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ABSTRACT

In this paper, we outline four Al systems and their formal specification in Z. Two of the
systems (a blackboard framework and the author's CASSANDRA architecture) are of
high complexity and are for predominantly real-time, high-reliability applications; the
other two are production systems of an unconventional type. The first production system
(called ELEKTRA) contains extensive facilities for performing meta-level inference. The
second extends ELEKTRA with a frame system and organises rules into rulesets for en-
hanced modularity (its specification is still underway). Both production systems contain
control features that can be accessed by rules: both are reflective systems. To date, the
four specifications amount to more than 500 A4 pages, including proofs and explanatory
text. The four specifications are related in that solutions to problems encountered in the
blackboard and CASSANDRA systems are attempted in the other two specifications. The
formal specifications of the second two systems were undertaken because we wanted to ex-
periment with ideas without having to engage in implementation at too early a stage (ELE-
KTRA was subsequently implemented in Scheme from its Z specification): this turned out
to be an excellent strategy. To conclude the paper, we review our approach and consider
the general use of formal specifications in the development of Al systems.



1 INTRODUCTION

Knowledge-based systems are typically constructed from two main components: (i) an

interpreter (or 'inference engifevhich executes expressions in the representation lan-
guage, and (ii) the knowledge which is encoded as expressions of the knowledge rep-
resentation language. Of these two, the first tends to be fairly static (and might be
provided by an external agency as a complete package). The knowledge encoded in a
system is the more volatile component: it is the encoded knowledge which is augment-
ed and modified during system development and maintenance. It is the interpreter
which constrains the behaviour of the system and gives (in a weak fashion) a sense to
the knowledge that is encoded in the system: at the very least, it enables the encoded
knowledge to be manipulated in 'meaningful’ ways.

In real-time and safety-critical knowledge-based systems, the interpreter may, in
many cases, be regarded as a software component of a relatively ordinary kind. This
suggests that the benefits of formal specification can be obtained for the interpreter
component. As the interpreter tends to be a stable component of the system, formal
specification can be attempted without risk of having repeatedly to redo the specifica-
tion and its refinement once an implementation has been achieved. In addition, the suc-
cess of the entire system depends upon the correct functioning of the interpreter
because, in a sense, it enforces meanings. For safety-critical systems, one would like
the best possible guarantee of correct functioning, so formal specification appears,
again, to be of utility.

Even in more experimental systems, formal specification may still have a useful role
to play. This is because a formal specification can be considered to be a formal model
of a system (albeit one that does not actually execute). Typically, experimental systems
are implemented in order to determine their properties: if a formal specification is un-
dertaken, many of these properties can be derived apraori basis. The formal spec-
ification exercise tends to sharpen one's intuitions about an experimental system, and
this, too, can be of great help in system and theory development.

In this paper, we describe four case studies in the formal specification of Al programs
(using Z—Spivey, 1988, 1989). Each case study treats the formal specification in a dif-
ferent way, and each system was specified in Z for different reasons (although there are
some common themes). The four case studies divide naturally into two families, each
of two specifications.

The first family contains specifications of a blackboard system (Hayes-Roth, 1983;
Nii, 1986; Engelmore, 1988) and of the authorRssANDRAarchitecture (Craig, 1989).

Both of these systems are of relatively high complexity and both are indended for use

L Throughout this paper, we will always use the term 'interpreter' to refer to that part of a knowledge-based

system which performs the tasks associated with an inference engine.



in complex domains whose problems require the integration of different kinds of
knowledge. ThecASSANDRA architecture was designed for use in safety-critical, dis-
tributed applications where high reliability is essential (see Craig, 1989, for one such
application). The Z specifications of these two systems are to appear in book form
(Craig, 1991a).

The second family consists of production rule interpreters, although of a somewhat
unconventional kind. The first, call@lEKTRA (Craig, 1991c, 1991d, 1991e), is a for-
ward-chaining system with extensive meta-level facilities. The second, caked
(19919), extendsLEKTRA by adding a frame system and rulesets as well as by an en-
riched control structure. Bo#tLEKTRA andrRPsare reflective systems (Hayes, 1974):
that is, they are intended to reason about their own contents and operation. The systems
in the second family are experimental, and we are using formal specifications as a
means of exploring their capabilities and implicatiamgout having to engage in an
implementation, although the Z specificationeEQEKTRA was used to develop an im-
plementation in Scheme (Sussman, 1978).

