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Abstract

A novel method of segmenting images into regions which contain linear or
circular arc features is presented. The feature models are based upon spectral
properties, local estimates of which are provided, over a range of scales, by the
Multiresolution Fourier Transform (MFT). The algorithm ensures that detect-
ed features both accurately model the data and are consistent across scale. A
method of combining the primitive line and arc segments into more complex
features is also considered. Some results from application of the algorithm to a
number of natural and synthetic images are presented to illustrate its effectiveness
in practical applications.

1 Introduction

The problem of identifying boundary contours or line structures is widely recognised
as an important component in many applications of image analysis and computer
vision. Typical solutions to the problem employ some form of edge detection and
line following or, more commonly in recent years, Hough transforms (Ballard and
Brown [1], Illingworth and Kittler [2]). Because of the processing requirements of
such methods and to try to improve the robustness of the algorithms, a number of
authors have explored the use of multiresolution approaches to the problem (Princen
et al [3]). Non-parametric, iterative approaches such as relaxation labelling (Zucker
et al [4]) and “Snakes” (Kass et al [5]) have also been used.

In an attempt to overcome some of the limitations of these, a multiresolution

feature model based on a type of wavelet transform, the Multiresolution Fourier
Transform (MFT), was described in [6],[7],[8],[9]. This ‘local spectral’ model of line



and edge features uses a Markov process defined in the Fourier domain and gives both
estimates of the feature parameters and a measure of how well the feature models the
data. Efficient maximum likelihood estimation and decision procedures give a fast
segmentation of the image into a set of disjoint ‘single feature’ regions, of varying
scales, each region containing a single straight edge or line feature. Use of the MFT
allows any arbitrarily compact region to be represented independently of what is
present outside of it [6], and thus an appropriate scale can be chosen for any feature
in the image.

The work described here is an extension of these ideas, in which a given region can
contain multiple straight line or edge features or a circular curve segment. The gener-
al framework of frequency domain modelling is still employed and the estimation and
decision procedures are broadly comparable, both theoretically and computationally,
to the previous work. The scope of the model and consequently its utility have been
increased, without greatly increasing the computational requirements. The processing
takes place entirely within the framework of the MFT and does not require separate
edge detection processes, while the resolution of feature parameters is primarily lim-
ited by noise and does not affect the computational complexity, as happens with the
Hough Transform. Because the modelling is performed using an invertible transform
it is possible to measure the model error and, if required, produce an approximation
of the image based upon the estimated parameters [6]. A method of combining these
simple features into more complex curves is also described. The new method is shown
to be effective in segmenting a variety of synthetic and natural images.

2 Feature Detection Using The MFT

2.1 The Multiresolution Fourier Transform

The feature models are based upon spectral properties, local estimates of which are
provided by the MFT [6], in which the size of the ‘locality’ is dependent upon a scale

-

parameter. The continuous MFT for an image z(£) is defined by

#(€,0)=0 [ w(o(@—e(R) exp R SNT (1)

—C0

where 7 = /-1, E = (& &)T is a spatial position vector, & is the frequency vector,o
is a scale parameter and w(g ) a window function.

The discrete MFT, which is used in the feature extraction process, is similarly
given by

#i5m) & #(E(),3(n),0(m) ]
= Lun(o(6 — &mNa(b) oxp -6 ()] @)
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Figure 1: Parent - Child Relationship for Regions

where .’ denotes scalar product, n is the MFT level and specifies the discrete scale
parameter,o(n), & (rn) and &;(n) are the sampling points in the spatial and frequency
domains respectively. Each level of the MFT may be considered as a form of windowed
Fourier transform [10] or Gabor representation [11]. As such, the MFT may be
considered as a ‘stack’ of windowed Fourier Transforms, each level representing the
image at a different spatial resolution.

