THE UNIVERSITY OF

WARWICK

Original citation:

Naik, Y. (1991) A temporal approach to requirements specification of real-time systems.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-201

Permanent WRAP url:
http://wrap.warwick.ac.uk/60888

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60888
mailto:publications@warwick.ac.uk

Research Report 201

A Temporal Approach to Requirements
Specification of Real-Time Systems*

Yogesh Naik

RR201

This paper describes a specification notation of temporal logic to describe the requirements of
real-time systems. The notation is extended by a calculus of occurrences of predicates. Using
the logic and the calculus we show that common real-time properties such as durations, number
of occurrences, precedence and other properties can be described. It is then used to describe
the IEEE 802 Token Bus specification.

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom November 1991

-3 3 0 0 1 7]

A Temporal Approach to Requirements
Specification of Real-Time Systems™

Yogesh Naik
Department of Computer Science
University of Warwick
Coventry CV4 7AL, UK.

Abstract

This paper describes a specification notation of temporal logic to describe the re-
quirements of real-time systems. The notation is extended by a calculus of occurrences
of predicates. Using the logic and the calculus we show that common real-time proper-
ties such as durations, number of occurrences, precedence and other properties can be
described. It is then used to describe the IEEE 802 Token Bus specification.

1 Introduction

In recent years there has been considerable interest in specification of real-time systems.
For a real-time system, one needs to specify requirements of responsiveness of events and
satisfy timing constraints. The responsive requirement merely states a temporal relationship
between events, say p and g. There is no need to specify when p and ¢ must occur or what
their durations must be. To specify timing constraints several alternative approaches have
been suggested. These can roughly be grouped into two distinct approaches: explicit clock
and bounded operator. In the explicit clock approach, no new operators are introduced.
Instead to refer to time, a flexible variable T is used to denote the current value of a
global clock. Various examples of this style of specification can be found in the literature, for
instance RTTL [Ost89], GCTL [PH88], and XCTL [HLP90]. On the other hand, the bounded
operator approach introduces new temporal operators to describe timing constraints. For
each temporal operator (such as <, O) a new temporal operator is defined. For example, the
temporal operator O<-¢ is used to state that ¢ will eventually be true within 7 time units
from now. This approach is described in [Koy89]. A similar approach is taken in Timed
CTL (TCTL) [ACD90], where for each temporal operator of Computation Tree Logic (CTL)
[EC82] a new operator is defined with subscript to restrict its scope in time. There are various

*To be presented at the Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems.
Nijmegen, The Netherlands, January 1992

other approaches to real-time specification which donot fall into the above classification. A
calculus of durations is introduced in [CHR91] to reason about timing constraints of time-
critical systems. It uses a calculus of integrals of duration of states in an interval to state
timing properties of a system. It is based on an interval temporal logic [MM83] in which
integrals of durations of a state are considered as variables. It differs from other approaches
because it doesnot make any explicit reference to time. An alternative approach where time
isexplicitis taken in RTL [JM86]. RTL uses an occurrence function which returns the time of
occurrence of an event. Times of different events can be compared to state timing properties.

The main focus of the use of temporal logics and the need to extend its expressive power
has been the specification and verification of programs [MP81, BKP84, HW89] but not in
describing requirements of systems. Consider the following example.

Example : “The nodes on a token bus communicate by passing frames. The right of access
to the network is regulated by using a token frame, which a node may hold for a maximum of
20 time slots. During the period a node holds the token, it can perform general maintenance
by sending frames. For example, to grant an opportunity to other nodes to insert themselves
in the ring, the token-holder sends a solicit-successor frame. If there is no response, it tries
twice before taking any other action.”

To describe the above example, one needs additional concepts and operators. For instance,
the statement “a node may hold the token for a maximum of 20 time slots” requires a notion
of duration of a predicate. Another example is the statement “If there is no response the
node tries twice before taking any action” can be expressed more naturally if we can count
the number of times the node sends the solicit-successor frame before it takes any action.
Moreover, operators such as during, precedes etc. seem to be more appropriate for describing
requirements.

The main contribution of this paper is to extend a temporal logic so that some additional
features and operators such as during, duration, and number of occurrences can be easily
expressed. Most specification approaches in computer science are based on the central notion
that events are instantaneous. In specification of real-time systems, we abandon this notion
in favour of events which may have extent in time. We can then specify common real-time
properties such as duration, precedence, inclusion of events etc. We further introduce a
concept of an occurrence of a predicate ¢ to denote a maximal interval by inclusion in which
¢ holds everywhere. By relating occurrences of predicates, we show that behaviours of
systems can be described. This can be compared with temporal logics where an occurrence
of a predicate is the time point at which it is true.

The rest of the paper is organised as follows. The syntax and the semantics of the logic is
presented in the next section. The proof theory is given in Section 3. Section 4 gives the
calculus of occurrences of predicates including behaviour rules for durations and number of
occurrences. Section 5 takes a description of the IEEE 802 Token Bus and uses the logic to
formally specify it.