The next two sections of this paper describe the systems of each family and their spec-
ifications. We explain the reasons for undertaking the specification in each case. We
also discuss some of the problems that were encountered as the specifications were de-
veloped. Of the two, section three is the longer: this is because the systems described
in it will be less familiar to the general reader. Finally, we end with a general discussion
of the role of formal specification in the development of Al systems.

2 BLACKBOARD AND CASSANDRA SPECIFICATIONS

In this section, we discuss our specifications of the blackboardasshNDRA archi-
tectures. The complete specifications are to be published in book form (Craig, 1991a).
In each case, we report our reasons for undertaking a formal specification and outline
the scope and status of the specification.

2.1 The Blackboard Specification

The blackboard specification was undertaken in order to try to define an interpretation
of the architecture. The blackboard architecture, as has been observed by a number of
authors (Hayes-Roth, 1983; Nii, 1986), is a relatively informal construct which is open
to different interpretations. Our initial goal was to define our interpretation of the archi-
tecture. In addition, having presentediaformal specification in English and Com-
monLISP pseudo-code (Craig, 1991b), it seemed natural to attempt a specification in
Z. Z was chosen for its schema calculus. The schema calculus makes for very much



more modular (and perhaps, thereby, understandable) specifications; also, we wanted
to engage in a model-oriented for reasons that will become clearer in the next section.

The aim of the exercise was to develop as complete as possible a specification of a
blackboard framework (i.e., a blackboard system interpreter), but ignoring interfaces to
the user and to external databases and data sources.

In order to produce the specification, we adopted a top-down method, with each main
module receiving independent attention. This approach is natural given the modular na-
ture of a blackboard framework, and given our previous experience in constructing
three such systems. The particular interpretation of the architecture that we adopted is
similar toBe1 (Hayes-Roth, 1985): control is seen as a knowledge-based task which op-
erates on a globally accessible agenda. Knowledge Source activation is via blackboard
events.

A specification of each of the main components of the interpreter was developed.
That is, we specified the following components in detail:

 The blackboard, its abstraction levels and the entries which reside on abstraction
levels.

» The global agenda and the KSARs (Knowledge Source Activation Records)
which reside in it.

» Knowledge Source structure and the Knowledge Source database.

* The event system.

» Knowledge Source triggering, precondition and action evaluation.

» The main interpreter cycle.

In each case, we attempted to produce as general a specification as possible. Thus, the
specification allows an arbitrary number of abstraction levels on the blackboard (al-
though we allow only one blackboard—panels can be obtained merely by choosing ap-
propriate names for abstraction level); entries are represented as partial mappings, so
new attributes can be added with ease.

The specification of each module involved the development of appropriate basic
structures and the definition of operations and predicates over them. For example, the
blackboard database is considered to be a state space with appropriately defined oper-
ations.

The resulting specification is highly modular. The decision to specify the event sys-
tem as a separate component paid the dividend that, by schema composition, the black-
board, event system and triggering modules could be combined to form a more complex
module in a simple fashion. A similar technique was employed in the specification of
the main interpreter loop.

The interpretation we chose for Knowledge Sources led us to encounter problems that



we do not feel that we have adequately solved as yet. We followBB1ms* (Hayes-

Roth, 1985, 1986) model. This model allows arbitrary predicates (expressed as arbi-
trary pieces of implementation language code) in preconditions; it structures Knowl-
edge Source actions as sets of production rules in which arbitrary code may be

employed as condition elemefts

The need to take into account problem-specific operations turned out to be an aspect
of the specification that gave the least satisfaction: the way in which it was solved was
simply to state pre- and post-conditions that all predicates must satisfy. We were, how-
ever, able to prove a result: that result is simply that, on assumption that no user-sup-
plied predicate which satisfies the invariant will alter the blackboard state.

