
http://wrap.warwick.ac.uk/

Original citation:
Joy, Mike and Axford, T. H. (1992) Parallel combinator reduction : some performance
bounds. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-210

Permanent WRAP url:
http://wrap.warwick.ac.uk/60899

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60899
mailto:publications@warwick.ac.uk

Parallel Combinator Reduction: Some Performance Bounds

Mike Joy

Department of Computer Science,
University of Warwick,

COVENTRY,
CV4 7AL,

UK

e-mail: msj@dcs.warwick.ac.uk

Tom Axford

School of Computer Science,
University of Birmingham,

PO Box 363,
BIRMINGHAM,

B15 2TT,
UK

e-mail tha@cs.bham.ac.uk

Copyright © 1992 M.S. Joy and T.H. Axford. All rights reserved.

ABSTRACT

A parallel graph reduction machine simulator is described. This performs combi-
nator reduction and can simulate various different parallel reduction strategies. Anumber
of functional programs are examined, and experimental results presented comparing the
amount of parallelism obtainable using explicit divide-and-conquer with the maximum
amount of parallelism available in the programs.

Ke ywords: functional programming, shared-memory parallel processing, combinators, graph reduction

-2-

1. Introduction

In recent years functional languages [8] have gained popularity, since translating a formal specification of a
problem to an executable functional program is (relatively) straightforward. Imperative language constructs
model closely the hardware structures of conventional (von Neumann) architectures. Functional languages,
however, were not designed with any architecture in mind, and as a result, implementations of functional
languages on present-day machines tend to be relatively slow. The question of how to speed up functional
language implementations is therefore one which must be addressed in order for their benefits fully to be
realised.

One way of running a program faster is to execute it on several processors simultaneously. Functional lan-
guages contain no notion of "state", and many synchronization problems present with parallel imperative
programs are absent from parallel declarative programs. Thussimultaneous execution of sections of a func-
tional program on different processors should present relatively few problems.

There are several different approaches [16] to the problems of parallelising the evaluation of a functional
program. Mostof these fall into one of two categories. Firstly, the high-level program may be annotated
explicitly to instruct how the parallelism should be achieved. Secondly, the source program can be anal-
ysed automatically using techniques such as strictness analysis in order to determine which sections of the
program may be executed concurrently. We hav ewritten a simulator for a shared-memory multiprocessor
which can model various strategies for parallelising a functional program using combinator graph reduc-
tion.

Our interest is in the implementation of functional languages using combinator graph reduction, and in par-
ticular in the extent to which parallel evaluation can be exploited. To this end we have been investigating
the generic properties of a fixed translation scheme. The transformation from a functional program to a
combinator graph is a complex procedure which can be accomplished using various algorithms, and it was
therefore important to deal with a default translation strategy.

We introduce the concept ofsaturation parallelism. Giv en a translation of a functional program to a com-
binator graph, there are sections of the graph which can be evaluated simultaneously; if a parallel machine
evaluatesall such sections in parallel, then we describe that evaluation strategy as saturation parallelism.
For an idealized machine with unlimited processors and zero communication costs, this strategy will pro-
vide a measure of the minimum time necessary to evaluate that program, and thus provide a base-line
against which the performance of other parallel evaluation strategies can be measured.

This paper reports the results of experiments with different strategies for parallel evaluation. We hav erun
some benchmark programs using (a) explicitly introduced parallelism and (b) saturation parallelism.The
examples we have chosen are such that explicit parallelism can be introduced in a natural fashion.

2. Combinator Graph Reduction

The particular implementation method for functional languages which interests us iscombinator graph
reduction. We can think of a combinator as a simple function. Using combinators to evaluate a functional
program involves first of all taking that program, thought of as a sugared lambda-expression, and "abstract-
ing" the variables. Alllambda expressions are thus removed and combinators introduced.So a program
containing names and value-bindings is translated to an equivalent expression containing no names, and the
resulting expression contains only combinators, together with basic data.An implementation which did not
abstract names would need to keep track of the partially-evaluated expressions associated with each name, a
significant communication overhead.

This expression can then be considered as a graph, where the application of a function to an argument is
represented as a binary node, and an atomic datum or a basic combinator is a leaf node. The graph may not
necessarily be a tree, as sharing of common subgraphs may take place, and in the case of recursive func-
tions, that sharing may cause cycles to be introduced into the graph.