2 The Temporal Framework

2.1 Syntax

The basic symbols of the language consists of constants, variables, propositions, functions
and predicate symbols. We use the usual set of propositional connectives: negation (—), and
implication (=) and the first-order universal quantifier (V) which is applied only to variables.
The modal connectives we use are weak next (©), weak previous (@), weak until (U) and
weak since (S). Formally,

1. If ¢ and ¢ are formulae, then so are —¢, and ¢ = 1.

2. If z is a variable and ¢ is a formula, then Vz.¢ is also a formula.

3. If ¢ and ¢ are formulae, then so are O, U, Oy, and @S

Other operators are defined syntactically using these connectives.

2.2 “:Semantics

We define a model M = (I, 0,t), consisting of an interpretation function I, a mapping o
called behaviour and ¢ is a time point. '

e The interpretation function I specifies a nonempty set D and assigns constants, function
and predicate symbols to elements in D. For a constant c, I assigns a fixed element in
D, for a n-place function symbol I assigns a function D; x D, ... D, into D, and for
a n-place predicate symbol it assigns n-ary relation in D.

e Let T be an infinite domain of time values which is linearly, ordered and closed under
addition and ST AT E be defined as a set of mappings from a set of variables VAR to
a set of values V AL. i.e. it assigns values to variables.

STATE = {s|s: VAR — VAL}
Then a behaviour ¢ is a mapping from 7" to STATE.

Definition 2.1 (Well-formedness) In the rest of the thesis, we will consider only those
behaviours which observe the following properties. These properties are essentially
those which rule out the possibility of infinitely many state changes in a finite time i.e.
finite variability (cf. [BKP86])

VE((BE.(F >t Ao(t) £ o) = " .(t <t" Ao(t") = a(t)
AVE".(t < t" <t = ot") = o(t)))

The property states that if there is a future instant in which a change in state occurs
then there is a first such time point.

Vi (3.t <t Ao(t) #o(t)) = 3.t <tAo(t") =o(t)
AVE" (" <t" <t = a(t") = a(t)))

The second property is similar for the past instances.

e The time point ¢ € T is the point at which the formula is being interpreted.

Given a well-formed formula A, its meaning is given inductively below. For readability, we
have removed I from the definitions. The value of a term 7 under M is denoted by 7|7 with
I implicit in the definition.

e For a constant
elf = I(¢)
e For a variable
zlf = (o(t))(2)
e For an n-ary function
F(ty, oo ta)l] = I(F)(01]7 55 8alf)
i.e. the value given by the application of I(F') to the value (t1,...,tn).
e For an n-ary predicate ¢(ti,...,t,)
(I,0,t) E o(t1y...,ta) iff I(@)(t1]7,. .., tal])
An n-ary predicate is true iff it holds at time t.
¢ For negation
(0,t) |~ iff not (o,t) =
— holds iff ¢ does not hold.

e For implication

(0,8) = ¢ = iff (0,1) k= o implies (0,1) |= ¥
¢ = 1 holds iff ¢ implies .

e For universal quantification

(0,t) = Vz.piff foreveryd € D (o,t) = ¢(d/z), where ¢(d/z) is obtained
by substituting d for all free occurrences of z in ¢

e For weak next

(0,1) | Opiff 3t.(t <t A(0t) @ Aa(t) # o(t)
A(VE (t<t <t =>0'(t)—a(t))
wi'(t<t" <t = a(t") = a(t))))
Wi (t <t = a(t) = o(t))

O holds now iff ¢ is true at some time t' in the future and the state at that instant is
different from what it is now and does not change between now and t' or no such ¢
exists.

e For weak until

(0,t) = QUiff H.(t<t A(o,t) FYAVE.(t <t <t = (0,8) E 9))
Wit <t = (0,t) F @)

©Uqp is true iff there is a future instant in which ¢ is true and ¢ holds holds continuously
until that instant or ¢ holds in all future instances.

e For weak previous

(0,) [@piff 3t.(1 <tA(0,t) EpAa(t) #o(t)
AV (t’ <t <t= ot) = o(t))
W't <t <t = o(t") =o(t))))

Wi'.(t <t = o(t) = o(t))

@¢ holds now iff ¢ is true at some time t' in the past and the state at that instant is
different from what it is now and does not change in the interval between now and t
or no such ¢ exists.

e For weak since

(0,8) |2 @Sy iff 3t'.(¢ <tA(o,t) EYAVE.(t <t" <t =(0,t") F o))
Wit <t=(0,t))

¢St is true there is an instant in the past in which ¢ is true and ¢ holds continuously
since that instant or ¢ holds in all past instances.

5

A wif A is logically valid iff A is true for every model. This is denoted by

= A

Following are syntactic abbreviations for temporal operators.