A similar problem was encountered when we came to specify the scheduler. The ac-
count of scheduling that we prefer is akin to Hayes-Roth's Blackboard Control Model
(Hayes-Roth, 1985). Because the details of scheduling depend so crucially on the prob-
lem to be solved and on the characteristics of the problem domain, we found the sched-
uler almost impossible to specify in any detail. Indeed, we resorted to defining the
scheduler as a function which was applied on each interpreter cycle. Again, we were
forced to gloss over details and to take an indirect route in producing a specification.
Because of the ambiguity inherent in the scheduler, we were unable to prove termina-
tion: without detailed knowledge of the scheduling mechanism, it is impossible to prove
that the system will do anything useful! These were other unpleasant aspects of the
specification exercise, even though the additional details can be filled in once the de-
tails of an application are known and understood.

In addition to developing a specification of the blackboard interpreter, we also proved
a number of results about the system. This was part of our intention when we undertook
the specification: many properties of blackboard systems form part of the ‘folklore' and
are not documented in an easily accessible place.

The proofs that we produced fell into two categories: the first deals with operations
defined over the various system components, the second with more obscure properties.
In the first category, for example, there is the proof of the proposition that the immedi-
ate addition of a new attribute-value pair to a newly created entry is identical in result
to creating the entry with the additional pair as an element of the attribute-value set that
is used to initialise the entry. In the second category, there is a proof of the proposition
that every entry resides on one and only one abstraction level—this property is only oc-
casionally stated with enough emphasis: in order to see that it must be the case, one has
to think for a while about the status of entries.

The complete specification covers all aspects of the interpreter. It amounts to over one

2 We also need to give a semantics—this has been done in outiRms{@raig, 1991g) and farASSANDRA

(unpublished).



hundred pages of A4 paper, including proofs and explanatory text. The version which
will appear as Craig, 19914, is intended for tutorial use (as an example of a large spec-
ification), so some of the explanatory text could be removed. In addition, the specifica-
tion concentrates on the top-level, although we have gone a little way to producing a
refinement. Overall, the specification exercise proved to have some utility: for one
thing, it showed that a formal specification with relatively complete covexagde be
produced, and that such a specification could be used to pin down an interpretation of
the architecture, as well as allowing important properties to be proved.

In the near future, we hope to undertake a complete refinement of this specification
down to the code level.

2.2 TheCASSANDRA Specification

The specification of the author's owASSANDRA architecture (Craig, 1989) was un-
dertaken immediately after the completion of the blackboard specification outlined
above (and is also documented in Craig, 1991a) CASSANDRA architecture is a de-
rivative of the blackboard architecture, so it seemed plausible that the specification
could employ many of the structures developed in the earlier exercise: this turned out
to be an important factor in shortening the resulting document, even though many of
the inherited blackboard components need to be altered in fairly obvious ways.

The reason for givingASSANDRA a formal specification was that we wanted a com-
plete definition of the 1989 version of it in as unambiguous a form as possible. As has
been noted, the blackboard architecture has remained an informal construct for many
years, and we view this as a weakness. We warsdgANDRA to avoid problems of
interpretation, so a formal definition was undertaken. Because of the different nature of
the exercise, we felt free to be less strict than with the blackboard interpreter: this is the
reason that we merely adopt blackboard component specifications and leave the reader
to make the necessary changes—they are all quite simple, as has been noted.

The CASSANDRA architecture represents one approach to building distributed black-
board systems. The architecture's primary componeritetieeManager, is, basically,
one abstraction level which is equipped with a local control component. Level Manag-
ers communicate with each other by sending messages along uni-directional channels
when solving problems.

The fact that messages are sent to and received from asynchronously operating pro-
cesses entails thahssANDRA systems are prone to deadlock and livelock problems:
this is felt most acutely in the way in which Knowledge Sources operate. In the defini-
tion of the architecture, we altered the semantics of Knowledge Sources so that com-
munications could be incorportated in a relatively safe way.

Because theassANDRA architecture is so closely related to the blackboard architec-
ture, we concentrated on those aspects whicbAsgANDRA-specific. In other words,



we concentrated on the communications system and on the interpretation of Knowledge
Sources. The specification of the communications system was essentially straightfor-

ward: it amounted to the definition of message formats, queues and operations to send,
receive and route messages.