The program can be evaluated byreducingthe graph, that is, repeatedly rewriting sections of the graph until
the graph becomes a datum which is the result of the program. For instance, if we have a unary operator
applied to an argument, then the binary node representing that application will be overwritten by the result
of the application.

-3-

2.1. Sets of Combinators

Some preliminary observations on our choice of combinators are appropriate at this point.We work with
combinators as presented originally by Curry [3] , although this formalism is not the only way of describing
combinatory logic (categorical combinators, for instance, create a powerful theory which has also been
used as a basis for graph reduction machines).For the purposes of this paper we identify two principal
classes of combinators.Firstly, combinators which form a (small) fixed set, such as Turner’s combinators
[20,21] , and secondly combinators which form an extensible set and which may be created when required,
such as Supercombinators [11] .

The former class has the advantage of being simple to use and to reason about, but yields combinator
expressions which are relatively large and complex [10] . The latter class requires sophisticated abstraction
techniques, and typically combinators will represent compiled functions which can be run on conventional
architectures fairly efficiently. In [5] Hartel presents statistics indicating that, using various metrics, the
speed of evaluation (measured by combinator reduction steps) of this latter class of combinators compared
with a fixed set is better by typically less than an order of magnitude.

A benefit of having a fixed combinator set is that an architecture can (in theory, at least) be devised so that
the combinators are implemented in hardware. Novel coding techniques [13,15] can also be employed to
reduce the space wastage inherent in a naïve implementation of such a fixed combinator set. Most current
work relating to parallel combinator reduction however assumes an extensible combinator set.

We hav eexamined combinator reduction involving various fixed combinator sets.In this paper we consider
one particular choice of combinators, the set originally introduced by Turner [20,21] .They are defined in
Figure 1 (α, β, γ, δ represent arbitrary expressions), where the reduction rule for each combinator is given.

Combinator ReductionRule

S S α β γ >S α γ (β γ)
K K α β >K α
I I α >I α
B B α β γ >B α (β γ)
C C α β γ >C α γ β
S’ S’ α β γ δ >S′ α (β δ) (γ δ)
B’ B’ α β γ δ >B′ α β (γ δ)
C’ C’ α β γ δ >C′ α (β δ) γ
Y Y α >Y α (Y α)

Figure 1: The set of combinators used

These yield a number of graph rewrite rules, given in Figure 2:

-4-

. >I a

I a

>K a

K a
b

>S

S a
b

c
a b c

>B

B a
b

c a
b c

>C

C a
b

c
a

b
c

>S′

S’ a
b

c
d

a

b

c

d

>B′

B’ a
b

c
d

a b c d

>C′

C’ a
b

c
d

a
b

c

d

>Y

Y
Y f

f

Figure 2: The Graph Rewrite Rules

2.2. Parallelism

A number of projects have recently examined parallel graph reduction for functional languages. Some of
these use an extensible set of combinators, such as GRIP, MaRS, Alfalfa and the Evaluation Transformer
model. Several are not based on combinators, such as Alice, Flagship, the <ν,G> Machine, the ABC-
Machine and Rediflow.

Given a large combinator graph, it is likely that many nodes in the graph can be rewritten concurrently.
Due to the small granularity of the combinators, combinator graph reduction is a candidate for massive par-
allelism [6] . New generations of computers, such as custom-made VLSI architectures and Neural
Machines place us within sight of an efficient parallel graph reduction machine.

Unfortunately, it is not always easy (or necessarily even possible) to decide which graph nodesneedto be
rewritten, and which do not (such as the unused arm of a conditional).The technique of lazy evaluation on
a single processor will minimise the amount of work necessary to reduce a graph, but does not lend itself to
identifying opportunities for parallelism on a multiprocessor.

Various strategies for parallel graph reduction have been examined, such as load balancing amongst the
available processors [19] and strictness analysis [7] .Given a specific fixed combinator set, we examined
the time efficiency of executing a program using two different strategies:

(i) saturationparallelism (rewriting sections of graph in parallelwheneverit is possible to do so), and

(ii) by introducing parallelism explicitly (i.e. only in places chosen by the programmer).

