THE UNIVERSITY OF

WARWICK

Original citation:

Joy, Mike and Axford, T. H. (1992) Parallel combinator reduction : some performance
bounds. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-210

Permanent WRAP url:
http://wrap.warwick.ac.uk/60899

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60899
mailto:publications@warwick.ac.uk

Parallel Combinator Reduction: Some Perfor mance Bounds

Mike Jy

Department of Computer Science,
University of Warwick,
COVENTRY,
CV4 7AL,
UK

e-mail: msj@dcs.warwick.ac.uk

Tom Axford

School of Computer Science,
University of Birmingham,
PO Box 363,
BIRMINGHAM,
B15 2TT,
UK

e-mail tha@cs.bham.ac.uk

Copyright © 1992 M.S. Joy and T.H. Axford. All rights reserved.

ABSTRACT

A parallel graph reduction machine simulator is described. This performs combi-
nator reduction and can simulate various different parallel reductionggtatéAnumber
of functional programs are examined, and experimental results presented comparing the
amount of parallelism obtainable usingpkcit divide-and-conquer with the maximum
amount of parallelismvailable in the programs.

Keywords: functional programming, shared-memory parallel processing, combinators, graph reduction

1. Introduction

In recent years functional languages [8}dngained popularitysince translating a formal specification of a
problem to anjeecutable functional program is (relatly) straightforward. Imperatie language constructs

model closely the hardave structures of ceentional (von Neumann) architectures. Functional languages,
however, were not designed with grarchitecture in mind, and as a result, implementations of functional
languages on present-day machines tend to bevelyasiow. The question of he to peed up functional
language implementations is therefore one which must be addressed in order for their benefits fully to be
realised.

One way of running a program faster is xeaite it on seeral processors simultaneousliyunctional lan-
guages contain no notion of "state", and yamnchronization problems present with parallel impeeati
programs are absent from parallel declaeatrograms. Thusimultaneous»ecution of sections of a func-
tional program on different processors should presentugiatew problems.

There are sexal different approaches [16] to the problems of parallelising ¥hakiation of a functional
program. Mosbf these fall into one of tavcategories. Firstlythe high-leel program may be annotated
explicitly to instruct hev the parallelism should be actéel. Secondlythe source program can be anal-

ysed automatically using techniques such as strictness analysis in order to determine which sections of the
program may bexecuted concurrentlyWe havewritten a simulator for a shared-memory multiprocessor
which can model various strategies for parallelising a functional program using combinator graph reduc-
tion.

Our interest is in the implementation of functional languages using combinator graph reduction, and in par
ticular in the extent to which parallelauation can be>ploited. T this end we ha been iwvestigating

the generic properties of a did translation scheme. The transformation from a functional program to a
combinator graph is a compl@rocedure which can be accomplished usiagous algorithms, and itag
therefore important to deal with a default translation strategy.

We introduce the concept shturation pamllelism Given a ranslation of a functional program to a com-
binator graph, there are sections of the graph which camah&ted simultaneously; if a parallel machine
evduatesall such sections in parallel, then we describe thauation strategy as saturation parallelism.
For an idealized machine with unlimited processors and zero communication costs, thig/ stidtpro-
vide a measure of the minimum time necessaryvétuate that program, and thus provide a base-line
against which the performance of other paralleluation strategies can be measured.

This paper reports the results aperiments with different strategies for parallefleation. W& haverun
some benchmark programs using (a) explicitly introduced parallelism and (b) saturation paraliiésm.
examples we ha dosen are such that explicit parallelism can be introduced in a natural fashion.

2. Combinator Graph Reduction

The particular implementation method for functional languages which interestscomlisnator gaph
reduction We can think of a combinator as a simple function. Using combinatongaloage a functional
program involves first of all taking that program, thought of as a sugared lambda-expression, and "abstract-
ing" the \ariables. Alllambda expressions are thus remtband combinators introducedso a program
containing names and value-bindings is translated to amatenti expression containing no names, and the
resulting expression contains only combinators, together with basicAtaimplementation which did not
abstract names would need to keep track of the partigdlyaged expressions associated with each name, a
significant communicationverhead.

This epression can then be considered as a graph, where the application of a function to an argument is
represented as a binary node, and an atomic datum or a basic combinator is a leaf node. The graph may not
necessarily be a tree, as sharing of common subgraphs neagiaed, and in the case of recussifunc-

tions, that sharing may cause cycles to be introduced into the graph.

The program can bevguated byreducingthe graph, that is, repeatedlywriting sections of the graph until
the graph becomes a datum which is the result of the program. For instance, fewse thary operator
applied to an gument, then the binary node representing that application wiNdsendtten by the result
of the application.

2.1. Setsof Combinators

Some preliminary observations on our choice of combinators are appropriate at thisNimbrk with
combinators as presented originally by Curry [3] , although this formalism is not the anlyfwescribing
combinatory logic ¢ategorical combinatos, for instance, create a powerful theory which has also been
used as a basis for graph reduction machingEs).the purposes of this paper we identifyotyrincipal

classes of combinators=irstly, combinators which form a (small) fixed set, such am&rs combinators

[20,21] , and secondly combinators which form an extensible set and which may be created when required,
such as Supercombinators [11] .