The specification of Knowledge Sources was considerably more complex. Although
the CASSANDRA architecture employs event-based Knowledge Source triggering, pre-
condition evaluation divides into local and non-local preconditions. Local precondi-
tions test the state of the entries that are local to a Level Manager. Non-local
preconditions require messages to be sent. In fact, non-local preconditions divide into
two types: those which wait for messages to arrive, and those which send messages and
then wait for a reply. (Knowledge Source actions are only allowed to send messages—
they may not wait for replies). The interaction with the communications system has the
entailment that a precondition may wait an indefinite time before evaluating to either
true or false. While a precondition is waiting for a message, the architecture states that
it has a undefined truth-value.

The Z specification of preconditions deals with structures that are needed to support
the interaction with the communications system, structures for maintaining waiting pre-
conditions, and the evaluation process once a message has been received. Luckily, it is
possible to define primitive operations for message processing, so the difficulties en-
countered with arbitrary predicates do not reoccur in this case (although they do in the
case of local preconditions).

The specification of the 1989 version@SSANDRA is relatively complete. Where
necessary, we imported the names of schemata developed during the blackboard spec-
ification (in some cases, we gave the redefined form of blackboard schemata in order
to be more complete). A specification of the Level Manager, including its control struc-
ture, is part of the full document. We believe that the specification, although not totally
complete, is adequate to define the limits of the 1989 version of the architecture. From
this specification, it is quite possible to move on to the refinement and implementation
phase.

3 ELEKTRA AND RPS

In this section, we concentrate on our efforts to specify two production rule interpreters.
The interpreters are for production systems of a relatively unconventional kind. Our
aims in developing these specifications are many and varied, but they were both under-
taken as attempts to use the specification as a model of an experimental system; in other
words, we used formal specificatiorstead of implementation. That having been said,

we must record the fact that the first specification (oEUIBKTRA system) was refined



down to the level of Scheme code to produce a working implementation. The second
specification (of th&pPssystem) is not yet complete, although its state is such that we
can report on it in some detail.

3.1ELEKTRA

TheELEKTRA system (Craig, 1991c, 1991d, 1991e) is basically a forward-chaining pro-
duction rule interpreter. The Z specification is to be found in Craig (1991c). When the
constructs that facilitate meta-level reasoning are rem@te®;TRA is a rather con-
ventional system.

The basic interpreter consists of the following modules:

» A working memory.

* A production memory.

* A pattern matcher (unification).
* A conflict set.

* A conflict resolution module.

* A (default) main loop.

Of these modules, the conflict resolution module is not part of the speciftatidhe
implemented version, we used an extremely simple conflict resolution strategy (one
which merely chooses that rule instance which was first inserted into the conflict set),
although we did specify the strategy in Z before implementing it. In addition, we used
a version of unification based on the VDM specification in Jones (1990, Chapter 5), so
only an interface (represented as a relation) appears in the report (Craig, 1991c).

The formal specification falls into two parts: the first contains specifications of all the
modules listed above. In addition, the specification contains an abstract syntax for con-
dition-elements and rule actions: the abstract syntax defines a representation based on
the syntax of first-order logic. Connectives (with the exception of negation) and quan-
tifiers are implicit: connectives are provided by the standard interpretation of produc-
tion rules (see, for example, Waterman, 1978).

Once again, the specification treats each main data structure as a state space and de-
fines operations over these state spaces. Rules are treated as tuples and not as state spac-
es.

As part of the specification exercise, we defined and enforced a strict distinction be-
tween rules and their instanceselEKTRA, a rule is a complex structure that contains,
essentially, pattern templates. A rule instance, on the other hand, is represented as a pair
which consists of the rule identifier (which must be unique) and a set of variable bind-

s We did, in fact, specify a couple of relatively simple conflict resolution strategies, in order to discover how
difficult they were to specify. The distinction between rules and their instances (see below) served us well.



ings. The rule identifier is not used as the criterion of identity in the conflict set—rule
identifierstogether with variable bindings form the criterion. The distinction between
rules and rule instances makes the operation of the conflict set and of conflict resolution
strategies easier; it also makes clear what gets executed in order to change working
memory state.

A central part of the specification of the conflict set schemata involved the definition
of operations to manipulate the conflict set (i.e., operations to clear it, add an instance,
search for one or more instances, remove an instance, find a rule in production memory
given an instance of it, and so on): these operations were deemed to be useful when con-
structing actual conflict resolution modules, and in giving the meta-level access to the
interpreter's control structures.