A region A;(n) is associated with each sample point &= (i1 &i2)T, such that

£eMi(n) < |&—&a| <E(n)/2,1=1,2 (3)

where Z(n) is the spatial sampling interval at level n. For a region A;(n) the set of
coefficients {#(z,7,n),0 < j < 42%(n)}, is a discrete estimate of its local spectrum.
The spatial blocks A;(n) conform to a quad-tree structure: to each block A;(n) there
correspond via (3) 4 blocks A;, (n+1), 0 < k < 3, which are disjoint and whose union
is equal to A;(n) (see Fig. 1),

3
A = U Aa (o +1) @
k=0
Figure 2 shows the levels of the MFT for a small image. In the spatial domain,
each region at level n is split into 4 at level n+1 (its children); thus spatial resolution
increases with n. The block of local Fourier coefficients for each of the children,
however, is a quarter of the size of that for the parent, i.e. the frequency resolution
decreases with n.
In the feature detection process, each block A;(n,), for some maximum scale index
N, is first checked against the feature model. This gives an estimate of the feature
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Figure 2: MFT Structure

parameters and a measure of how well the feature models the actual data, which
can be used to decide whether such a feature is present in the region. At the next
level, the relevant spectral properties for each block are estimated using the features
detected in its children, in such a way that if these correlate well with the data in
the block, consistency between the blocks features at the two levels may be assumed.
Each block that passes the consistency test is then checked against the model and
parameters estimated. This is repeated for all levels down to some lowest index n;.
Once level n; has been processed, an attempt is made to link the detected primitive
features into more complex features, using a continuity criterion based upon local
correlation. Figure 3 gives an overview of the algorithm.

2.2 Multiple Linear Features

The set of coefficients {Z(z,7,n),0 < j < 42%(n)} provides an estimate of the spec-
trum in a region A;(n) centered on the sampling point & (n). In the case where the
region contains a single linear feature such as an edge, the spectrum will be oriented
orthogonally to the feature orientation, and the phase will have a linear characteristic,
i.e. its partial derivatives, with respect to the two Fourier co-ordinates, will be con-
stant [8],[6]. The orientation is calculated by using the energy spectrum to construct

a moment of inertia tensor, as described in [12]. The gradient of the transform phase
is the vector ¢(¢,d, o) defined by

$(€,3,0) = darg (3(€,3,0))/05 (5)

In the discrete case the corresponding vector is written as g(z, J,n) and is estimated
using a fifth order FIR approximation to the partial derivative (Appendix A). From
the gradient, the feature centroid is estimated as the magnitude weighted average

Nik = arg (Z I"i(7'7.77n)|exp []¢k(i7j7n)])7k = 172 (6)
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The ratio p; defined by

- Zk; |3 1866, 5,m)  exp [ 3 m)11/2 3 18 , )| )

is then used to provide a measure of the consistency of the model with the data in
A;(n), and checked against a threshold ¢,.

If more than one linear feature is present, then it is necessary to segment the
spectrum into components due to each feature. If there are K features in A;(n), then
the general MFT coefficient may be written as

7.77n) Zl‘k ).7) (8)

where 2(z,7,n) is the contribution due to the k** feature. If these features have well
separated orientations, then to a first approximation, for each j,

|§:k(i:j) n)‘%;‘(%]a TI,)] = 6kl]:f:k(i7ja n)|2 (9)

In other words, the contributions from different features can be estimated directly
from the sum in (8). Clearly for each j, for some k

‘%(27]777‘) = ék(iujan) (10)

and hence, in the ideal case .
¢(z,5,n) =T, (11)
where 7;, is the centroid of the k* feature.

Assuming that this condition is met, a clustering approach based upon the phase
derivatives can be used to segment the coefficients into K sets - one for each of the
features. Of course, if any two or more of the features are in the same orientation,
the process will fail: a smaller scale will have to be used.

A version of the K-means algorithm, as described by Therrien [13], is used to
perform the clustering task:

1. Choose K arbitrary feature centroids within the spatial region - where K is the
number of features being sought;

2. Using the the phase gradient 5(2, J,n), assign coeflicient (z, 7,n) to the cluster to
which it is closest;

3. Calculate the centroid for each cluster;

4. If any coeflicient has been reclassified since the last time this step was executed,
return to step 2; if not continue;



5. Check each cluster to see whether it fits the ‘single feature’ criteria previously
described. If it represents a single feature, calculate feature parameters, if not

then replace by two with centroids displaced from the original and return to step
2.

In practice this algorithm has been found to converge within 4 or 5 iterations.

