications

3.1 Eigenvalues of the Low-Pass Transfbrm

The reduced operat or THT is a real symmetric matrix; hence, the 2N eigenralues

and eigenvectors are purely real, and the eigenvectors form a mutually orthogonal

basis [10].
ThL eigenvectors are the one-dimensional patterns which undergo only muitiplica-

tion by a ."3la, uoder the low-pass transform- The amount of energy retained by each

eigenvector after flltering is given by the magBitude of its corresponding eigenvalue,

in the sense that
v'Av: )v*v : )

11



The graph plotted in Fig. 13 shows the magnitudes of the first three eigen';a.lues

()0, )r, )2) against the bandwidtb of the low-pass filter operaLgr, H7'p'

These results were obtained using 2 :256 and N : 8; they show that, for a given

fiIter bandwidth, the magnitudes of the eigenvalues, | ). l, decrease very quickly rvith

increasiag index, k. Therefore, most of the energy is concentrated in the first few

eigenvecttrs; iodeed, at higher levels in the pyramid (ie narrower bandwidths) only

the first eigenvalue, )s, is 'significant'-
The transfonn as a whole passes a certain amount of the total signal energy. At

a particular pyramid level, this amount is giveo by the sum of all 2N eigenvalues. A

percentage of this 'transformed energ/' is passed by ea& eigenvalue, according to its
magnitude. Previous findings (see Fig. 13) have shown that the number of eigenvalues

having 'significant' -agnitude is dependent on the py-ramid level. Therefore, most

of the 'transformed energy' is passed by only a proportion of the total number of

eigenvalues; this is shown in Fig. 14. As an extreme example, consider the case at

level 6: only about 6% of. the eigenvalues account for over 99Vo oI the'transformed

energy'. As might be expected, increasing the bandvridth require a larger proportion

of the number of eigeavalues in order to maintain the same percentage of 'transformed
energy'.

Fig. 15 shows the magnitude of )s as a functiou of bandwidth for N = 8, N : 16

and N : 32. These plots show that each doubling of N has the same effect as dou-

bling the bandwidth. Therefore, for a particular eigenvalue, the product of N and

bandwidth is a constant.
This implies that there is more eoergy at higher pyramid levels if N is increased.

The value of N indicates the initial level from which the pattern is projected onto the
irnage in order to construct the pyramid. T'hus, a la,rger value of N is equivaleot to

'starting of' from a lower level of the p1'ramid structure.

The Two-Dimensional Case

Because the 2-d operator is separable, its eigenvalues and eigenvectors are easily
related to the l-d case.

The two'dimensional eigenvalues are given by

1,, = )i)l

If, in the one'dimensional case, the 2N eigenvectors of the transform are given by

vir 0<i<2/V

then the 2N x2N two-dimensional eigenvectors can be written as

e;i(a,y) - u;(o)u;(y)

12



These form a mutually orthogonal basis because any 2-d 'pattern' can be expressed

as a linear combination of these 2-d basis vectors. For a grveD bandwidth, if the 2-d

eigenvectors are weigbted by the corresponding 2-d eigenvalues, the result is equirm.lent

to passing the'patterns' through a low-pass fllter of that bandwidth. Oniy some of the

patterns 'survive', since the eigenvalue distribution favours the first few eigenvectors.

The 2-d eigenvectors wheu N : 8 are shown in Figs. 8 - 11. The first of these

figures shows all of the eigenvectors (or eigenpatterns) at level 1 of the pyramid.

Tbe remaining figues show how the number of significant eigenpatterns varies with

pyramid level when they are weighted by their correspooding eigenvalues; they a)so

give an indication of how rnny significant eigenpatterns there are at different pyramid

levels.
Thus at the lowest bandwidth, ie the highest pyramid level, only one significant

eigenpattern is seen (Fig. U). As the bandwidth increases on successive levels, more

patterns having significaot residual energ/ can be seen. As might be expected, the

effective dimensionality of the signal increases-more and more details become visible

(see Fig. 9). This is a direct consequeDce of the distribution of eigenvalues at different

bandwidths, as discussed in Section 3.1, since a greater proportion of the eigenvalues

are large enough to be 'significant' as the bandwidth increases. For example, at

high pyramid levels oniy the first eigenwalue is significant. Consequently the low-pass

filtering at this level'destroys' those eigenpatterns which convey detail.