-5-

Saturation parallelism is in general not a practical technique because it involves an unbounded number of
processors. Itis, however, useful since it gives us an indication as to the maximum amount of parallelism
available in a program, against which we can measure how close to optimal speedup "real" strategies come.
Explicit parallelism, on the other hand, is a powerful technique if used correctly. Its main disadvantage is
that the onus is placed upon the programmer to code a program and identify the parallelism in it correctly.

We hav ea upper bound on the speed of a parallel evaluation of a combinator graph, namely that with satu-
ration parallelism.We hav e also introduced explicit parallelism by using a simple divide-and-conquer
approach (see section 6 below). Other more sophisticated attempts at achieving parallelism would be
expected to yield a performance between the upper bound of saturation parallelism and that given by our
explicit parallelism.

3. The Graph Reduction Machine

The simulator takes as input GCODE [12] , which is a textual description of a graph representing a func-
tional program. GCODE contains lambdas, combinators, basic operators (delta combinators), integers, real
numbers, and sum-product domains.The GCODE is generated from FLIC [17] which is minimally sug-
ared lambda-calculus. The input is then compiled to abstract variables and introduce combinators [20,21] .
Recursion is handled by the "Y" combinator. The resulting graph is acyclic, and the reduction rule for the
"Y" combinator preserves this property.

Reduction of the graph takes place by rewriting several parts of it concurrently. The usual serial lazy evalu-
ation strategy is embedded within this parallel reduction strategy, in the sense that at any stage in the reduc-
tion process the next reduction step in the lazy evaluation strategy will always be one of the several concur-
rent reduction steps in our parallel strategies.

3.1. Architecture

The simulated machine has a fixed number ofprocessors, on which may run a variable number ofpro-
cesses. Each process rewrites a section of graph until one of the following conditions is reached:

• that section becomes a datum (integer, floating point number, or sum-product);

• that section cannot evaluate further (when an operator is presented with too few arguments);

• that process is destroyed by another process.

A specific process will not recursively evaluate elements of a sum-product domain, but will spawn further
processes if required.A process contains (inter alia) twostacks, astatusvalue and apriority value.

Each processor is either allocated a single process and isBusy, or is awaiting a process and isFr ee. A pro-
cess may have statusRunningif in the process of rewriting a section of graph,Suspendedif awaiting the
result of another process before evaluation may proceed, orWaiting if it is able to continue running but has
not been allocated to a processor.

A process is allocated a "priority", which is eitherPossibleor Needed. A Neededprocess is one which is
known to be required to be evaluated by the lazy evaluation strategy. A Possibleprocess is one whichmay
require evaluation.

Three queues of processes are maintained; one contains theRunningprocesses, one theWaiting processes,
and one theSuspendedprocesses. Theelements of each queue are ordered by process priority.

A "master process" controls the allocation of processes to processors, and will perform the administration
of the processes and their allocation to processors, as follows:

• Each queue has its elements ordered byPriority, with Neededprocesses at the head of the queue.

• When a process in theRunningqueue completes execution, that process ceases to exist and the pro-
cessor allocated to it becomesFr ee.

• If a process becomesSuspended, it is placed in theSuspendedqueue and the processor allocated to it
becomesFr ee.

• If data becomes available to aSuspendedprocess causing it to be able to continue evaluating, it gains
statusWaiting and is moved to theWaiting queue.

-6-

• A processor which isFr ee is allocated to the process at the head of theWaiting queue. IftheWaiting
queue is empty that processor simply remainsFr ee.

• If all processors areBusy, and one of theRunningprocesses has priorityPossible, and one of the
Waiting processes has priorityNeeded(which we may assume to be at the head of theWaiting
queue), then thatPossibleprocess is swapped with the head of theWaiting queue.

The machine runs in time measured by "cycles". In one cycle a process will perform one reduction step,
and the master process will handle any tasks which this may generate. At the start of each cycle the master
process ensures that each processor which can be allocated a process is allocated one, and that eachRun-
ning process is known to be able to perform a reduction step. Each processor then causes the process allo-
cated to it to perform one single combinator reduction.

At the start of a program execution, after the combinator graph has been created, a single process is created
with priority Needed, which will begin to rewrite the graph using the standard lazy algorithm. Where nec-
essary it will create other processes with priorityNeeded, or indicate to the master process that other pro-
cesses with priorityPossibleshould have priority updated toNeeded. Further processes may be created as
dictated by the parallel evaluation strategy.