2.3 Curve Extraction

A curve may be considered as a set of straight line segments, varying in orientation
and position from one to the next, with each small segment represented by MFT
coefficients in the appropriate orientation. The phase derivatives will give the position
of the centroids of these line segments. Thus each coefficient gives an estimate of a
point on the curve and the orientation of the tangent at that point. The magnitude
|£(¢, j,n)| gives a measure of how much energy is in the given orientation.

If there is a single circular arc feature in the region, then all the coefficients with
significant energy should represent points that are some distance R, the radius of the
circle, from some specific point f-;, the centre. In addition, the tangent vector at that
point should be orthogonal to the radial vector to that point. Hence, in a block z at
level n Jfor all j

(¢1(i7j7 n) o 601)2 + (¢2(iaja n) T 602)2 = R2 (12)
and

cos (5)(41(2, 5, m) — €o1) + sin (;)(62(2, 5,m) — €o2) = 0 (13)

where 1; is the tangent orientation at the point (¢;1,¢;2), and is given by
¥; = arctan (wja/wj) + 7/2 (14)

Defining the vector \flf = (cos (v;) sin(?;)) these conditions can be expressed as

| ¢(,5,m) =& lI= R (15)
It should be noted that the size of the arc within a block must be less than 7 radians
in order to ensure that no two distinct line segments are in the same orientation. This
is necessary since coefficient Z(z, j,n) will be determined by all line segments in the
region with the orientation ;.
Estimation of £y is based on the error measure

E(i, j,n) = [%;.(8(i, ,n) — &)/’ (17)



which will be minimum (in fact 0) when the two vectors are orthogonal. The total
error can then be defined as the weighted sum

E(i,n) = le ,J,n)IE(,J, n) (18)

To minimise with respect to both &; and &g,

O0E(i,n) OE(i,n)
0n O

=0 (19)
which gives
bon Y 16(i, ,m)] cos” (45) + boa 3 [8(i,3,m) | cos (45) sin (45) =
Z 506 (s m) 008 (8 + i ) cos (i) sin () (20)

&nZIx ,J,m)| sin (¢;) cos ( ¢J)+€ozE|w i,,n)|sin® (;) =
E Im(z ]7n)|(¢1( 7.77 n) sin ("»b:l) cos ('9[).1) + ¢2( aJ?n) sin (¢J)) (21)

This can be expressed in matrix form by defining the tensors

7o) = 16t | o 87 | foos () sn )

= |&(i,5,n)[¥;TT (22)
T(i,n) = 3 T(i,5,n) (23)

to give
. o1 | _ ¢1(2,5,m)
T(Z,n) [ 602 jl B ;T( ,], ) [ (;52(2,], ) ] (24)
f_:J:T(i n)” ZT(27]7 7' yJ> M) (25)

Having estimated the position of the centre, the radius of the arc can be estimated

from o -
Ej |53(27.77n)| “ ¢(Z7.77n) — 60 ”

= — 26
5512(,4,m) 2

The correlation function «;, defined by
y; = |E_7 x(z,],n)m (Z,],Tl)] (27)

\/Ej ]‘%(Z’]) n)IZ Ej li*(iaja n)|2
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where Z(z, j,n) are coefficients derived from the feature model, provides a measure of
consistency between the model and the data, and is compared with a threshold i,.
Detection of curve segments is performed before testing for multiple linear features,
but after testing for single features, to minimise processing and to find the simplest
hypothesis compatible with the data (Fig. 3).

3 Scale Consistency

Because features should be consistent across scale, features in region A;(n) should
be consistent with those in the children A;(n +1),0 < 1 < 3. If Aj(n) contains K
features, the centroid for each feature, 7ix(n), will be the weighted average of the
centroids of its components in the children, i, (n 4+ 1), 0 < I < 3. If only one feature
contributes energy at each frequency in the parent, the phase derivatives gg (¢,7,n) can
be estimated using the centroids of features detected in the children. If derivatives
estimated using this approach correlate highly with those estimated for A;(n) directly,
it would suggest that each parent frequency component is dependent upon only one
feature - a necessary condition for the block to fit the feature models described in
sections 2.2 and 2.3.
The coefficients g(z, j,n) are estimated from the features found in the children
Aiy(n+1), form=1,2,
B 3 Ki-1
(i) = 358 (3 2 [dulinjoon + Dlexp blomn ~ el (28)
=0 k=0
where A;k = 5-; — f_;k is the displacement of the child region centre from the centre of
its parent, K; is the number of features in the region A;(n + 1), i is the centroid
of the kt* feature in A;(n + 1) and #4(41,jc,n + 1) are the coefficients due the &
feature. These derivative estimates are then compared with those obtained directly
at level n, using a correlation function which takes into account the energy at level n