3.2 Oriented Patterns and the Low-Pass'transform

In order to investigate the efects of the low-pass pyramid transform on oriented
patterns and objects, a set of synthetic images was designed, based on elliptical,
curved elliptical, and circular Gaussian intensity distributions. Each pattern occupies

a 2N x 2N pixel area; the patterns are shown io the first coiumn of Fig. 12.

Any pattett, f (srg), can be expressed as a rveighted sum of the orthonormal basis:

f(r,y)-ta;ie;;(x,y)
(i"rl

with

, aii: coeficients in the linear expansionl

. eij(.) : 2-d eigenvector (orthonormal basis).

The weights, a;1, are given by the inner product of the pattern and the 2-d eigen-
vectorl that is:

aii = < f(r,y),r;i(r,y) )
= Dv,il f(r',y')e;i(x',y'\

l3



or, equi',ralently

Now, if the eigenvectors, e;y(c,y), are weighted by their 2-d eigenvalues, );y, the

resulting pattern is given as

ib,il = ! c;;);;e;;(c,,y)
(i':)

i =gil\f
and shows how much of the shape and orieqtation of the origioal pattern, /(c, g), is
preserved under the low-pass transform-

with reference to Fig' 12, the representations at pparnid levels 1 to 6 are shown

in columns 1 to 6, with the original Gaussian patterns in column 0.

As might be expected, at levels 3 and above all of the patterns are seen as roundish

'blobs'-the low-pass operator has destroyed the 'orientedness' of the originals.

It has already been shown (Fig. 11) that eigenpatterns with small eigenvalues lose

most energy uader the low-pass transform. This is the case for all but the first few

eigenpatterns, particularly at higher levels (ie lower bandwidths) of the pyramid.

Obviously, the eigenpatterns necessaxy t6 convey the 'orientedness' of an object are

lost after the first couple of levels, whereas enough eigenpatterns survive to indicate
the 'presence' of an object at much higher levels.

The next section deals with a more quantitative analysis of the pyramid repre-

sentation of oriented objects, in term.s of the errors iotroduced and the amount of
orientedness lost due to the low-pass operator.

Preserrration of Anisotropy
The theory of moments of inertia [1] permits analysis of a system, often encountered
in mechanics, of point rru$ses rotating about a fixed axis. It is possible to determine
the principal axes of such a system, and to obtain an estimate of the degree of mass

concentration. A related problem is an analynis of the dispersion of a set of (weighted)
points with respect to the centroid of the set, and the determination of the principal
axes [3].

Thus, by viewing the Gaussian pattera as a set of weighted poiuts it is possible to
use the moments of inertia to determine the principal axes of the filtered pattern and
hence obtain a quantitative measure of anisotrop1f , or 'orientedness'.

Define the set of points by the position vector [cy]'; the origin is assumed to be the
centre of the 2N x 2N pixel area in which the Gaussian pattern, f (r,y), is located.

The 'inertia tensor' is then givea by [t]

": I lf@,illlxvl,I"vl
@'vl
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rvhere I f(r,y) lir the'weight'associated with the point whose position vector is

Irv)'.
Since T is real symmetric, its eigenvectors are orthogonal, and it can be shown that

the priocipal axis is given by the eigenvector corresponding to the smallest eigenvalue,

)o; it defines the directioo of minimum dispersion. In other words, the principal axis

is given by the eigenvector correspoDding to the largei eigenvalue, )1.

A measure of aaisotropy, 6, of the pattern can be obtained as follows:

,- (lr-)o)=6
By comparing the anisotropy measures before and after the pyrarnid operator, it is

then possible to see how much of the initial aaisotropy resrains after the operator.

The ratio 
5,

P: 6 
(10)

rvhere

c 6' : anisotropy of the filtered pattern

o 6 : anisotropy of the original pattern.

is a convenient measure of how much anisotropy of the Gaussian patterns is preserved

at various levels in the low-pass pyramid.
Similarly the overall error introduced by the pyramid operator can be defined to

be the sum of the squared differences betn'een the original Gaussian pattern and the

lorv-pass fiitered version, over all the pixels in the 16 x 16 area containing the pattern.

That is, the error, E is given by:

E _ I(ori-a;;.\;i)z
(i''

_ D"?i(r-),;),
(i,t

E: llf-jll'
Results
The amount of 'orientedness' retained (cf Equation 10) at various levels of the pyramid
is shown in Fig. 16 for the Gaussian ellipse and curve (the orientation of a circular
object is zero both before and after filteri"g.). There is aknost no orientation left by
level 3, and none at all at higher levels of the pyramid. This confirms the qualitative
assessment of Fig. 12.

