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Summary

Image segmentation is an important area in the general �eld of image processing and
computer vision. It is a fundamental part of the `low level' aspects of computer vision
and has many practical applications such as in medical imaging, industrial automation
and satellite imagery. Traditional methods for image segmentation have approached the
problem either from localisation in class space using region information, or from localisation
in position, using edge or boundary information. More recently, however, attempts have
been made to combine both region and boundary information in order to overcome the
inherent limitations of using either approach alone.

In this thesis, a new approach to image segmentation is presented that integrates region
and boundary information within a multiresolution framework. The role of uncertainty is
described, which imposes a limit on the simultaneous localisation in both class and position
space. It is shown how a multiresolution approach allows the trade-o� between position
and class resolution and ensures both robustness in noise and e�ciency of computation.

The segmentation is based on an image model derived from a general class of multires-
olution signal models, which incorporates both region and boundary features. A four stage
algorithm is described consisting of: generation of a low-pass pyramid, separate region and
boundary estimation processes and an integration strategy. Both the region and boundary
processes consist of scale-selection, creation of adjacency graphs, and iterative estimation
within a general framework of maximum a posteriori (MAP) estimation and decision theory.
Parameter estimation is performed in situ, and the decision processes are both 
exible and
spatially local, thus avoiding assumptions about global homogeneity or size and number of
regions which characterise some of the earlier algorithms. A method for robust estimation of
edge orientation and position is described which addresses the problem in the form of a mul-
tiresolution minimum mean square error (MMSE) estimation. The method e�ectively uses
the spatial consistency of output of small kernel gradient operators from di�erent scales to
produce more reliable edge position and orientation and is e�ective at extracting boundary
orientations from data with low signal-to-noise ratios.

Segmentation results are presented for a number of synthetic and natural images which
show the cooperative method to give accurate segmentations at low signal-to-noise ratios
(0 dB) and to be more e�ective than previous methods at capturing complex region shapes.

Key Words:

Segmentation, Multiresolution, MAP Estimation, Orientation



Contents

1 Introduction 1

1.1 Seeing and Computer Vision : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.2 The Segmentation Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.3 Uncertainty and Multiresolution Analysis : : : : : : : : : : : : : : : : : : : 4
1.4 A Review : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.4.1 Region based approaches : : : : : : : : : : : : : : : : : : : : : : : : 7
1.4.2 Boundary based approaches : : : : : : : : : : : : : : : : : : : : : : : 11
1.4.3 Combined methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.5 Requirements of a Segmentation Approach : : : : : : : : : : : : : : : : : : : 15
1.6 Thesis Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2 Towards a Model for Segmentation 18

2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.2 Multiresolution Image Models : : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.3 Linear Multiresolution Image Models : : : : : : : : : : : : : : : : : : : : : : 19

2.3.1 Mathematical De�nition : : : : : : : : : : : : : : : : : : : : : : : : : 21
2.4 A Generalised Image Model : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.4.1 A Model for Segmentation : : : : : : : : : : : : : : : : : : : : : : : : 23
2.5 A Segmentation Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
2.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

3 Region Estimation Process 34

3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34
3.2 Lowpass Pyramid : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34
3.3 Region Node Selection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

3.3.1 Local Parameter Estimation : : : : : : : : : : : : : : : : : : : : : : : 37
3.3.2 Selection Procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3.4 Region Adjacency Graph : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40
3.4.1 A Neighbourhood System : : : : : : : : : : : : : : : : : : : : : : : : 40

3.5 Iterated Decision Directed Estimation : : : : : : : : : : : : : : : : : : : : : 43
3.5.1 Link Probabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44
3.5.2 Region Re�nement : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53
3.5.3 Convergence Criteria : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

3.6 Computational Requirements : : : : : : : : : : : : : : : : : : : : : : : : : : 62
3.7 Results and Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

ii



4 Boundary Estimation Process 69

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69
4.2 Orientation Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

4.2.1 Orientation Representation : : : : : : : : : : : : : : : : : : : : : : : 70
4.2.2 An Orientation Pyramid : : : : : : : : : : : : : : : : : : : : : : : : : 72
4.2.3 Vertical Propagation : : : : : : : : : : : : : : : : : : : : : : : : : : : 73
4.2.4 Parameter Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : 75
4.2.5 Lateral Smoothing : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78
4.2.6 Estimating Signal Correlation : : : : : : : : : : : : : : : : : : : : : : 81
4.2.7 Computational Requirements : : : : : : : : : : : : : : : : : : : : : : 82
4.2.8 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

4.3 Boundary Segmentation Process : : : : : : : : : : : : : : : : : : : : : : : : 88
4.3.1 Node Selection by Multiresolution Peak Detection : : : : : : : : : : 89
4.3.2 Node Linking to form a Boundary Graph : : : : : : : : : : : : : : : 91
4.3.3 Iterative Boundary Re�nement : : : : : : : : : : : : : : : : : : : : : 93
4.3.4 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

5 Process Interaction and Results 104

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104
5.2 Process Interaction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

5.2.1 Boundary-to-Region Interaction : : : : : : : : : : : : : : : : : : : : : 106
5.2.2 Region-to-Boundary Interaction : : : : : : : : : : : : : : : : : : : : : 108
5.2.3 Corner Blocks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 110
5.2.4 Node Insertion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111

5.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112
5.3.1 Synthetic Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112
5.3.2 Comparative Results : : : : : : : : : : : : : : : : : : : : : : : : : : : 116
5.3.3 Natural Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

6 Conclusions and Further Work 124

6.1 Thesis Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124
6.2 Limitations and Further Work : : : : : : : : : : : : : : : : : : : : : : : : : : 131
6.3 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

A Derivation of M.M.S.E Filter 135

A.1 The MMSE Filter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135
A.2 A Constrained Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 136

A.2.1 Determining the Filter Parameters : : : : : : : : : : : : : : : : : : : 136

B Optimal Lowpass and Edge Kernel Designs 140

C Conference Paper 158

References 168



List of Figures

1.1 `shapes' image (SNR = 0dB), `girl' image, (256 � 256) : : : : : : : : : : : : 3
1.2 Class/position resolution trade-o� : : : : : : : : : : : : : : : : : : : : : : : 5

2.1 A multiresolution image model for curves : : : : : : : : : : : : : : : : : : : 20
2.2 Model realisations for boundary and region features : : : : : : : : : : : : : 22
2.3 Example of evolving boundary : : : : : : : : : : : : : : : : : : : : : : : : : 25
2.4 Region tessellation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27
2.5 Overall algorithm structure : : : : : : : : : : : : : : : : : : : : : : : : : : : 29
2.6 Boundary and region adjacency neighbourhoods : : : : : : : : : : : : : : : : 30
2.7 Interaction neighbourhood : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

3.1 Quad-tree structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36
3.2 Local parameter estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
3.3 Quad-tree tessellation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41
3.4 P (0) given the block orientation estimate : : : : : : : : : : : : : : : : : : : 46
3.5 Region block edge model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49
3.6 Iterative edge parameter estimation : : : : : : : : : : : : : : : : : : : : : : 51
3.7 Normalised edge certainty measure : : : : : : : : : : : : : : : : : : : : : : : 54
3.8 Spatial shrinking transformations : : : : : : : : : : : : : : : : : : : : : : : : 56
3.9 Spatial dilation origins : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57
3.10 Block splitting in a non-regular neighbourhood : : : : : : : : : : : : : : : : 58
3.11 Percentage link changes per iteration for shapes 0dB image : : : : : : : : : 60
3.12 Region estimation algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 61
3.13 `shapes' original : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64
3.14 Region estimation of segmentation on `shapes' 0dB : : : : : : : : : : : : : : 65
3.15 Region estimation on `shapes' 0dB cont. : : : : : : : : : : : : : : : : : : : : 66
3.16 Region estimation on `table 1' image : : : : : : : : : : : : : : : : : : : : : : 68

4.1 Orientation estimation algorithm structure : : : : : : : : : : : : : : : : : : 72
4.2 Anisotropic 2-d Gaussian �lter : : : : : : : : : : : : : : : : : : : : : : : : : 79
4.3 Gathering correlation data : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82
4.4 Orientation estimation on `shapes' 0dB : : : : : : : : : : : : : : : : : : : : : 84
4.5 Irregular boundary synthetic image : : : : : : : : : : : : : : : : : : : : : : : 85
4.6 Orientation estimation on `widgets' 12dB-0dB : : : : : : : : : : : : : : : : : 86
4.7 E�ect of lateral processing (dashed line) on output SNR : : : : : : : : : : : 88
4.8 Peak detection search window : : : : : : : : : : : : : : : : : : : : : : : : : : 90

iv



4.9 Boundary node linking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92
4.10 Boundary node selection and boundary graph : : : : : : : : : : : : : : : : : 94
4.11 Constrained local search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95
4.12 `Repulsive force' movement : : : : : : : : : : : : : : : : : : : : : : : : : : : 97
4.13 Node elimination : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98
4.14 Boundary Re�nement Process : : : : : : : : : : : : : : : : : : : : : : : : : : 100
4.15 Boundary estimation on `shapes' 0dB : : : : : : : : : : : : : : : : : : : : : 101
4.16 Boundary estimation on `shapes' 0dB cont. : : : : : : : : : : : : : : : : : : 102
4.17 Boundary estimation on `table 1' image : : : : : : : : : : : : : : : : : : : : 103

5.1 Interaction neighbourhood : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105
5.2 Combined region and boundary orientation estimates for `shapes' 0dB image,

iterations 1, 5, 10, 20 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109
5.3 Spatial shrinking for corner blocks : : : : : : : : : : : : : : : : : : : : : : : 111
5.4 Boundary node insertion using region information : : : : : : : : : : : : : : 112
5.5 Combined segmentation on `shapes' 0dB : : : : : : : : : : : : : : : : : : : : 113
5.6 `shapes' at a variety of SNRs : : : : : : : : : : : : : : : : : : : : : : : : : : 114
5.7 Combined segmentation on `shapes' at a variety of SNRs : : : : : : : : : : : 115
5.8 Combined segmentation on `blobs' 0dB and `widgets' 12dB-0dB : : : : : : : 117
5.9 Comparative results using Spann and Wilson method : : : : : : : : : : : : : 118
5.10 Percentage pixel classi�cation error on `shapes' : : : : : : : : : : : : : : : : 119
5.11 RMS boundary error on `shapes' : : : : : : : : : : : : : : : : : : : : : : : : 120
5.12 Combined segmentation on `table 1' : : : : : : : : : : : : : : : : : : : : : : 121
5.13 Combined segmentation on `table 2' : : : : : : : : : : : : : : : : : : : : : : 122
5.14 Combined segmentation on `girl' : : : : : : : : : : : : : : : : : : : : : : : : 123



List of Tables

3.1 Optimised lowpass �lter kernel size (4� 4) : : : : : : : : : : : : : : : : : : : 36
3.2 Inter-Level noise variance estimates on `shapes' SNR = 0dB : : : : : : : : : 38
3.3 Computational requirements of region estimation : : : : : : : : : : : : : : : 62
3.4 Initial nodes and connectivity per level for `shapes' 0dB image : : : : : : : 63
3.5 Initial nodes and connectivity per level for `girl' image : : : : : : : : : : : : 63

4.1 Optimised 3� 3 edge kernels g0 and g1 : : : : : : : : : : : : : : : : : : : : : 73
4.2 Correlation statistics required to �nd feedback coe�cients : : : : : : : : : : 77
4.3 Computational requirements of orientation estimation : : : : : : : : : : : : 83
4.4 Computation required for lateral smoothing : : : : : : : : : : : : : : : : : : 83
4.5 Input/Output SNRs per level for orientation pyramid of `shapes' 0dB : : : 87
4.6 Input/Output SNRs for various amounts of noise on `shapes' : : : : : : : : 88

vi



Notation used in this thesis

xij(l) Grey level data at pixel (i; j) on pyramid level l

0 � l �M Pyramid level l, root level 0, image level M

Amn Filter kernel (matrix)

S
Union

T
Intersection

~�k = (i; j; l)T Scale-space position vector (region)

~�k = (i; j; l)T Scale-space position vector (boundary)

�i Index set

�0; �1; �2 Vector components

N~�
; L~� Neighbourhood sets

cardfXg Cardinality of set X

P (x) Probability of x

p(x) Probability density function of x

H0;H1 Hypotheses

E[x] Expected value of x

varx Variance of x

v = (v0; v1)
T Vector data in bold face

arg(v) Argument of 2d vector (tan�1(v1
v0
))

jvj Length of vector (
q
v20 + v21)

exp(x) Exponential function ex

dxe Ceiling function



Acknowledgements

This work was funded by UK SERC and by Shell Research Ltd., and conducted within the
Image and Signal Processing Research Group in the Department of Computer Science at
Warwick University.

I would like to thank all the sta� at both the Computer Science Department and Shell
Research. In particular, thanks go to all my friends and colleagues, past and present, of
the Image and Signal Processing Group at Warwick: Andrew Calway, Simon Clippingdale,
Roddy McColl, Andrew Davies, Wooi Boon Goh, Matthew Jackson, Edward Pearson, Mar-
tin Todd, June Wong and Horn-Zhang Yang. They have made numerous contributions and
have provided a stimulating environment in which to work. Thanks also to Je� Smith for
providing essential software support, and the sta� of the University Photographic Depart-
ment for their help with the photographs.

I would also like to thank my supervisor at Shell Research, Dr. Steve Graham for his
enthusiasm and support.

I am particularly indebted to my supervisor Dr. Roland Wilson, without whose ideas,
enthusiasm and profound expertise in the subject this work would not have been possible.



This work is dedicated to my mother and, in loving memory, to my father.



Chapter 1

Introduction

1.1 Seeing and Computer Vision

Of all the perceptual mechanisms that we possess, vision is undisputably the most impor-

tant. The subconscious way that we often look, interpret and ultimately act upon what we

see, however, belies the complexity of visual perception. The comparatively young science

of vision research is aimed at the understanding of the general problem of seeing. The

automation of the task, by the use of image capture equipment in place of our eyes, and

computers and algorithms, in place of the little understood visual `wetware', constitutes

what is termed computer vision [5] . The Human Visual System (HVS) is an important

model for any work in vision because it is clearly both e�cient and general purpose, which

are also the goals of any computer vision system.

Computer vision has obvious applications and bene�ts. Examples range from medical

image processing, where quanti�cation, identi�cation and diagnosis are often the aims, to

satellite imagery for, say, crop analysis, or restoration of astronomical images [82] [41] [84].

The applications are not limited to single image frames, since with the advances in computer

technologies, it is becoming possible to tackle stereo images and perform analysis of image

volumes and sequences. In the area of robotics, vision becomes an important part of the

sensory inputs used to control the motor responses [35]. In fact, anywhere a human observer

1



CHAPTER 1. INTRODUCTION 2

can be replaced by a machine may be regarded as an application suitable for computer vision.

With the growth of image sources and as the boundaries of vision are expanded, at both

the microscopic scale, such as in electron microscopy, and the macroscopic scale, seeing ever

more remotely into the universe, not to mention the explosion in the availability and use of

electronic visual media, the solution of the vision problem becomes ever more pertinent.

1.2 The Segmentation Problem

Image segmentation is one part of the general task of computer vision. A `common sense'

de�nition would describe segmentation as the translation of an image, from an array of grey

levels, to a symbolic description, for example as a number of well de�ned regions. Given

the arti�cial image shown in �gure 1.1(a), the segmentation is the seemingly simple task of

separating the foreground from the background while ignoring the presence of noise. In this

image the inter-regional signal to noise ratio is 1, and yet it does not present a signi�cant

problem to us. There are two related problems in the process of segmenting this image:

�rst, detecting the presence of 5 objects; secondly, the harder problem of locating their

boundaries [109].

In the classical pattern recognition paradigm, image segmentation could be described

as combined feature selection and classi�cation, which is indeed the basis of much of the

work in this area [36] [92] [33]. An alternative way to regard segmentation is to consider it

in terms of the computer vision model, where the regions of interest in the image are the

projections of the `objects' in the scene and then the task of segmentation is to identify and

locate these objects, regardless of the indeterminancy due to image acquisition, lighting and

so on. In �gure 1.1(b), for example, we are easily able to segment out the hat, or the edge

of the mirror, which although they are 3-dimensional entities in the real world, project onto

the image plane as 2-d regions.
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(a) (b)

Figure 1.1: `shapes' image (SNR = 0dB), `girl' image, (256 � 256)

The processing of information in the HVS is known to be hierarchical [98]. Low level

vision is concerned with processing the signal level of the `retinal image' [51] to a simple

representational level. High level vision, which is less understood, is concerned with inter-

pretation of the low level information. As a processing step of the HVS, segmentation is

certainly a `low level' task, which extracts and groups together perceptually important fea-

tures of the scene. Segmentation does contain, however, the beginnings of domain-dependent

interpretation [5]; the question is in what form is this prior information represented and to

what degree is it used. Returning to the synthetic image of �gure 1.1(a), one interesting

question is to what extent is our prodigious performance at identifying the shapes explained

by our familiarity with them as circles, triangles etc. An example to test this, which will

be used as a test image in this work (see Chapter 4), consists of a set of random boundary

`widgets', which we cannot have shape knowledge about, but nevertheless can still segment.

Another important aspect of the segmentation process is its invariance to various trans-

formations of the signal, such as translation or rotation, or changes in illumination. It
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is important, therefore, that such invariance is incorporated into any scheme for image

segmentation.

There is now a great deal of argument and debate on the merits of a model-based

approach to vision, such as that proposed and advocated by Marr [68]. Model-based vision

extrapolates the low level representational structures, through a hierarchy of increasing

abstraction, whereby interpretation is achieved by matching against some model of the

world. These ideas are being found to be too restrictive in the philosophy of `active vision'

and the like [3]. But what of low level vision? It is by no means solved and examples such

as �gure 1.1(a) demonstrate how powerful the low level visual processes are. The challenge

to an automated segmentation system is to achieve comparable performance at modest

computational cost.

1.3 Uncertainty and Multiresolution Analysis

The task of segmentation, and image analysis in general, may be described as an inference

process: given the image intensities in a neighbourhood of X, an elementary event of class C

is (believed to be) located at position X [104] [105]. For example, in the case of �gure 1.1(a),

to determine the classes of the objects some form of local average grey level can be used.

However, to be more certain of the class of a particular pixel requires averaging over a

larger area, which in turn makes the location of the object boundaries less certain. Thus

the conjunction of the two propositions, \an event of class C" and \located at position

X", are inextricably tied through uncertainty. In other words, localisation in class space

con
icts directly with the simultaneous localisation in position space.

In multiresolutionmethods an image is analysed over several resolutions or scales. This is

equivalent to trading o� high position resolution, present at the image plane, with obtaining

greater class resolution at lower scales (�gure 1.2). This is only half the story, of course, as
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Increasing position
resolution

Increasing class
resolution

Figure 1.2: Class/position resolution trade-o�

there is still the problem of how to combine the information across scales, i.e. to regain the

spatial resolution which has been lost.

In the inference process of determining `what is where', `what' is an `object', the presence

of which is established in some appropriate property domain, and the `where' gives its

location in the spatial domain [68] [109]. Consider the image signal x~� ;
~� 2 N~�

, in the

neighbourhood of the point ~�. The problem is to determine the presence of an object C at

that point and estimate its parameters �C~� . This can be cast into statistical terms, based on

the posterior probabilities of the parameters and the hypothesis HC
~�
that there is an object

C at ~� [39] [100]

P (�C~� ;H
C
~�
j x~� ; ~� 2 N~�

) =

Prob
n
C at ~� with parameters �C~� ; given x~� ;

~� 2 N~�

o
(1.1)

An important idea in the work described here is that of scale consistency [20] [100]. This

is based on the assumption that there is more than one scale where there is just one C

within the neighbourhood of a given point ~�. Scale consistency can be used to determine

the appropriate scale of a feature by �rst performing the inference of equation (1.1) at each

scale separately, and then checking the results for consistency between successive levels.

The consistency check uses the initial estimates of the parameters at one scale to provide
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an improved parameter estimate and a better assessment of the hypothesis HC
~�
. This step

is then repeated until an acceptable level of con�dence is reached. Using the formulation

of (1.1) with a multiresolution representation allows the hypotheses to be �xed and the size

of the otherwise unspeci�ed neighbourhood N~�
to be varied.

The pyramid structure depicted in �gure 1.2 is just one of a number of di�erent multires-

olution representations that have been used in image processing, and has the property that

the spatial resolution is reduced by some factor (usually 2) at each scale, creating a stack of

successively smaller images - hence the name pyramid [18]. The simplest type of pyramid is

the quadtree [90] which, although simple to generate, has been shown to be a useful analy-

sis structure for segmentation [88], coding [106], and modelling and estimation [26]. More

sophisticated multiresolution structures, such as Wavelet representations [67] [29] and the

Multiresolution Fourier Transform (MFT) [20] [30] have now been advocated as generalised

multiresolution feature representations for image analysis. Moreover, the class-position

trade o� is only one of several useful properties that multiresolution structures have. It has

been demonstrated that they can be computationally e�cient and appropriate for image

modelling [25] (see also Chapter 2).