3.2. Lazy Evaluation

It will be clear from the above description that the number ofNeededgraph reduction steps will be pre-
cisely the number of steps necessary to evaluate a program using lazy evaluation on a single processor.
Thus the number of cycles taken for the multiprocessor simulator to evaluate a program will be no more
than the number of steps to evaluate a program using lazy evaluation. Oursystem of Queues guards against
the danger of speculatively offshipped processes being evaluated instead of required processes and thereby
causing performance degradation.

3.3. Shared Memory

For the purposes of this exercise we have deliberately left out of our calculations overheads associated with
communication between processors. Since we wished to examine the effect of the idealised situation where
unrestricted parallelism was available the effect of introducing extra metrics into the calculations would
have been a distraction. The assumption of a shared-memory multiprocessor was felt to be the simplest
way to simulate such an idealised machine. Indeed, the machine resources we had available to use were
only just sufficient to perform the experiments reported here, and simulation of a distributed processor
would undoubtedly have been infeasible.

3.4. Overheads

Much of the workload relating to moving processes between processors is left in the control of the master
process. Ina worst-case example, this process could do constant amount of work for eachprocessoreach
cycle. By implementing the master process so that its functions are distributed about the processors, this
work would then involve constant extra time per cycle. Theprocess has been implemented in the way
described for reasons of improving the clarity of the software.

4. The Parallel Evaluation Strategies

We consider two parallel evaluation strategies. Theseare described in terms of the creation of new pro-
cesses and their allocation to specific processors; subsequent management of processes is as described
above.

4.1. Strategy 1: Saturation Parallelism

The maximum set of processes is constructed. The set of available processes is unbounded, and processes
are dynamically constructed according to the following rules.Initially, each reducible sub-expression of
the original graph is assigned a process. During evaluation of the program, whenever a new application
node is created, it is checked to see whether it represents a reducible expression, in which case a process is
assigned to it. These application nodes are formed after combinatorsS, B, S’, B’ andC’ [20,21] have
been reduced.

-7-

For instance, consider the following combinator expression (α, β, γ, δ andε represent arbitrary expressions):

B (B α β) (C γ δ) ε

After one reduction step, fired by the leftmostB, we get

B α β (C γ δ ε)

In this expression both theB andC combinators have sufficient arguments. TheB-reduction will be per-
formed by the same process as the previous reduction (and on the same processor), and a new process (with
priority Possible) will be created to handle theC-reduction. Thislatter process will then be placed in the
Waiting queue, and consequently reduced by another processor when one becomesFr ee. If the parent pro-
cess in due course attempts to perform the reduction it has offshipped, the parent process will beSuspended
until the child has performed that reduction.

This results in a large set of processes, most of which will have priority Possible, and many of which will
be short-lived. Theoverheads of managing large numbers of processes are high, since many of them will
return results which are not required; this strategy is intended as a benchmark against which we can mea-
sure the extent to which other strategies exploit available parallelism.We obtain a figure which is the mini-
mum time (measured in cycles) for the graph to evaluate fully.

4.2. Strategy 2: Explicit Parallelism

Initially, only one process is created, as described in the previous section. Subsequently processes are
flagged so that they will be queued to run on their parent processoronly. Conceptually, each processor has
its own private triple ofRunning, Waiting andSuspendedqueues.

Whenever a section of code has to be sent to a different processor (when the combinatorPAR [18] is
encountered) a process is created and offshipped to another processor with emptyRunningand Waiting
queues.PAR is defined by the rule given in Figure 4.

Combinator ReductionRule

PAR PAR α β >PAR β
Figure 3: The combinatorPAR

Expressionα is offshipped (if possible) to another processor;PAR is typically used whenα is a subexpres-
sion ofβ. If such a processor does not exist the process is placed in aWaiting queue for the first such pro-
cessor to become available. If such a processor never becomes available, the spawned process will eventu-
ally be performed by its parent processor.

All processes are executed on a single processor, unless annotated to be offshipped to another process.A
process assigned to a specific processor will only be evaluated on that processor, as will all processes
spawned by that process unless explicitly offshipped. Inhigh-level code segments below this is indicated
by the annotationoffship.