(11)
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Gaussian eliipses at tbree different orientations are compared in Fig. 17. The

slight diference between these is due to tbe cartesiaa separable nature of the pyramid

operator; if a more nearly circular filter had been used, this would not have been seen.

As nigbt be expected, thinaer versions of the Gaussian patterns at the same

orientations gave rise to identical results.

The a'r,ount of error introduced (cf Equation 11) by the low-pass operator is showq

in Fig. 18 for circular, elliptical and curved Gaussian 'blobs'. Unlike the anisotropy

measurements, the orientation of the dliptical blob had no efect on the errors intro-

duced. Unsurprisingly the thinner blobs sufered greater errors at all pyramid levels

in comparison to their 'Large' counterparts'
AII of the above results relate to a spatial dimension of N : 8, ie there were 16

eigenvectors of 16 elements. It is of interest to note the effect of changing the di-

mensionaiity of the pattero: Fig. 19 compares the errors introduced into the low-pass

representations of circular blobs for N = 8 and N : 4. (In the latter case the circular

object was scaled to fit within an 8 x 8 pixel area.) Thus, twice the bandwidth is

required to keep the error constant if the value of N is halved.

The most significant fiading is that there is a simple relation between the size

of an isotropic feature and the pyramid level at which ik anisotropy emerges (the

'orientation level') and this is not the same as the level at which the feature can be

seen at all (the'detection level'). This may be expressed quantitatively as follows:

Detection level = logr.lf
Orientation level = detection level + L

4 Conclusions
In mammals, visual information is processed in stages. Edges are detected and edge

orientation is analysed in the earlier stages; later processing is concerned with more

complex aspects of form- The intention of this work has been to investigate how

progressively more and more detail caa be represented, such that pattern recognition
processing could begin at a level of very coarse features and proceed, making use of
current ioformation to guide the processing of finer detail.

wlth thrs ltr rrunc[, a multuesolutron uDear operator was examrneo to nnd out
what sort of patterns can and cannot be represented at various levels of a low-pass

With this in mind, a multiresolution linear operator
.t

examrneo to find out

pyramid.
There is a pyramid level at which any simple inrage pattern--circle, line or curve-

will first appear. At this level, all such patterns appear as more or less circular blobs.
The level depends only on the feature size, as one would expect. The relation between
size and pyramid level is that, roughly speaking, halving the size of a feature requires
going down one level in the pyramid in order for the feature to first appear.

16



At levels below this, features originally having some anisotropy are Preserved, so

that orientation as a feature property can be defined and measured in a consistent

rvay. Stiil further dowo, new properties, such as curvature emerge and so a broader

class of patterns can be meaningfully represented.

It follows that in designing neural networks for multiresolution pattern recognition,

it is necessary to allow patteras to'emerge'or be recognised in a top-down hierarchical

manner, in which first the existence sf 'sensfhing' (ie a blob) is detected. This can be

refined by adding patterns from lower levels, but now conditioned on those features

already detected. This is sirnilar in many ways to the segmeltation by Spann and

Wilson [16].

Proposals for future work

A network of artificial neurons could 'learn' the invariants of a multiresolution oPer-

ator. It is not yet apparent whether a supervised or unsupervised learning algorithm
would be most appropriate in this context. Linsker [7] and Sanger [12] both used un-

supervised lgalning and succeeded in training networks to compute the eigenvectors

of the correlation matrix of the inputs to a layer of neurons. In this case, however, the

eigenpatterns of a multiresolution operator are sought, together with ways of using

them to successively refine the pattern recognition process. The design and devel-

opment of such a network and its learning regimes offers scope for a great deal of
interesting work to follow.
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objects pattern representation features

Figure 1: Basic pattern recognition paradigm

Figure 2: Frequency response of one-dimensional low-pass filter

o

feature extraction

20



Figure 3: Original'girl' image (256 x 256 pixels)
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Figure 4: Low-pass pyrernid representation of the 'girf image (levels 1 to 6)
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Figure 8: Level I eigenpatterns
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Figure 9: Level I eigenpatterns rveighted by their eigenvalues

25



Figure J0: Level 3 eigenpatterns weighted by their eigenw.lues
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Figure 11: Level 6 eigenpattbrns iveighied by their eigenvalues
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Figure 12: Orieated Gaussian patterns (L to R: original'blobs'; Levels 1 - 6 of lorv-pass

pyramid)
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