DF1. O¢p 2 ,Ufalse DP1. B¢ £ ¢S false

DF2. Op 2 ~O-¢ DP2. ¢ 2 -E -
DF3. @l 2 U AOp DP3. oSy £ oSy A O
DF4. ®p 2 -0 - DP4. ©p £ ~ @ ¢

DF5. gt 2 o Alltp DP5. oS8t £ o A @Sy
DF6. oUth 2 o AUy DP6. oS+ = ¢ A oS

3 Proof Theory

The proof theory consists of seven axioms each for propositional part of the future and past
fragments.

Axioms
Fl. F O(p = ¥) = (O = Oy) Pl FB(p =)= (Bp=0E1)
F2.FO(p=¥) = (0p = 0¥) P2.F0o(p=14)= (0 = 0¥)
F3.FOwp=>-0¢ Pl FOp=-0¢
F4 FOp=>pA0OQ@p PAFBp=>pAB Qo

F5. F O(p = Op) = (¢ = Op) P5. B (p = 0p) = (¢ = B¢)
F6. F pUp & (% V (9 AO(pUY))) P6. F ¢St & (¥ V (¢ A O(¢SY)))
F7. F Op = Uy P7. F B¢ = ¢Sty

(@)

Axiom F1 states that if ¢ always implies 1 in the future then if ¢ holds in the future then so
does 1. Axiom F2 is similar to F1 for the “weak next” operator. Axiom F3 establishes that
if there exists a next state in which = holds then ¢ does not hold in the next state. Axiom
F4 states that the present is part of the future. It also states that henceforth either ¢ is true in
the next state or ¢ is always true. Axiom F35 states that if it is always the case that ¢ implies
that in the next state ¢ holds then if ¢ holds now then ¢ always holds. Axiom F6 defines “
weak until” recursively by stating that either 1 is true now or ¢ is true and in the next state
U1 holds. Axiom F7 states that “henceforth ¢ implies ¢Us holds. Axioms P1-P7 are
symmetric to F1-F7 for the past fragment.

There are two inference rules : modus ponens, and OE Introduction

Inference Rules

R1. Modus Ponens

Fo,Fo=>19
F

R2. O and & Introduction

Fo
FOpABgp

4 A Calculus of Occurrences
Let #; and ¢, be such that ¢; < #,. Then, we say that intervals of the form [t1,12]) are closed.

Definition4.1 (Occurrence of a predicate) An occurrence of a predicate ¢ is defined as a
maximal interval (by inclusion) in which ¢ holds everywhere in that interval.

Given a first order predicate ¢, a time point ¢ and a computation sequence o, we define a
function p which return a set of occurrences of a predicate ¢ which occur after the time point
t.

plg,t,0) = ([t t]| t <6 S AVE.(f < t <t = (0,1) = @)
AT (<t AVE (< t" <t = (0,t") E)
AT (E <t <t AVE.(H <t <ti = (0,t") E ©)}

Given a computation sequence ¢, and a time point ¢, we define number of occurrences of a
predicate as the cardinality of the set p.

#(p,t,0) = #p(p,,0)

Let p be a sequence obtained from p such all its members are in p and they are ordered by
precedence relation on intervals.

We define the duration of the it* occurrence of a predicate as the duration of :** member of
p.

. t, —t; if [t1, 1] is the i*F occurrence of ¢
D(p,i,t,0) = { 0 OthCIZWiSC

An occurrence predicate is a predicate on number of occurrences of predicates ¢1, ... , Pm. If
Ny, ..., N, are free variables corresponding to the number of occurrences of predicates
@1, ¢mand OCC[N ..., N o] is a general predicate over the number of occurrences,
then the semantics of an occurrence predicate is given by

(0,) £ OCCIN 1., Npm] iff OCC(p1,1,0), .., #(pm,1,)]

We can similarly define a predicate for the duration of an occurrence of a predicate and its se-
mantics. If D(¢1,1),...,D(¢m, j) are free variables corresponding to predicates @i, ... , ¥m
and DUR[D(¢1,1),...,D(¢m,)] is a general duration predicate, the semantics of a duration
predicate is given by

(0,1) = DUR[D(¢1,1), .-, D(¢m,5)] iff DUR[D(p1,5,,0),..., D(@m, 4,1,)]

Occurrence and duration predicates are true for amodel M = (o, t) iff M satisfies them and
they are false iff M does not satisfy them. They are valid iff they are true for all models.

4.1 Behaviour Rules

The following are valid rules for occurrences of predicates in the logic.

Rule S1 states that the number of occurrences of false is zero.
S1. N(false) =0
Rule S2 states that the number of occurrences of any predicate is non-negative.

82. N(p) 20

S3 states that the difference in the number of occurrences of a predicate and its negation is
either zero or one.

$3.0< [N(p) = N(~¢)| <1

Rule S4 states that if henceforth ¢ is true then the number times it occurs is one.