¥ Tl 4, 7)1 exp [3(m (i, 5, 1) — $m (i, 4, n))]
25 |2(2,5,m)[?
The correlation will be high only if there are features in some of the children that
form one feature in the parent and there is consistency of the features detected in
both the father and the children. This implies that the parent may be considered as
one of the feature regions previously described. If the correlation is high (above some
threshold ¢,), then the parent may be used to extract feature parameters with higher
resolution than the children. If the correlation is low, then it is assumed that the
contents of the parent region cannot be modelled in terms of primitive features using
the MFT coefficients of the parent level and the detection process terminates at the
child level. This bottom-up (Fig. 4) approach continues until the image is segmented
into the largest possible regions from which the primitive features may be extracted.

r(z,n) =

(29)

9
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4 Combining Primitive Features

More complex shapes are modelled as concatenations of the above primitive features.
A compound feature that exists in a particular region at a high level may be defined
recursively in terms of the features that exist in its descendants. Thus, having seg-
mented the image into primitive features, the next stage is to combine these into more
complex features where possible [6]. If two primitives in adjacent blocks are part of
the same compound feature, then it may be assumed that they

1. Meet at the boundary between the blocks, and
2. They have some continuity of curvature at this point.

To combine two primitives into a compound feature, consider how these primitives
act at the ends where they meet. Since any feature may be considered as a set of
linear feature segments at some scale, there must be a level at which the ends of both
features are representable by such segments. Figure 5 shows this for two adjacent
features. Moreover, the orientations must be similar if they are part of the same
feature. In other words the magnitude of the correlation r(z1,3,n), defined by

]Ej ‘%(ihj) n)i*(i%ja TL)I
\/Zj I‘%(ilaj7 n)|2 Ej l‘%(i%j) n)|2

(30)

'I’(’I:l, iz, n) =

should be high for some scale index n greater than that at which the primitive features
were identified. If it is above a threshold ., the two features are combined into a
single feature; otherwise they are left separate. This process can be used to join

10
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compound features by determining whether the primitive features at the ends can be
combined in this way.

5 Results

The algorithm was run over a number of test images and the results are presented in
this section. In each case the levels of the MFT were thresholded so that all blocks
containing low energy were ignored. The MFT uses a window that is bandlimited
and is therefore not spatially confined [14],[15]. Indeed adjacent spatial regions will
overlap and features between two region centers (which are separated by =(n)) will be
seen by both regions. To over come this, spatial features that are more than =Z(n)/2
away from the region center will be considered to be outside the region. This means
however that the spectrum of a region will be influenced by features in adjacent blocks.
This will cause no problems if they are linear features in different orientations, but
may cause interference for features of similar orientation. In these cases the spectral
properties of a region may not fit the model, even if there is no more than a single
feature within a distance of Z(n)/2 from the region center.

Figure 7 shows a simple 256 x 256 image containing a circle and a square. The
algorithm was run over levels 3-6 of the MFT for this image but due to the relatively
large scale of the features they were all extracted at level 3. Figures 8 and 9 show the
magnitudes of MFT levels 3 and 5. Figure 10 shows the features extracted from the

11



image, with the blocks indicating the spatial regions in which they were found. The
grey levels indicate features that were joined together by the linking process described
in section 4. As can be seen the circle is represented as one feature, while the square
is linked into four features.

Figures 11 - 13 show the 256 x 256 ‘Shapes’ image and the magnitudes for two
level of its MFT. The process was run over levels 3-6 and features were detected at a
number of scales (Fig. 15) and then plotted on the original image (Fig. 15). The left
and right points of the star are not clearly detected due the closeness in orientation
of the upper and lower edges, but most of the major edges are correctly detected and
linked.