1.4 A Review

A review of some notable segmentation methods used by other workers is presented in

this section. The purpose is to identify the common themes in the various approaches to

segmentation, to highlight their advantages and limitations, and to set a context for the

work presented in this thesis. The methods are categorised into three broad classes: region

based, boundary based and combined approaches. Since multiresolution structures form

the basis of much of the successful work in this area, attention is concentrated on such

approaches.
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1.4.1 Region based approaches

Perhaps the simplest approach to segmentation is to threshold the grey level image. The

threshold is an intensity level which is chosen to divide the image pixels into either object or

background. This is clearly only possible with a very restricted set of images. For example,

there are industrial `conveyor belt' applications, where segmentation is used to determine

attributes of some metal widget, such as area or orientation, and forms the `vision' part of a

simple robotic system. Under the assumptions of a controlled environment these methods,

although speci�c, are nevertheless e�cient. As methods to tackle natural images, however,

where variation of illumination, noise and texture are present, they are grossly inadequate.

The thresholds are determined by some form of measurement space clustering (see [79] [41]),

typically using a histogram as the class space. Finding the modes determines the partitions

of the space and hence the segmentation. The histogram is `global' and retains no positional

information. The major draw back of this is that it is invariant to spatial rearrangement

of the pixels, which is an important aspect of what is meant by segmentation [109]. This

is not to say that a histogram cannot provide useful information, as the Spann and Wilson

method [88] demonstrates (see below).

The need to incorporate some form of spatial information into the segmentation process,

i.e. to achieve a degree of positional locality of the decision criteria, led to the development

of methods where pixels are classi�ed using their context or neighbourhood. Such tech-

niques fall under the general heading of relaxation methods [92] [59] [44]. From an initial

classi�cation of the pixels, the class of a given pixel is iteratively updated, using a proba-

bilistic model, with reference to the class of the neighbouring pixels. The basic premise of

these context dependent classi�cation methods is that the classes of the objects, i.e. pixels,

are interrelated. Such an assumption is valid when dealing with images because the classes

of neighbouring pixels are usually not independent. The context, therefore, is based on
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geometric proximity.

In Relaxation Labelling (RL) [54] [76], each object ~�i; 1 � i � N is assigned a probability

Pk(~�i) that it belongs to class xk; 1 � k � Nc. These `probabilities' are made to lie in the

range [0; 1] and
PNc
k=1 Pk(

~�i) = 1. The contextual information is incorporated into the

scheme in the form of a compatibility function

Ckl(i; j) = Extent to which

`~�i belongs to xk' is compatible with `~�j belongs to xl' (1.2)

At iteration t the credibility factor due to each object ~�j related to ~�i is calculated by [92]

�tk(i; j) =
NcX
l=1

Ckl(i; j)P
t
l (j) (1:3)

Note that �tk(i; j) is large if the compatibility is large and the probabilities are high. The

probabilities of each object are then updated by applying a relaxation formula, such as

P t+1
k (i) =

1

N

NX
j=1;i6=j

"
�tk(i; j)P

t
k(i)PNc

l=1 �
t
l(i; j)P

t
l (i)

#
(1:4)

where the denominator ensures that Pk(i) remain in the range [0; 1].

RL is justi�ed on heuristic grounds, as the relaxation formula adjusts decision variables

in a `reasonable' way. If the compatibility is large and the probabilities high then the

probability at the next iteration will increase. If the probabilities tend to either 0 or 1 then

they do not change further. Convergence is not guaranteed but in practical applications

only a consistent (under some criteria) set of decisions is required. The problem remains,

however, how the compatibility functions should be derived. One suggestion is to use

training data to determine this a priori information [92].

Markov models [8] [10] [111] [39] are used to represent the inter-class dependence (which

is formulated heuristically in RL) through the use of an explicit statistical model. Markov

models are used for the class or label processes in a variety of maximum a posteriori (MAP)
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estimation methods for image restoration and segmentation [9] [39]. The local spatial inter-

action is modelled by a 2-dimensional Markov chain, called a Markov random �eld (MRF),

which is expressed by

P (x~�i j x~�j ; j 6= i) = P (x~�i j x~�j ; j 2 N~�i
) (1:5)

where N~�i
is the neighbourhood of ~�i. As with a Markov chain, the immediate neighbours

are termed the �rst order neighbourhood, and a hierarchy of neighbourhoods can be de-

�ned by considering neighbours of neighbours (second order), and so on. Given the set of

observations Y = fy~�1 ; : : : ; y~�N g, the MAP estimate of the true scene X = fx~�1 ; : : : ; x~�N g

is the joint labelling which maximises the a posteriori probability distribution P (X j Y ).

From Bayes's rule [75]

P (X j Y ) =
p(y~�i ; 1 � i � N j x~�j ; 1 � j � N)� P (X)

p(y~�i ; 1 � i � N)
(1:6)

The denominator can be ignored during the maximisation, leaving the speci�cation of the

conditional density of the observation given the true scene and the a priori probabilities of

the label con�gurations. Much of the work in this area has been concentrated in developing

appropriate models for the label process, and more often than not, use MRFs to model

the label interactions. Knowledge of the conditional density of the observation and the

prior probabilities of the label process is either assumed, derived heuristically or parameter

estimation is considered from training data or in situ (e.g. [9] [28]). The order of the MRF

is often restricted to facilitate the derivation of parameters on an ad hoc basis [39].

One of the major problems faced by global MAP estimation is the need to optimise the

estimate over the discrete space of all possible labellings. Other than in the most trivial

examples the computational burden is prohibitive. For example, the optimisation problem

for binary images of size 64 � 64 requires a search over 264�64 = 24096 realisations. This

has led to a number of optimisation methods that reduce the global problem to a series of
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iterative, local problems, analogous to the relaxation labelling.

Perhaps the most celebrated method is that used by Geman and Geman [39] using the

combinatorial optimisation procedure known as Simulated Annealing (SA) [95]. The SA

procedure has its origins in statistical mechanics and was developed as a procedure for

simulating the slow cooling of a solid (annealing) until it reached a low energy ground state,

which also explains the physical terminology adopted when SA is used for MAP estimation.

Geman and Geman show that if the image is modelled as a MRF then, under certain

conditions, its probability distribution is given by a Gibbs (Boltzmann) distribution. This

distribution controls the `energy' of the system and has a control parameter, analogous to

the temperature, which is gradually decreased to converge the system to ground (minimum)

cost. The optimal annealing schedule is slow, however, requiring anything up to 1000

iterations over the pixel sites.

SA and MAP estimation are discussed by Besag [9], who proposed an alternative optimi-

sation scheme called Iterated Conditional Modes (ICM). Although it only guarantees to �nd

a local optimum, it performs well and is appealing because of its simplicity in comparison

to SA and its rapid convergence (within 10 iterations). ICM is perhaps the closest parallel

to the local, iterative estimation method used in this work (Chapter 3), which shares its

fast convergence rate.

Multigrid methods integrate MAP estimation by MRF modelling into a multiresolution,

coarse to �ne analysis structure [91] [40] [73] [63]. The general principle is that at the lower

resolutions of the structure, e.g. a pyramid, where there are fewer pixels, the equilibrium

state is located very quickly. This estimate is then interpolated on to the next higher reso-

lution, and is used as the starting point for the optimisation at that level. This process is

repeated until full spatial resolution is achieved. In other words, the lower resolutions con-

strain the estimate at the higher ones. The advantages are the reduction in computational
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burden, especially if a method such as ICM is used [16], and that such methods go some

way to relating local and global characteristics in the image which is di�cult with single

resolution methods.

As already noted, multiresolution analysis allows the trade o� between class and posi-

tional localisation, and there are a number of methods that exploit this. The split-and-merge

techniques, developed originally by Chen and Pavlidis [24], use a linked pyramid structure

and statistical decision criteria to combine global and local region information. These ideas

were adopted and developed in [19] [48] [49], with variations in the linking methodologies

used, but like their predecessors required prior knowledge of the size and number of regions

present.

The quadtree based method of Spann and Wilson [88] made use of non-parametric

classi�cation [108] at a low spatial resolution, followed by downward boundary estimation,

to regain spatial resolution. It was notable because of its e�ciency and that it did not

require prior knowledge of the image regions. This method was also shown to be readily

extensible to the problem of texture segmentation [107] [86] [13]. Some of the successful

ideas from the quadtree method have been used by Spann and Horn [87], to overcome the

problems in the linked pyramid based split-and-merge method.

1.4.2 Boundary based approaches

The second class of methods for image segmentation involve the detection of the luminance

transitions between regions, i.e. the boundaries (lines or edges). The fundamental im-

portance of line and edge information in both biological and computer vision systems has

long been recognised. Indeed, the biological evidence showing `edge-detection' playing a

central role in the early stages of visual perception in mammals (low level vision), such as

the HVS, has often been the motivation for its adoption by workers in image processing.

The biological evidence was provided by the early work of physiologists, notably Hubel and
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Wiesel [52] [51] and also Blakemore and Campbell [14]. Local features, such as lines and

edges, can describe the structure of a scene relatively independently of the illumination.

For example, a cartoon drawing consisting only of lines is often enough for us to interpret

a scene.

Image segmentation techniques based on edge detection have long been in use, since

the early work of Roberts in 1965 [81]. A variety of methods of edge detection have been

suggested such as: gradient detection methods, for example the Canny edge detector [22]

(see also [41] [58] for others), detection of zero-crossings in the second derivative [46] [69],

edge detection using edge models [53] [96], and frequency domain methods [61] [67] [20].

The bane of all these methods, however, is noise. Edges, by de�nition, are rapidly varying

spatially and hence have signi�cant components at high spatial frequencies. This is also,

unfortunately, the characteristic of noise, and therefore any gradient operator that responds

well to the presence of an edge will also respond well to the presence of noise or textures

thus signalling false edges.

From an uncertainty stand point, boundary methods approach segmentation from posi-

tional localisation. There is a second manifestation of uncertainty, however, in the trade-o�

between spatial localisation and noise immunity. To achieve greater noise immunity requires

greater spatial averaging and hence reduced spatial localisation. The extent to which the two

requirements con
ict is determined by the uncertainty principle of signal analysis [74] [22].

One of the ways to achieve noise immunity is by post-processing of the edge detection

by some form of `smoothing'. The work of Rosenfeld and Thurston [83], Marr [69] and

Witkin [110], is notable in this respect as their approaches were aimed at combining the

outputs of �lters of di�erent sizes, i.e using multiple resolutions. A robust technique for

edge detection and orientation estimation, based on a multiresolution signal model was

introduced in [102], and is considered in more detail in Chapter 4.
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Having obtained an edge map, there is usually a second stage to boundary based segmen-

tation, which is to group the boundary elements to form lines or curves. This is necessary

because, other than in the simplest, noise free images, the edge detection will result in a

set of fragmented edge elements. There are three main ways that this has been attempted:

local linking techniques (see [5]), global methods, such as Hough transform (HT) meth-

ods [34] [4], or combined approaches, such as the hierarchical HT [80] and the MFT based

methods [20] [30].

The local linking methods use attributes of the edge elements, such as magnitude, ori-

entation and proximity, to grow the curves in the image. Heuristic, graph-theoretic and

relaxation methods [65] have been employed to achieve the line linking. In the HT methods

(see [56] for a review), the edge elements are transformed to a parameter space, which is a

joint histogram of the parameters of the model of line or curve being detected. The peaks in

this histogram then indicate the presence and location of the lines or curves being detected.

Recently a `hierarchical' HT [80] has been developed to make the method more robust and

e�cient, by �rst doing HTs in small windows across the image (8 � 8) and then reapplying

the HT technique recursively to group together the detected line segments into longer and

longer lines. The curve extraction process implemented using the MFT [20], is notable as

it performs both the edge detection and curve extraction in a single framework.

1.4.3 Combined methods

The third category of methods are those that have implicitly or explicitly combined a

region based approach with edge detection, and are of special interest to the work presented

here. Regions and their boundaries are complementary, so it seems appropriate to use a

cooperative scheme to overcome the uncertainty encountered in either scheme alone. From

the above discussions about uncertainty, in a cooperative scheme the image segmentation is

tackled simultaneously from high class localisation (regions) and high positional localisation
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(boundaries).

In the MRF methods the edge detection is incorporated by the introduction of a binary

valued line process, also modelled using MRFs [39] [38] [43]. The line process modelling

described by Geman and Geman [39] is representative of the approach used. The pixel

sites of the region process are augmented by line sites which are placed midway between

each vertical and horizontal pair of pixels. The con�guration space of any neighbourhood

is thus extended to include all possible pairs of allowable grey level and line states. The

energy function, which determines the prior from the current neighbourhood con�guration,

is decomposed into contributions from both the current grey level state and line state

(which itself prohibits certain pixel con�gurations). Although the results are better with

the introduction of such a line process, the problem of parameter estimation for the joint

model is compounded. Also, the size of the line process neighbourhood is arti�cially tied

to the grey level process, which itself is kept small to make the computation tractable.

The combining of a region based segmentation with edge detection in a more explicit

manner is not new. Some region `growing' methods have used edge operators to prevent

the merging across boundaries (see review by Harlick [47]). The use of a more general,

multiresolution and cooperative segmentation is described by Hanson and Riseman [45].

Recently Pavlidis and Liow [77] (also [15]), have taken the results of a split-and-merge,

linked pyramid approach and added a boundary relaxation step to re�ne and improve the

region errors and enhance the resultant contours. By incorporating global shape and shadow

information they have also shown good results in restricted applications, such as extracting

buildings from aerial images [66].
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1.5 Requirements of a Segmentation Approach

The above discussion highlights a number of problems which the work presented in this

thesis seeks to address. These are:

1. Prior Knowledge. There are two levels of this: �rst, there is the fundamental problem

of any model-based approach, that of parameter estimation and second, to what degree

and in what form should higher level knowledge be incorporated into the segmentation

process.

Part of the weakness of the MRF methods is that parameters of the conditional dis-

tribution governing the observation process have to be estimated, often from training

data. Also the parameters of the prior distributions have to be determined, often by

empirical or ad-hoc means. Ideally, the segmentation would be unsupervised, with

parameter estimation performed in situ.

The point about the higher level knowledge is perhaps in the realms of psychophysics:

to what extent does visual knowledge about what we know in
uence what we see? It

would be desirable to make minimal assumptions, keeping the segmentation process

mostly at a low level.

2. Local Processing. This is an obvious consequence of the intrinsic structure of im-

ages, i.e. the features of interest to any segmentation are local and that the size of

these localities varies, from feature to feature, across the image. This has profound

implications for the model underlying the segmentation.

An additional bene�t of local processing is that parallel processing can be used in

computation.

3. Uncertainty. It must be possible to obtain su�cient resolution in both class and

position to answer the `what is where' question [104]. Also there is a need for noise



CHAPTER 1. INTRODUCTION 16

immunity when performing edge detection. Both of these suggest a multiresolution

approach.

4. Computational E�ciency. The method should be computable and not make unreason-

able demands on storage and CPU time. This depends partly on the representational

structures used, and should result in a segmentation which is in some sense a `minimal'

representation of the image.

5. Flexibility of Image Model. The image model should be extensible to perform a gener-

alised segmentation. The obvious extension is from regions of homogeneous grey level

to regions of homogeneous texture.

1.6 Thesis Outline

In Chapter 2 a suitable model for images on which a segmentation can be based is derived

from a general class of linear multiresolution image models [101] [25]. It is shown how

a multiresolution model can succinctly describe image properties which span a number

of scales, such as regions and boundaries. A segmentation algorithm is introduced which

assumes the described model. The algorithm handles region and boundary information

separately and cooperation is achieved through an explicit interaction process. The key

aspects of the method are: scale selection, adjacency graphs and iterative estimation.

The region estimation process of the segmentation is detailed in Chapter 3. The con-

struction and properties of low-pass image pyramids, parameter estimation and scale selec-

tion are considered. A new iterative, decision-directed estimation method is then described,

which operates on a region adjacency graph representation of the image. Experimental re-

sults are presented that illustrate its operation.

Chapter 4 describes the boundary estimation part of the segmentation. A robust ori-

entation estimation technique is presented and it is shown that by combining orientation
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estimates from a number of levels of a pyramid of the input image, it is possible to consid-

erably reduce the estimation errors. The performance of the algorithm is demonstrated for

input images over a range of SNRs.

A scheme for boundary segmentation which operates on an orientation pyramid of the

image is de�ned. The resulting boundary representation is a `dual' of the region adjacency

graph of the region based process. Again the processing involves the three stages of scale

selection, boundary graph creation and iterative estimation. Results are presented that

illustrate the operation of the boundary processing.

In Chapter 5 the two estimation strategies of Chapter 3 and 4 are brought together

and an interaction process de�ned for the combined segmentation. Results of running the

combined segmentation method on a number of synthetic and natural images are presented

and its performance is evaluated.

The thesis is concluded in Chapter 6 with a synopsis and a discussion of further work.

Experimental and Display Conditions

All test images are 256� 256 pixels in size and eight bit (0 to 255). White Gaussian noise

was generated by the polar method [60] using the nominally uniformly-distributed ouput

from the UNIX1 random number generator random().

All algorithms were coded in the C++ programming language [89] on SUN 3/160 and

SUN 4 SPARC work stations running UNIX v4.2. The results were photographed with a

Dunn Instrumentrs Multicolour unit, using Kodak TMAX 100 ASA monochrome �lm on

the green channel with a nominal exposure time of 2.36 seconds, and Fuji 100 ASA colour

�lm with exposure times of Red: 2.85 seconds, Green: 2.36 seconds and Blue: 0.83 seconds.

1
UNIX is a trade mark of AT&T Bell Laboratories.



Chapter 2

Towards a Model for

Segmentation

2.1 Introduction

This chapter is concerned with an appropriate model for images on which a segmentation

can be based. The proposed model is derived from a general class of linear multiresolution

image models [26] [25] [103], forms of which have been successfully used in the areas of

image estimation [27], coding [93] and curve extraction [20]. It will be shown how the basic

model may be generalised to model both region and boundary features and how the two

feature descriptions can be made to interact within the same framework.

A mathematical de�nition of the model is given and an appropriate adaptation in-

troduced that generalises the representation of local features in the image to include both

regions and boundaries. The chapter is concluded with the resulting forms of the estimation

and segmentation algorithms, based on the model.

2.2 Multiresolution Image Models

The modelling of images using multiresolution representations is not new - there are numer-

ous examples of the use of multiresolution representations such as quadtrees and pyramids

in the segmentation of images (e.g [24] [19] [88]). It is only recently, however, that the whole

18
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question of the multiresolution image modelling has been analysed and the seemingly dis-

parate models been put in to a uni�ed framework. The work of Clippingdale [25] described

a new class of linear multiresolution image models and an e�cient quadtree estimator based

on such models. More recently the paper by Wilson et al [103] has attempted to identify

the similarities, di�erences and properties of the varieties of multiresolution image models

that have been used in estimation, coding and segmentation.

The major motivation behind the use of multiresolution models is the ability of such

models to describe image properties that span a range of scales, which directly re
ects the

nature of most images. For example, typical images consist of regions of varying size with

homogeneous properties such as luminance, colour and texture, separated by more or less

sharp boundaries [109]. This can be succinctly modelled by use of multiple resolutions.

Small features and �ne detail are modelled at relatively high spatial resolutions, while large

features are modelled at low spatial resolutions. The image can thus be visualised as being

built up by successive approximation through scale, beginning with a coarse description at a

low resolution and progressively re�ning this until the image plane is reached. Such models

have the attraction that they result in estimation procedures which can be computationally

e�cient, requiring only about 30% more storage for a pyramid than the original image, and

giving e�ective processing window sizes from 2� 2 to the whole image.

2.3 Linear Multiresolution Image Models

The estimation, coding and curve extraction methods described in [25], [21] and [94] all

use varieties of a general class of linear multiresolution image models �rst described in [26].

Before giving a mathematical de�nition of the general model and describing an appropriate

variation for the segmentation task in hand, it is perhaps worth describing the example

used by Calway [21] for modelling curves. This will serve to reinforce the main concept of
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Image plane

level  l

level  l+1

level  l+2

Figure 2.1: A multiresolution image model for curves

the modelling of features over scale.

Figure 2.1 shows a typical realisation of a model for curves. Local image features are

represented at di�erent scales in the model, creating an inhomogeneous tessellation of the

image into square regions (blocks) of di�erent sizes. The larger features are represented

by larger blocks from lower spatial resolutions whereas detail, e.g. where there is high

curvature, is represented by smaller blocks. There is a constraint imposed on these feature

regions so that there is only a single local feature within each. The main point to note about

this image model is that a quadtree sub-division of the image is employed, which leads to

a simple structure and has computational advantages when deriving suitable estimation

schemes. It is also not hard to see that even if the feature prototype were di�erent, say

a region property such as grey scale, rather than edges or lines, then a similar type of
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structure could be used. Such a variation is in fact the basis of the estimation techniques

described in [26] [25].

2.3.1 Mathematical De�nition

The above image model may be de�ned by the following recursive operation

sij(l) =
X
mn

Aijmn(l)smn(l � 1) +
X
pq

Bijpq(l)wpq(l) (2:1)

where sij(l) is the `image' at level l of the model and is given by taking a linear combination

of the level above plus an innovations image wpq(l). In this case the limits of the summation

indices are 0 � m;n; p; q < 2M�l, which keeps the successive image levels the same size. The

ranges of m;n; p and q would di�er if the model represents levels of images of di�erent sizes

as in the quadtree or pyramid models in [26]. The model is then parameterised by linear

operators, which `construct' the image by controlling the features of the parent level and

the innovations used to form the child level. The curve model in �gure 2.1 is particularly

simple to generate as these linear operators act as selection functions taking an appropriate

quadrant of the previous level or simply the innovation level. The initial conditions are

sij(0) =
X
pq

Bijpq(0)wpq(0) (2:2)

and the resulting image sij(M) is simply given by level M of the model [25] [93].