The former class has the advantage of being simple to use and to reason whgietds® combinator
expressions which are rele#ly large and compbe[10] . The latter class requires sophisticated abstraction
techniques, and typically combinators will represent compiled functions which can be rurvemtioaal
architectures fairly @tiently. In [5] Hartel presents statistics indicating that, usiagous metrics, the
speed of ealuation (measured by combinator reduction steps) of this latter class of combinators compared
with a fixed set is better by typically less than an order of magnitude.

A benefit of having a fixed combinator set is that an architecture can (in,thetegst) be devised so that
the combinators are implemented in haadsv Naoel coding techniques [13,15] can also be emptbto
reduce the space wastage inherent in aeneiplementation of such a fixed combinator set. Most current
work relating to parallel combinator reduction heweassumes an extensible combinator set.

We haveexamined combinator reductionvinlving various fixed combinator settn this paper we consider
one particular choice of combinators, the set originally introducecubyeT [20,21] . They are defined in
Figure 1 @, B y, drepresent arbitrary expressions), where the reduction rule for each combinatem.is gi

Combinator | ReductioRule

S Sapy > ay (B

K Kap >y a

| | a > a

B Bapgy >3 a (B

C Capy > avypB

S S apyd > a(B9 (yv9

B B apyd > apB(y9

c C apyd > a(B9 vy

Y Y a > a (Y o
Figure 1: The set of combinatensed

These yield a number of graph rewrite rulesegin Hgure 2:

>q /,\ > a > a
c /% la /@ b
b a b C K a
S a
>B >c
c a/>\ C /@b
b b c b a C
B a C a
>q >g
d d /(>\
c a c a bec d
b b
S’ a b d B’ a
>c /\ >y
d C Y f
c a
b b d
C a f
Figure 2: The Graph Rewrite Rules
2.2. Parallelism

A number of projects ha recently examined parallel graph reduction for functional languages. Some of
these use an extensible set of combinators, such as MBS, Alflfa and the Evaluation fBnsformer
model. Seeral are not based on combinators, such as Alice, Flagship, > Machine, the ABC-
Machine and Rediflw.

Given a large combinator graph, it is likely that manodes in the graph can be rewritten concurrently
Due to the small granularity of the combinators, combinator graph reduction is a candidate f@ paassi
allelism [6] . New generations of computers, such as custom-made VLSI architectures and Neural
Machines place us within sight of an efficient parallel graph reduction machine.

Unfortunately it is not always easy (or necessarilyan possible) to decide which graph nodesedto be
rewritten, and which do not (such as the unused arm of a conditicrtad)technique of lazyveluation on
a gngle processor will minimise the amount of work necessary to reduce a guaplogh not lend itself to
identifying opportunities for parallelism on a multiprocessor.

Various strategies for parallel graph reductiowendeen examined, such as load balancing amongst the
awailable processors [19] and strictness analysis [@Jven a ecific fixed combinator set, wea@mnined
the time efficieng of executing a program using mdifferent strategies:

(i) saturationparallelism (rewriting sections of graph in paraliddeneveit is possible to do so), and
(i) by introducing parallelism explicitly (i.e. only in places chosen by the programmer).

Saturation parallelism is in general not a practical technique becausgehiegran unbounded number of
processors. lis, havever, useful since it gies us anmdication as to the maximum amount of parallelism
awailable in a program, agnst which we can measuresolose to optimal speedup "real" strategies come.
Explicit parallelism, on the other hand, is aveoful technique if used correctlits main disadvantage is
that the onus is placed upon the programmer to code a program and identify the parallelism in it correctly.

We havea yoper bound on the speed of a parall@wation of a combinator graph, namely that with satu-
ration parallelism.We have also introduced »@licit parallelism by using a simple wiile-and-conquer
approach (see section 6 bg)o Othermore sophisticated attempts at aehig parallelism would be
expected to yield a performance between the upper bound of saturation parallelism angethay giir
explicit parallelism.

3. The Graph Reduction Machine

The simulator tas as input GCODE [12] , which is a textual description of a graph representing a func-
tional program. GCODE contains lambdas, combinators, basic operators (delta combinatges$, irgal
numbers, and sum-product domairihe GCODE is generated from FLIC [17] which is minimally sug-

ared lambda-calculus. The input is then compiled to abstract variables and introduce combinators [20,21] .
Recursion is handled by the "Y" combinatdhe resulting graph is acyclic, and the reduction rule for the

"Y" combinator preserves this property.

Reduction of the graph takes place by rewritingeis parts of it concurrentlyrhe usual serial lazyvelu-
ation strategy is embedded within this parallel reduction giyatethe sense that atastage in the reduc-
tion process the méreduction step in the lazyauation strategy will alays be one of the seral concur
rent reduction steps in our parallel strategies.

3.1. Architecture

The simulated machine has aefixnumber ofprocessorson which may run a variable number pfo-
cesses Each process rewrites a section of graph until one of the following conditions is reached:

. that section becomes a datum (intefleating point numbeor sum-product);
. that section cannowduate further (when an operator is presented with tacafguments);
. that process is destroyed by another process.