S4. Op = (N(p) = 1)

Rule S5 states that number of occurrences any predicate either remains the same or decreases
in the next state.

$5. (N(p) = mAOWN () = n) = (m 2 n)
Rule S6 is similar rule to S5 for the previous state.
86. (N (p) =m A @(N(p) =n) = (m <n)

The total duration of a predicate is defined as

i N(e)
T(p) = ; D(p,1)

Rule S7 states the duration of false is zero.
S7. Vi.D(false,i) =0

Rule S8 states that duration of any occurrence of a predicate is greater than or equal to zero.
S8. Vi.D(p,t) > 0

Rule S9 states that total duration of any two individual predicates is the sum of durations of
their disjunction and their conjunction.

89. T(p) +T(¥) =T(p V¥) + T(0 A ¥)

Some theorems about occurrences of predicates are given in Appendix A.2.

4.2 Relating Occurrences of Predicates

Given predicates ¢ and 1, we use syntactic abbreviations to relate occurrences of predicates.
Five operators are defined : occurs before, during, occurs immediately before, precedes and
includes.

@ < 1 (occurs before) if true iff (i) the current occurrence of ¢ is followed by an occurrence
of 1 with no occurrences of ¢ in between (ii) or the current occurrence of ¢ is preceded by an
occurrence of ¢ with no occurrences of ¢ in between. It is described using two disjuncts w;
and w,. w; states that ¢ is true now and will become false and remain false until 1) becomes
true.

wi £ @A (pU (el ((~p A =$)U*Y))
V(pU((p A ~)U (—p A 1))

w, states that ¢ is true now and ¢ has been true sometime in the past and became and remained
false until) became true.

wy 2 PA (PS(PS((— A ~p)S*p))
V($S((1 A)5t (=% A ¢))))

¢ 1 is then defined as
pd ¢éw1Vw2

¢ A 9 (during) is true iff the current occurrence of ¢ occurs during an occurrence of ¥ or
the current occurrence of 1 has an occurrence of ¢ within it. It holds iff % is true now and
either wy, wy, OT ws is true.

wy is true iff ¢ is true now and became true after) became true and will become false before
) becomes false.

wi = ¢ A (PU-p) A ($5¢)

!

w; is true iff ¢ is false now and will become true and then false before 3 becomes false.

wy 2~ A (BU(((p A) Ur0)))

ws is true iff ¢ is false now and became true and then false before 1 becomes false.

w3 2 ¢ A (PS(((¢ A $)ST)))

o A1 is then defined as
CAPE YA (W VwVws)

<19 (occurs immediately before) is true iff (i) the current occurrence of ¢ occurs immediately
before an occurrence of 1 (ii) or the current occurrence of 3 occurs immediately after an
occurrence of ¢. It is described using two disjuncts : w; and w,.

w; states that ¢ is true now and will become false when 1) becomes true.

10

wi = @ A (QU((@ N ~P)U* (~p A1)
w, states that v is true now and became true when ¢ became false.
wy £ P A BS((¥ A ~p)SH(~ A p)))
¢ < 1 is then defined as
09 2w Vw
Precedence (<) and inclusion (C) are then defined using the following abbreviation.
alwaysyp = OpABog
Precedence (<) is defined as
¢ <9 2 always(p = ¢ < ¥) Aalways(pp = ¢ <1 9)
and inclusion (C) as
¢ C ¢ £ always(p = ¢ A) Aalways(d = ¢ A)
Precedence is transitive while inclusion is transitive and reflexive.

Theorems related to the above operators are given in the Appendix A.1 .

5 Example

The example we are concerned with is described below. The informal specification is

originally from [Pic86].

5.1 The Specification Statement

The token bus is a technique used for controlling access to a communication bus. Nodes
on the bus are assigned logical positions in an ordered sequence so that they form a logical
ring. Bach node is assigned an address. All active nodes know the address of the active node
preceding it and the one following it. The last member of the logical ring is followed by the

11

PRED=C
SUCC=D

PRED=D PRED=A
SUCC=A SUCC=C

Figure 1: Token Bus

first. The physical position of a station on the bus is irrelevent and independent of the logical
ordering. Figure 1 illustrates the bus network.

Communication between nodes is achieved by passing frames. There are six types of frames
. token, solicit-successor, set-successor, resolve-contention, who-follows and claim-token.
The token frame is used for regulating the right of access to the bus. It contains a destination
address and the node receiving the token is granted access to the bus for a specified time
after which it passes the token frame to the next node in the logical order. During the period
a node holds the token, it can transmit frames, it may also drop itself from the ring, poll
other nodes and send messages. An inactive node can only respond to polls or request for
acknowledgement. As part of maintenance, the token bus provides following functions.

1. Deletion of a node. A node may voluntarily remove itself from the ring.

2. Addition of a node. Periodically, inactive nodes are granted an opportunity to insert
themselves in the ring.

3. Fault management. A number of errors can occur. These include duplicate addresses
(two nodes think it is their turn) and a broken ring (no node thinks that it is its turn).