The main interpreter schema contains the global state. This is represented by working
memory, production memory and the conflict set. The specification as a whole contains
schemata for accessing and updating working memory and for adding and retrieving
rules from production memory. In addition, a number of counters are specified: the
counters represent the passage of time in the system (rule instances are, for example,
time-stamped).

Thus far ELEKTRA is highly conventional: it contains no features or facilities that are
in any way novel. This was a deliberate design decision: we warggdRA to be use-
ble as an ordinary production system. It is when the meta-level is added that matters
become rather more interesting.

The specification oELEKTRA followed the same path. We began by specifyniy
the object-level structures—these were necessary, given the decision mentioned in the
last paragraph. Once the object-level only system had been specified, we extended it by
adding the meta-level. The result is, essentially, a second system, although the second
specification is wholly compatible with the first, so the schemata defined to provide an
object-level only control structure apply to the full meta-level version.

In producing the second version of the system, we had to make provision for meta-
rules. At the start of the exercise, we had decided that we would makeriwoi re-
striction on the number of meta-levels and to use a numerical tag to differentiate be-
tween levels (a tag value of zero indicates object-level, a value of one indicates meta-
level, a value of two indicates meta-meta-level, and so on). In altering the specification
to cater for meta-rules at a potentially infinite number of meta-...-levels, we decided to
separate meta-rules from object-rules. This required the definition of a separate variable
in the global state schema and the introduction of an invariant which stated that each
rule could not reside on more than one level.

The next part of the specification involved defining schemata that provide operations
to support the meta-level.

Now, one interpretation of meta-rules is that they inspect object-rules-ERTRA,



this generalises so that rules at a given level can inspect rules at all lower levels—Davis,
1980, for example. Quite clearly, inspection of rules involves matching and analysing
them. This is a different mechanism from that normally used to match working memory
elements. Rather than complicate the system, we decided that a pre-processor was nec-
essary: the pre-processor (called, somewhat grandiosely, the 'Rule Compiler’) analyses
rules and generates working memory elements which describe rule structure and con-
tents. By loading rule analyses into working memory, a single matching process can be
used—this simplifies the structure (and use) of the system.

The first part of the specification of the meta-levetiiBKTRA consisted, therefore,
of the specification of the rule compiler: this turned out to be a relatively simple exer-
cise given the abstract syntax. The rule compiler was always intended to be used off-
line, so we made use of working memory initialisation schemata from the object-level
only version to define the interface between the rule compiler and the system.

The next major part of the meta-level specification required us to define operations
that could be executed from within rules. Sets, bags and lists were the obvious data
structures that needed to be added to the system. We defined these (although only sets
appear in Craig, 1991c, for reasons of space) and also defined an extensible interface
so that such procedural elements could be called from rule conditions (the interface re-
quired the definition of an escape mechanism so that the pattern matcher would not be
called).

Sets, bags and lists were important in the meta-level because we sli@ExKeRlA to
be able to reason about its own control behaviour. More precisely, we wanted the sys-
tem to be able to support rule interpreters that were different from the interpreter that
actually runs the system. Since this point needs some explanation, we dwell on it in or-
der to clarify matters.

In ELEKTRA, the default behaviour of the system is forward-chaining (with or without
conflict resolution). It is well known that a forward-chaining system can emulate a
backward-chaining one. However, the existence of a meta-level entails that rules can
be chosen for firing on bases different from the simple syntactic methods employed by
general-purpose conflict resolution modules. Since a forward-chaining system de-
scribes a universal computing maching (a Post system, in fact), it is possible to define
interpreters as sets of production rules (in other war@dxTRA is auniversal Post sys-
tem). This observation is the crucial one for understandingeh@wrRA can support
interpreters that differ from forward-chaining while using that approach as its default
mechanism. In practical terms, the implementation of a rule interpreter consists of the
execution of a set of forward-chaining rules which select other rules and execute them
(see Craig, 1991d, for more information and some example interpreters).