A specific process will not recuxsly evaluate elements of a sum-product domain, but will spawn further
processes if requiredd process contains (inter alia) tvetacks a statusvalue and griority value.

Each processor is either allocated a single process &uwbysor is avaiting a process and Free. A pro-
cess may ha datusRunningif in the process of rewriting a section of grafluspended awaiting the
result of another process beforglaation may proceed, &Wating if it is able to continue running but has
not been allocated to a processor.

A process is allocated a "priority"”, which is eitli®assibleor Needed A Neededprocess is one which is
known to be required to bevaluated by the lazyweluation stratgy. A Possibleprocess is one whiamay
require aluation.

Three queues of processes are maintained; one contaiRsithégprocesses, one thWating processes,
and one th&uspendegrocesses. Thelements of each queue are ordered by process priority.

A "master process" controls the allocation of processes to processors, and will perform the administration
of the processes and their allocation to processors, as follows:

. Each queue has its elements ordere®tigrity, with Neededprocesses at the head of the queue.

. When a process in tHeunningqueue completescecution, that process ceases to exist and the pro-
cessor allocated to it beconiege.

. If a process becomeluspendedt is placed in theéSuspendedueue and the processor allocated to it
becomed-ree.
. If data becomesvailable to aSuspendeg@rocess causing it to be able to continuguating, it gains

statusWaiting and is meed to the Waiting queue.

-6-

. A processor which iBreeis allocated to the process at the head offHting queue. Ifthe Waiting
gueue is empty that processor simply remé&ies.

. If all processors ar@usy and one of theRunningprocesses has priorifjossible and one of the
Waiting processes has prioritMeeded(which we may assume to be at the head of\Whaing
gueue), then th&ossibleprocess is swapped with the head ofWsaiting queue.

The machine runs in time measured by "cycles". In one cycle a process will perform one reduction step,
and the master process will handlg gasks which this may generate. At the start of each cycle the master
process ensures that each processor which can be allocated a process is allocated one, anRuhat each
ning process is knen to be able to perform a reduction step. Each processor then causes the process allo-
cated to it to perform one single combinator reduction.

At the start of a progranxecution, after the combinator graph has been created, a single process is created
with priority Neededwhich will begin to rewrite the graph using the standard lazy algorithm. Where nec-
essary it will create other processes with prioNgededor indicate to the master process that other pro-
cesses with priorityPossibleshould hae priority updated tdNeeded Further processes may be created as
dictated by the parallelaluation strategy.

3.2. Lazy Evaluation

It will be clear from the abe@ description that the number dfeededgraph reduction steps will be pre-
cisely the number of steps necessaryvauate a program using lazyatuation on a single processor
Thus the number of cycles taken for the multiprocessor simulatosligate a program will be no more
than the number of steps tealkiate a program using lazyatuation. Oursystem of Queues guardsaatst

the danger of speculadly offshipped processes beingakiated instead of required processes and thereby
causing performance degradation.

3.3. Shared Memory

For the purposes of thisxercise we hae celiberately left out of our calculationsyesheads associated with
communication between processors. Since we wished to examine the effect of the idealised situation where
unrestricted parallelism as &ailable the effect of introducing extra metrics into the calculationalav

have keen a distraction. The assumption of a shared-memory multiprocessor was felt to be the simplest
way to smulate such an idealised machine. Indeed, the machine resources weilsddeato use were

only just suficient to perform the experiments reported here, and simulation of a distributed processor
would undoubtedly hze been infeasible.

3.4. Overheads

Much of the workload relating to naimg processes between processors is left in the control of the master
process. lra worst-case example, this process could do constant amoutriofev eachprocessoeach

cycle By implementing the master process so that its functions are distributed about the processors, this
work would then inolve mnstant extra time perycle. Theprocess has been implemented in they w
described for reasons of improving the clarity of the software.

4. The Parallel Evaluation Strategies

We mnsider tvo parallel evaluation stratgies. Theseare described in terms of the creation ofvnEo-
cesses and their allocation to specific processors; subsequent management of processes is as described
above.

4.1. Strategy 1. Saturation Parallelism

The maximum set of processes is constructed. The sgtitelde processes is unbounded, and processes
are dynamically constructed according to the following rulegially, each reducible sub-expression of
the original graph is assigned a process. Duriduation of the program, whewer a new gplication
node is created, it is checked to see whether it represents a redwgiklsmon, in which case a process is
assigned to it. These application nodes are formed after combisatBrsS' , B andC [20,21] hae
been reduced.

For instance, consider the following combinator expressiop, (y; dande represent arbitraryxgressions):
B(Bap (Cyo ¢
After one reduction step, fired by the leftmBstve get

Bapg(Cyde

In this expression both thH& and C combinators hee afficient aguments. Theé-reduction will be per
formed by the same process as the previous reduction (and on the same processony pratasse(with
priority Possiblg will be created to handle th@reduction. Thidatter process will then be placed in the
Wiaiting queue, and consequently reduced by another processor when one beeembshe parent pro-
cess in due course attempts to perform the reduction it has offshipped, the parent proceSuspkkbeed
until the child has performed that reduction.