2.4 A Generalised Image Model

Nothing explicit has yet been said about the form of the feature innovations. In the case

of the curve model, each block is a locally de�ned real function which has an associated

orientation and position vector, which models the single boundary feature in each block [20].

As mentioned above, however, the feature prototype may be a di�erent local image attribute

such as grey level. In this work, the objective is to generalise the model to include both
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Boundary tessellation Region tessellation

Figure 2.2: Model realisations for boundary and region features

boundary feature types, with the need to model corner features and junction points, and

region feature types. There are two aspects to this generalisation of the model [20]:

1. The de�nition of the feature innovation wpq(l) of equation (2.1) should include both

boundary and region feature types.

2. It should allow each spatial region to have many features de�ned at a number of

di�erent scales.

The �rst condition is obvious, but the need to suitably model linear features, corners

and branch points is more problematic. It is convenient to modify the structure shown in

�gure 2.1 so that, rather than representing the region boundary as a series of polygon sides,

the vertices of this polyline form the representation. This modi�cation has the advantage

that corners features now have an explicit representation and if these vertex nodes are

allowed to have degree greater than 2 then it is possible to represent junction points.

The second generalisation is made clearer by considering the example in �gure 2.2 which

shows the realisations of the multiresolution model for boundary and region feature pro-

totypes separately. The region model displays the characteristic block tessellation where

again under a single feature per block constraint, the region `interiors' are larger spatial
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regions and are represented at the lower spatial resolutions. It is important to note that the

resulting tessellations are di�erent. There are, however, similarities in the structure: where

there is local variation in the feature prototype, i.e. high curvature in the case of bound-

aries, or edges between di�erent regions, this results in smaller blocks, while slow variation

is represented by larger blocks. Indeed, this is the successive approximation nature of the

general class of multiresolution models under consideration.

For the above second condition to be met, each spatial region is allowed to have both

a local boundary and region attribute. So for every spatial block of the boundary model,

there is an associated number of region blocks and vice versa.

2.4.1 A Model for Segmentation

There are two main parts to the generalised model used in this work: a boundary process

which uses a vertex based representation to generate a set of connected curves in the image;

and a region process which models region interiors as an MRF [8] [39], where the adjacency

of the pixels is constrained by the boundaries within the boundary process.

1. Boundary Process

A set of vertex points, X(l) is de�ned to represent the image boundaries that have the

spatial co-ordinates ~�i(l); 1 � i � N(l) at scales M � l � 0. A set of connections L(l) is

de�ned between pairs of vertex points

L(l) = f�ij(l); 1 � i; j � N(l); =; i 6= jg (2:3)

where

�ij(l) = 1 if ~�i(l) is linked to ~�j(l) (2:4)

for i 6= j. This creates a graph of the boundaries at each scale G(l) = fX(l); L(l)g.

An initialising graph G(l0) is de�ned at some level l0 > 0. The evolution of the vertex
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points is modelled through scale by using the conditional probabilities

P (~�ik(l + 1) j ~�i(l); Li(l)); 0 � k � 3 (2:5)

subject to the initial conditions in the form of a distribution P (~�i(l0)) at the largest scale

and where Li(l) is the set of links associated with ~�i(l). Each vertex point therefore has

its position re�ned over successive scales and may be split into up to 4 new points within a

quadtree structure.

The children of ~�i(l) are themselves restricted to form a connected sub-set. If the vertex

`splitting' is expressed as a mapping

~�i(l)! Xi(l + 1) = f~�i0; : : : ; ~�ik; 0 � k � 3g (2:6)

then the connectedness is maintained by creating the links

�ik;ik+1(l + 1) = 1; 0 � k < cardfXig (2:7)

Also the ordering of the conditioning set Xi(l) is maintained in the child set, even with the

addition of new points ~�ik, by creating links from the new points to the existing ones. For

example, if �ij(l) = 1 then �in;j(l+1) = 1, where n = cardfXi(l+1)g. Figure 2.3 illustrates

the process over 4 levels.

The conditional probabilities P (~�ik(l+1) j ~�i(l); Li(l)) can be regarded as con�guration

probabilities in the sense that they govern the shape of the local boundary at the child level,

conditioned on the shape at the vertex point on the parent level.

Although the above does not allow for the creation of new `objects', this could be

incorporated into the process by having a scale dependent probability for the formation

of new points, in addition to those from the initialising set. These probabilities would, in

general, decrease at the smaller scales reducing the chance of new regions being created as

the image plane is reached.



CHAPTER 2. TOWARDS A MODEL FOR SEGMENTATION 25

level 3

level 2

level 1

level 0
0

01

00

02

012

0121

0120

0122

χ

χ

χ

χ

010χ

χ

χ

χ

χ

Figure 2.3: Example of evolving boundary

2. Region Process

The second stage of the model is the generation of the regions within the boundaries de�ned

by the graph de�ned at the image level G(M). Once more, the quadtree structure is used,

in which the spatial co-ordinates ~�i(l) represent square regions of the image. Each ~�i(l) is

associated with a unique region �i(l) of the image

�i(l) =
[

2M�l�i0 � p � 2M�l(�i0 + 1)
2M�l�i1 � q � 2M�l(�i1 + 1)

(p; q) (2:8)

These sets are clearly disjoint, �i(l) \ �j(l) = ;. A coarse-to-�ne re�nement strategy is

used to split each region block into 4 if the block contains either a vertex point ~�j(M) or
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an intersecting boundary link �rs(M). Expressed as conditional probabilities

P (~�ik(l + 1) j ~�i) = 1; if ~�j(M) 2 �i(l) or

�rs(M) \ �i(l) 6= ;

= 0 else (2.9)

where ~�ik are the four children of ~�i and 0 � k � 3, for some j; r; s. If there are no boundary

features in a given region block then it is classed as being interior and the quadtree is

truncated at that point.

This process results in a unique tessellation of the image into a set of square blocks

where any part of the image is modelled by the largest square block that will �t within

the boundary. Figure 2.4 show the tessellation process over several levels. At any level of

the model there are two classes of pixels: those that are interior region pixels and those

containing a boundary segment. This process can be seen to continue past the image plane

to a sub-pixel level, with the result at the image plane being the best level of approximation

possible in the model.

The signal process operates within the above selection process. Each node ~�i(l) has the

associated datum x~�i
(l), or simply xi(l). The values are calculated as a linear combination

of the neighbours of ~�i(l), denoted by the set Ni(l), plus a term drawn from a zero mean,

Gaussian white noise process

xi(l) =
X

j2Ni(l)
�ijxj(lj) + �iwi(l) (2:10)

The signal model is in fact a Gaussian MRF [111] [23] [85] [37] de�ned on the irregular

lattice structure de�ned by the region tessellation ~�i(l) and thus possesses the 2-dimensional

Markov property [8] [9] [39]

P (xi j xj; j 6= i) = P (xi j xj ; j 2 Ni(l)) (2:11)

which expresses the dependence of the value at the pixel ~�i on the neighbourhood Ni(l).
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2.5 A Segmentation Algorithm

The purpose of this section is to outline the segmentation process based on the multiresolu-

tion image model described above. The use of a multiresolution structure generally involves

at least a two-pass algorithm: the �rst pass is the building of the structure; and the second

performs the required processing. The multiresolution structure which serves as the basis

of the segmentation algorithm in this work is a low pass pyramid representation. Low pass

pyramids, of which the quadtree is an example [90], are fast and easy to generate if a small

size, Gaussian approximation, kernel is used [18] [70] [99]. The generation and properties

of pyramids are considered in more detail in Chapter 3 and in Appendix B.

The segmentation then consists of three processes that operate on the pyramid. The

overall structure is depicted in �gure 2.5. The region process selects nodes from the pyramid

and builds a modi�ed form of a region adjacency graph [64] [72]. At the same time the

boundary process uses orientation estimation on the pyramid to generate a boundary graph.

Each process then re�nes these initial estimates using iterative `Bayesian' estimation within

the neighbourhoods de�ned by the adjacency graphs. The interaction process arbitrates

between the two otherwise autonomous processes, allowing the exchange of information

through the interaction neighbourhoods de�ned by the model. The region and boundary

processes have a common structure which may be summarised as

1. Node selection: A set of nodes are selected from the appropriate pyramid representa-

tion using maximum likelihood (ML) scale selection to form an initial segmentation.

2. Adjacency graph: These nodes are linked together to form an adjacency graph.

3. Iterative estimation: Each site of the adjacency graph is updated conditioned on the

values of its neighbours, plus any interaction from the cooperating process.

The overall paradigm is essentially to produce a `least-cost' or minimum mean square
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Figure 2.5: Overall algorithm structure

error (MMSE) �t to the data, within the constraint of the image model.

1. Node Selection

The main justi�cation behind using a multiresolution model is that the representation of

image features is simpli�ed through the use of window scales that re
ect the sizes of image

features. The aim of the node selection is to tessellate the image into the smallest set

of disjoint regions for which the data are consistent with the model. In other words, in

each region, the largest block for which the data are compatible with the model is sought.

There is an immediate data reduction by this initial segmentation, which has computational

bene�ts for the subsequent iterative processing. Two initial segmentations are created, one

for each of the two branches of the overall processing shown in �gure 2.5.

The tessellation which results from this node selection step overcomes the problems of

context which are associated with single resolution methods. The context of each node of

the initial segmentation is taken across a number of di�erent scales, thus both local and
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global interaction is represented in this structure. Furthermore, the compression of the data

from, say, 256 � 256 = 65536 pixels to typically 500 or so nodes (Chapter 3) considerably

reduces the computational burden. Both of these advantages are the justi�cation of the use

of multigrid methods in MAP estimation (see review in Chapter 1).

2. Adjacency Graphs

Boundaries in the image form an adjacency graph in which each node has a neighbourhood

de�ned as those nodes to which it is connected by boundary segments. The region model

can also be seen as an adjacency graph, where each spatial region can be represented by a

node and all the surrounding spatial regions are its neighbours (�gure 2.6). In the boundary

graph, the value at the node is its position, which is free to vary, conditioned on the values

at the neighbours. In the region graph, the value at the node is some homogeneous region

property such as grey level, again conditioned by a �rst order neighbourhood.

There is no strict duality between the above two representations, in other words it is

not possible to replace say the `regions' of the boundary graph by nodes to get the region

adjacency graph. It is, however, possible to de�ne an interaction neighbourhood such that

each entity in either graph can be related to its `dual' entity in the other graph. The
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simple approach adopted in this work is for each boundary link to be associated with all

region blocks it intersects and each region block to be associated with all the links that pass

through it, and hence the boundary nodes at either ends of these links (�gure 2.7).

As already noted, each graph is able to provide the appropriate context for the features

being represented. By explicitly separating the region and boundary process structures, the

size of the context of one is not arti�cially tied to that of the other, which is a weakness

of combined MRF region and line process models. So, for example, `global' boundary

information is able to in
uence relatively localised region link decisions.

3. Iterative Estimation

The iterative processing updates the initial segmentation obtained by the multiresolution

inference processes using a combination of a MAP decision approach and ML estimation.

The decision processes using the structure of the adjacency graphs are binary and based,

more or less, on the following MAP decision rule

Accept H0 if P (H0 j data) > P (H1 j data) (2:12)

which from Bayes's rule gives

Accept H0 if p(data j H0)P (H0) > p(data j H1)P (H1) (2:13)
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where H0 and H1 are the alternative hypotheses being tested. Where there is no knowledge

of the prior probabilities, P (H0) and P (H1), this test can be simpli�ed to the ML by

assuming that P (Hi) = 0:5.

The MAP decision rule of equation (2.12) is the minimum `probability of error' decision

rule and is appropriate in the absence of an application speci�c cost [92] [33]. Thus equa-

tion (2.12) is the minimum Bayes's risk decision rule assuming a symmetrical cost function,

i.e. it weights errors equally [36]. The two main stages where such a test is used are in

the link decisions for the neighbourhoods of the adjacency graphs and during the block

splitting, both described in Chapter 3.

The general paradigm of the estimation procedures is that of MMSE estimation which

in the case of Gaussian data is equivalent to a ML estimation [71]. MMSE or `least-

cost' methods are the basis of the orientation estimation and the boundary re�nement

(Chapter 4), where the `best' �t to the data is sought within the constraint of the region

and boundary model that has been outlined in this chapter.

All parameter estimation is performed in situ. Thus the algorithm is unsupervised and

adaptive to the data. This is important if the processing is to be kept as general as possible.

Statistics are gathered locally within the multiresolution structure, thus allowing local image

variation.

Another aspect of keeping a segmentation general purpose is the form of the prior

knowledge used. As noted in the discussion in Chapter 1, ideally minimal assumptions

should be made. In this work the prior knowledge is incorporated into the image model

where the main assumptions are: that regions are compact and homogeneous, under some

property, and that boundaries are sharp and more or less connected.
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2.6 Summary

This chapter has proposed a framework for segmentation. It has been shown that by

extending the general class of linear multiresolution models to include multiple feature

prototypes and lifting the restriction on the number of scales for the representation of

a given image locality, it is possible to derive an image model for both boundaries and

regions. Also by using modi�ed adjacency graphs, lateral processing can be incorporated

and an arbitration process set up to achieve an unambiguous segmentation.

The next three chapters describe the region, boundary and interaction processes. The

results of experiments are presented and discussed at the end of Chapter 5.



Chapter 3

Region Estimation Process

3.1 Introduction

This chapter describes in detail the region estimation process within the image model and

segmentation framework outlined in the previous chapter. The region process has three

main components that operate on a low-pass pyramid representation of the image: �rst

there is a node selection process which gives an initial estimate of the region classes, next

neighbourhoods are de�ned for these nodes and a modi�ed form of a Region Adjacency

Graph (RAG) formed and �nally an iterative estimation method, employing a MAP decision

process, is used to group together the nodes to form homogeneous regions.

3.2 Lowpass Pyramid

The input to the region estimation process (and boundary process) is a lowpass pyramid of

the image to be segmented (�gure 2.5). As described in Chapters 1 and 2, pyramid image

representations have been used successfully by several image segmentation schemes, such

as [24] [19] [88] [87] . Pyramids a�ord fast and simple smoothing of an image providing a set

of images, decreasing in resolution, each with a progressively greater signal to noise ratio

(SNR). The general form of the processing is a combined lowpass �ltering, using a so called

generating kernel, and sub-sampling or decimation by a constant factor. It is common to

34
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sub-sample by a factor of 2, which is both simple and e�cient to implement. The successive

smaller levels can be visualised as being stacked one on top of the other with the original

image at the base, creating a square-based pyramid structure.

Given an image xij ; 0 � i; j < N = 2M , and a lowpass kernel Amn, the general form of

the processing is the following recursive operation:

xij(l) =
KX

m=�K

KX
n=�K

Amnx(2i�m)(2j�n)(l + 1) (3:1)

where there are M + 1 levels, 0 � l � M , and the base of the pyramid is the image

xij(M) = xij and the kernel is of size (2K + 1) � (2K + 1). Note that the scale index l

appears as the argument of the function x(l), whereas the spatial indices are given as the

subscripts xij .

The simplest form for the generating kernel is a two by two kernel with coe�cients

Amn = 0:25; 0 � m;n � 1 which forms a quadtree [90]. It can be easily veri�ed that this

rather simple block averaging causes aliasing of spatial frequencies above �=2 radians [86].

As it was also the purpose to use the same pyramid for the boundary process this would

have also greatly biased any orientation estimation. Small radius kernels that have more

nearly an ideal frequency response, such as the Gaussian approximation kernels of Burt

and Adelson [18] or [70] were considered, but found not to be circular symmetric, which

is again desirable for orientation estimation. Appendix B describes a new design strategy

for the design of small �lter kernels with speci�ed radial and angular frequency response.

This was used to generate the lowpass (and edge) kernels used in the present work. A

full account of the performance of these new kernels is given in [102], where it is shown

to be signi�cantly better than the commonly used approximation to a Gaussian response.

Table 3.1 lists the coe�cients of the 4� 4 lowpass kernel chosen for the present work. The

main reason for using this rather than the better 5 � 5 kernel (see Appendix B) is that a

quadtree decimation can be employed, which is generally the case for even sized kernels.
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Table 3.1: Optimised lowpass �lter kernel size (4� 4)
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Figure 3.1: Quad-tree structure

A similar type of argument favours the use of odd sized kernels for orientation detection,

where the estimate becomes centred on the pixel.

Although the quadtree kernel was not used for the �ltering, the quadtree structure is

used in the region processing, where non-overlapping groups of four nodes (children) at a

particular level, notionally have a single parent at the level above (�gure 3.1). The single

node at the lowest resolution is then the root of the tree.

3.3 Region Node Selection

It has already been noted how a lowpass pyramid trades o� spatial resolution for noise

reduction, so it then becomes possible to use the gain in signal to noise to make, at some

level, a reliable decision on whether a node is an interior or edge node. Under the model

of the image given in Chapter 2, there is a pyramid node at a lowest resolution which
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represents the underlying, square image region. The parent of this node is then an edge

node, having children in more than 1 region. At this point it is to be expected that the

inter-regional signal variance exceeds the `within' region variance. The problem is then to

determine a good estimate of the necessary statistics from which a reliable scale selection

decision can be made.

3.3.1 Local Parameter Estimation

A suitable estimator for the `within' region variance of a node can be derived from the

expected value of the squared error between children and parent values [25] (�gure 3.1).

Using integer division to calculate pixel indices:

v2(l) = E[(xij(l)� xi=2;j=2(l � 1))2]

= E[x2ij(l)]� 2E[xij(l)xi=2;j=2(l � 1)] +E[x2i=2;j=2(l � 1)]
(3:2)

given that E[x2(l)] = �2 + �2(l), which corresponds to a constant signal within the region

and additive white noise. By assuming a signal to noise gain of 4, which is the case if a

quadtree is used and simpli�es the analysis, then E[x2(l � 1)] = �2 + 1
4�

2(l) and

v2(l) = �2 + �2(l)� 2E[xij(l)xi=2;j=2(l � 1)] + �2 + 1
4�

2(l)

= �2(l)� 2:�2(l)
4 + 1

4�
2(l)

= 3
4�

2(l)

) �2(l) = 4
3v

2(l)

(3:3)

The middle covariance term reduces by noting that in construction of the pyramid, each

parent xi=2;j=2(l � 1) is itself a linear combination of the children xij(l).

Table 3.2 shows how the inter-level variances compare with the true signal E[x2(l)] and

noise variances �2(l) for the synthetic `shapes' image which has a SNR = 0dB (�gure 1.1(a)).

At the lower levels the inter-level variance corresponds well with the actual noise as the signal

variance is dominated by the noise. At higher levels of the pyramid, however, this statistic

is mainly in
uenced by the signal variance, as the noise variance at these levels is close to

zero.
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level l E[x2(l)] �2(l) v2(l)

8 459.8 399.0 450.2
7 93.0 35.9 33.3
6 61.4 9.1 10.7
5 49.6 4.9 9.1
4 36.9 4.6 11.4
3 18.4 4.3 19.8
2 3.5 3.6 2.6
1 0.7 3.2 1.7
0 0.0 4.0 0.0

Table 3.2: Inter-Level noise variance estimates on `shapes' SNR = 0dB

For the node selection process a local average value v2ij(l) for the squared error is calcu-

lated by taking the average squared error in a region around the node (i; j) being tested

v2ij(l) =
i+RX

m=i�R

j+RX
n=j�R

v2mn(l) (3:4)

This is can be done e�ciently by pyramid smoothing of the squared errors, giving local

block averages. The blocking artifacts introduced do not adversely a�ect the �nal node

selection. The extent of the locality, determined by R, of the expected value can be varied

by taking estimates from higher levels of the averaging pyramid. The process is illustrated

in �gure 3.2.

This process is a form of hierarchical normalisation [20], where the squared error to be

used in the node selection test is normalised by the local average of the same error. It is

aimed at emphasising variability which is signi�cant in the local context, and is consistent

with the model of features being local in extent. A more direct form of this normalisation

process is used in the orientation estimation (see Chapter 4).

3.3.2 Selection Procedure

The node selection procedure is performed bottom-up on the grey level pyramid using a

quadtree structure. Each group of 4 children is tested to see if they are interior to a region,

or an edge runs through them, by comparing the average squared error between them and
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their parent against the local `expectation' of this squared error.

It was found that the best selection was obtained by comparing the block average with

an appropriate fraction of the local variance estimated for the level below. This may be

due to the fact that at higher levels the variance is in
uenced largely by the signal variance.

The impact of this is that the lowest possible level at which a selection can be made is level

M � 1, one above the image plane. This restriction is not unreasonable, since with images

where any signi�cant noise is present it is unlikely that a reliable decision at the pixel level

can be made. For images where there is little or no noise present, this is not a problem

either, as the lost spatial resolution would be recovered at the region re�nement stage of

section 3.5.2.

The scheme can be summarised as:

1. For levels l < M , test the average child-parent squared error against the local average

from the level below (v2(l + 1)). If

1

4

X
0�m;n�1

4

3
(xi+m;j+n(l)� xi=2;j=2(l � 1))2 > �v22i;2j(l + 1); l < M (3:5)
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then mark the child nodes. The extent of the accepted variability is controlled by �.

2. Select the lowest marked nodes, i.e those at the highest resolution. Once a node

is marked for selection the quadtree is terminated at this point, saving any further

testing.

If the selected node xij(l) is denoted by the scale-space position vector ~� = (i; j; l)T

and the n selected nodes represented by the set R = f~�0; ~�1; : : : ; ~�n�1g, then each node ~�

represents the disjoint set of image pixels �~�

�~� =
[

0�m;n<2M�l

(2M�li+m; 2M�lj + n;M) (3:6)

where the blocks are non-overlapping such that

�~�i

\
�~�j = ;; i 6= j (3:7)

Figure 3.3 shows how the quadtree tessellation of the image relates to the node selection

pyramid.