4. Ring initialisation. When the ring is started up, or after the logical ring has broken
down, it is reinitialised. A decentralised algorithm is used to sort out the logical order.

5.2 Formalisation of Requirements

There are six types of frames.

frame : {token, sol_succ, set_succ,res_cont, who_follows, claim}

12

o —— p—

Each node in the ring knows the address of its logical successor and predecessor. That is,
given an address of a node, we define functions, succ and pred which return addresses of a
node’s successor and predecessor respectively.

succ : address — address
pred : address — address

We also denote the period during which a node A holds the token by a predicate H(A). H(A)
is true iff a node with an address A holds the token and false otherwise. A node may send
frames to other nodes. S(F, A, X) is true iff the node with address A sends a frame F to a
node with address X.

Predicates

H(A) : node with address A holds the token
S(F, A, X) : node with address A sends a frame F to a node with address X

We inciude the following general requirement about the duration each node may hold the
token where c is some constant.

;;7’3:, i.D(H(z),:) <L c

5.2.1 :Deletion of a node

If a node wishes to drop out, it waits until it receives the token, then sends a set-successor
frame to its predecessor, instructing it to change its successor to be the token holder’s
SUCCessor.

Figure 2 illustrates the operation of allowing a node to drop out of the ring, using a timing
diagram . It is formalised in stages below.

If a node wishes to drop out, it waits until it receives the token, then sends a set-successor
frame to its predecessor.

S(set_succ, A, pred(A)) A H(A)

The predecessor splices to the token holder’s successor after receiving the set-successor
frame.

S(set_succ, A, pred(A)) < (succ(pred(A)) = succ(4))

13

11 S(setsucc, A, pred(A))

! [

u succ(pred(A)) = succ(A) |

H{(succ(A)) [
H(A) [|

Time

Figure 2: Timing diagram for the delete operation

The token holder passes the token to its logical successor.
H(A) 4 H(succ(A))
The delete operation can now be described:

delete 2 O(S(set_succ, A, pred(A)) =
(S(set_succ, A, pred(A)) A H(A)
AS(set_succ, A, pred(A)) < (succ(pred(A)) = succ(A))
NH(A) 2 H(succ(A))))

5.2.2 Addition of a node

Each node in the ring has the responsibility of periodically granting inactive nodes to enter
the ring. While holding the token, the node issues a solicit-successor frame, inviting inactive
nodes with an address between itself and the next node in the logical sequence to demand
entrance. Let the set of nodes between the node A and the next node in the logical sequence
be

I(A) 2 {y]A < y < succ(A)}
The token holder sends a solicit-successor frame to all the members of the above set.

send_sol £ Vz € I(A).S(sol_succ, A, z)
solicit 2 send_sol = (send_sol A H(A))

14

The transmitting node then waits for a response window. We denote a node A waiting for a
response window by a predicate W (A).

wait 2 send_sol = (send_sol A W(A) A W(A) A H(A))
The duration of the wait period is 1 time slot.

Vz,i.D(W(z),2) =1
Three events can occur.

1. No response. Nobody wants to enter the ring, in which case the token is transferred to
the logical successor.

no_resp & (-3z € I(A).(S(setsucc, z, A) A W(A)) A send_sol I W(A)
AW (A)) = H(A) < H(succ(A))

2. One response. There is exactly one response by issuing set-successor frame. The
token holder sets its successor node to be the requesting node and transmits the token
to it. The requestor sets its linkages accordingly and proceeds.

one_resp = Iz € I(A).(S(set_succ,z,A) A W(A) A send_sol I W(A)
AW (A)) = (H(A) 9 H(z) A (S(set_suce,z, A) A succ(A) = y)d
(succ(A) = z A pred(z) = A A suce(z) = y))

3. Multiple Responses. The token holder will detect a garbled response if more than
one node demands entrance. The conflict is resolved as follows. The token holder
transmits a resolve-contention frame and waits four demand windows.

send_res & Vz € I(A).S(res_cont, A, z)

We denote a node A waiting in a demand window by following state predicates.

Wi(A) : Node with address A waiting in demand window 1
W>(A) : Node with address A waiting in demand window 2
W3(A) : Node with address A waiting in demand window 3
Wi4(A) : Node with address A waiting in demand window 4

The duration of each demand window is 1 time slot.
Vz,1.D(Wi(z),1) = D(Wa(z),1) = D(Ws(z),t) = D(Wa(z),2) =1