This results in a large set of processes, most of which wiél fi@ority Possible and maiy of which will

be short-ved. Theoverheads of managing large numbers of processes are high, singeftaem will

return results which are not required; this strategy is intended as a benchmark against which we can mea-
sure the extent to which other strategigsl@it available parallelism.We dbtain a figure which is the mini-

mum time (measured in cycles) for the graphviuate fully.

4.2. Strategy 2: Explicit Parallelism

Initially, only one process is created, as described in the previous section. Subsequently processes are
flagged so that tlyewill be queued to run on their parent processdy. Conceptuallyeach processor has
its own prvate triple ofRunning Waiting andSuspendedueues.

Wheneer a €ction of code has to be sent to aeddnt processor (when the combinaRAR [18] is
encountered) a process is created and offshipped to another processor witliRenmiyg and Waiting
gueues.PARis defined by the rule ggn in Fgure 4.

Combinator | ReductioRule
PAR PAR a B >PAR ﬁ
Figure 3: The combinatoPAR

Expressiona is offshipped (if possible) to another process$®AR is typically used whewr is a subepres-
sion of 3. If such a processor does not exist the process is placed/dtiag queue for the first such pro-
cessor to becomevalable. If such a processor ver becomes ailable, the spawned process willeatu-
ally be performed by its parent processor.

All processes arexecuted on a single processanless annotated to befstiipped to another procesA.
process assigned to a specific processor will onlyvikiaed on that processaxs will all processes
spavned by that process unless explicitlysbfpped. Inhigh-level code segments bedothis is indicated
by the annotationffship.

For example, consider the following expression beingwated by process 1.

SPAR (+ 9 «a

After one reduction step by process 1 this yields

PAR a (+ B a)

After one more by the same process we get

+ B a

-8-

where+ andgwill be evaluated by process 1 amcby process 2 (say). Process 2 will be queued to run on a
different processor to that running procesdfigis fully reduced beforer has been fully reduced, then a
Neededprocess will be created to redugéon the same processor as process/é) though another pro-
cess (of priorityPossiblg still exists to &auatea.

PARis similar to the annotationP} in [14] but is appropriate to a shared-memory implementation.

5. Worked Example

In this section wexamine one functional program in detail, and isolate opportunities for parallelism within
it. Theprogram we hee chosen igmibonacci numbergiven by

fib n = if n >= 1 then (fib (n-1) + fib (n-2)) else 1
A lambda-expression representing this Fibonacci function is:
Y Afib anIF 1 (+ (fib(-n1) (fib (- n2))) (>=n 1)

Note the operatdrF t is defined by
| F false-case true-case condition

for consisteng with the data structures in FLIC, and that all operatorCareied, that is, in prefix form.
When abstraction has taken place, wevard the combinator expression:

Y (C (S (IF1) (S (S +) (CB(C- 1)) (CB(C- 2))) (C>=1))

5.1. Saturation Parallelism

Using the namé&I B to denote this expression, and applying it guarent10, we havein Figure 3 the fol-
lowing reduction sequences. Each line denotes the expressiooredteduction step, and the symbols in
the first and second columns respedtyi indicate the machine "cycle" and the identity of the processor
which performs the reduction.

T Actually, CASE 2

Cycle Proc. Expression

1 Y (C (S (IF1) (S (S +) (CB(C- 1)) (CB(C- 2))) (C>=1)) 10
2 1 C (S (IF1) (S (S +) (CB(C- 1) (CB(C- 2))) (C>=1) FIB 10
3 1 S (IF1) (S (S +) (CB(C- 1)) (CB(C- 2)) FIB) (C>=1) 10
4 1 IF1(S (S +) (CB(C- 1)) (CB(C- 2)) FIB10) (C>= 1 10)
4 2 IF1(S (S +) (CB(C- 1)) (CB(C- 2)) FIB10) (>= 10 1)
5 1 IF1(S +(CB(C- 1) FIB) (CB(C- 2) FIB) 10) (>= 10 1)
5 3 IF1(S +(CB(C- 1) FIB) (CB (C- 2) FIB) 10) FALSE
5 4 IF1(S + (BFIB(C- 1)) (CB(C- 2) FIB) 10) FALSE
5 1 IF1(S + (BFIB(C- 1)) (BFIB (C- 2)) 10) FALSE
6 2 S + (BFIB(C- 1)) (BFIB(C- 2)) 10
6 3 + (BFIB(C- 1) 10) (B FIB (C- 2) 10)
6 4 + (FIB (C- 1 10)) (B FIB (C- 2) 10)
7 5 + (FIB (C- 1 10)) (FIB (C- 2 10))
7 6 + (FIB (- 10 1)) (FIB (C - 2 10))
8 5 + (FIB (- 10 1)) (FIB (- 10 2))
8 6 + (FIB 9) (FIB (- 10 2))
9 1 + (FIB 9) (FIB 8)

Figure 4: Hbonacci

Now, the first three ycles can be performed befdré B has been gen argument 10. Recurge alls can
therefore tak pgace in parallel, reducing the number gties from 9 to 6. The behaviour of this function
when allowed unlimited processors is indéedO(1) cycles to galuatef i b n.