3.4 Region Adjacency Graph

The selected nodes R are then linked together into a graph. Although most of the following

processing is done within this graph, the original quadtree structure is not abandoned: the

region re�nement is achieved by splitting the leaf nodes (selected nodes) into 4, maintaining

the 1:4 quadtree relationships (see section 3.5.2)

3.4.1 A Neighbourhood System

A �rst order neighbourhood N~�
is de�ned for each selected node: two nodes are neighbours

if their respective image blocks share a block edge. If the nodes in the neighbourhood system

are all drawn from the same level, then this is simply the 4-neighbour system commonly used

with regular pixel grids [41]. The block edge-sharing de�nition can be de�ned by considering
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the sets of pixels de�ning the 4 block sides (east, north, west, south). By making the east

and south sides of the block lie 1 pixel to the right and bottom of the block it is possible to

de�ne the adjacency of two blocks

�~�
east =

[
0�m�2M�l

(2M�li+m; 2M�l(j + 1);M)

�~�
north =

[
0�n�2M�l

(2M�li; 2M�lj + n;M)

�~�
west =

[
0�m�2M�l

(2M�li+m; 2M�lj;M)

�~�
south =

[
0�n�2M�l

(2M�l(i+ 1); 2M�lj + n;M) (3.8)

Given the sides the nearest neighbour rule is

~� is a neighbour of ~� if

(�~�
eastT�~�

west)
S
(�~�

westT�~�
east)

S
(�~�

northT�~�
south)

S
(�~�

southT�~�
north) 6= ;

(3:9)

Figure 2.6 (Chapter 2) shows a typical neighbourhood for a block in the region tessellation.

The degree of each node will be at least 4 for all blocks which do not lie at the edges of the

original image (the degree is at least 2 for these). Nodes from higher levels of the pyramid,

representing the larger blocks, will have a greater degree than the nodes from lower levels

of the pyramid.

If a set of binary valued links are created, according to the adjacency rule of equa-

tion (3.9), then each node ~� would have cardfN~�
g links (the degree of the node). The set

of links in this neighbourhood can be de�ned as all legitimate pairs

L~� =
[
~�2N~�

l (~�; ~�) (3:10)

The complete set of links is then the set L = L~�0 [L~�1 [ : : :[L~�n�1
. The set of region nodes

R and the set of links L then creates a modi�ed form of a RAG G = fR;Lg.

Hunter and Steiglitz [55] have described how to determine e�ciently G given an inho-

mogeneous quadtree structure with the leaves representing the selected nodes. They term
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this the collapsing algorithm and give a linear time complexity for �nding the neighbours

of a given node, and hence an overall linear time, proportional to the number of leaves,

for construction of the graph. This method was implemented to generate a RAG from the

selected nodes.

3.5 Iterated Decision Directed Estimation

This part of the processing is based on the Gaussian MRF signal model described in sec-

tion 2.4.1, in which regions are assumed to have independently selected means. The grey

level at each selected node x(~�) is iteratively averaged with its neighbours in the neighbour-

hood N~�
. The value at iteration t is given by

xt(~�) =
w(~�)xt�1(~�) +

P
~�2N~�

w(~�)lt (~�; ~�)xt�1(~�)

w(~�) +
P
~�2N~�

w(~�)lt (~�; ~�)
(3:11)

The state of the link l (~�; ~�) acts as a switching function and the w(~�) is a weight

function. The weighting is equal to the area of the image region represented by the node

corresponding to the inverse of the noise variance at that node,

w(~�) = cardf�~�g (3:12)

The binary link states are determined by a MAP decision rule (as outlined in section 2.5)

that a given link is `on' (P (1)), given the data at the two nodes it connects

l (~�; ~�) =

8><
>:

1 if P~�;~�(1)p(x̂(
~�)� x̂(~�) j 1) > P~�;~�(0)p(x̂(

~�)� x̂(~�) j 0)

0 otherwise

(3:13)

where p(x̂(~�) � x̂(~�) j 1) is the conditional probability density function of the di�erence

assuming that nodes ~� and ~� are connected (l (~�; ~�) = 1) i.e that the nodes belong to the

same region and therefore have the same mean.
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P~�;~�(1) may be regarded as a `prior' of the decision process. These probabilities are

calculated from estimates of edge information within the neighbourhood, thus introducing

dependence on neighbouring data (see next section).

The conditional probability density of equation (3.13) can be approximated, under the

assumption of the normal model for the data, by

p(x̂(~�)� x̂(~�) j 1) / exp

 
�(xt(~�)� xt(~�))2

2(v2(~�) + v2(~�))

!
(3:14)

p(x̂(~�)� x̂(~�) j 0) / exp

 
�((x0(~�)� x0(~�))� (xt(~�)� xt(~�)))2

2(v2(~�) + v2(~�))

!
(3:15)

It is assumed, therefore, that if the nodes ~� and ~� belong to the same region, then their

di�erence is noise, but if they belong to separate regions these have independently chosen

means, whose di�erence is approximated by (x(~�)� x(~�)).

3.5.1 Link Probabilities

The link probabilities of the posterior decision process of equation (3.13) are derived from

modelling the neighbourhood as an edge. Given an estimate of the orientation �, position r

and probability of the edge P (edge) in the neighbourhood of the link l (~�; ~�), the probability

that a given link is `o�' P~�;~�(0) is calculated as a function of these parameters

P~�;~�(0) = F (�; r; P (edge)) (3:16)

It has already been noted in Chapter 1 that the incorporation of edge information

into a segmentation, via a `line' process in a MRF setting, leads to problems of model

identi�cation. Also the size of the line neighbourhood is tied to the region model, which

from the discussion about uncertainty, does not allow edge information from a large enough

locality to in
uence the region process. The motivation behind the above approach is thus

clear: that the parameters required to determine P (0), namely the orientation, position

and certainty [�; r; P (edge)], are directly available from any boundary information, and if



CHAPTER 3. REGION ESTIMATION PROCESS 45

any independent, region-based estimate of orientation can be made, then it would allow the

information between the region and boundary processes to be combined.

The probability of the link state given the data in the neighbourhood may be written

as the probability of the link state given the parameters of an edge in that neighbourhood,

if it is assumed that the estimated edge is close to the real edge in a MMSE sense:

P (l (~�; ~�) j x(~�); ~� 2 N~�
) = P (l (~�; ~�) j f~�(�~�; r~�); �~�(�~�; r~�); ~� 2 N~�

) (3:17)

where l (~�; ~�) is the link state, f~�(�~�; r~�), is the model of the data in the neighbourhood,

given a MMSE estimate of the edge parameters and �~�(�~�; r~�) are the residuals: x(~�) �

f~�(�~�; r~�); ~� 2 N~�
. Manipulating the r.h.s of equation (3.17)

P (l (~�; ~�) j f~�(�~�; r~�); �~�(�~�; r~�); ~� 2 N~�
)

=
p(l (~�; ~�); �~�(�~�; r~�) j f~�(�~�; r~�))

p(�~�(�~�; r~�) j f~�(�~�; r~�))

=
P (l (~�; ~�) j f~�(�~�; r~�))� p(�~�(�~�; r~�) j f~�(�~�; r~�))

p(�~�(�~�; r~�) j f~�(�~�; r~�)
= P (l (~�; ~�) j f~�(�~�; r~�)) (3.18)

(where ~� 2 N~�
). The second step follows if the residuals are noise and so independent of

the link state, under the assumption that the edge is a MMSE estimate.

After a description of how the prior link probabilities P (0) can be calculated from a block

edge estimate [�; r; P (edge)], an orientation estimation method is described that operates

within the region block tessellation.

By making the simplifying assumption that the p.d.f. of the position is Gaussian, the

probability that an edge intersects the link can be derived. Given two connected region

nodes ~� and ~� and the link between them of length l and angle � i.e. l (~�; ~�) = [l; �], and

the estimate of the edge in the block [�; r; P (edge)], the probability that the link is `o�', is
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l cos (θ − φ)

Figure 3.4: P (0) given the block orientation estimate

given by

P~�;~�(0) = P~�(edge)
1p

2��r~�

Z l cos(���~�)

0
exp

0
@�(r � r~�)

2

2�2r~�

1
A dr (3:19)

where the p.d.f. of the edge within the block has the positional variance �2r~�
and is modelled

as a Gaussian. The derivation of the limits of the integral is illustrated for a typical example

in �gure 3.4.

Equation 3.19 can be simpli�ed by substitution

P~�;~�(0) = P~�(edge)
1p
2�

Z r~�
�r~�

�
l cos(���~�

)

�r~�
r~�
�r~�

exp

 
�u

2

2

!
du

= P~�(edge)

"
erfc

 
l cos(�� �~�)� r~�

�r~�

!
� erfc

 
�
r~�

�r~�

!#
(3.20)
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where erfc() is the complementary error function [75] de�ned by

erfc(x) = 1� erf(x) (3:21)

where

erf(x) =
1p
2�

Z x

0
exp

 
�y

2

2

!
dy (3:22)

The positional variance for the block orientation estimate �2r~�
can be calculated at the

same time as the estimate itself (see below). In general, however, this will remain constant

over scales as for larger blocks there is poorer spatial resolution and with smaller blocks

there is greater noise a�ecting the estimate.

As each region link connects two nodes, the link probability may be di�erent when

calculated from either node. This symmetry problem is solved by taking the maximum of

the two probabilities, which is a logical OR operation, thus allowing the edge to be seen

from either block.

In summary then, the region estimation link decision process is reliant on having a

good estimate of the orientation, position and certainty of any boundary in the block. This

overcomes the need of a separate `line' process commonly adopted by researchers employing

MRF methods (e.g. [39] [38]), and the problems this presents as far as specifying the prior

probabilities for conditional link con�gurations.

Block Based Region Orientation Estimation

The basis of the above region link decision process is the block based orientation estimate

[�; r; P (edge)]. The estimation method described in the following section is iterative and

operates only within the block neighbourhood N~�
already de�ned. First, an estimate of the

orientation in the block is obtained then, using a simple piecewise linear model of an edge in

the block, a weighted least squares method is used to determine the position and amplitude
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of the edge. Finally, the estimates are combined by averaging in the neighbourhoods to

reduce orientation bias, giving the estimates a full 8-neighbourhood.

Edge Orientation, Amplitude and Position Estimation

An initial orientation estimate for the block is calculated by

�~� = arg

0
B@X
~�2N~�

(x(~�)� x(~�))
2
l (~�; ~�)

1
CA+

�

2
(3:23)

where l (~�; ~�) is the unit vector in the direction of the link and the sum is weighted by the

squared di�erences in grey level. The �
2 term is necessary as the resultant vector of the

sum is normal to the required estimate. There are two sources of bias in this estimate:

the �rst arises from the assumption that the edge runs through the block centre (implicit

in the links being de�ned as joining block centres) and the second from not taking into

account the corner blocks which would result in a full 8-neighbourhood system. The former

bias is reduced by estimating a centroid for the block using centres of the neighbouring

blocks, again weighted by the squared errors, and then using this as the origin for the above

orientation estimate. The latter bias is reduced by the neighbourhood averaging step.

To obtain an estimate of the amplitude and position the edge is modelled as a piecewise

linear function of position. The grey level of the neighbours is modelled by

x̂~� = a~�f~�(r~�) + b~� (3:24)

where [a~�; b~�] are the amplitude and mean of the edge running through the neighbourhood

of ~�, at an o�set r~� (normal to the edge orientation) from the block centre, (�gure 3.5). The

ramp edge is a piecewise linear function

f~�(r~�) = f
h�
(i~� � i~�) cos �

?
~�
+ (j~� � j~�) sin �

?
~�
+ r~�

�
=
p
2l~�

i
(3:25)
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Figure 3.5: Region block edge model

where (i; j) are the region block centres and l is the region block size. (Note that the normal

to the estimated orientation is used denoted by the superscript ?), where f is the piecewise

linear function

f(x) =

8><
>:
�1 x < 1
x jxj � 1
1 x > 1

(3:26)

Solving for a; b can be treated as a weighted least squares minimisation problem

� =
X
~�2N~�

(x(~�)� x̂(~�))
2
l2~� (3:27)

where the weighting is the area of the neighbourhood block and re
ects the certainty of the

data. Assuming that an initial estimate of the orientation �?~� and position r~� are given,

then:

1. a~�; b~� are given by

@�

@a~�
= 0

) a~� =

P
~�
f~�x(

~�)l~�
2 � b~�

P
~�
f~�l~�

2P
~�
f~�

2l~�
2 (3.28)

(subscripts have been deliberately left-out for clarity). Note that the neighbourhood
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is augmented with the data at the block under consideration (i.e. ~�).

@�

@b~�
= 0

) b~� =

P
~�
l~�
2(x(~�)� a~�f~�)P

~�
l~�
2

(3.29)

Substituting for b~� in equation (3.28) yields

a~� =

P
~�
f~�x(

~�)l~�
2P

~�
l~�
2 �P~�

l~�
2x(~�)

P
~�
f~� l~�

2

P
~�
l~�
2P

~�
f~�

2l~�
2 � (

P
~�
f~� l~�

2)
2

(3:30)

2. Knowing a~� and b~� and an expression for r~� is given by the following

@�

@r~�
= 0

)
X
~�

@f~�

@r~�
x(~�)l~�

2 = a~�

X
~�

@f~�

@r~�
f~�l~�

2 + b~�

X
~�

@f~�

@r~�
l~�
2 (3.31)

Now from equations (3.25) and (3.26)

@f~�

@r~�
= 0; if

���(i~� � i~�) cos �
?
~�
+ (j~� � j~�) sin �

?
~�
+ r~�

��� > p
2l~�

= � 1p
2l~�

; else (3.32)

then by considering the sum over the neighbours that lie within part of the modelled

edge where the gradient is non-zero (N 0
~�
), equation (3.31) becomes

X
~�2N 0

~�

x(~�)l~� = a~�

X
~�2N 0

~�

l~�f~� + b~�

X
~�2N 0

~�

l~�

)
X
~�2N 0

~�

x(~�)l~� = a~�

X
~�2N 0

~�

h
(i~� � i~�) cos �

?
~�
+ (j~� � j~�) sin �

?
~�
+ r~�

i
=
p
2 + b~�

X
~�2N 0

~�

l~�

) r~� =
1

cardN 0
~�

p
2

a~�

X
~�

(x(~�)� b~�)l~�

+
X
~�

�
(i~� � i~�) cos �

?
~�
+ (j~� � j~�) sin �

?
~�

�
(3.33)
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procedure Edge_Estimation (Theta, r)

begin

i = 0;

a[0] = 0.0;

b[0] = 0.0;

r[0] = r;

repeat

i = i + 1;

calculate a[i] and b[i]; {step 1}

r[i] from a[i], b[i]; {step 2}

until abs(r[i] - r[i-1]) < 0.5

return (a[i], b[i], r[i])

end

Figure 3.6: Iterative edge parameter estimation

3. The variance of the amplitude is estimated by considering it as a linear combination of

the block variances of the neighbourhood

vara~� =
X
~�

�2~�;~�v
2
~�

) �~�;~� =

h
f~�
P
~� l

2
~� �

P
~� f~�

i
l2~�P

~� l
2
~�

P
~� f~�

2l~�
2 � (

P
~� f~�l~�

2)
2 (3.34)

4. The variance of the position is derived from squaring the �rst term of equation (3.33)

and replacing the edge model estimate minus the mean by the block variance estimates

varr~� �
2
P
~�
v2~�
l~�
2

cardfN 0
~�
g2a2~�

(3:35)

The estimation procedure is summarised by the pseudo-code given in �gure 3.6 where the

input parameters are the initial estimates [�~�; r~�]. Note that the process is repeated until

the position estimate has converged to the required accuracy (< 0:5 pixel). In practice,

this iterative estimation process converges rapidly, within 3 to 5 iterations, giving good

estimates of r~�. The edge amplitude and position estimation is performed once for all new
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region nodes (the initial tessellation nodes are all classed as being `new'), including the

nodes created by the block splitting process described in section 3.5.2.

Neighbourhood Averaging

The estimates of [�~�; a~�; r~� ] are combined with those of the neighbours of ~�. New [�~�; a~�] are

obtained by averaging such that

a0~�

 
cos 2�0~�
sin 2�0~�

!
=

X
~�2N~�[f~�g

a~�

 
cos 2�~�
sin 2�~�

!
(3:36)

The doubling of the angle is essential to overcome the sign ambiguity of the orientation [61],

so that � and � + � are regarded as the same estimate. The whole question of orientation

representation is discussed in greater detail in Chapter 4. The best combined estimate of

position can be computed using the amplitude values to a second weighted least squares

estimation

� =
X

~�2N~�[f~�g

�
r~� � r~� + (i~� � i~�) cos �

?
~�
+ (j~� � j~�) sin �

?
~�

�2
a2~� (3:37)

the minimum w.r.t. r~� is then

@�

@r~�
= 0

) r~� + i~� cos �
?
~�
+ j~� sin �

?
~�

=

P
~�2N~�[f~�g

a2~�

�
r~� + i~� cos �

?
~�
+ j~� sin �

?
~�

�
P
~�2N~�[f~�g

a2~�

(3.38)

So the best combined estimate is simply the centroid of the position vectors weighted by

the squares of the block amplitudes. This neighbourhood averaging is performed at every

iteration of the region estimation process.

An Edge Certainty Measure

The question remains of what is the probability of an edge P (edge), based on the block

data. Since a~� is an estimate of edge amplitude, it seems reasonable to consider this against
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the estimate of the noise in the block. The form of certainty measure used is the conditional

probability P (edge j amplitude), which by Bayes's theorem is

P (edge j a~�) =
p(a~� j edge)P (edge)

p(a~� j edge)P (edge) + p(a~� j edge)P (edge)
(3:39)

which leaves the speci�cation of the p.d.f. p(a~� j edge) and the prior probability of an edge

in any given block. Assuming that edges are equally likely to be positive or negative and

have average amplitude A, the density of a~� is a mixture of the form

p(a~� j edge) =
0:5p
2��~�

2
4exp

0
@�(a~� �A)2

2�2~�

1
A+ exp

0
@�(a~� +A)2

2�2~�

1
A
3
5

=
1p
2��~�

exp

0
@� a~�2

2�2~�
� A2

2

1
A cosh

 
A

�~�

!
(3.40)

and

p(a~� j edge) =
1p
2��~�

exp

0
@� a~�2

2�2~�

1
A (3:41)

Substituting from equation (3.40) and (3.41) into equation (3.39)

P (edge j a~�) =
P (edge) cosh( A�~�

)

P (edge) cosh( A�~�
) + exp(A

2

2 )
(3:42)

Figure 3.7 shows a normalised form of equation (3.42) with P (edge) = 0:5 and A = 3�~�,

which was used in the experiments presented at the end of this chapter. The edge certainty

is an important measure as it serves two purposes. As well as in
uencing the region link

decision processes through equation (3.19), it is also used to decide whether a region block

should be split: any block which has a high certainty of an edge within it becomes a

candidate for splitting as it is no longer seen adequately to represent one region, as described

below.

3.5.2 Region Re�nement

Running the estimation algorithm for several iterations without any attempt to re�ne the

initial block segmentation stabilises quickly, producing more or less `closed' regions. There
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Figure 3.7: Normalised edge certainty measure

is, however, no guarantee that this process will converge to a satisfactory result. In fact,

since some blocks around the boundaries will be a mixture of more than one region, they

are likely to favour being linked equally to both the object and the background regions.

These `holes' in the boundary may `leak' into the background leading to the highly unde-

sirable convergence to a uniform grey level. Some improvement of spatial resolution, while

maintaining class resolution, is therefore required.

The requirements of such a re�nement process can be stated as:

1. To perform local, recursive, top-down re�nement of the regions, with the aim of ob-

taining better position resolution.

2. It would be advantageous to keep the existing quadtree tessellation by splitting blocks

into 4 i.e. spawning children to the leaves of the initial tree, and relinking these into

the region adjacency graph G.

3. Such a process would (obviously) have to concentrate on the non-interior blocks, hence

de�ning a boundary region or region of uncertainty. This implies a test to say which
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blocks are non-interior (edge) and whether they should be split.

The region re�nement process used shares some aspects of the boundary estimation

described by Spann and Wilson [88], but has some notable di�erences. Having outlined

the nature and requirements of the processing required, what then is to be expected at the

higher spatial resolutions, below the lowest level of the initial block tessellation? The noise

will be greater and therefore the data unreliable to make link decisions, without the use of

the region data already estimated. In the Spann and Wilson algorithm this was achieved by

smoothing of the noisy data followed by a maximum likelihood classi�cation into the region

classes present at the level above. A similar mechanism is needed to `focus' the classes

present at the parent level.

A Criterion for Block Splitting

The criterion for block splitting takes the form of a hypothesis test based on the posterior

probability ratio

p(children j edge)P (edge) ?
>
p(children j edge)P (edge) (3:43)

The hypotheses are:

H0: The block ~� is interior so that its children f~�0; ~�1; ~�2; ~�3g are interior and therefore

p(~�k j edge) = exp

0
@X

k

�(x̂I(~�k)� x(~�k))
2

2v~�
2

1
A (3:44)

H1: The block has an edge running through it

p(~�k j edge) = exp

0
@X

k

�(x̂E(~�k)� x(~�k))
2

2v~�
2

1
A (3:45)

For the null hypothesis, the estimates for the children are set to be the same as the parent i.e

x̂I(~�k) = x(~�); 0 � k < 4. For the edge hypothesis the estimates for the children are chosen
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Figure 3.8: Spatial shrinking transformations

from the data values in the neighbourhood N~�
. The chosen set or con�guration depends on

the current estimate of [�~�; r~�].