For example, consider the following expression being evaluated by process 1:

S PAR (+ β) α

After one reduction step by process 1 this yields

PAR α (+ β α)

After one more by the same process we get

+ β α

-8-

where+ andβ will be evaluated by process 1 andα by process 2 (say). Process 2 will be queued to run on a
different processor to that running process 1.If β is fully reduced beforeα has been fully reduced, then a
Neededprocess will be created to reduceα (on the same processor as process 1) even though another pro-
cess (of priorityPossible) still exists to evaluateα.

PAR is similar to the annotation{P} in [14] but is appropriate to a shared-memory implementation.

5. Worked Example

In this section we examine one functional program in detail, and isolate opportunities for parallelism within
it. Theprogram we have chosen isFibonacci numbers, giv en by

fib n = if n >= 1 then (fib (n-1) + fib (n-2)) else 1

A lambda-expression representing this Fibonacci function is:

Y λfib λn IF 1 (+ (fib (- n 1)) (fib (- n 2))) (>= n 1)

Note the operatorIF † is defined by

IF false-case true-case condition

for consistency with the data structures in FLIC, and that all operators areCurried, that is, in prefix form.
When abstraction has taken place, we arrive at the combinator expression:

Y (C’ (S’ (IF 1)) (S’ (S’ +) (C B (C - 1)) (C B (C - 2))) (C >= 1))

5.1. Saturation Parallelism

Using the nameFIB to denote this expression, and applying it to argument10, we hav ein Figure 3 the fol-
lowing reduction sequences. Each line denotes the expression afteronereduction step, and the symbols in
the first and second columns respectively indicate the machine "cycle" and the identity of the processor
which performs the reduction.

† Actually,CASE 2

-9-

Cycle Proc. Expression

1 1 Y (C’ (S’ (IF 1)) (S’ (S’ +) (C B (C - 1)) (C B (C - 2))) (C >= 1)) 10

2 1 C’ (S’ (IF 1)) (S’ (S’ +) (C B (C - 1)) (C B (C - 2))) (C >= 1) FIB 10

3 1 S’ (IF 1) (S’ (S’ +) (C B (C - 1)) (C B (C - 2)) FIB) (C >= 1) 10

4 1 IF 1 (S’ (S’ +) (C B (C - 1)) (C B (C - 2)) FIB 10) (C >= 1 10)

4 2 IF 1 (S’ (S’ +) (C B (C - 1)) (C B (C - 2)) FIB 10) (>= 10 1)

5 1 IF 1 (S’ + (C B (C - 1) FIB) (C B (C - 2) FIB) 10) (>= 10 1)

5 3 IF 1 (S’ + (C B (C - 1) FIB) (C B (C - 2) FIB) 10) FALSE

5 4 IF 1 (S’ + (B FIB (C - 1)) (C B (C - 2) FIB) 10) FALSE

5 1 IF 1 (S’ + (B FIB (C - 1)) (B FIB (C - 2)) 10) FALSE

6 2 S’ + (B FIB (C - 1)) (B FIB (C - 2)) 10

6 3 + (B FIB (C - 1) 10) (B FIB (C - 2) 10)

6 4 + (FIB (C - 1 10)) (B FIB (C - 2) 10)

7 5 + (FIB (C - 1 10)) (FIB (C - 2 10))

7 6 + (FIB (- 10 1)) (FIB (C - 2 10))

8 5 + (FIB (- 10 1)) (FIB (- 10 2))

8 6 + (FIB 9) (FIB (- 10 2))

9 1 + (FIB 9) (FIB 8)

Figure 4: Fibonacci

Now, the first three cycles can be performed beforeFIB has been given argument 10. Recursive calls can
therefore take place in parallel, reducing the number of cycles from 9 to 6. The behaviour of this function
when allowed unlimited processors is indeed6n+O(1)cycles to evaluatefib n.

5.2. Explicit Parallelism

In order to introduce parallelismexplicitly into the Fibonacci function, we use thePAR combinator, as
defined above. The lambda expression we then have is:

Y λfib λn IF 1 ((λx PAR x (+ (fib (- n 1)) x)) (fib (-n 2))) (>= n 1)

This lambda expression is slightly larger than the previous one, and more combinators will be introduced
by the abstraction algorithm.By a similar analysis to that in Figure 3, 17 cycles are required for each level
of recursion, assuming that sufficient processors are available.