5.2. Explicit Parallelism

In order to introduce parallelismplicitly into the Fibonacci function, we use tR&R combinator as
defined abwee. The lambda expression we thewvéds:

Y Aib A IF 1 ((Ax PARX (+ (fib (- n 1)) x)) (fib (-n 2))) (>=n 1)

This lambda expression is slightly larger than theviptes one, and more combinators will be introduced
by the abstraction algorithnBy a similar analysis to that in Figure 3, 17 cycles are required for eagth le
of recursion, assuming that sufficient processors\aitahle.

5.3. Analysis

Much of the saturation parallelism is redundaktr instance, the ta ams of thelF will always be
spavned, and wheffii b is given anall arguments, there is significant redundant computation Rdse,
some of the spawned processes are very shed-(for instance, those numbered 2 and 6 in the table
above). It can be gyued that the communication costs for such processes ik creation and destruc-
tion undesirable We onclude that explicit parallelism\gis an &ceptably efficient allocation of tasks to
processorin this particular casgegiven the set of combinators wevedected to use.

6. Test Programs

In this section we present the results of runningrsé programs under both strgies. Theexamples hae
been chosen so that each has significant divide-and-conquer parallelism inherent within it.

6.1. Divide-and-Conquer

The technigue oflivide-and-conquers a well-known method of explicitly introducing parallelism [1] to
certain classes of problem. In [2] a model of list processing is presented suitablderadid-conquer
techniques, implementing a list as a binary tree. In #@mples belew which use lists this model is
employed.

-10-

6.2. Lists

The primitive functions for the list processing model are:

@) []is the empty list.

(i) singleton x (or alternatiely [x]) is the list which contains a single elemeant

(i) concatenate st (or alternatiely s++t) is the list formed by concatenating the listandt.

(iv) split s is a pair of lists obtained by partitioning the Bsinto two parts. It is defined only i§ con-
tains at least tavdements. Both lists returned are non-emggplit s is defined bysplit (concate-
nate st) =(s, t)

(v) length s (or alternatiely #s) is the number of elements sf

(vi) element s is the only element present in the singletondisthis function is undefined for lists con-
taining more or less than one element.

Note that we model lists with+ as a primitve list constructqrrather tharcons.

The examples described in the following section allehaatural opportunities to introduce parallelism.
Those functions which empldists in their definitions are assumed to use the divide-and-conquer list
paradigm described abg where the trees implementing those lists are balanced.

6.3. Test Examples

Each of the examples we used is presented here in pseudddwectual programs were hand-coded in
FLIC. Thefirst three hae been specified as functions which ¢alin nteger argument and would be
expected to exhibit time ofxecution linear in their gument. Thefourth, quicksort, should ka time
guadratic in its ument. Thdifth, adaptve quadrature integration, similar to an example in [4] esako
arguments.

In the following examples, the annotatiofiship has been used insteadRXR to male the code more eas-
ily intelligible, where

fx (offshipy) isequvaentto PARYy (fxy)
and
x ++ offshipy isequvaentto PARY (X ++Y)

Map n = map double [1..2"]

where
double x = x + X
map f[] =]

map f [x] = [f X]
map f (I ++ r) = map f | ++ offship (map fr)
Figure 5: Map

Reverse n = reverse [1..2"]
where
reverse [=]
reverse [a] = [a]
reverse (a ++ b) = reverse b ++ offship (reverse a)
Figure 6: Reverse

Hanoin=hanoin 012
where
hanoi0Oabc=]]
hanoi n a b ¢ = hanoi (n-1) a ¢c b ++ [(a, b)] ++ offship (hanoi (n-1) c b a)
Figure 7: Towers of Hanoi

-11-

Quicksort n
= quicksort [2"..1]
where
quicksort [] =]
quicksort [n] = [n]
quicksort s
= quicksort al ++ offship (quicksort a2)
where
(a1, a2) = reduce f (map (g (median (first s) (last s))) s)
g medn x = if (x > medn) then ([x], []) else ([], [X])
f(sl, s2) (11, t2) = (s1++tl, s2++t2)

first[n] = n
first (s++t) = first s
last [n] = n
last (s++t) = last t
map f[] =[]

map f [x] = [f X]

map f (I ++ r) = map f | ++ offship (map fr)

median mn = (m + n) div 2

reduce p[n]=n

reduce p (s ++t) = p (reduce p s) (offship (reduce p t))
Figure 8: Quicksort

func x = 4.0*x° + 3.0*x? + 2.0*x + 5.0

area f left right
= (right-left) * ((f left) + (f right))/ 2.0

check f left right estimate tolerance newleft newright =

if (estimate — newestimate)? < tolerance?

then newestimate

else (trapezoid f left mid newleft (tolerance / 2.0)) +
(offship (trapezoid f mid r newright (tolerance / 2.0)))
where
newestimate = newleft + newright
mid = (left+right) / 2.0

trapezoid f left right estimate tolerance
= check f left right estimate tolerance arealeft arearight
where
mid = (left+right) / 2.0
arealeft = area f left mid
arearight = area f mid right

integrate f left right tolerance
= trapezoid f left right (area f left right) tolerance

Integration = integrate function 0.0 2.0 0.01
Figure 9: Adaptive Quadratue Integration

7. Results
We row gve some statistics relating to the abaxamples, and discuss their importance.

-12-

7.1. Maximum Speedup

We look first at the relation between the maximum possible speedup (as measured by saturation paral-
lelism), and that produced by introducing explicit paralleligfor the purposes of this section, we assume
an unbounded set of processors.