`Focusing' Edge Regions

For a straight edge, the grey level values can be represented by some combination of the

grey level values of the neighbourhood of the parent. Figure 3.8 illustrates this for a regular

3� 3 neighbourhood where the parent node at the centre has been replaced by its children

taking the values from N~�
. For con�guration (a), where the edge passes through the block

centre, it can easily be veri�ed that taking the 4 corner neighbours of ~� provides a suitable

approximation of the actual values of the children, independent of the orientation of the

edge. Con�gurations (b) through to (e) are required for the 4 cases where the edge passes
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Figure 3.9: Spatial dilation origins

to one side of the block centre. These con�gurations represent a set of spatial dilations

with the origin either at the block centre or at the 4 corners. They are similar to the

fractal contraction transformations used in block based fractal coding [57] [6] [97]. In this

application, they neatly e�ect the focusing of the region edge information which is the aim

of the block splitting.

Selection of one of the con�gurations shown in �gure 3.8 is determined by the position

of the transformation origin in relation to the centroid of the block edge estimate [�~�; r~�].

The probability of selection is approximated by

W (i) = (1:0� joi0 � xcj)(1:0 � joi1 � ycj) (3:46)

where (xc; yc) is the centroid of the edge segment in the block and ~oi is the position of

the origin of con�guration i, as shown in �gure 3.9. The test of equation (3.43) is only

performed for blocks for which P (edge) > 0:5 which reduces the computational burden to

the set of boundary blocks only. Having decided to split a block into 4, the values of the

children x̂E(~�k) are taken from the appropriate con�guration and the child data variance set
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Figure 3.10: Block splitting in a non-regular neighbourhood

to be equal to v2~�. The newly spawned children are then linked into the current tessellation

using the same neighbourhood adjacency criteria as in the initial block tessellation (see

section 3.4.1).

The illustrations in �gure 3.8 are arti�cial, as in general the tessellation will not be

regular. To ensure that only reliable data is used for the child estimates, the neighbour

data x(~�) is only used if it is a sibling or an ancestor of x(~�). If x(~�) happens to be at a

lower level then the quadtree is ascended until the same level as x(~�) is reached. Figure 3.10

depicts a more typical situation where the neighbours f~�0; ~�1; ~�2; ~�4; ~�5g are at lower levels

so their ancestors are used (marked by small circles), to form the appropriate con�guration

for the H1 test.
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Vertical Propagation of Edge Estimation Information

The children that are spawned after each iteration are regarded as being new and the initial

orientation estimation is performed on them. The averaging of the estimates takes place as

before in the new neighbourhood. The orientation estimates of the now redundant parent

block, however, are not discarded. The new estimates of the children are combined with the

parent, thus propagating down the more reliable orientation information from the higher

levels of the quadtree. The combined estimates �0~�k
and r0~�k

are given by

�0~�k
= �c�~� + �p�~�

r0~�k
= �cr~�k

+ �pr~� (3.47)

where the coe�cients are derived from the respective variances of the amplitudes of the

block estimates (equation (3.34))

�c =
vara~�k

vara~�k
+ vara~�

�p =
vara~�

vara~�k
+ vara~�

(3.48)

The variance estimate itself is updated using the same coe�cients such that

vara0~�k
= �cvara~�k

+ �pvara~� (3:49)

which ensures that further splitting will continue to propagate the estimates towards the

image plane. The vertical propagation is adaptive to the noise, so that if the child estimates

are as good as or better than that of the parent then more weighting will be given to them,

so it is not always the case that the estimates from higher levels will dominate the process.

3.5.3 Convergence Criteria

There are two stopping conditions that were investigated:

1. Stop when there are no changes in link states between consecutive iterations.



CHAPTER 3. REGION ESTIMATION PROCESS 60

% Link changes

5 10 15 20

20

40

60

80

100

Figure 3.11: Percentage link changes per iteration for shapes 0dB image

2. Stop when the change in grey-level between iterations for every block has fallen below

some negligible amount e.g 1.

In practice condition (1) is rarely achieved, although the percentage change does tend to

0 (�gure 3.11). The second criterion is more realistic and in the experiments convergence

is achieved in typically 10-20 iterations. These characteristics compare favourably with

stochastic relaxation methods (e.g SA) [39] [95] [16] which often require hundreds of itera-

tions. The behaviour is more in line with the Iterated Conditional Modes (ICM) method

described by Besag [9] [10], which the process more closely resembles. In the experiments

presented below, however, the process was left to run until there was no discernible change

in the link states to demonstrate the long term behaviour.

Summary

The steps of the region estimation process are summarised in �gure 3.12, where the input

to the procedure is the lowpass pyramid of the image.
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procedure Region_Estimation (Pyramid)

begin

G = Node_Selection (Pyramid);

while not Converged (G) do

begin

for each node e in G do

begin

Theta[e] = Orientation_Estimate (e);

(r[e], a[e], b[e]) = Edge_Estimation (Theta[e], r[e])

end

Average_Edge_Estimates (G);

for each node e in G do

begin

P(1) for all links L of e from

[Theta[e], r[e], a[e], b[e], P(edge)];

Link decisions for L;

Update x(e)

end

G' = Region_Refinement (G);

G = G';

end

end

Figure 3.12: Region estimation algorithm
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Procedure Storage (pixels) Multiplications per pixel

Original Image N �N

Pyramid 4
3N

2 4� 4

Node Selection Inter-Level Var. 5
Pyramid Smoothing (16� 4

3)

Collapsing G Nodes 1
20N

2 � 10
Links 5

20N
2 � 3 5

Iterative Estimation Edge Estimation 425
(1 iteration) Averaging 10

Update 70
Splitting 12

Total 3
2N

2 564

Table 3.3: Computational requirements of region estimation

3.6 Computational Requirements

One of the features of the region segmentation scheme is its low storage and computational

requirements. The storage requirements, in terms of pixels or processing sites, and the

number of multiplications per pixel for each of the main procedures of the region process are

shown in table 3.3. The initial number of nodes in the region graph G is clearly dependent

on the image, so the statistics quoted in the table for the number of nodes and the average

connectivity are taken from experimental results. Also as the regions are re�ned, a certain

percentage of nodes are split into 4, increasing the number and the connectivity. For the

calculations in the table, it has been assumed that the number of nodes in G is 5% of the

number of pixels and that convergence is achieved after 20 iterations. Tables 3.4 and 3.5

show the initial and number of nodes and region links per level for the synthetic `shapes

0dB' image and the natural `girl' image (�gure 1.1(a) and (b)). The average connectivity

is given in the �nal column of each table.

From table 3.3 it can be seen that the storage requirement for the entire processing is

about 3
2N

2 and that approximately 564 multiplications per pixel are needed over 1 iteration.

As there are only 5% of the `pixels' from the original image in G then 564 multiplies per
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level leaf nodes No. links Connectivity

8 0 0 0
7 32 128 4
6 640 2573 4
5 320 1493 5
4 128 739 6
3 3 21 7

Total 1105 4954 5

Table 3.4: Initial nodes and connectivity per level for `shapes' 0dB image

level leaf nodes No. links Connectivity

8 0 0 0
7 5552 21882 4
6 1176 6372 5
5 271 1875 7
4 28 249 9

Total 7027 30378 4

Table 3.5: Initial nodes and connectivity per level for `girl' image

pixel is the total requirement over 20 iterations. The major contribution to the computation

is from the edge estimation, where the �gure quoted (425 multiplies) has not been ratio-

nalised to take into account the repeated terms that appear in equations (3.28) through to

(3.35). The results, however, compare favourably with the computation required for MAP

estimation using SA, where many hundreds of iterations over the entire set of N �N pixels

is often required [39]. The computation also compares well with that achieved by using

ICM in a multigrid context, such as in [16], where the computational �gures quoted are also

about 2 orders of magnitude better than that possible using SA.

3.7 Results and Discussion

The results presented in this section illustrate the operation of the region estimation pro-

cess. The synthetic `shapes' image of �gure 3.13 was speci�cally designed as a fore-

ground/background test image with objects that have corners of varying acuteness and

sides that are both curved and straight. The image is an 8-bit (256 grey levels), size
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Figure 3.13: `shapes' original

256 � 256 and the di�erence between the foreground and background is 20.

The region segmentation was applied to a noisy version of the `shapes' image, with an

inter-region signal to noise ratio of 0 dB. This is calculated as [88] [86] [87]

Inter-region SNR = 20 log10

�
�1 � �2

�n

�
dB (3:50)

where �1 and �2 are the foreground and background grey levels (�1 = 170; �2 = 150 for the

`shapes' image), and �n is the s.d. of the additive Gaussian white noise. Figure 1.1(a) (in

Chapter 1) shows the corrupted `shapes' image SNR = 0dB (�n = 20) used for the following

results.

Figure 3.14(a) shows the result of the node selection stage. The input image has been

overlayed with the boundaries of the image blocks represented by the selected nodes. The

�rst thing to notice is that there is data reduction from the original 65536 pixels to about

1105 nodes (see table 3.4). The tessellation is not regular; large blocks represent nodes from

lower spatial resolutions and smaller blocks, which generally cluster around the edges of the

objects, are from higher spatial resolutions.
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(a) Block tessellation (b) Adjacency graph

(c) Means (d) Iterations 1 to 4

Figure 3.14: Region estimation of segmentation on `shapes' 0dB
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(a) Iterations 5 to 20 (b) Result after 20 iterations

Figure 3.15: Region estimation on `shapes' 0dB cont.

Figure 3.14(b) shows the region adjacency graph created from the inhomogeneous tes-

sellation. The region links are drawn from the centres of the blocks. Note that this is only

what the initial graph looks like. As the estimation proceeds certain nodes will be split into

4, and the new nodes (children) will themselves be linked to the existing neighbours. This

will tend to occur at the edges of the objects as the edge blocks are successively re�ned. In

�gure 3.14(c) the current grey level data has been `painted' into the representative region

blocks, showing the initial region segmentation.

Figures 3.14(d) and 3.15(a) show only the bottom left hand quadrant of the image over

several iterations. The �gures show the evolution of the `o�' links drawn as white lines

along the respective block edges. The region block re�nement is apparent by the size of the

white lines, which eventually end up being 1 or 2 pixels in width. The initial randomness of

the link states rapidly vanishes as the edges of the objects are located and data is smoothed

in the internal regions. The result after 20 iterations is shown in �gure 3.15(b). All the

objects have been successfully segmented and the boundary estimate is reasonable. The poor
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performance at the corners of the star and crescent is perhaps not surprising because of the

simplicity of the boundary model used for the region orientation estimation (section 3.5.1).

Finally �gures 3.16(a)-(c) show the results on the natural image `table 1'. This image

is also 256 � 256, 8-bit and has been chosen because it has many regions which are essen-

tially `
at', and also boundary shapes which are polygonal, which conforms better to the

boundary model. The initial tessellation is shown in �gure 3.16(b) and once again exhibits

the characteristic clustering of small blocks around signi�cant region boundaries. The re-

sult, shown in �gure 3.16(c), is not as easy to interpret as that for the synthetic image.

Although the major image regions have been identi�ed, the local averaging has 
attened

out the regions. There is also poor performance on some of the more di�use edges, such

as the edges of the bowl in the background, which can be attributed to the inadequacies of

the edge model.
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(a) `table 1' original (b) Block Tessellation

(c) Result after 10 iteration

Figure 3.16: Region estimation on `table 1' image



Chapter 4

Boundary Estimation Process

4.1 Introduction

This chapter details the boundary estimation process. There are two main sections in this

chapter. First, the problem of robust estimation of orientation is addressed in the form

of a multiresolution constrained MMSE estimation [102]. This an adaptation of the scale-

space recursive �ltering based on a linear multiresolution model of the image developed by

Clippingdale [25]. Secondly a boundary segmentation process is described, which operates

independently of the region estimation process, and uses an orientation pyramid.

4.2 Orientation Estimation

It was noted in Chapter 1 that edge information is of fundamental importance in both

biological and computer vision systems and that this has been the motivation for its adoption

by workers in image processing and computer vision. Too often, however, the essential

parameter of the orientation of the edge, has been ignored. This is surprising when it

has been shown that nerve cells called `simple cells' exist in the human visual cortex which

respond to linear features in the retinal image which have orientations lying within a narrow

angular band [52] [32] [51]. In image segmentation, edge detection provides the necessary

`localisation' which is absent in purely region based approaches. And it is orientation which

69
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provides the shape information which is relatively independent of the illumination.

Edge detection and estimation methods have received much attention since the early

work of Roberts [81], leading to a wide variety of approaches. The major issues that

a�ect the choice of a particular method are noise sensitivity, which is tied to the spatial

localisation, and computational e�ciency. The logical way to achieve noise immunity is

by post processing of the orientation estimate by some form of `smoothing'. The methods

proposed to solve this problem range from local processing such as simple averaging [61],

Bayesian estimation [39] or relaxation labelling [112], to what may be regarded as global

processing such as the Hough Transform [34]. Much of the diversity of these methods stems

from the variety of orientation representations used and in part from the underlying image

models.

This section describes a robust orientation estimation method based on a multiresolu-

tion signal model [25] which is able to extract boundary orientations from data with 0dB

SNR. The method is an extension of the scale-space recursive �ltering developed by Clip-

pingdale [26]. The method e�ectively uses the spatial consistency of outputs of small kernel

gradient operators from di�erent scales to produce more reliable edge position and orien-

tation. The nearest counterpart to the work presented here is that of the original work by

Rosenfeld and Thurston [83], Marr [69] and Witkin [110], who also combined the outputs

of �lters at multiple scales.

4.2.1 Orientation Representation

As mentioned above, the diversity of orientation estimation and subsequent smoothing

methods is partly due to the varieties of orientation representation adopted. This section

outlines the reasons for the choice in the present work of what is known as a double angle

representation [61].

The representation of the orientation is particularly important if averaging is to be used,
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which is generally the case if noise is present. Consider the commonly used gradient vector

representation [41]. If the image locally consists of a single oriented feature, at angle �

xij = f(i cos � + j sin �) = f(u) (4:1)

then the gradient vector is simply

gij =

�
@f

@i
;
@f

@j

�T
= r(u)

 
cos �
sin �

!
(4:2)

where

r(u) =
@f

@u
(4:3)

The �rst problem encountered with this representation is the sign ambiguity of the derivative

r(u); changing r(u) to �r(u) does not a�ect the orientation but changes the sign of gij .

Secondly if f(u) is an even function then gij = 0, i.e. no orientation estimate exists even

if there is rapid variation in the neighbourhood of the image. These two problems are

compounded if an average is required. If an average is calculated, say within some circle of

radius R around the origin, then if the feature is an even function

Z R

�R

Z p
R2�i2

�
p
R2�i2

gij didj = 0 (4:4)

so that no meaningful average orientation can be found, even though there is a feature

within the circle.

The double angle representation, originally proposed by Knutsson [61], solves the above

problems. This representation can be related to the gradient representation by using a

tensor formulation [12]. The tensor function Gij is de�ned by

Gij = gijg
T
ij = r2ij

 
cos2 � cos � sin �

cos � sin � sin2 �

!
(4:5)

There is no sign ambiguity in Gij and the orientation is given by the principal eigenvector

of Gij

vij =

 
cos �ij
sin �ij

!
(4:6)
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2. Orientation 
     Estimation

Image Orientation Pyramid

1. Grey-level
     pyramid

3. Downward
    propagation

4. Lateral 
   procesing

Figure 4.1: Orientation estimation algorithm structure

A less cumbersome formulation is an equivalent double angle vector representation

�ij =

 
g20 � g21
2g0g1

!
= r2ij

 
cos 2�ij
sin 2�ij

!
(4:7)

Using this representation it can easily be veri�ed that a meaningful average can be obtained.

Finally it is perhaps worth mentioning the case for using a continuous orientation rep-

resentation, such as used by Granlund et al [42] [61], as opposed to a quantised or discrete

form, as advocated by Zucker [112]. The main argument against the latter is that it is

undesirable to introduce quantisation errors on top of those already present as a result of

noise in the estimate. There is also the fundamental drawback with a discrete representation

that simple averaging is not possible. There are of course applications, such as coding [93],

where a quantised form is convenient.

4.2.2 An Orientation Pyramid

There are three steps to the estimation algorithm: construction of a grey level pyramid,

orientation estimation, and smoothing of the initial estimates by scale-space recursion in the

pyramid. The process is illustrated in �gure 4.1. The scale-space recursion is a downward

propagation of the more reliable estimates from higher levels of the pyramid to lower levels

(greater spatial resolution), to reduce estimation errors.
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-0.074 -0.095 0.000

-0.095 0.000 0.095

0.000 0.095 0.074

0.000 0.095 0.074

-0.095 0.000 0.095

-0.074 -0.095 0.000

Table 4.1: Optimised 3� 3 edge kernels g0 and g1

The low-pass �lter kernels used in the construction of the grey level pyramid were

speci�cally designed to be circularly symmetric, so as not to introduce bias at this stage of

processing. The initial orientation estimation is obtained by the use of a pair of optimised

edge kernels, designed to minimise orientation bias and shown to perform better than other

comparable small size edge kernels (a full account of the design methodology and perfor-

mance is given in Appendix B). Table 4.1 shows the odd sized, 3 � 3 edge masks (g0 and

g1) used. The estimate ~�ij is obtained by combining the outputs of the spatial convolution

using the double angle representation of equation (4.7)

~�ij =

 
g20 (ij) � g21 (ij)
2g0 (ij)g1 (ij)

!
(4:8)

The magnitude of this vector j~�ij j represents the local edge energy and the argument arg(~�ij)

is twice the local orientation (with a rotation of �=4 because the edge masks are in fact

oriented at ��=4 and +�=4 ). The estimation is performed on each level of the grey level

pyramid creating an orientation pyramid representation of the image.

4.2.3 Vertical Propagation

As already noted, the orientation estimates at higher levels of the pyramid, where the noise

has been reduced by pyramid smoothing, will be more reliable than those at the lower levels.

The trade-o�, however, is that at the higher levels the spatial resolution is low, i.e there is

not the required localisation, which is an aim of edge detection. Under the assumption that

features exist over more than one level of the orientation pyramid, what may be termed

as the assumption of scale consistency [110] [100], it is to be hoped that by propagating

down the estimates from the more reliable data, estimation errors may be reduced at the
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lower levels and the necessary spatial resolution recovered. The e�ect of averaging between

levels is that consistent features are emphasised, while at the same time noise, which will

be uncorrelated between levels, will be averaged out.

A Linear Multiresolution Signal Model

The variation of orientation across the image is modelled as an evolution through scale via

a linear equation of the form (section 2.3.1)

�ij(l) =
KX

m=�K

KX
n=�K

Bmn�i=2+m;j=2+n(l � 1) + �ij(l) (4:9)

where Bmn is a scalar interpolation �lter and �ij(l) an innovation vector. This model

is a vector form of the scalar linear multiresolution signal models described in [26] [25].

Beginning with the root of the pyramid, vectors on each successive level are modelled as

a propagated term plus an innovation term. This e�ects a re�nement process through

scale-space and encapsulates the assumption of consistency of features over several levels.

The simplest form of this model is de�ned on a quadtree, with

�ij(l) = �i=2;j=2(l � 1) + �ij(l) (4:10)

In this case it can be shown that the MMSE estimator �̂ij(l), given the set of noisy data

~�ij(l) = �ij(l) + �ij(l) (4:11)

is just

�̂ij(l) = �ij(l)�̂i=2;j=2(l � 1) + (1� �ij(l))~�ij(l)

�̂(0) = ~�(0) (4.12)

where the feedback coe�cients �ij(l) are a function of the signal and noise variances [25].

Thus the best estimator of �(l) can be expressed as a �rst order, recursive �lter operating

in scale-space.
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Now comparing equation (4.9) and equation (4.12) suggest a more general form of a

sub-optimal estimator

�̂ij(l) = �ij(l)
KX

m=�K

KX
n=�K

Bmn�̂i=2+m;j=2+n(l � 1) + (1� �ij(l))~�ij(l) (4:13)

The inclusion of the interpolation �lter clearly makes the estimator more computationally

expensive than the quadtree estimator. However, if Bmn is kept small then the price is still

less than an equivalent image �lter. In fact the same 4�4 low-pass kernel used to construct

the grey level pyramid was used as the interpolation �lter in the experiments presented

below.