It should be clear that part of tBeEKTRA meta-level support must consist not only
of facilities to analyse rules, but also to give meta-rules access to the condition-match-



ing and action-execution primitives. Furthermore, if control is genuinely to the subject
of reasoning, provision should be made to give access to the conflict set and to rule in-
stances—the latter are particularly important because the action-execution operations
defined in the object-level only system oper@iby on rule instances. The major part

of the specification of the meta-level versioreDEKTRA consisted of making these op-
erations visible to rules (the schemata were defined as part of the earlier exercise, and
the escape mechanism was also defined, so the task was relatively straightforward). In
addition to the obvious operations, we added some more in order to provide additional
functionality: the additional operations extended the range of options so that, for in-
stance, a single condition element could be tested against working memory (the basic

visible operation tests conjunctions of eIeménts)

The control loop of the specification proved to be the hardest part. This is because the
user is intended to have a great many options when using the system. For example, the
user may want to start a session EtEKTRA using the conflict set and then turn it off;
alternatively, meta-rules may store rule instances in the conflict set, in local variable
bindings or in working memory elements, and the option must be signalled to the basic
interpreter so as to prevent it exhibiting its default behaviour. Because of the modularity
of Z, we found that the various choices could be catered for with relative ease (and a
major problem was in deciding which choices could reasonably be excluded). Also, we
had to provide options affecting the level at wiEcBKTRA began matching rules: this,
too, turned out to be relatively simple. Eventually, we completed a control loop for the
meta-level which provides a reasonable set of features.

The most significant difficulty that we encountered inBhEKTRA specification de-
rived from the fact tha#LEKTRA is intended to be ampen structure. By this, we mean
that the user (or user-supplied rules) have access to every part of the system's internals.
As has been seen, access to all the main data stores and control structures was provided.
This gives the specification the feel of a description of a kit of parts which need to be
assembled before (or even during) use: this would be fine, were it not for the fact that
only certain combinations make real sense. What we have, we believe, is an adequate
specification (the Scheme implementation witnesses that fact) of some of the ways in
which ELEKTRA can be configured.

3.2RPS

Therpssystem (Craig, 19919) is currently under specification and has not yet been ful-
ly documentedrpsis a development EHLEKTRA. RPSextendELEKTRA by the inclu-
sion of the following additional structures:

4. The problem is one of matching quoted expressions, in other words. There is clearly no problem with
matching expressions at the same level as the rule—that is what the matcher is for; the problem is that of matching
expressions lower in the hierarchy.



* A declarative database organised as frames.
» An agenda-based control structure.
* The use of tasks as the primary unit of control.

The additional structures make for a system which is reminiscent of a blackboard sys-
tem and which is also reminiscent of Lenati®isko (Lenat, 1983).

RPSis not a mere extension BEEKTRA, despite what the above list suggeresis
a re-working of some of the ideasgrEKTRA using different organising and interpret-
ing principles. The new system is still indended to be a reflective one, but it organises
its activities in terms of tasks: a task must be performed in order for the system to do
anything. InrRPS a task is a collection of rules, together with an objective that they must

achieve: one of the most important tasks tRasmust perform its its own interpreta-
tion—we have identified the basic operations that the lResitask must perform in
executing the other code. The basic interpreter task is similar to the three fundamental
Knowledge Sources iBB1.

A problem that we found witBLEKTRA (and which seems to be endemic to produc-
tion systems that do not provide higher-level structuring facilities) is that it became hard
to determine what rules did: RPS we hope to have solved this by collecting rules into
tasks. Since the tasks that need to be performed will vary with time, we allow tasks to
be created at runtime—rules construct tasks from other rules—although the default is
for the system to execute pre-defined tasks. Within a task, there can be rules at a variety
of levels: some tasks will perform meta-level operations, whereas others will perform
object-level tasks only. We allow all tasks to contain a mixture of object- and meta-
rules: sometimes, the meta-rules will interpret the object-rules in a task in a way similar
to ELEKTRA'S interpreters. However, since we now view interpretation as a separate
type of task, tasks can refer to and use other tasks. We believe that this cleans up the
structure oELEKTRA in a crucial way.

A second way in whickpsdiffers fromeLEKTRA is in the structure of its rules. The
ELEKTRA rule structure was the conventional bipartite one: each rule had a condition-
part and an action-part.