Figure 10 contains statistics relating to tlxecaition time (measured in cycles) of the programs detailed
abore. Column 2 gves the actual time for the program to run Yhere appropriate, is thegament to the
function). Columns3 and 4 detail the value df(from column 2) for the ter grategies. Thefinal column
gives the ratio of columns 3 and 4, and represents the fraction ofvéflalbde parallelism utilised by the
"explicit" strategy.

Example Speed Saturation Explicit Hfciency

Map tn + O(1) 8 226 0.035

Reverse tn + O(1) 8 133 0.060

Hanoi tn + O(1) 11 126 0.087

Quicksort tn? + O(n) 1 2.5 0.043

Integration t 179 3224 0.056
Figure 10: constant of linearity

A combinator expression deed from a lambdaxpression will, by definition, contain a number of combi-
nators together with other operators mentioned in the lambatession. lrorder to gauate the gpres-
sion, some or all of the combinators and operators will, at some time duringalixatien, be presented
with their required number of gmments. Asan expressionwveluates, sub-expressions will be created
which can therefore be reduced concurrently (for instance, af@cambinator has been fired).

The principal reason for the high speed of saturation parallelism is the deteactibofahese concurrent
sub-expressions. Wheparallelism is gplicitly described, only some of the processes which cavdle-e
ated in parallel are in fact offshipped.

Our results indicate that a speedup typically of more than an order of magnitude can be accomplished by
successfully detecting such sub-expressions, compared to the inherent divide-and-conquer parallelism in
the original functional programit will be apparent that marof the sub-expressions will e a vey short

lifetime, and therefore such parallelism could only be usefully captured on an architecture with small pro-
cess creation and communicatioredeads.

Suppose, on the other hand, we had an implementation where our functional program is coded so that the
defined functions are implemented as basic operators in their own right. Theauleexpect no such

extra parallelism todst. Thespeedup effected by saturation parallelism is a feature of the granularity of
the combinators and operators to which the functional program is compiled.

7.2. Utilisation of a Fixed Processor Set

We row look at the performancevgh a fixed set of processorsWe wse two measures. Firstly speedup,
namely

lazy_reduction_stepscycles

(wherelazy_reduction_steps the number of reductions where pure lazgluation is performed on a sin-
gle processor) and secondly "efficiency”, being

number of processopstime taken

where the "time taken" for the 1l-processor case is 1. In Figures 11 and 13 the columns represent the
speedup for particular numbers of processors, and Figures 12 and Hfitibecgef The example programs
were run with a selection of arguments, where appropriate.

-13-

7.2.1. Saturation Parallelism

Number of Processors

2 16 128 1024
Map 1 1.19 2.75 12.93 18.43
Map 5 1.25 3.34 24.83 48.13
Map 9 1.44 8.88 73.73 286.72
Reverse 1 1.27 3.22 9.22 9.22

Reverse 5 1.51 7.52 32.77 32.77
Reverse 9 1.80 13.12 9331 249.86
Hanoi 1 1.15 2.35 8.83 11.26
Hanoi 5 1.38 7.63 25.09 45.06
Hanoi 9 1.42 8.62 68.61 240.64
Quicksort2 | 1.14 2.26 9.60 50.18
Quicksort 3| 1.18 2.62 10.88 40.96
Quicksort4 | 1.21 2.69 10.37 45.23
Integration 1.15 5.14 27.39 94.21

Figure 11: speedup (saturation parallelism)

Number of Processors
2 16 128 1024
Map 1 1.68 5.82 9.90 55.56
Map 5 1.60 4.79 5.16 21.28
Map 9 1.39 1.80 1.74 3.57
Reverse 1 1.57 4.97 13.88 111.06
Reverse 5 1.32 2.13 3.91 31.25
Reverse 9 111 1.22 1.37 4.10
Hanoi 1 1.74 6.81 14.50 90.94
Hanoi 5 1.45 2.10 5.10 22.73
Hanoi 9 1.41 1.86 1.87 4.26
Quicksort 2 1.75 7.08 13.33 20.41
Quicksort 3 1.69 6.11 11.76 25.00
Quicksort 4 1.65 5.95 12.34 22.64
Integration 1.74 3.11 4.67 10.87
Figure 12: timex number of processeisaturation parallelism

With the saturation strajg and where the size of problem being solved is sufficiently large, speedup is
roughly half the number of processors emphb. Inother cases, the speedagtbr is typically 20% of the
number of processorvailable.

For the first three functions, where the number of steps necessary fulltate the functions are small,

the amount of wilable speculatie parallelism is also small, and the paralldicééngy is high. Quicksort,
however, requires a relately large number of reduction steps, and there is ample opportunity for specula-
tive parallelism. Vi therefore, not surprisinglyind that a much greater proportion of the processors are at
ary time engaged onvealuating unrequired sections of the graph.