4.2.4 Parameter Estimation

The feedback coe�cients �(l) control the amount of information that is propagated from

the higher levels of the orientation pyramid and combined with the less reliable estimates at

the lower levels. For noisy orientation data, �(l) will decrease as l ! M . Given the signal

and the data

� =

 
�0
�1

!
; ~� =

 
~�0
~�1

!
(4:14)

the linear form of the estimator is given by

�̂ = A

 
~�0
~�1

!
=

 P
q a0q

~�qP
q a1q

~�q

!
; q = 0; 1 (4:15)

where the subscripts to scalar variables in this section p; q denote vector components rather

than position coordinates. The orthogonality principle [75] states that the errors should be

orthogonal to all the data

E[(�q � �̂q)~�p] = 0; p; q = 0; 1 (4:16)

which is a set of scalar equations for all combinations of p and q. In practice, however, it

can be assumed that the components in perpendicular directions are uncorrelated i.e. that
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�q and ~�p are independent if q 6= p, giving the equations

E[�q ~�q] = E[�̂q ~�q]; q = 0; 1; (4:17)

Assuming that the signal and noise are uncorrelated across and between levels of the

orientation pyramid, then from equations (4.11), (4.13) and (4.17), for level l

E[�q(l)~�q(l)] = E[�̂q(l)~�q(l)]

) E[�q(l)(�q(l) + �q(l))] = E[
�
�(l)�̂q(l � 1) + (1� �(l))~�q(l)

�
~�q(l)];

) E[�2q(l)] = �(l)E[�̂q(l � 1)~�q(l)] + (1� �(l))E[~�2q (l)]; q = 0; 1 (4:18)

since E[�q(l)�q(l)] = 0; q = 0; 1. Also the errors at the current level are orthogonal to the

estimate from the parent level, thus

E[�q(l)�̂q(l � 1)] = E[�̂q(l)�̂q(l � 1)]; q = 0; 1

) E[�q(l)�̂q(l � 1)] = �(l)E[�̂2q (l � 1)] + (1� �(l))E[~�q(l)�̂q(l � 1)] (4.19)

Considering only 1 component (q = 0), the simultaneous equations (4.18) and (4.19) may

be expressed in matrix form

� = C� (4:20)

where the feedback coe�cients are

� =

 
�(l)

1� �(l)

!
(4:21)

and the matrix is

C =

 
E[�̂(l � 1)~�(l)] E[~�2(l)]

E[�̂2(l � 1)] E[~�(l)�̂(l � 1)]

!
(4:22)

Using equation (4.11) to determine the � i.e.

E[�2(l)] = E[~�2(l)]�E[�2(l)] (4:23)
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E[�̂2(l � 1)] Estimate of variance of parent level

E[~�2(l)] Estimate of variance of child level

E[~�(l)�̂(l � 1)] Covariance of data on parent and child levels

E[�2(l)] Estimate of noise variance on child level

Table 4.2: Correlation statistics required to �nd feedback coe�cients

and

E[�(l)�̂(l � 1)] = E[(~�(l)� �(l))�̂(l � 1)]

= E[~�(l)�̂(l � 1)] (4.24)

thus

� =

 
E[~�2(l)]�E[�2(l)]

E[~�(l)�̂(l � 1)]

!
(4:25)

Inverting the matrix C in equation (4.20) then yields the feedback coe�cients �. The

correlation statistics required to determine these coe�cients are summarised in table 4.2.

As with the region estimation process (section 3.3.1) all parameter estimation takes

place within the pyramid structure. Furthermore `local' estimates for each of the correlation

statistics listed in table 4.2 are obtained by determining averages using pyramid smoothing

(�gure 3.2).

The question of estimating the noise variance arises at this point. One simple, but

e�ective, method is to threshold the magnitudes of the orientation vectors at some level

l < M and then to use the resulting edge/non-edge classi�cation at all levels below and

including l to estimate the noise across the (assumed) constant regions, free from in
uence

of the signal. The choice of this `highest' level, however, is more problematical. Because

the edge kernels are have a �nite size there is a lowest spatial resolution above which the

orientation estimates cannot be made because the image is too small. For an edge kernel

of size say 3 � 3 there can only be 4 correct estimates on the pyramid level size 4 � 4,

so this becomes the limiting level. For quite high levels of noise (SNR < 0dB) su�cient
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smoothing is achieved at the level of size 32 � 32, so this would seem like a suitable level

at which to start the recursive estimation. When the orientation estimation is to be used

for the segmentation process outlined in Chapter 3, then the highest level of region process

tessellation is the automatic choice for scale l.

Choosing a level above the `optimal' highest level does not adversely a�ect the vertical

propagation as the feedback coe�cients moderate the amount of energy passed down until

the estimated noise becomes signi�cant. The drawback with thresholding to determine an

estimate of noise, however, is that �ne structures, which are smoothed out at the higher

levels of the pyramid, will be measured as noise.

4.2.5 Lateral Smoothing

The scale-space recursion of equation (4.13) can be supplemented by iterated lateral process-

ing which produces an improvement in the estimate. The propagated orientation estimate

�̂(l) is anisotropically �ltered at each level by a 2-d Gaussian kernel H(�). The iterated

�ltering takes the form

�̂
t

ij(l) =
X
m

X
n

Hmn

�
�̂t�1ij (l)

�
�̂
t�1
i+m;j+n(l) (4:26)

The smoothing kernel Hmn(�) is oriented depending on the last estimated orientation

�̂tij(l) = 0:5 arg
�
�̂
t

ij(l)
�

(4:27)

and �̂
0
(l) is given by equation (4.13). The �lter kernels can be implemented by interpolation

from a �xed set of kernels as in [61]. The method adopted here, however, is more elaborate:

the �lter shape is determined by constrained optimisation.

The 2-d Gaussian �lter may be separated into 1-d functions along and perpendicular to

the (major) axis of the �lter as illustrated in �gure 4.2.

Hmn(�) = H(x)H(y) (4:28)



CHAPTER 4. BOUNDARY ESTIMATION PROCESS 79

H(x)H(y)

-4
-2

0
2

4
y -4

-2

0

2
4

x
0

0.25
0.5

0.75
1

-4
-2

0
2

4
y -4

-2

0

2
4

x
0

25
0.5
75
1

Figure 4.2: Anisotropic 2-d Gaussian �lter

where

x = m cos � � n sin �

y = m sin � + n cos � (4.29)

and

H(x) = �x exp(��xx2)

H(y) = �y exp(��yy2) (4.30)

The correlation function of the orientation data is approximately separable in the orien-

tation of the feature and Gaussian in shape. This is because it is primarily the result of the

pyramid which itself is an approximation to Gaussian �ltering. Thus the signal correlation
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can also be separated along and perpendicular to the feature orientation �

R�� = R��(x)R��(y) (4:31)

where

R��(x) = exp(��xx2)

R��(y) = exp(��yy2) (4.32)

And similarly the noise correlation

R��(x) = ��(x)

R��(y) = ��(y) (4.33)

The orientation energy will be highly correlated along the direction of the feature (~x), with

the spread in the perpendicular direction (~y) being greater at lower levels of the pyramid

because of the noise.

To determine the shape of the �lter, the problem is posed as a least squares minimisation.

Because both the �lter and the correlation are separable the problem reduces to the 1-d

minimisation. It can be shown that the constrained 1-d least squares solution for a Gaussian

�lter

h(x) = � exp(��x2) (4:34)

given that the correlation functions for the signal and noise are

R�(x) = exp(��x2)

Rn(x) = ��(x) (4.35)

has parameters

� =

s
2�(� + 2�)

(� + �)

1

(
p
2� + �

p
� + 2�)

(4:36)
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� = �+
2�2

p
2�

�(� + 2�)
3
2

(4:37)

The full derivation is detailed in Appendix A. It is possible to determine � numerically, for

example using the Bisection Method [50], and hence � can be found. The parameter of the

2-d Gaussian correlation function [�x; �y] can be found by least squares curve �tting [78], to

the correlation data gathered from the orientation estimate on the current level. The next

section describes how the correlation data is gathered.

4.2.6 Estimating Signal Correlation

The correlation data is gathered by sampling the orientation data at each point in a quadrant

of a circle [0 � r � R; ���=2 � � � �] de�ned around the estimate �ij. The data is sampled

in polar form at a discrete set of orientations 4� and radii 4r, see �gure 4.3. The data at

the sample points (r; �) is obtained by a bilinear interpolation from the 4 neighbours. The

correlation function is thus built up by

R��(r; �) =
X
ij

�Tij�r;�; 0 � r � R; � � �=2 � � � � (4:38)

The parameters [�x; �y] are then determined by least squares �tting a 2-d Gaussian function

to the gathered data.

Anisotropic Filtering

Having determined the parameters of the Gaussian �lter H(�), namely [�x; �x; �y; �y], the

�ltering is performed by iterated spatial convolution using a set of n oriented �lters

H(�k); �k =
k�

n� 1
; 0 � k < n (4:39)

The appropriate �lter is selected at each point using �̂t from equation (4.27). The number

of iterations of this �lter I, is determined by the maximum of the two standard deviations
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Figure 4.3: Gathering correlation data

of the �lter
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where K is the size of the spatial �lter. In the following experiments a set of oriented �lter

kernels size 5� 5 were used.

4.2.7 Computational Requirements

The computational requirements of the orientation estimation method described in this

section are summarised in table 4.3. The per-pixel computation is 4
3 � 107 � 144 multipli-

cations per pixel, which is equivalent to a �lter kernel of size 12 � 12. With the addition

of the lateral processing, summarised in table 4.4, the total is increased to approximately

549 � 23 � 23 multiplications per pixel, thus the equivalent �lter size is roughly quadru-

pled. The overhead lies in the correlation function estimation, which could be reduced by

sampling over a smaller area. This, however, was not explored and it is hard to judge what

the implications are to the �delity of the result. The reason why the �gures for the least

squares �tting and the numerical approximation are small is that they are only performed

once for each level of the pyramid so that there are only a few multiplications per pixel.
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Procedure Storage (pixels) Multiplications per pixel

Original Image N �N

Pyramid 4
3N

2 4� 4

Orientation Estimation 22

Parameter Estimation Correlation stats. 8
Feedback 4
Smoothing 21

Vertical Propagation 36

Total 4
3
N2 107

Table 4.3: Computational requirements of orientation estimation

Procedure Storage (pixels) Multiplications per pixel

Parameter Estimation 4
3N

2 Gathering correlation 200
Least squares �tting 4
Numerical solution 1

Iterative Convolution 100

Total 4
3N

2 305

Table 4.4: Computation required for lateral smoothing

4.2.8 Results

The estimation scheme was applied to a pyramid of the `shapes' 0dB image (�gure 1.1(a)).

Figure 4.4 shows the input pyramid and the output of the processing. To obtain a measure

of the SNR gain, the results were compared against an orientation pyramid of the noise-free

`shapes' image.

The input orientation pyramid (�gure 4.4(a)) shows that there is practically no edge

information on image plane level of the pyramid. Inspection of the lower spatial resolutions,

however, shows the e�ect of the pyramid smoothing and the initial orientation estimation

begins to pick up the edges at these levels. The result of propagation of these more reliable

estimates down the pyramid is apparent in the output pyramid ((�gure 4.4(b)). The gain

in SNR is quanti�ed in table 4.5.

Figure 4.5(a) shows a test image with 4 objects with irregular boundaries that have

been generated by a random-walk process. To this noise has been added to give 4 SNRs
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(a)`shapes' 0dB input orientation pyramid

(b)`shapes' 0dB output orientation pyramid

Figure 4.4: Orientation estimation on `shapes' 0dB
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(a) `widgets' original (b) `widgets' 12dB, 9.5dB, 6dB, 0dB

Figure 4.5: Irregular boundary synthetic image

of 12dB, 9.5dB, 6dB and 0dB in the same image. This image is important as it is able to

test out the local statistic gathering ability of the estimation method. Figure 4.6 shows the

input and output orientation pyramids. The input pyramid shows that the bottom right

region (at 0dB) can only be detected about 2 levels above the image plane, whereas the

top left region is visible on the image plane. The output demonstrates that the method has

performed the smoothing adaptively.

A SNR Measure

The signal to noise ratio measure is based on the correlation between the known orientation,

obtained from an orientation estimate of a noise free version of the original image, with that

of the restored estimate. The SNR is de�ned as

� =

P
ij j�̂ij(M)j cos

�
arg(�̂ij(M)) � arg(�ij(M))

�
P
ij j�̂ij(M)j (4:41)
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(a)`widgets' 12dB-0dB input orientation pyramid

(b)`widgets' 12dB-0dB output

Figure 4.6: Orientation estimation on `widgets' 12dB-0dB
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level Input SNR Output SNR

8 -4.4 23.4
7 13.1 31.1
6 27.5 33.9
5 38.4 40.4
4 50.9 50.9

Table 4.5: Input/Output SNRs per level for orientation pyramid of `shapes' 0dB

The logarithmic SNR is de�ned to be

SNR = 10 log10

�
�

1��

�
dB (4:42)

This measure is related to the angular error measure used in [62] and to the squared vector

error used by Clippingdale [25]. It shares the property with the latter that the angular

errors are weighted by the magnitude of the estimate j�̂ij(M)j. This re
ects the fact that

in regions of the image where the grey level is more or less constant, the angular errors are

less important than in the edge region, where the magnitude will be greater.

The angle estimation error can be de�ned as (the factor of a half is due to the double

angle of the estimate)

"� = 0:5 cos�1(�) (4:43)

To give an idea of scale, a 1 degree error in angle corresponds to an SNR of about 32dB.

Table 4.5 shows the results of processing on levels of an orientation pyramid of the

`shapes' 0dB image, where the column marked `Input SNR' lists the SNRs before processing.

The average angle estimation error "� is reduced from 33:4 degrees to 12:1. Table 4.6

summarises the input/output SNRs for various levels of noise added to the `shapes' image,

ranging from �6dB to 12dB. The data of table 4.6 is plotted in �gure 4.7 together with

results of orientation estimation without the lateral processing. The graph clearly shows

that there is approximately 4dB gain over the vertical processing only.
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Image SNR Input SNR Output SNR

-6dB -18.5 16.1
-3dB -11.4 20.5
0dB -4.4 23.4
3dB 2.6 25.8
6dB 9.7 27.8
12dB 23.7 31.4

Table 4.6: Input/Output SNRs for various amounts of noise on `shapes'
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Figure 4.7: E�ect of lateral processing (dashed line) on output SNR

4.3 Boundary Segmentation Process

The boundary estimation process is designed to operate independently of the region estima-

tion process and assumes the segmentation model described in Chapter 2. The boundary

process consists of 3 steps and, like the region process, is iterative. The overall paradigm is

of least cost estimation using an `optimal' representation in the form of a boundary graph,

which is a dual of the RAG of the region process. This duality of the two process struc-

tures re
ects the complementary nature of regions and their boundaries and provides the

essential framework for making the two processes co-operate. The interaction between the

processes to combine `good' information from both, to achieve a better segmentation than
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either process alone, is described in the Chapter 5.

The three main steps of the boundary process are: a node selection process that operates

top-down on an orientation pyramid of the image, followed by a local linking process whereby

neighbourhoods are created and an iterative relaxation process which allows the selected

nodes to be moved to locally `best' positions. The relaxation uses the orientation estimate

as an energy landscape from which the best positions for the selected nodes are found by

constrained search. The recovery of corners is achieved by this process.

4.3.1 Node Selection by Multiresolution Peak Detection

A set of boundary nodes is selected from the input orientation pyramid using a top-down,

peak detection process. These nodes correspond to the vertex points of the polygonal

boundaries of the image model.

1. An initial set of node candidates is selected from some pyramid level l < M . Simi-

lar arguments to those presented in section 4.2.4 regarding the selection of the start

level for the orientation enhancement process can be made to select an appropriate

resolution to begin the peak detection process. When the boundary process is run

concurrently with the region estimation process, it is natural to begin at the highest

level (lowest spatial resolution) automatically selected by the region block tessellation

(section 3.3.2), as this indicates the largest region size. In the experimental results

presented below the same level (32�32) as was used for the enhancement was adopted.

The initial set of candidates are selected if their magnitudes exceed a threshold based

on the mean local orientation magnitude. It is expected that at this resolution the

noise variance will have been negligible, so a low threshold can be used to give the

initial boundary set. As will become apparent, neither the start level nor this initial

selection threshold is critical, as there is scope within the node selection procedure for
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Figure 4.8: Peak detection search window

the addition of new nodes from levels below the start level.

2. A window is de�ned around each selected node, projected onto the next level of the

pyramid, which has twice the resolution. The child nodes that lie within this window

become the search area for the peak detection process, constrained by the orientation

estimate of the parent, see �gure 4.8. The simplest neighbourhood for the search is

the 4 children as for a quadtree. This, however, leads to blocking, so an overlapping

elliptical window was used whose major axis is oriented perpendicular to the orientation

estimate of the parent. If (i; j; l) is a node at level l then the window is the set

X 0(l + 1) =
[

m;n2E(a;b;�0)
(2i +m; 2j + n; l + 1) (4:44)

whereE(a; b; �0) represents an ellipse of half major axis a and half minor axis b, oriented

at �0 = 0:5arg(�ij(l)) +
�
2 .

Next a child is selected within this window that has the maximum inner product with

the parent (i; j; l). Select (p; q; l + 1) 2 X 0(l + 1) which gives the maximum inner
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product i.e.

max

2
4 [
(m;n)2X0(l+1)

j�mn(l + 1)jj�ij(l)j cos (0:5arg(�mn(l + 1))� arg(�ij(l)))

3
5 (4:45)

Finally this set is augmented with any nodes in the complement area to the tested

nodes in equation (4.45) (i.e. that are not in the window of any parent), but have

energy which is signi�cantly greater than the estimate of the noise variance at that

level.

3. Step 2 is repeated at the next level of the orientation pyramid using the child nodes

as the new parent set. The process thus proceeds recursively until the image plane is

reached. If a selected node �ij(l) is denoted by the scale-space position vector ~� =

(i; j; l)T , then the initial set of n selected nodes forms the set X = f~�0; ~�1; : : : ; ~�n�1g.

The node selection is robust because the peak detection search is constrained by the

information from higher levels. It again utilises the better class information in the form of

a boundary/non-boundary classi�cation at the higher levels of the pyramid and propagates

this down through the windowed node selection to regain spatial resolution. This process is

related to the centroid methods described in [108] and has similarities to edge focusing [7]

and other multiresolution edge detection methods [5].

4.3.2 Node Linking to form a Boundary Graph

The result of the above boundary node selection provides no connectivity information.

There have been many heuristic rules designed to achieve the linking of edge points to

form more or less continuous boundaries (see [5] for a good review). The main parameters

that can be used to link together edge points to form curves are: distance, orientation and

curvature.

The linking process is kept local, with each node ~� allowed to produce 2 links, denoted

by �(~�; ~ ), which are chosen from candidates in an elliptical neighbourhood. The size of
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Figure 4.9: Boundary node linking

the window is governed by the level at which the node originally selected. A natural choice

for the major axis of the window is 2l oriented along the estimate at the node, from which

the two best opposite links are chosen, see �gure 4.9. The `cost' of a link is calculated as

the average orientation energy under the link, projected in the direction of the link

C(�(~�; ~ )) =
1

cardf�0
~�;~ 
g

X
m;n2�0

~�;~ 

j�mn(M)j cos
�
0:5 arg(�mn(M))� arg(�(~�; ~ ))

�
(4:46)

where �0
~�;~ 

denotes the set of pixels that lie `under' the link. In practice the data is sampled

along the link and bilinear interpolation is used to determine the orientation at any given

point.

This is an important cost function which is used in subsequent boundary relaxation.

Note that by this linking method it is possible to have nodes with degree more than 2

as each node is initially allowed to have 2 links and after the linking each link is made

bi-directional. Thus each node ~� has a set of neighbours N~�, and a set of links in this

neighbourhood can be de�ned as all legitimate pairs

L~� =
[
~ 2N~�

� (~�; ~ ) (4:47)

The complete set of links is then the set L = L~�0[L~�1[ : : :[L~�n�1
. The resulting structure

B = fX;Lg is a Boundary Graph and, in some sense, forms a dual of the RAG of the region
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estimation process. Figure 4.10 illustrates an example of the node selection and shows the

resulting boundary graph.

4.3.3 Iterative Boundary Re�nement

The graph created by the node selection and linking is the starting point of the relaxation

process. The aim is to use the information in the neighbourhood of each node to move

it to a better position. A cost is attached to each node evaluated at its current position

based only on its immediate neighbours. Then by a constrained search around the current

position, a position that has a lower cost is found.

There are 2 steps that control the movement of the nodes in the relaxation process at

each node in the boundary graph. There are 2 further steps that control the elimination

and introduction of nodes, which is related to the goodness of �t of the representation of the

underlying curve to the local graph segment. These steps are performed at each node and

repeated until there is no signi�cant change between iterations. They may be summarised

as:

1. Constrained search that aims to improve a local, anisotropic cost component.

2. A constrained search based on a cost component which is isotropic and inversely pro-

portional to the distance between nodes.

3. A node elimination step based on a ML decision about the likelihood of the orientation

data given the node.

4. A node addition step also based on the degree of �t with the orientation data.

1. Constrained Search: Anisotropic Cost Component

Each node is allowed to move either perpendicular or parallel to the direction of the local

orientation which is estimated by taking the average orientation vector along the links from
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Figure 4.10: Boundary node selection and boundary graph
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Figure 4.11: Constrained local search

each node given by

�~� =
X
~ 2N~�

1

cardf�0
~�;~ 
g

X
m;n2�0

~�;~ 

�mn(M) (4:48)

where �0
~�;~ 

is the set of pixels that lie under the link �(~�; ~ ). A search is made �rst in the

perpendicular direction �~�+
�
2 and the cost given by equation 4.46 is evaluated at each new

position. The cost is anisotropic in the sense that it is dependent on the energy of the local

orientation.

If no better position is found then the parallel direction �~� is searched. Figure 4.11

shows the e�ect of the two types of local search on the node positions. The perpendicular

movement adjusts the node positions along curves while the parallel movement is aimed to

force nodes towards the vertices of corner features.

The idea of using position and orientation to derive a local cost function, which is then

minimised, has been used in a relaxation labelling framework by Parent and Zucker [76],

or through dynamic programming by Amini et al [2]. This process of boundary relaxation

forms part of the split-and-merge, region growing and edge detection approach reported

by Liow and Pavlidis [66] [77]. All these workers modify the local contour to maximise a

`merit' based on position, orientation, plus a third term based on the curvature, which is
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not explicitly present in the cost function of equation (4.46). The curvature term is aimed

at improving the smoothness of the boundary, which is achieved in this work by the node

elimination step.