15

Each demanding node can respond in one of these windows. If a demanding node
hears anything before its window comes up, it refrains from demanding. If the token
holder receives a valid set-successor frame, it is in business. Otherwise it tries again,
and only those nodes that responded the first time are allowed to respond this time.
This process of resolving is defined as

resolve & (Wi(A) 4 Wa(A)V Wy(A) I Wa(A)V Wi(A) < Wa(A))
AW (A) A H(A) AW (A) A H(A) A\W3(A) A H(A)
AW4(A) A H(A)
A(set_wl = —(set-w2 A set_w3 A set_w4))
A(set_w2 = —(set-w3 A set_w4))
A(set-w3 = —set_w4)

set_wl, set_w2, set_w3, and set_w4 are defined as follows.

set.wl £ 3z € I(A).(S(setsuce,z, A) A Wi(A))
set.w2 2 3z € I(A).(S(set_succ, z, A) A Wi(A))
set.w3 2 3z € I(A).(S(set_succ, z, A) A Wi(A))
set_.wd 2 3z € I(A).(S(set_suce, z, A) A Wi(A))

The process is continued until one of the three events occur.

(a) A valid set-successor frame is received, and the token is passed.

valid 2 31z € I(A).(S(set_suce, z, A) A S(set_succ, z, A) A Wi (A)
AH(A) 4 H(z) A (S(set_succ, z, A) A succ(A) = y)d
(succ(A) = z A pred(z) = A A suce(z) = y)))

(b) No response is received and the token is passed to the logical successor.
zero_resp = Wi(A) A —set-wl A H(A) < H(succ(A))

(c) The maximum retry count is reached and the token is passed to the logical
successor. Let z be the number of retries when the resolve-contention frame is
sent and maz be the number of retries allowed.

maz_resp = H(A) < H(succ(A)) A H(succ(A))
AN (Wi (A)) = z — maz

Let two or more nodes responding in the response window be defined as

many A3z, y.(S(set_succ,z, A) A W(A) A S(set_succ,y, A) A W(A)
Az # y)

16

Condition Action
Multiple Tokens Drop the token
Unaccepted Token | Retry

Failed Node “Who follows” process
Failed Receiver Drop out of the ring
No Token Initialize after timeout

Table 1: Fault Management

mult_resp is then defined as

mult_resp 2 (W(A) A send_sol A W(A) A many A N(Wi(A)) =)
= (send_-res A H(A) AW (A) 4 (send_res
A(resolveld (validV zero_resp V maz _resp)))

The complete operation is as described below.
add & O(solicit A wait A (no_resp V one_resp V mult_resp))
5.2.3 Fault Management
Fault Management by the token holder covers a number of contingencies, see Table 1.

Multiple Tokens

While holding the token, a node may hear a frame indicating that another node has the token.
If so, it immediately drops the token by reverting to listener mode. In this way, the number of
token holders drops immediately to one or zero, thus overcoming the multiple-token problem.

Let mult_token be defined as
mult_token = H(A)NH(B)AA# B
then

O(mult_token = mult_tokenld(~H(A) V ~H(B)))

Unaccepted Token

17

Upon completion of its turn, the token holder will issue a token frame to its successor. The
successor should immediately issue a data or token frame. Therefore, after sending a token,
the token issuer will listen for one time slot to make sure that its successor is active. This
precipitates a sequence of events:

1. If the successor node is active, the token issuer will hear a valid frame and revert to
listener mode. If the issuer does not hear a valid frame, it reissues the token to the
same SUCCESsor one more time.

issue_token 2(W(A) A H(A) Q W(A) AS(token, A, z) I W(A)
A-(3f,y-(S(f,2,y)) AW(A))) = W(A) D S(token, A, z)

2. After issueing the token the second time, the token issuer may hear a valid frame in
which case it is in business or it assumes that its successor has failed and issues a
who-follows frame, asking for the identity of the node that follows the nonresponding
node.

token_again & (W(A) A ~(H(A) < W(A)) A S(token, A, z) 4 W(A)
A ~(3f,y.(S(f,z,y)) A W(A)))
= W(A) 4 Vy.S(who_follows, A, y)

3. The issuer should get a set-successor frame from the second node down the line. If so,
the issuer adjusts its linkage and issues a token (back to step 1). If the issueing node
gets no response to its who-follows frame, it tries again.

We define

send_token £ S(token, A, succ(succ(A)))

send_who & Vy.S(who_follows, A, y)

send_set & §(set_suce, succ(succ(A)), A)

first_who & (W(A) A send_token 4 W(A)) send_who A send_who

then

issue_who £ W(A) A first_who I W(A)
A((—(send_set I W(A)) = W(A) 4 send_who)
V(send_set I W(A)
= W(A) < (succ(A) = succ(succ(A))))

4. Afterissueing the who-follows frame the second time, it may hear a valid set-successor
frame in which case it is in business, or it fails and the node issues a solicit-successor
frame to all the nodes.

We define sol_all and sec_who as

18

sol_all & Vy.S(sol_suce, A,y)
secwho £ (W(A) A send_who 4 W(A)) 4 send_-who A send_who

then

who_again & W(A) A send_who 4 W(A)
A((~(send_set A W(A)) = W(A) Q sol_all)
V(send_set 4 W(A)
= send_set 4 (succ(A) = succ(succ(A))))

. The issuer should get a set-successor frame from one of the nodes. If so, it adjusts its

linkages accordingly and issues a token. If the issueing node does not get a response
then it tries again.