For the function Reerse, we see identical speedups when 128 and 1024 processors are usgainientar
1 and 5. These indicate that at most 128 processors were required.

Since allocation of processes to processors is via a queue on a "first come first served" basis, there is no dis-
tinction made at run-time between different processes of priBoggible For instance, Quicksort 3 has
mauginally less speedup than Quicksort 2. This is simply a result of unrequired specuatesses hap-

pening to be fired, and spawning children, before required ones; thuéthey process queue becomes

overfull of unrequired processes. This behaviour will appear to a programmer to be non-deterministic.

-14-

7.2.2. Explicit Parallelism

Number of Processors

2 4 8 16 32

Map 3 115 132 165 1.65 1.65
Map 6 149 196 235 272 3.14
Map 9 1.85 321 449 6.77 8.96

Reverse 3 122 143 160 1.60 1.60
Reverse 6 161 232 290 344 4.32
Reverse 9 190 345 4.90 8.03 11.50
Hanoi 3 116 126 126 1.26 1.26
Hanoi 6 143 177 2.08 230 2.46
Hanoi 9 1.81 3.02 417 5.87 7.26
Quicksort3| 1.07 127 145 1.73 1.73
Quicksort6| 1.31 1.80 2.34 2.78 3.20
Quicksort9| 1.49 248 454 6.13 9.47
Integration 167 251 358 498 6.30

Figure 13: speedup (explicit parallelism)

Number of Processors

2 4 8 16 32
Map 3 1.74 3.03 4.85 9.70 19.39
Map 6 1.34 2.04 3.40 5.88 10.19
Map 9 1.08 1.25 1.78 2.36 3.57

Reverse 3 1.64 2.80 5.00 10.00 20.00
Reverse 6 1.24 1.72 2.76 4.65 7.41
Reverse 9 1.05 1.16 1.63 1.99 2.78

Hanoi 3 1.72 3.17 6.35 12.70 25.4D
Hanoi 6 1.40 2.26 3.85 6.96 13.01
Hanoi 9 1.10 1.32 192 273 4.41

O

Quicksort3 | 1.87 3.15 5.52 9.25 18.5
Quicksort6 | 1.53 2.22 3.42 5.76 10.0
Quicksort9 | 1.34 1.61 1.76 261 3.38
Integration 1.20 1.59 2.23 3.21 5.08

Figure 14: timex number of processsiexplicit parallelism)

O

With explicit parallelism, we wouldxpect poor performance when the number of processors exceeds the
awailable parallelism in the program. This is indeed the chigsvever, with relatively few processors, par
allel efficieng is high.

We dbtain a speedup of typically 50% of the number of processors utilideske figures can be compared

with those obtained in [9] where Hudak and Goldheport processor utilisation and speedup fovaldi
and-conquer factorial on a distributed memory mach#eéirect comparison cannot be made, footwa-

sons; thg use a metric which includes communication costs for their simulated machine configured as a
torus with up to 128 processors, and their algorithm fétshagdping processes is simply thevidie-and-
conquer paradigm. Their heuristic produces a speedup factor typically 50% of the nhumber of processors
used. Br our simulated machine, when the size of the problem beslgated is large compared to the
number of gailable processors, and where the problem naturallyalltivide-and-conquer parallelism, we

also obtain a speedup of around 50% of the number of processors utilised.

It is dangerous to utilise magely parallel ealuation strategies with a small number of processors, unless
some mechanism is in place to ye® the machine being smnped with unrequired tasks. The Queue
method we use for thiscercise ensures that the Needed processes wilyalbe gauated in preference to

-15-

speculatre Rossible processes, and the speedgfof which will always be at least 1, will be a measure of
the eficiency with which ones offshipment algorithm accurately detects the correct subgrapblsiabesin
parallel.

8. Conclusions

We haveexamined combinator graphs desd from a number of benchmark programs, and obtairpdre

mental results relating to running the program on a parallel machine. Our aim was to compare the number
of parallelism opportunities and the idealized speedup factors when using various different strategies for
introducing parallel waluation. Mary problems lend themselves naturally to divide-and-conquer paral-
lelism. We have assumed that the problems are sufficientlgdato ensure efficient utilization of our
machine.

We havedemonstrated that by using a "fine-grained" set of combinators one can compensate for the granu-
larity of the operators used, and the consequeg¢ laumber of basic reduction steps neededduate a

function, by employing mass parallelism. V¢ havealso confirmed that explicitly introducingvitie-
and-conquer parallelism with a small number of processors, and using the same machine, enables a speedup
approaching linear in the number of processors used. Our machingegra vehicle for modelling paral-

lelism at both small and large scale.

Our results sha that there is potentially a large amount of parallelism present in functional programs writ-
ten in the divide-and-conquer stylajtlihe problem size must be larger than the number of processors if
good speedups are to be possible. As we lignored the werheads of process creation and interprocessor
communication, our figures are essentially upper bounds on the parallelism that can \w&l achies

way. Nevetheless, the explicit divide-and-conquer parallelism is large-grain parallelism, particularly in the
earlier stages of thewdsion part of dvide-and-conquerand not likely to be much affected byasheads.