From our experiments WithLEKTRA, it became clear that rules were used in very dif-
ferent ways, even though they had a uniform structure. This occurs because of the dif-
ferent ways in which the interpreters treat rules. As a result, we have decided to
structurerpsrules as frame-like objects: this allows different interpreters to define the
attributes that they access when interpreting rules (this is similar to Lenat's treatment of
rules iNnEURISKO). A classic example of what we want farsis the distinction between
an approximate and a definitive test of relevance. Some rule interpreters may want a

5 Tasks are not necessarily viewed as executing concurrently, although this is a possibility. Certainly, many
tasks can be simultaneously active: whether this is implemented as parallelism is another matter.



rough test of relevance before considering a rule for execution; others may be more cau-
tious and require a stronger test; yet another example iglss condition that has
been proposed by a number of authors.

The fundamental point is that, becagsexkTRA allows rule interpreters that interpret
conditions in different ways, it becomes impossible to tell what a condition actually
means. IIRPS we want to be able to give a semantics to the representations that are used
in the system.

The desire to include, reason about and to enforce semantics is one of the principal
aims ofRPS We want to enforce semantics because we want to avoid the problems we
encountered in the blackboard specification (and in the construction of a number of
blackboard applications): entry attributes are too often considered to be symbols which
do not have a fixed interpretation. In Craig, 1991b, we propose a framework similar to
that adopted foBs™ which would enforce the semantics of attributeRAg because
it is a reflective system, what is the equivalent of attribute semantics needs to be avail-
able to the system itself.

Although we do not intendpPsto be a real-time interpreter, nor yet one which oper-
ates in safety-critical domains, we want to be able to experiment with aspects of reflec-
tion that may well have some relevance to these areas: for example, it would be of
considerable utility if a system could diagnose and even repair its own faults; the ability
of a system to reason about its own limitations and capabilities has already been noted.

The enforcement of semantics also impacts upon working memaypsiwe have
decided to organise working memory as an abstraction hierarchy. The objects which re-
side on each abstraction level are (instances of) frameseKTRA, working memory
elements are instances of relations. NothingLEKTRA, however, really says what a
relation symbol means: it is just a symbol which can be pattern matched (or, in some
cases, executed). Rpsthe idea is that, because working memory elements are objects
with considerable internal structure, they can be described and defined: this information

can then be made available to the system in its inferential procs&ipgrticularly

simple example of the kind of issue that can be handled is semantic well-formedness: a
constraint can be easily applied in #rsarchitecture which forbids the co-occurrence

of two particular attributes in the same working memory structure.

The adoption of a frame system also allows variation in the methods by which struc-
tures in working memory are accessed. In particular, information may be fetched from
other parts of the frame hierarchy when a working memory fetch is performed. This
suggests that working memory structures can refer to other information: for example,
contextual information. This additional information can be accessed as a one-step pro-

6.
objects.

Similar things can be done in a logic or in a production system: below, we explain why we use structured



cedure if the access method enables it. Another way of viewing this property of working
memory is that pieces of procedural code can be used to access working memory and
that these code pieces can be given an explicit definition, and, hence be subjected to in-
ference. IrELEKTRA, the system relies on a uniform access methoELERTRA it is a

linear search which uses unification as its test): this entails that 'implicit' information
must be derived either as the result of inference or else as the result of multiple working
memory fetches.

This, then, is the backgroundres To date, we have completed only a part of the
specification. The current state of the specification is as follows.

We have specified the entire frame system. This involves the specification of the
frame database, access operations on frames, frame addition operations and slot inher-
itance (single inheritance of a traditional kind). We have not yet specified demons such
asif-neededandif-added methods: we are not yet convinced of their utility within the
context ofRPS

Because of its procedural interpretation, we have also given a denotational (standard)
semantics (in Z) for a provisional rule language. The rule language is used to define the
rules thaRPswill use in problem-solving. The language contains predicates, relations
and actions as well as local variables. An essential component of the language is the
way in which it treats the state of the frame database: this serves the role of the store in
the semantics. At the time of writing, the rule language is still an experimental aspect
of the system.

The remaining components are all relatively simple to specify, and we are leaving
them until we have a better understanding of the ways in which rules and frames inter-
act.