We define first_sol as

First_sol £ (W(A) A send_who 4 W(A)) < sol_all A sol_all
then issue_solicit is defined as

issue_solicit = W(A) A first_sol 4 W(A) .
A(—~(3'z.S(set-succ, z, A) A W(A)) = W(A) Q sol_all)
V(z.S(set_suce,z, A) A W(A)
= S(set_succ,z,A) d (succ(A) = z)))

. If it fails, it tries again. If it succeeds then it adjusts its linkages. If after two attempts

, the node assumes that a catastrophe has occurred; perhaps the node’s receiver has
failed. In any case, the node ceases activity and listens to the bus.

We define second_sol as

second_sol £ (W(A) A sol_all 4 W(A))sol_all A sol_all

solicit_again 2 W(A) A second_sol 4 W(A)
A(3'z.S(set-succ,z,A) A W(A)
= S(set_succ,z,A) d (succ(A) = z))

The complete operation can be described as follows

unacc_token & O(:ssue_token A token_again A issue_who A who_again
Aissue_solicit A solicit_again)

19

5.2.4 Ring Initialisation

Logical ring initialisation occurs when one or more nodes detect a lack of bus activity of
duration longer than a time-out value: the token has been lost. This can result from a number
of causes, such as the network has just been powered up, or a token-holding node fails. Once
its time expires, a node will issue a claim-token frame. After transmission, a claimant listens
to the medium and if it hears anything, drops its claim. Otherwise it tries again. The process
repeats until a node succeeds. It considers itself the token-holder. The ring can now be
rebuilt by the response window process as described in the operation to add nodes.

We define a predicate T'(A) which holds whenever A is listening to the bus for some activity.
Its duration is ¢ time slots.

D(T'(A),:) =t
Then no_act defines the period there is no activity on the bus.
no_act & ~(3f,z,y.5(f, z,y) A T(A)) = T(A) < send_claim
We define send_claim as
send_claim = Vy.S(claim, A,y)
and the fact no other node claims the token as
no_other & send_claim I W(A) AW(A) A ~(3f,z,y.5(f,z,y) A W(A))
If no other node claims the token, then it considers itself the token holder.
claim £ no_other = W(A) <4 H(A)
The complete operation can be described as follows :

ring_init 2 O(no_act A claim)

20

6 Conclusion

The logic described in this paper is a temporal logic without stuttering. It departs from
the usual treatment by abandoning the central concept in most specification approaches that
events are instantaneous. There are many examples where one needs to consider events which
extend in time. For example, the delay action can not be described as instantaneous but has
a duration. Properties described using first order logic also have duration. Occurrences of
predicates were defined and used to describe behaviours of systems using operators such as
during, immediately before etc. A calculus of occurrences of predicates was introduced in
Section 4 to reason about the duration and number of occurrences.In Section 5, the IEEE 802
Token Bus was specified in the logic.

The use of intervals in requirements specifications in not new : for example, Zhou ChaoChen,
Hoare and Ravn [CHR91] use an interval logic extended with a calculus of durations to specify
timing properties, and RTL [JM86] to describe and analyse systems.

In duration calculus, timing constraints are described using integrated durations of states in
an interval. A duration of a state predicate ¢ in a closed interval [b, e] is defined by an integral
J§ o(t)dt and is denoted by a variable [. Itis easy to see that [true in any interval [b, €] is
e — band [false is zero. Given this definition, axioms are given which relate durations of
different predicates and theorems proved from them.

A further notation is introduced which converts a state predicate to an interval one ([¢]). [¢]
is defined as

[¢] £ o = [true A [true > 0

That is, [¢] holds in an interval iff it holds throughout a nonempty interval. Point interval is
defined as

[]-A—ftruezO

The definition of [g] differs from an occurrence of ¢ in one respect. While [¢] holds for
any interval where ¢ holds throughout, an occurrence of ¢ denotes a maximal interval (by
inclusion) where ¢ holds everywhere.

A further modal operator chop (¢ ~) is introduced and defined in an interval which can
be subdivided into two sub-intervals of which in the first ¢ holds and in the second
holds. Interval temporal operators eventually and henceforth are defined in terms of chop.
The resulting logic is very expressive for stating timing requirements using durations. For
example, the formula

Jtrue = 60 = [busy(m) < 50

21

asserts that in any given hour, m is not busy for more than 50 minutes.