For the 256 x 256 ‘Lena’ (Fig. 16) image the same algorithm was used over MFT
levels 3-6. Figure 17 shows the features detected in the image, and figure 18 shows
the features shows these drawn over the original. The result may be compared to that
obtained using the single linear feature model [6], (which used a 512 x 512 version of
the image). The top of the hat has been missed due to the low contrast between the
hat and the background, but most of the important features in the image have been
identified correctly.

6 Conclusions

This paper contains a novel method of segmenting an image into regions, each of
which contains either one or more linear features (straight lines or edge ), or a single
section of a circular arc edge or line. The features were modelled using the properties
of local spectra, which are provided at different scales by the Multiresolution Fourier
Transform (MFT). The image is initially segmented at a low level with small spatial
regions, each of which is tested for the presence of one of the feature types. The
parameters of these features are estimated for the regions in which they are detected.
These are then grouped together into larger features, where the larger features also
fit the models. Once this process terminates, more complex features are produced by
combining primitive elements based upon the correlation between the linear features
at their ends. The algorithm has been tested on some demanding synthetic and nat-
ural images containing a variety of polygonal and curved objects. It has been shown
to be effective at dealing with complexity of the data, but further work is required to
test its robustness in the presence of noise and other degradations. Extension of the
model to deal with more general curve models is also under examination.

Acknowledgements

This work was supported by the UK SERC.

12



A Derivative Estimation

Since the modelling of the simple features is largely based upon the derivatives of
the MFT phases, it is necessary to estimate these using the discrete data available.
Although the more data used, the higher the accuracy of the derivative estimates,
é1 (z,7,m) and b (z,7,m), for sake of computational simplicity it was decided to use a
five sample approximation that fitted a minimum mean square error criterion.

Differentiating in the spatial domain is equivalent to multiplying by jw in the
frequency domain. Approximating the frequency domain form of the estimator as
the sum of two sine functions, the error, between the theoretical differentiator and
the approximation at each w is defined by

E(w) = (w — (a3 sin (w) + az sin (2w))? (31)
giving a total error over the interval [—0.57, 4+0.57]
0.57
E= / (w — (ay sin (w) + ag sin (2w))?dw (32)
0.57
Minimising this with respect to a; and aj requires
0E OE
— i )
3a1 3a2 (33)
giving
0.57
g—i = 2/ s —a3(w — (a1 sin (w) + a2 sin (2w))dw
8
= —4 + a,m + (125
=0 (34)
Similarly, from the other partial derivative
—7r—|—a1§+a27r=0 (35)
Solving these two equations simultaneously for a; and a, gives
a; = 1.5185 (36)
a; = —0.2889 (37)

Since multiplication in the frequency domain is equivalent to convolution in the
spatial domain, this may be transformed to give a spatial sequence that can be con-
volved with the phase values. This sequence, normalised to give a derivative of one
if the value changes by one between samples, is

{~as,—a1,0, a1,a,} = {0.1535, —0.8069, 0, 0.8069, —0.1535} (38)

13



Calculating the derivative of phases using this approach may cause problems of rap
around if performed in the complex domain. To get around this the five point linear
combination shown above can be decomposed into two separate operations. The first
operation is to find the forward difference of the phase in the complex domain from

£1g(i,jyn) = 61 arg (2(E(n), 5(n), ())& (E(n), By 0 (n), 0(n)  (39)

where

with ] (40)

wj(h.lz) = [ wy + l2

and §; is the sampling interval and is required to convert from a phase difference
to an estimate of derivative. These differences are then combined using the second
operation - a four point integrator:

A

$1(6,5,m) = (—02)Aud(i, J(-2,0),7) + (=01 — 62)Bud(3, (1,00, 7) +
(_al - a2)Au¢(i7j7 TL) + (_az)AU¢(i7j(1,0)7 n) (41)
= 0.1535A,¢(%, j(-2,0), ) — 0.6535A4 (%, j(~1,0),7) —
0.6535A, (2, 7,n) + 0.1535A,6(2, j(1,0), 1) (42)
This derivative estimator has been defined in the frequency domain to approxi-
mate the the linear characteristic of the ideal differentiator, in the frequency interval

[—0.57,+0.57]. As can be seen in figure 6 it fits well for these frequencies, but its
performance tails off for higher frequencies.

14
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