In the work orrRPS we are concentrating on using the formal specification as a way
of experimenting with the design and with the concepts in an Al system. To date, we
have found that it has been an extremely useful way of working. The approach we are
taking to the design is not that of concentrating on structures which are easy to specify:
instead, we are using the formal structures to help us determine what useful structures
can be defined. Utility is an informal concept which is based upon the implications of
properties of those structures which we have considered to date. AS BHIIRA, we
are also using the Z specification to develop a formal model of the system. However,
the emphasis is now rather more on semantics than on implementation structures: the
relative lack of semantics was one of the important lessons @&LHKRA experi-

ment. This fact is demonstrated most clearly in our need to give a denotational seman-
tics for rules and their component structures: the denotational semantics, when

7 We have, in fact, attempted a denotational semant®EafrRA. The result was unpromising because the
semantics looked like a much more abstract version of the operational semantics: what appears necessary is a seman-
tics which more closely resembles a model of a first-order theory.



complete, will help in defining what rules do—in other words, the semantics will help
us in producing models of rules. To date, we are amply satisfied with the use of Z in
specifying the program and in defining the semantics.

4 CONCLUSIONS

In this paper, we have briefly surveyed our use of the Z specification language in the

specification of Al systems. We have completed specifications of three systems and

have a fourth in a relatively advanced stage of development. In the casel@idhrea

system, we found that the formal specification greatly assisted in the production of

code: the programming task would have been somewhat more difficult if we had not

bothered to produce and refine a Z specification as an initial stegLEOrRA, we

found (as we had expected) that time required to produce the Z specification was worth-
while because it meant that we had already spent time in analysing the system, in iden-
tifying problem areas, and in finding acceptable solutions to problems.

For the blackboard interpreter specification, we found the entire exercise extremely
useful in that it enabled difficult concepts to be better understood (dispite our consider-
able experience in the field). The blackboard specification has been refined in some ar-
eas, and we hope to refine the entire specification down to code level, the end result
being a complete implementation based upon a formal derivation process.

In our more recent Z specifications, we have extended our goals. In addition to spec-
ifying the code that implements a system or program, we are now interested in the prob-
lem of semantics. In the blackboard anESANDRA specifications, we found that it
was hard to deal with matters of attribute interpretation; in addition, we found the pure-
ly operational view of the systems somewhat restrictive. This can be seen most clearly
in the way in which Knowledge Sources were treated in the blackboacdasaNDRA
specifications. In theLEKTRA andrpsspecifications, we are interested in using the for-
mal specification as a basis for models that the programs themselves maintain and ma-
nipulate: this clearly entails a semantic component in the model because we would like
to capture the 'intended' interpretation.

Although we have found Z to be quite capable of formalising a semantics, there are
difficult, conceptual problems that remain to be solved. To date, we have concentrated
on a version of semantics that deals exclusively with the behaviour of the systems in
purely computational terms (although we have not attempted to specify time-space be-
haviour). The rich variety of mathematical concepts that the Z language contains has
certainly made this task easier than it would have been in the more austere setting of
pure, first-order logic (whether typed or not). What we really do need is a form of 'nat-
ural’ semantics which will relate the formal structures in the program to the world—in
a sense, this is the old problem of how applied mathematics has a sense. We have ar-



gued elsewhere that a different conception of semantics is required (Craig, 1991f), but
our investigations are, as yet highly incomplete. However it turns out,iswtlaar is

that any reflective system must be able to reason about a great many things: our work
on formal specification in this area has shown that formal specifications are a useful
tool in developing models that programs can manipulate. At the very least, we may
have found a method for developing systems that are able to reason about their own be-
haviour in case of failure.

In conclusion, we state two things. Firstly, we believe quite strongly that formal spec-
ification is anextremely useful tool in the development of those components of Al sys-
tems that are more or less stable (interpreters, that is). Second, because we have only
worked on the specification of interpreters (for our concern has, for part of the time,
been with the control behaviour and with trying to make control behaviour as rich as
possible), we have ignored the specification of representation languages. The rigorous
specification of representation languages is crucial because it relates that which is en-
coded to some external world. This, second, aspect is what we are beginning to tackle
in therRPsproject. As we have noted, the semantic issues are complex and the relation-
ship between the knowledge encoded in a system, and the computational behaviour the
system is expected to exhibit, is only part of the general problem of correctness in Al
systems.
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