In RTL, the event-action model captures timing constraints which are transformed into an
RTL formula. An RTL formula is formed using constants and an occurrence function. There
are three kinds of constants: actions, events and integers. The occurrence function @ is
introduced to capture the notion of time. Given an event e and a non negative integer ¢, the
@ function returns the time of the 2 occurrence of e. Using the occurrence function, one
can specify requirements such as periodicity and duration of events. For example, to state
that an action a occurs periodically every ¢ time units, a formula of the form

Vi> 1l.@(Ta,2+ 1) —@(Te,?) =c
is used. Ta and Ja are used to denote starting and finishing events marking start and finish of

the action a respectively.

Duration of actions is specified similarly. The formula
Vi > 1.@(la,t) — @(Ta,zi) = ¢

asserts that the time of finishing of an action a is exactly c time units after it started.

Further notations are used to denote that a state predicate is true in an interval. For example,
©[t1, t2] asserts that becomes true at £; and false at ¢;, and ¢[t1,t, > states that ¢ becomes
true at ¢; and false after t5. ¢[t;, tz] is the maximal interval ¢ is true everywhere and therefore
(in our terminology) defines an occurrence of . However, there are two major differences
between RTL and our approach. Firstly, RTL does not have any temporal operators and
secondly, we donot refer explicitly to time.

This paper describes only preliminary ideas on using temporal logic to specify requirements.
One of the aspects of future work is to investigate whether the primitives defined here can
specify large class of real-time systems. Also an area of investigation is the relationship
between the logic and programming languages such as a real-time extension of CSP.

Acknowledgements : I would like to thank my supervisor, Mathai Joseph for detail com-
ments on earlier drafts and to Asis Goswami and Liu Zhiming for numerous technical

discussions and ideas . Thanks are also due to the referees for detail technical comments and
improvements.

A Theorems

A.1 Theorems about A, <, and <

Following are some useful theorems stated without proofs.

22

p——

=3

[

I1.
12.
I3.
14.
IS.
I6.
I7.
I8.
9,

110.
I11.
I12.
113.
114.
I15.
I16.
I17.
I18.
119.

Fody=(oVe)

Feld =19

Feody=ed9

F=((-e) Ap)
FoAYpApAw=pAw
FeA@Aw)=>pAbApAw
Fo A (=5) = ~(p A)
FleVP)Aw=pAwVihAw
FeoAypVepAw=pA@Vw)
F=(p Do)
Fed(@duw)e(pdy)dw
FedypAhpdw=epd(PAw)
FpVY)dw=pdwVypduw
Fed (pVw)=eddpVedw
F(mp) = (pdy)

o (~¥) = ~(pd9)

F (e < @)
FleVyY)dw=pdwVypduw
Feod(®Vw)=pdypVedw

A.2 Theorems about Occurrence of Predicates

Following are some useful theorems stated without proofs.

M

1. T() + T(~¢) = T (true)

M2. T (p) < T (true)
M3. O(p = %) = O(T(p) < T(¥))

References

[ACD90] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time systems.
In Proceedings Symposium on Logic in Computer Science, 1990.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic
Proceedings of the 16th ACM Symposium on the Theory of

specifications. In
Computing, pages

51-63, Washington D.C., 1984.

23

[BKP86]

[CHR91]

[EC82]

[HLP90]

[HW89]

[IM86]

[Koy89]

[MMB8&3]

[MP81]

[Ost89]
[PH88]

[Pic86]

H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and
its temporal logic. In Proceedings of the 13th ACM Symposium on Principles of
Programming Languages, pages 173—183, Florida, 1986.

Z. ChaoChen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Unpub-
lished, 1991.

E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize syn-
chronization skeletons. Science of Computer Programming, 2:241-266, 1982.

D. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In
Proceedings Symposium on Logic in Computer Science, pages 402—413, 1990.

J. Hooman and J. Widom. A temporal-logic based compositional proof system
for real-time message passing. In Lecture Notes in Computer Science 360, pages
424-441. Springer-Verlag, Heidelberg, 1989.

F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems.
IEEE Transactions on Software Engineering, 12:890-904, 1986.

R. Koymans. Specifying Message Passing and Time-Critical Systems with Tem-
poral Logic. PhD thesis, Department of Mathematics and Computing Science,
Eindhoven University of Technology, Eindhoven, 1989.

B. Moszkowski and Z. Manna. Reasoning in interval temporal logic. In Lecture
Notes in Computer Science 164, pages 371-383. Springer-Verlag, Heidelberg,
1983.

Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal
framework. In R.S. Boyer and J.S. Moore, editors, The Correctness Problem in
Computer Science, pages 215-273. Academic Press, London, 1981.

J.S. Ostroff. Temporal Logic for Real-time Systems. Research Studies Press, 1989.

A. Pnueli and E. Harel. Applications of temporal logic to the specification of
real time systems (extended abstract). In Lecture Notes in Computer Science 331,
pages 84-98. Springer-Verlag, Heidelberg, 1988.

R. L. Pickholtz, editor. Local Area Networks and Multiple Access Networks,
chapter 1, pages 1-30. Computer Science Press, 1986.

24