2. Constrained Search: Isotropic Cost Component

To help the inference of corner features and improve the distribution of nodes along curved

boundary segments, there is a secondary movement of the nodes. The direction of this is

determined by the resultant force vector between a node and its neighbours. This vector is

given by

f~� =
X
~ 2N~�

max[�(~�; ~ )]

�(~�; ~ )

 
cos(arg(�(~�; ~ )) + �)

sin(arg(�(~�; ~ )) + �)

!
(4:49)

where arg(�(~�; ~ )) is the angle of the link. The contribution to the total cost from each

neighbour is inversely proportional to its distance from ~�. In other words, the shorter the

link, the greater the contribution to the resultant vector which results in a `repulsive force'

being created between nodes. The movement is then e�ected in the projection of this vector

on to the local orientation. There is no constraint on the new position being better in cost

terms which has the e�ect of disturbing nodes out of local minima. This movement is kept

small, however, and only allowed if no constrained movement, from step 1, has occurred.

Figure 4.12 illustrates 2 cases where the `repulsive force' takes e�ect. In case (a) node ~�

is moved in direction m , which will encourage ~ to move closer to the vertex of the corner

at the next iteration. In case (b) the movement of ~� along m will even out the distribution

of the nodes along the curve segment.

This process is not as intuitive as the constrained search of step 1, but it is essential,

however, for corner features to be correctly inferred. As has already been noted, there is no

orientation information around the corners and branch points even though they are locally

the best positions for the nodes to lie.
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Figure 4.12: `Repulsive force' movement

3. Node Elimination

The node elimination step aims to develop straight line features by removing nodes that

are adding no more information to the segmentation. This step has been incorporated

directly into the node processing, rather than being left as a separate post-process, as the

increasing link lengths which result invariably improve the position estimates of nodes. This

is particularly important for low signal to noise images and those containing straight line

features.

The node elimination further helps towards the realisation of the image model where

the region boundaries are represented by as few nodes as necessary. It is di�cult, however,

to determine how a particular boundary representation is optimal in this sense for a given

image under varying degrees of noise. For simple polygonal object/background data it is

easy to say what a perfect segmentation is, but with more natural scenes without prior

knowledge the determination of an optimal representation is more problematic.

A straight line hypothesis is used to determine whether a node should be eliminated.

The average orientation vectors along each boundary link of the node under consideration

are compared against the hypothesised straight line directly connecting the two neighbours.
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Figure 4.13: Node elimination

The average vectors are decomposed into components along and perpendicular to the hy-

pothesised straight line. The parallel component is a ML estimate of the signal and the

orthogonal component due to the noise. The test, therefore, consists of comparing the or-

thogonal component against some proportion of the estimated noise standard deviation. A

node is eliminated if the average, projected component is less than a proportion of the noise

s.d.

Figure 4.13 shows the two possible cases: (a) where the hypothesis may be valid, de-

pending on the noise in the data and (b) where the hypothesis is invalid as the node lies on

a curve.

The straight line test is thus tuned to the noise in the data. This corresponds well

to what is perceived by the HVS without prior knowledge that a particular feature is a

straight line. If the SNR is low then almost any boundary shape is possible: it is di�cult

to determine whether the boundary is really curved or straight. In this case a straight line

seems to be the better choice. At high SNRs a straight line hypothesis should be less readily

acceptable because more complicated boundaries are visible.



CHAPTER 4. BOUNDARY ESTIMATION PROCESS 99

4. Node Addition

The node addition step is the converse process to node elimination and is aimed at improving

the boundary representation along high curvature, or rapidly changing features. Nodes are

sited at mid-points of links where the boundary segment does not adequately describe

the underlying orientation data. A consistency measure is calculated that indicates the

variability of the orientation vectors under the link [61] [93]

c(~�; ~ ) =

����Pmn2�0
~�;~ 

�mn(M)

����P
mn2�0

~�;~ 

j�mn(M)j (4:50)

which is the magnitude of the average vector over the average magnitude and the range of

c is between 0 and 1 where 0 is inconsistent and 1 is consistent. Nodes are added if this

measure is below some threshold (c < 0:75 was used in the experiments presented below).

The node addition step is performed after the node elimination so that the newly created

nodes have time to move to a lower cost position before the next elimination step. The next

node elimination step will remove any additional nodes which have been wrongly added so

that an over generous addition threshold is compensated for by the elimination which is

noise adaptive.

Summary

The steps of the boundary re�nement process are summarised in �gure 4.14, where the

input to the procedure is an orientation pyramid.

4.3.4 Results

The results of the node selection step and boundary linking are illustrated in �gure 4.15 for

the orientation pyramid of the `shapes' 0dB image (�gure 4.4). The boundaries of all the

regions have been successfully extracted and joined, with just one or two spurious nodes

and links. The subsequent processing is illustrated in �gure 4.16 for the bottom left hand
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procedure Boundary_Refinement (Orient_Pyramid)

begin

X = Boundary_Node_Selection (Orient_Pyramid);

B = Boundary_Node_Linking (Orient_Pyramid, X);

while not Converged (B) do

begin

for each node c in B do

begin

Moved = false;

Moved = Constrained_Search (c);

if not Moved then Repulsive_Force (c);

Node_Elimination (c);

Node_Addition (c);

end

B' = Update_Positions (B);

B = B';

end

end

Figure 4.14: Boundary Re�nement Process
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(a) Selected boundary nodes (b) Initial boundary graph

Figure 4.15: Boundary estimation on `shapes' 0dB

quadrant of the original image. The direction of movement of the nodes at each iteration

is shown by vectors. Many of the nodes have moved perpendicular to the local boundary

in the early iterations. The e�ect of the node elimination procedure is also visible by the

reduction in the total number of nodes along a given boundary segment. The result, shown

in �gure 4.16(c), after 20 iterations show that the processing has estimated the boundaries

of the square and triangle quite well. The curves are perhaps a bit too coarse, but this is

clearly a result of the polyline boundary model. The performance on the corners of the star

and crescent is encouraging considering the level of noise present in the original.

The boundary segmentation was also performed on the `table 1' image (�gure 3.16).

Figure 4.17(a) shows the image level of the orientation pyramid. The processing after 1

and 10 iterations is shown to demonstrate the e�ectiveness of the node elimination reducing

many of the straight edges in the image to single curve segments, for example, the vertical

edges of the mug on the left of the image.
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(a) Iterations 1 to 4 (b) Iterations 5 to 20

(c) Result after 20 iterations

Figure 4.16: Boundary estimation on `shapes' 0dB cont.



CHAPTER 4. BOUNDARY ESTIMATION PROCESS 103

(a) Orientation estimate

(b) Boundary after 1 iteration (c) Boundary after 10 iterations

Figure 4.17: Boundary estimation on `table 1' image



Chapter 5

Process Interaction and Results

5.1 Introduction

This chapter describes the interaction process that combines relevant information from the

region and boundary processes within the framework of the model developed in Chap-

ter 2. The interaction process allows the 
ow of information between the two otherwise

autonomous processes and is necessary to overcome the inherent limitations of using either

process alone.

The second part of this chapter is devoted to the presentation and discussion of results

obtained from the cooperative segmentation method. Results are presented for both syn-

thetic and natural images at various signal to noise ratios. There are comparative results

using an implementation of the the Spann and Wilson algorithm [88] [86], and an analysis

of the new method is presented using measurements of pixel classi�cation and boundary

error as a function of the input signal to noise ratio.

5.2 Process Interaction

From the overall structure of the segmentation method outlined in Chapter 2 (�gure 2.5),

there are clearly 2 data paths in the interaction process: a 
ow of information from the

boundary to the region process and the reverse 
ow, from the region to the boundary

104
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Figure 5.1: Interaction neighbourhood

process. The common denominator between the two processes is the estimate of the ori-

entation and position, so this seems like the logical vehicle for the interaction. Since the

two processes can run independently, it is important that the interaction interleaves them

without disruption of either. There is thus a synchronisation problem. Also there is need to

exchange only reliable information as otherwise there is the danger of a positive-feedback

situation where unreliable information continues to be recycled between the two processes.

The interaction takes place in a neighbourhood which is de�ned in terms of the inter-

section of the boundary links and the region blocks. Figure 5.1 shows a typical interaction

neighbourhood. In this example boundary link (~�0; ~�1) is de�ned to interact with all the

blocks that it passes through, namely f~�0; ~�1; ~�2g. Similarly, the region node ~�2 is de�ned

to interact with all the boundary links that pass through it, namely f(~�0; ~�1); (~�1; ~�2)g and

hence the boundary nodes f~�0; ~�1; ~�2g. In the following sections the interaction neighbour-

hoods are denoted by I.



CHAPTER 5. PROCESS INTERACTION AND RESULTS 106

5.2.1 Boundary-to-Region Interaction

In the boundary to region interaction, the region edge estimates are combined with the

local boundary orientation and position. The best linear combination is given by the sum

�0~� = �r�~� + �b�I~�

r0~� = �rr~� + �brI~� (5.1)

where �r and �b are the combination coe�cients and I~� is the interaction neighbourhood

of ~� so that �I~� represents the orientation of the local boundary.

Combining Orientation Estimates

The combination coe�cients can be derived by considering the best combined estimate of

two data given their respective variances. Given the data xr and xb such that

xr = �rs+ nr

xb = �bs+ nb (5.2)

the best estimate

ŝ = �rxr + �bxb (5:3)

of the normalised variable s is given by the orthogonality principle. From

E[sxr] = �rE[x
2
r ] + �bE[xrxb]

E[s2] = 1) �r = �2r�r + �2r�r + �r�b�b (5.4)

and from

E[sxb] = �rE[xrxb] + �bE[x
2
b ]

) �b = �r�b�r + �2b�b + �2b�b

) �b =
�b � �r�b�r

�2b + �2b
(5.5)
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where

�2r = varnr

�2b = varnb (5.6)

Substituting for �b from equation (5.5) into equation (5.4) yields

�r =
�a�

2
b

�2r�
2
b + �2b�

2
r + �2r�

2
b

�b =
�b�

2
r

�2r�
2
b + �2b�

2
r + �2r�

2
b

(5.7)

However the estimate ŝ is biased since

E[ŝ] = E[�rxr + �bxb]

= (�r�r + �b�b)E[s] (5.8)

By making

�r�r + �b�b = 1 (5:9)

an unbiased estimate is given by the coe�cients

�0r =
�r�r

�r�r + �b�b

�0b = 1� �0r (5.10)

The variance of the estimate is given by

varŝ = E[(s� ŝ)2]

= E[s2]� 2E[sŝ] +E[ŝ2]

= 1� 2E[s(�rxr + �bxb)] +E[(�rxr + �bxb)
2] (5.11)

Using equations (5.2), (5.9) and (5.6) this reduces to

varŝ = �2r�
2
r�

2
r + �2b�

2
b�

2
b (5:12)
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The amplitude coe�cients �r and �b are obtained from estimates of the variances of the

data

varxr = �2r + �2r

) �2r = varxr � �2r (5.13)

and similarly

�2b = varxb � �2b (5:14)

Estimates are combined after the neighbourhood averaging of the region based edge

estimates of section 3.5.1. The boundary information thus in
uences the calculation of the

prior region link probabilities (equation (3.20)) and therefore the link decision process of

equation (3.13).

Figures 5.2(a) to (d) show the e�ect of combining the two estimates of orientation.

Each result shows the region based orientation estimates which have been synthesised in

each region block after combining with the local boundary over several iterations. It is

clear from these �gures that the boundary process greatly improves the estimates by both

localising the edges better and reducing the noise in the region interiors.

5.2.2 Region-to-Boundary Interaction

The reverse data 
ow is done through the addition of an extra term to the boundary cost

function of equation (4.46) which introduces region information into the iterative re�nement.

The modi�ed cost function takes the following form

C 0(�(~�; ~ )) =
1

cardf�0
~�;~ 
g

2
64�00b X

m;n2�0
~�;~ 

j�Bmn(M)j cos
�
0:5 arg(�Bmn(M))� arg(�(~�; ~ ))

�

+ �00r
X

m;n2�0
~�;~ 

j�Rmn(M)j cos
�
0:5 arg(�Rmn(M)) � arg(�(~�; ~ ))

�375 (5.15)
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(a) Iteration 1 (b) Iteration 5

(a) Iteration 10 (b) Iteration 20

Figure 5.2: Combined region and boundary orientation estimates for `shapes' 0dB image,
iterations 1, 5, 10, 20
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where the orientation estimates have been superscripted by B and R to indicate their

source i.e. either boundary or region based. This modi�ed cost function is thus a linear

combination of the two orientation energies, where the relative weighting factors �00b and �00r

are obtained in the same manner as above. Thus the in
uence that either estimate has on

the positions of the nodes is controlled by the respective estimates of the noise variances.

5.2.3 Corner Blocks

The region edge estimates cannot be relied upon in the vicinity of corner features because

of the simplicity of the edge model, therefore it is desirable to deal with such blocks using

information from the boundary process, which is better able to infer corner features. Region

blocks which contain corner features must also be dealt with di�erently during the block

splitting (section 3.5.2), which again is based on the assumption of a straight edge through

the block.

It is relatively easy to identify whether a particular region block should be considered

as a corner block by looking at the boundary nodes that lie in the block. If these nodes

lie at point of high curvature then they are treated as vertex nodes and the region block

is marked as being a corner block. The `high curvature' test used in the experiments is

based simply on the acuteness of the angle made by the boundary links at the node with

a threshold angle of 2�=3. Having thus identi�ed corner blocks, the region block splitting

is modi�ed so that the origin of the shrinking process, that provides the estimates of the

children, is set to be the position of the corner boundary node. Figure 5.3 illustrates how

this modi�cation provides the estimates from the children still using the edge `focusing'

technique described in section 3.5.2.
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Figure 5.3: Spatial shrinking for corner blocks

5.2.4 Node Insertion

Where there is evidence of a boundary from the region process and no boundary present

in the interaction neighbourhood, as de�ned above, boundary nodes are inserted into the

boundary graph. The criterion for creating new boundary nodes is that a region block has

been split and there are no boundary nodes in the block. Since the splitting is dependent

on a high probability of an edge, P (edge), this provides the evidence for the presence of an

edge not found by the boundary process. The created node is then positioned at the mid

point of the edge in the region block. It is then linked to nearby boundary nodes, which

have degree 1, or other nodes that have also been created, using the local linking method

of section 4.3.2. Figure 5.4 shows this insertion process in operation.

The node insertion step has the potential to �ll in gaps in the initial boundary process,

which is important in low signal to noise ratios where the initial estimate is more uncertain.

The dynamic nature of the resulting boundary process also allows the noise thresholds for

the boundary node selection (section 4.3.1) to err on the side of caution.
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Figure 5.4: Boundary node insertion using region information

5.3 Results

This section presents the results of the combined segmentation algorithm on a variety of

synthetic and natural images. The accuracy of the method is assessed by measuring the

pixel classi�cation and boundary errors for a variety of input SNR images. This is compared

with results obtained by using the method described in [88].

5.3.1 Synthetic Images

The �rst result is that for the `shapes' 0dB image. The region and boundary segmentation

is shown separately in �gure 5.5 and can be compared with the separate processing results

in Chapter 3 and Chapter 4. In �gure 5.5(b) the boundary result has been overlayed on to

the original and shows a remarkable performance on all the shapes.

To assess the e�ect of varying the degree of noise, di�erents amounts of noise were added
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(a) Region segmentation (b) Boundary segmentation

Figure 5.5: Combined segmentation on `shapes' 0dB

to the `shapes' image. These input images are shown in �gure 5.6. The -6dB level of noise

makes it hard to discern the boundaries of the star and crescent, even knowing what to

look for, whereas, not surprisingly, the more `compact' circle and square are less a�ected.

Figure 5.7 shows the results on these images.

The results on the -6dB input image (�gure 5.7(a)) has only just managed to capture the

rough outlines of the triangle, star and crescent. There are also many spurious boundary

segments in the background. Nevertheless, the circle and square have been reasonably

segmented, and a few of the more acute corner features also detected. At -3dB (�gure 5.7(b))

there is more success on all the shapes. The results on the two higher SNR images (3dB

and 6dB) are almost perfect.

Figure 5.8(b) shows the results on the `blobs' image at 0dB. This image has regions

which are of varying sizes and some have been deliberately located close together to test

the separation abilities of the segmentation. The result shows that the segmentation method

can cope well with the varying size, but not so well with the regions being close together.
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(a) -6 dB (b) -3 dB

(c) 3 dB (d) 6 dB

Figure 5.6: `shapes' at a variety of SNRs
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(a) -6 dB result (b) -3 dB result

(c) 3 dB result (d) 6 dB result

Figure 5.7: Combined segmentation on `shapes' at a variety of SNRs
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The boundary has been linked between some circles because it has been fooled by the local

orientation information.

To test out the method on more random boundaries, it was applied to the `widgets'

image (�gure 4.5). The results of the region and boundary segmentations are shown in

�gures 5.8(c) and (d). Although the region segmentation has estimated the bottom right

shape to be separate from the background, the boundary process linking, and any node

insertion step, has failed to close the boundary.

5.3.2 Comparative Results

The combined segmentation algorithm was assessed by using two measures of performance [17]:

1. Pixel classi�cation error which is derived by counting all the misclassi�ed pixels and

is expressed as a percentage of the total number of image pixels (256� 256 = 65536).

2. Root mean square (RMS) boundary error which is obtained by averaging the squared

boundary error, i.e. the square of the distance (in pixels) between the estimated

boundary and the true boundary, and taking the square root of this value. This error

emphasises large boundary di�erences, and therefore lies between the mean and the

maximum error.

For simple bipartite images, where the boundary varies along one or other axes, the

calculation of the boundary error is straightforward. With images containing complex region

shapes, such as the `shapes' test image used in this work, a more complicated approach is

needed. The correct boundary error is obtained by measuring the di�erence between the

estimated and true boundary orthogonal to the true boundary. An orientation estimation

from the noise free test image was used to guide the boundary measure. Figure 5.9(a)

shows the boundary error being measured on the `shapes' -6dB result by the Spann and

Wilson method. The estimated boundary is shown in white and the nearest true boundary
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(a) `blobs' original (b) `blobs' 0 dB result

(c) `widgets' region result (d) `widgets' boundary result

Figure 5.8: Combined segmentation on `blobs' 0dB and `widgets' 12dB-0dB
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(a) `shapes' -6 dB (b) `shapes' 0 dB

Figure 5.9: Comparative results using Spann and Wilson method

is marked in black.

The two measures of performance were run on a set of results on the `shapes' test image

at inter-regional SNRs of -6dB to 12dB, at 3dB intervals. An implementation of the Spann

and Wilson segmentation method [88] [86] was used for comparison. Figure 5.9(b) shows

the comparative result for the `shapes' 0dB image. Graphs of the pixel classi�cation and

boundary errors are shown in �gures 5.10 and 5.11, where the dashed line is the results

of the Spann-Wilson method. Figure 5.10 shows the new method to be comparable, in

terms of pixel classi�cation error, with the Spann and Wilson algorithm. In terms of RMS

boundary error, however, the results shown in �gure 5.11 con�rm the qualitative �ndings

that the new method is superior at locating boundaries. Both the measures show the new

method to rapidly degrade in performance at SNRs below 0dB.
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Figure 5.10: Percentage pixel classi�cation error on `shapes'

5.3.3 Natural Images

The �gures in this section (�gure 5.12 to �gure 5.14) show the results of running the

combined segmentation on 3 natural images.

Figure 5.12 shows the combined segmentation result for the `table 1' image (�gure 3.16).

These can be compared with the region and boundary only processing of Chapter 3 and

Chapter 4.

The `table 2' image (�gure 5.13(a)) is similar to the `table 1' image and was chosen as it

also has several 
at regions and shapes with polygonal sides. Satisfactory results for these

images are obtained. In �gure 5.13(c) all the major curves are present. The places where

there are missing curve segments, such as where the large bowl on the left meets the juice

carton, corresponds to the weak orientation information in this area (�gure 5.13(b)). The
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RMS Boundary Errors (pixels)
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Figure 5.11: RMS boundary error on `shapes'

edges of the shadows on the table also cause some problems.

The `girl' image (�gure 1.1(b)) contains many more problems than the table images.

The results on this image are shown in �gure 5.14. The majority of the signi�cant curves

have been detected. It is more di�cult to interpret the result of the region segmentation

other than to say that the main image regions are represented by a homogeneous colour.

There are clearly problems in the textured regions, such as the feathers that hang o� the

hat and the hair. The curves of the mirror, hat and the vertical straight edges in the

background have been accurately found. However, less success has been achieved with the

facial features partly because of the high curvature around the eyes and the shallowness of

the edge across the nose.

In summary, the results of the cooperative segmentation algorithm compare favourably
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(a) `table 1' region result (b) `table 1' boundary result

Figure 5.12: Combined segmentation on `table 1'

with those reported by Spann [86], on both synthetic and natural images. The quantitative

analysis shows the method to be better, in terms of RMS boundary error, over a range of

SNRs, at locating object boundaries. This con�rms the qualitative �ndings that the method

is superior at capturing complex region shapes even at low signal-to-noise ratios.
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(a) `table 2' original (b) `table 2' orientation estimate

(c) `table 2' region result (d) `table 2' boundary result

Figure 5.13: Combined segmentation on `table 2'
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(a) `girl' orientation estimate

(b) `girl' region result (c) `girl' boundary result

Figure 5.14: Combined segmentation on `girl'



Chapter 6

Conclusions and Further Work

6.1 Thesis Summary

The work described in this thesis has been concerned with image segmentation within a

multiresolution framework. A new algorithm for image segmentation, having a number of

interesting features, has been described and shown to be e�ective in locating regions and

their boundaries with high accuracy from noisy data.