On the other hand, thetea parallelism obtained with saturation parallelism is typically fine-grain paral-
lelism, and probably realisable only if process creati@nheads are very small indeed.

The present analysis is applicable only to shared-memory architeckungber work remains to be done
on using a similar approach for distributed memory architectures, and on larger and more realistic applica-
tions using the divide-and-conquer paradigm.

References

1. L. Acker and D. Mirankr, “On Parallel Diide-and-Conquér Report TR-91-27, Department of
Computer Sciences, Umrsity of Texas at Austin, Austin, TX (1991).

2. T.H. Axford and M.S. Jg “List Processing Primites for Parallel Computatioh,Computer Lan-
guages, 19, 1, pp. 1-17 (1993).

3. H.B. Curry, W. Craig, and R. Rgs, Combinatory Logic, volume North-Holland, Amsterdam, NL
(1958).

4, M.I. Greenbeg, “An Investigation into Architectures for a Parallehéet Reduction MachineTech-
nical Report UMCS-89-1, Department of Computer Scienceyesity of Manchesteanchester,
UK (1989). PhD Thesis.

5. PH. Hartel, “Performance of Lazy Combinator Graph ReductiSoftwae - Practice and Experi-
ence,21, 3, pp. 299-329 (1991). Also Report D-27, Fakulteit Wiskunde en Informatikeerltait
van Amsterdam (1989).

6. WD. Hillis and G.L. Steele, “Datadrallel Algorithms, Communications of theGM, 29, 12, pp.
1170-1183 (1986).

7. G.Hogen, A. Kindler and R. Loogen, Automatic Parallelization of Lazy Functional Programs” in
ESOP’'92 - 4th Ewpean Symposium ondgramming Rennes, Fance,ed. B. Krigy-Briickner pp.
254-268, Springer-Verlag, Berlin, DE (1992). Lecture Notes in Computer Science 582.

8. PR. Hudak, “Conception, Evolution, and Application of Functional Programming Languagz4,
Computing Survey21, 3, pp. 359-411 (1989).

9. PR. Hudak and B. Goldberg, “Experiments infided Combinator Reduction” i\CM Symposium
on Lisp and Functional Bigramming Austin, TXpp. 167-176 (1984).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

-16-

PR. Hudak and B. Goldbgy “Serial Combinators: "Optimal" Grains of Parallelism”Hanctional
Programming Languges and Computer Athitecture, ed. J.-P Jouannaud, pp. 382-399, Springer
Verlag, Berlin, DE (1985). Lecture Notes in Computer Science 201; ISBN 3-540-15975-4; Proceed-
ings of. Conference at Nayc

R.J.M.Hughes, “Super-Combinators” fbonfeence Recat of the 1980 LISP Confence Sanford,
CA,pp. 1-11, ACM, Ner York (1982).

M.S.Joy and T.H. Axford, “GCODE: A Revised Standard Graphical Representation for Functional
Programs,”ACM SIGPLAN Notices26, 1, pp. 133-139 (1991). Also Research Report 159, Depart-
ment of Computer Science, Waisity of Warwick, Ceentry (1990) and Research Report CSR-90-9,
School of Computer Science, Waisity of Birmingham (1990).

J.RKennavay and M.R. Sleep, “Director Strings as CombinatoSCM Transactions on Rigram-
ming Languges and Systems]O, 4, pp. 602-626 (1988). Also Wmisity of East Anglia Report
SYS-C87-06.

PW.M. Koopman, M.C.J.D an Eelelen, and M.J. PlasmeijetOperational Machine Specification
in a Functional Programming Langudg€echnical Report no. 90-21, Department of Informatics,
University of Nijmegen, Nijmegen, NL (1990).

K. Noshita and THikita, The BC-Chain Method for Regsenting Combinaterin Linear Spacge
Department of Computer Science, Denkitusinvgrsity, Tokyo, JP (1985).

S.L.Pegyton Jones,Parallel Implementations of Functional Programming Languagése Com-
puter Journal 32, 2, pp. 175-186 (1989).

S.L. Pgiton Jonesand M.S. Jg, “FLIC - a Functional Language Intermediate CbdRegsearch
Report 148, Department of Computer Scienceyésity of Warwick, Ceentry, UK (1989). Reised
1990. Previous version appeared as Internal Note 2048, Department of Computer ScigacgtyUni
College London (1987).

P Roe, “Some Ideas on Parallel Functional Programmingfuinctional Pogramming: Poceedings

of the 1989 Glasgow Workshop, 21-23 August 1889K. Dais and R.J.M. Hughes, pp. 338-352,
Springer-\érlag, London, UK (1990). British Computer Society Workshops in Computing Series;
ISBN 3-540-19609-9.

H. Seidl and R. Wilhelm, “Probabilistic Load Balancing for Parallel Graph ReductioRtdoeed-
ings IEE Region 10 Confereng®. 879-884, IEEE, Ne York (1989).

D.A. Turner, “A New Implementation Technique for Applicati Languages,’Softwae - Practice
and Experience, pp. 31-49 (1979).

D.A. Turner, “Another Algorithm for Bracket AbstractidnJournal of Symbolic Lgic, 44, 3, pp.
67-70 (1979).