In Chapter 1 the fundamental problem of image segmentation was outlined and the

importance of the HVS as a model for work in computer vision noted, because of its e�-

ciency and general purpose nature. The task of segmentation was de�ned as determining

`what is where'. The role of uncertainty in segmentation was discussed; that localisation in

class space (`what') con
icts directly with the simultaneous localisation in position space

(`where') [109]. It was shown that multiresolution analysis, such as by using image pyramids,

allows uncertainty to be tackled through a class/position trade-o�.

A review of notable segmentation methods was presented in order to identify common

themes in the various approaches and to set a context for this work. The methods were

reviewed in three classes: region based, boundary based and combined or cooperative meth-

ods, with attention being paid to those that use multiresolution structures.

Region based methods have approached segmentation from a viewpoint of localisation

124
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in class space, with the various methods striving to include a degree of context, based on

geometric proximity. Such approaches have often used relaxation techniques and MRF mod-

els [8] [10] [111], to estimate region properties e.g relaxation labelling or MAP estimation

by Simulated Annealing or Iterated Conditional Modes [54] [9] [39]. It was noted, however,

that such methods are supervised, relying on training data for parameter estimation and

empirical or ad-hoc means to determine prior distributions. MAP estimation in a multireso-

lution framework, so called Multigrid methods [91] [40], have been successful in overcoming

the prohibitive computational burdens involved. The use of MRF models over a range of

scales has also been shown to improve long range characteristics of the model.

Boundary based methods have approached segmentation from a viewpoint of positional

localisation. A wide variety of methods have been suggested for edge detection, ranging

from small kernel gradient operators [41] to multiresolution, frequency domain methods,

such as the MFT [20]. It was noted that these methods are also limited by a form of

uncertainty which is a trade-o� between spatial localisation and noise immunity [22] [74].

Once again success has been achieved by the use of multiple scales.

Combined methods have implicitly or explicitly attempted to integrate region and

boundary information, to overcome the inherent limitations of either approach alone. The

review highlighted the use of `line' processes in MRF approaches [38], to model nonsta-

tionarities in the image, such as edges. This exploits the natural duality of regions and

their boundaries. It was noted, however, that such modi�cations to the MRF models

compound the problems of model identi�cation. Also the line process models are unneces-

sarily tied to the region model which con
icts with the fact that regions and boundaries,

although complementary, nevertheless vary in scale across images. More recent work in

cooperative region-boundary methods have suggested a need for a more explicit interaction

strategy [77] [66].
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A set of requirements for a segmentation approach were proposed in the conclusion to

Chapter 1. These were:

1. Prior Knowledge: The problem of parameter estimation and to what degree and in

what form higher level knowledge should be incorporated into a segmentation process

2. Local Processing: The processing should re
ect the intrinsic structure of images which

exhibit features that are local and that their sizes vary across the image.

3. Uncertainty: Both class/position trade-o� and localisation/noise-immunity trade-o�.

4. Computational E�ciency: The method should require minimum computation.

5. Flexibility of Image Model: The image model should be readily extensible.

In Chapter 2 a framework for image segmentation aimed at ful�lling the above require-

ments was sought. This chapter considered a model for segmentation derived from a general

class of linear multiresolution image models [25] [103], which have been successfully used in

image estimation, coding and curve extraction [26] [20] [93]. The main feature of multires-

olution models is that it is possible to describe image properties that span a range of scale,

which re
ects the nature of most images. Small features and �ne detail are modelled at rel-

atively high spatial resolutions, while large features are modelled at low spatial resolutions.

Such models also have the attraction that they can result in estimation procedures which

are computationally e�cient.

An adaptation of the generalised multiresolution image model was given which models

both region and boundary features. Image generation in the model is de�ned as a two

stage process: �rst there is a boundary process which uses a vertex based representation to

generate a set of connected curves, and second the regions are modelled as an MRF, where

the adjacency of the pixels is constrained by the boundaries. At both stages the generation
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is a coarse to �ne procedure, with evolution of the features being modelled through scale

by using conditional probabilities.

A cooperative segmentation algorithm consisting of four main stages was outlined at

the end of Chapter 2. The �rst stage is construction of a pyramid representation of the

image, which is considered in more detail in Chapter 3. This forms the input to two separate

processes that operate on the region and boundary information respectively. The interaction

between the processes, which achieves the segmentation, was de�ned as the fourth, explicit

process.

The region and boundary processes have a common structure which involves scale se-

lection, creation of an adjacency graph and iterative estimation. The scale selection, which

is achieved by a process of multiresolution inference, provides an initial segmentation from

which an adjacency graph is created. The iterative processing is used to update the initial

segmentation using a combination of a MAP decision approach and ML estimation.

Chapter 3 detailed the operation of the region estimation process. The construction

and properties of low-pass pyramids were discussed. Local parameter estimation within a

pyramid structure was described and the use of a variance estimator to achieve a tessellation

of the image shown. The resulting image regions are then linked together to form a region

adjacency graph, which is successively re�ned to achieve a segmentation.

The iterative estimation strategy is based on a Gaussian MRF signal model in which

regions are assumed to have independently selected means. The grey level at each selected

node is iteratively averaged with its neighbours, if they are believed to belong to the same

region. The membership test is a MAP decision that a region link is `on', given the data

at the two nodes it connects. The `prior' of the link decision process is calculated from

estimates of orientation information, which introduces dependence on neighbouring data.

Estimates of local orientation are obtained either from region data, by least squares �tting
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to a simple edge model, or directly from the boundary processing, described in Chapter 4.

As the estimation proceeds, the initial block segmentation is re�ned by splitting blocks

which are thought to contain edges, and `focusing' the region information on to the next,

higher spatial resolution. The block splitting criterion is based on the probability of an edge

in the block and how well the data �ts the 2-region hypothesis. A form of fractal contraction

transformation is used to focus the region information around the edge to regain spatial

localisation.

Chapter 3 was concluded with a description of the convergence characteristics and com-

putational requirements of the region estimation. It was shown that approximately 564

multiplications per pixel are required for 20 iterations of the process. In practice conver-

gence is rapid, typically within 10 iterations. Some experimental results were presented to

highlight the operation of the iterative estimation scheme. These illustrated the result of

scale selection, the adjacency graph structure and changes of the link states over several

iterations.

The boundary estimation process was detailed in Chapter 4. This chapter consisted

of two main sections: the �rst part describing a multiresolution method for estimating

orientation, and the second describing the boundary segmentation process.

The importance of orientation as a parameter of an edge was discussed and the bene�ts

of using a double angle representation were outlined. Next a robust method of orientation

estimation was described. There are three main steps to the procedure: construction of

a grey level pyramid, orientation estimation on each level, and smoothing of the initial

estimates by scale-space recursion in the pyramid. The basis of the method is that down-

ward propagation of the more reliable estimates from higher levels of the pyramid to lower

levels reduces the estimation errors. It is shown that lateral processing of the propagated

estimates, by anisotropic �ltering, can further reduce the errors. The results presented
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demonstrated the scheme to give signi�cant gains in SNR at little computational cost.

The boundary segmentation process is designed to operate independently of the region

estimation process of Chapter 3 and uses an orientation pyramid representation of the image.

Like the region process, there are three steps of scale-selection, creation of a boundary

(adjacency) graph, and iterative estimation. The node selection process operates top-down

on the orientation pyramid of the image. The selected nodes are then linked together using

simple, local linking criteria based on orientation, proximity and curvature. The iterative

estimation is a relaxation process that allows the selected nodes to be moved to locally

`best' positions. It uses the orientation estimate as an energy landscape from which the

best positions are sought by constrained search. Node elimination and addition steps are

de�ned which aim to improve the extracted straight lines and curved boundary segments.

Some experimental results were presented that illustrated the operation of the scheme on

both synthetic and natural images.

Chapter 5 brought together the region and boundary processes by de�ning an explicit

interaction strategy. It was noted that the logical vehicle for information transfer between

the processes was the orientation estimate, i.e. that of the model based region edge estimates

and the boundary segment positions. Two data paths were identi�ed: a region-to-boundary

path and the reverse, boundary-to-region path. Interaction neighbourhoods were de�ned

between the region and boundary adjacency graphs which exploited the `duality' between

the two representations.

By considering the best combined estimate, it was shown how a pair of combination

coe�cients can be calculated from estimates of the signal and noise variances of the respec-

tive region and boundary orientation estimates. These coe�cients control the degree of the

in
uence that either process has at a given iteration as the segmentation proceeds.

In the region-to-boundary interaction, the region based orientation estimate was in-
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cluded as an extra term in the local cost for the boundary re�nement. The relative weighting

of the two energy terms was also determined by a pair of combination coe�cients. Corner

block detection and node insertion steps were described which are two instances where one

process relies solely on the other to improve its segmentation. In the case of corner blocks

the boundary process is able to overcome the inadequacies of the simple edge model of the

region based orientation estimation. The node insertion step aims to improve the initial

estimates from the boundary node selection and linking step, �lling in gaps in the boundary

graph using evidence gathered from the region process.

The chapter was concluded with a set of results for the cooperative segmentation on a

range of synthetic and natural images. Two measures of performance were de�ned: pixel

classi�cation error and RMS boundary error, and were used to compare the results of the

new method with the Spann and Wilson algorithm [88] [86]. The results showed the method

to be good at segmentation of images which conformed to the image model, such as the

foreground/background tasks, even in the presence of considerable amounts of noise. It was

also shown to be better than previous methods at capturing corner features, which tend to

be missed in the region-only methods such as [88].

There are a number of features of the segmentation method presented here which di�er-

entiate it from work reported elsewhere. The inhomogeneous block tessellation used by the

region estimation process, which is used to produce the region adjacency graph, consider-

ably reduces the computation of the iterative estimation and enables both local and global

processing to be performed in a coherent manner. All parameter estimation is performed

within the pyramid structure making the resulting method unsupervised. The orientation

estimation process, although a sub-optimal adaptation of the quadtree estimation method

originally proposed by Clippingdale [25], is nevertheless both computationally cheap and

robust. The e�ciency of this estimator is partly a consequence of the use of a set of new
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small-size �ltering kernels designed speci�cally for pyramid construction and orientation

estimation [102]. The introduction of lateral processing further improves the estimates and

helps the subsequent boundary processing. Finally, the orientation estimate is used as the

vehicle for the novel cooperation strategy, which by exploiting the duality of the region and

boundary representational structures, enables e�cient region-boundary process interaction.

6.2 Limitations and Further Work

Although the results presented in Chapter 5 show the e�ectiveness of the method, there

are a number of issues that need to be considered further. First there are some algorithmic

considerations:

1. Orientation Estimation and Boundary Segmentation: In the present scheme, the en-

hancement of the orientation data and subsequent boundary segmentation are two

separate processes. There is a feeling that these two stages, which both involve ver-

tical and lateral processing, could be uni�ed into one scheme to directly parallel the

region processing. One of the bene�ts would be to reduce the overall computation.

2. Node Elimination and Addition: There is a need to make these steps more rigorous.

Currently they have been formulated in heuristic terms. They are clearly two sides

of the same coin and the decision criteria need to be made consistent. The experi-

mental results con�rm the belief, however, that the greater the noise the `simpler' the

boundary which can be supported by the data.

In addition there are, perhaps, more fundamental areas where extension and consolida-

tion is required. These relate to the modi�cation of the underlying image model (Chapter 2),

and to the multiresolution feature description used:
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3. Model Extensions: The segmentation scheme is limited by the simplicity of the un-

derlying image model. As the results of Chapter 5 demonstrate, the homogeneous

region model fails to deal adequately with the content of natural images. The bound-

ary segmentation, however, is less a�ected by this because image boundaries are, by

de�nition, invariant to variation across region interiors. To cope with this problem the

region model has to be extended to allow for smooth variation in grey level across a

neighbourhood. This requires modi�cation of the scale selection and iterative estima-

tion scheme, where simple averaging would no longer be possible. The model thus has

to incorporate some measure of signal variance, as well as noise variance.

In the modelling of boundaries, one obvious extension is to be able to represent line

features as well as edges. The orientation pyramid which is used by the boundary

process is constructed using operators which respond to edges only. Being able to

di�erentiate between edges and lines would also help to make better decisions at the

boundary linking stage.

A conclusion from the results on synthetic images was the poor performance of the

method on curved edges. This is a consequence of the use of a polyline boundary rep-

resentation. An idea which was not investigated was to allow the boundary segments

between nodes to be curved, i.e. quadratic arc segments or splines, which would result

in a better �t to image curves. Such extensions of the boundary feature model from

straight lines to higher order curves has been reported in [31].

4. Feature Description: A common property of regions found in images is texture. Tex-

ture feature extraction can be used to characterise the local region homogeneity, with a

structural or statistical model. The hope would be that the current region model could

be maintained by replacing the scalar, grey level data by a vector quantity which char-

acterises the local texture [107] [109]. A generalisation of the model would allow both



CHAPTER 6. CONCLUSIONS AND FURTHER WORK 133

variation of the region property, as described above, and texture to be simultaneously

modelled.

Although the curves of the existing boundary model are de�ned by vertex points,

the estimation algorithm does not detect vertex or branch features directly. In fact,

the response of the orientation detection is null at a vertex. Again if the underlying

feature description made such information available then this would further enhance

the potential of the boundary segmentation. However, it must be noted that the

sensitivity to noise of corner and branch features may limit the utility of this approach.

6.3 Concluding Remarks

This work has sought to unify a number of di�erent ideas which have been used in image

segmentation into a single framework. In particular, the problem of coherently combining

both region and boundary information has been addressed. Multiresolution analysis has

played a key role in the work, having an impact on the image model, representational

structures and the computational e�ciency of the resulting algorithms. What is apparent

is that there are signi�cant advantages to be had from such an approach.

One of the questions posed in the thesis introduction was to what degree prior infor-

mation is necessary in low level vision tasks. The results presented here have shown that it

is possible to begin to approach the capabilities of the HVS for certain segmentation tasks,

by using only minimal assumptions about what is being seen. Indeed, one of the aims of

this work has been to keep the image model simple in order to explore the question of the

extent and form of the prior information required to achieve the desired result. However,

as the above discussion noted, model simplicity does restrict the class of images which can

be segmented.

There is clearly much work still to be done in the area of segmentation. Perhaps one of
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the most fruitful ways forward for this work is to use some of the representational structures

and algorithms with more generalised image descriptions such as the MFT. This would

provide a rich image description from which grey level, texture, edge, line and branch

feature information could be extracted and used to perform a segmentation. It is hoped

that the work addressed in this thesis will provide a stepping stone for such ideas to be

developed.



Appendix A

Derivation of M.M.S.E Filter

A.1 The MMSE Filter

The minimum mean square error �lter is a fundamental result in �ltering theory [74] [75]

(also [58] [84] etc.). Given the arbitrary zero mean, random signals s and ~s it is desired to

obtain an estimate, ŝ from the observation ~s such that the mean square error

E[(s� ŝ)2] (A:1)

is minimised. The best estimate of ŝ is known [74] to be the conditional mean of s given ~s,

that is

ŝ = E[s j ~s] (A:2)

Equation (A.2) is in general di�cult to solve as it is non-linear and the conditional proba-

bility density function psj~s is hard to calculate. The best linear estimate, however, is of the

form

ŝ(x) =

Z 1

�1
h(u)~s(x� u)du (A:3)

where the �lter impulse response h(u) is determined such that the mean square error of

equation (A.1) is minimised. Minimisation requires the orthogonality condition [75]

E[(s� ŝ)~s] = 0 (A:4)

to be satis�ed. Note that the linear estimate is also optimal for Gaussian processes.
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A.2 A Constrained Approach

A tractable analytical solution for the shape of the �lter can be found under the constraint

that the �lter is 1-d Gaussian of the form

h(x) = � exp(��x2) (A:5)

and that the signal correlation function is also Gaussian

Rs(x) = exp(��x2) (A:6)

and the noise correlation is

Rn(x) = ��(x) (A:7)

A.2.1 Determining the Filter Parameters

Minimising (A.1) �rst with respect to � gives

2E[s(x) � ŝ(x)]
@ŝ(x)

@�
= 0 (A:8)

E[s(x)
@ŝ(x)

@�
] = E[ŝ(x)

@ŝ(x)

@�
] (A:9)

Then substituting in ŝ(x) from equation (A.3)

Z 1

�1

@h(x)

@�
E[s(x)~s(u� x)]dx =

Z 1

�1

Z 1

�1
h(y)

@h(x)

@�
E[~s(u� x)~s(u� y)]dxdy (A.10)

Z 1

�1

@h(x)

@�
Rs(x)dx =

Z 1

�1

Z 1

�1
h(y)

@h(x)

@�
[Rs(y � x) + ��(y � x)] dxdy (A.11)

Now @h(x)
@� = exp(��x2) and Rs(x) = exp(��x2),

Z 1

�1
exp(�(� + �)x2)dx =
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Z 1

�1
� exp(��y2)

Z 1

�1
exp(��x2) exp(��(y � x)2)dxdy

+ �

Z 1

�1
� exp(��x2) exp(��x2)dx

= �

�Z 1

�1

Z 1

�1
exp(�(� + �)(y2 + x2) + 2�yx)dxdy

+ �

Z 1

�1
exp(�2�x2)dx

�
(A.12)

Using the standard result for the de�nite exponential integral [1]

Z 1

0
exp(�ax2)dx =

1

2

r
�

a
; a > 0 (A:13)

on the �rst and last integrals and completing the square in the second integral, equation

(A.12) becomes

r
�

� + �
= �

"Z 1

�1
exp(�(� + �)x2 + (

�2x2

� + �
)) �

Z 1

�1
exp(�(� + �)y2 + 2�xy � (

�2x2

� + �
))dxdy + �

r
�

2�

#
(A.14)

= �

�Z 1

�1
exp(��(� + 2�)

� + �
x2) �Z 1

�1
exp(�(

p
� + �y � �xp

� + �
)
2
)dxdy + �

r
�

2�

�
(A.15)

The second integral is evaluated by the substitution u =
p
� + �y� �xp

�+�
; du = dy

p
� + �,

and the standard result of equation (A.13) yielding

r
�

� + �
= �

�r
�

� + �

Z 1

�1
exp(��(� + 2�)

� + �
x2)dx+ �

r
�

2�

�
(A:16)

And re-applying equation (A.13) to the remaining integral gives

r
�

� + �
= �

"r
�

� + �

s
�(� + �)

�(� + 2�)
+ �

r
�

2�

#
(A:17)

After some manipulation it can be shown that

� =

s
2�(� + 2�)

(� + �)

1

(
p
2� + �

p
� + 2�)

(A:18)
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It is clear that the parameter � is dependent on � which is the value determining the

variance of the �lter. Persevering with the analysis, however, to determine an expression

for � does produce a useful result.

Di�erentiating equation (A.1) with respect to � this time, following the procedures of

equations (A.8) to (A.11)

2E[s(x) � ŝ(x)]
@ ^s(x)

@�
= 0 (A:19)

E[s(x)
@ŝ(x)

@�
] = E[ŝ(x)

@ŝ(x)

@�
] (A:20)

Z 1

�1

@h(x)

@�
E[s(x)~s(u� x)]dx =

Z 1

�1

Z 1

�1
h(y)

@h(x)

@�
E[~s(u� x)~s(u� y)]dxdy (A.21)

Z 1

�1

@h(x)

@�
Rs(x)dx =

Z 1

�1

Z 1

�1
h(y)

@h(x)

@�
[Rs(y � x) + ��(y � x)] dxdy (A.22)

Now @h(x)
@� = �� exp(��x2) and Rs(x) = exp(��x2),

Z 1

�1
x2 exp(�(� + �)x2)dx =

= �

�Z 1

�1

Z 1

�1
x2 exp(�(� + �)(y2 + x2) + 2�yx)dxdy

+ �

Z 1

�1
x2 exp(�2�x2)dx

�
(A.23)

Using the standard result for the de�nite exponential integral [1]

Z 1

0
x2 exp(�ax2)dx =

1

4

r
�

a
� 1
a
; a > 0 (A:24)

on the �rst and last integrals and completing the square in the second integral, equation

(A.23) becomes

r
�

� + �

1

2(� + �)
=

�

�Z 1

�1
x2 exp(��(� + 2�)

� + �
x2) �Z 1

�1
exp(�(

p
� + �y � �xp

� + �
)
2
)dxdy + �

r
�

2�

1

4�

�
(A.25)
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The second integral is evaluated by substitution (c.f equation (A.16)), and using the stan-

dard result of equation (A.13), giving

r
�

� + �

1

2(� + �)
=

�

"r
�

� + �
�
s
�(� + �)

�(� + 2�)
� � + �

2�(� + 2�)
+ �

r
�

2�

1

4�

#
(A.26)

After some manipulation it can be shown that

(� � �)(� + 2�)
3
2 =

2�2

�

p
2�

) � = �+
2�2

p
2�

�(� + 2�)
3
2

(A.27)

Given � and �, � can be determined numerically [50] using equation (A.27) and hence

� from equation (A.18).
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Optimal Lowpass and Edge

Kernel Designs

This paper has been accepted for publication for IEEE, Transactions on PAMI [99].
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Conference Paper

This paper was presented at the 7th. SCIA, Aalborg, Denmark, 1991 [11].
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