5.3. Analysis

Much of the saturation parallelism is redundant.For instance, the two arms of theIF will always be
spawned, and whenfib is given small arguments, there is significant redundant computation here.Also,
some of the spawned processes are very short-lived (for instance, those numbered 2 and 6 in the table
above). It can be argued that the communication costs for such processes make their creation and destruc-
tion undesirable.We conclude that explicit parallelism gives an acceptably efficient allocation of tasks to
processorsin this particular case, giv en the set of combinators we have elected to use.

6. Test Programs

In this section we present the results of running several programs under both strategies. Theexamples have
been chosen so that each has significant divide-and-conquer parallelism inherent within it.

6.1. Divide-and-Conquer

The technique ofdivide-and-conqueris a well-known method of explicitly introducing parallelism [1] to
certain classes of problem. In [2] a model of list processing is presented suitable for divide-and-conquer
techniques, implementing a list as a binary tree. In the examples below which use lists this model is
employed.

-10-

6.2. Lists

The primitive functions for the list processing model are:

(i) [] is the empty list.

(ii) singleton x (or alternatively [x]) is the list which contains a single elementx.

(iii) concatenate s t (or alternatively s++t) is the list formed by concatenating the listss andt.

(iv) split s is a pair of lists obtained by partitioning the lists into two parts. It is defined only ifs con-
tains at least two elements. Both lists returned are non-empty. split s is defined bysplit (concate-
nate s t) = (s, t)

(v) length s (or alternatively #s) is the number of elements ofs.

(vi) element s is the only element present in the singleton lists. This function is undefined for lists con-
taining more or less than one element.

Note that we model lists with++ as a primitive list constructor, rather thancons.

The examples described in the following section all have natural opportunities to introduce parallelism.
Those functions which employ lists in their definitions are assumed to use the divide-and-conquer list
paradigm described above, where the trees implementing those lists are balanced.

6.3. Test Examples

Each of the examples we used is presented here in pseudocode.The actual programs were hand-coded in
FLIC. The first three have been specified as functions which take an integer argument and would be
expected to exhibit time of execution linear in their argument. Thefourth, quicksort, should have time
quadratic in its argument. Thefifth, adaptive quadrature integration, similar to an example in [4] , takes no
arguments.

In the following examples, the annotationoffship has been used instead ofPAR to make the code more eas-
ily intelligible, where

f x (offship y) is equivalent to PAR y (f x y)
and

x ++ offship y is equivalent to PAR y (x ++ y)

Map n = map double [1..2n]
where
double x = x + x
map f [] = []
map f [x] = [f x]
map f (l ++ r) = map f l ++ offship (map f r)

Figure 5: Map

Reverse n = reverse [1..2n]
where
reverse [] = []
reverse [a] = [a]
reverse (a ++ b) = reverse b ++ offship (reverse a)

Figure 6: Reverse

Hanoi n = hanoi n 0 1 2
where
hanoi 0 a b c = []
hanoi n a b c = hanoi (n-1) a c b ++ [(a, b)] ++ offship (hanoi (n-1) c b a)

Figure 7: Towers of Hanoi

-11-

Quicksor t n
= quicksor t [2n..1]

where
quicksor t [] = []
quicksor t [n] = [n]
quicksor t s

= quicksor t a1 ++ offship (quicksor t a2)
where
(a1, a2) = reduce f (map (g (median (first s) (last s))) s)
g medn x = if (x > medn) then ([x], []) else ([], [x])
f (s1, s2) (t1, t2) = (s1++t1, s2++t2)
first [n] = n
first (s++t) = first s
last [n] = n
last (s++t) = last t
map f [] = []
map f [x] = [f x]
map f (l ++ r) = map f l ++ offship (map f r)
median m n = (m + n) div 2
reduce p [n] = n
reduce p (s ++ t) = p (reduce p s) (offship (reduce p t))

Figure 8: Quicksort

func x = 4.0*x3 + 3.0*x2 + 2.0*x + 5.0

area f left right
= (right-left) * ((f left) + (f right))/ 2.0

check f left right estimate tolerance newleft newr ight =
if (estimate − newestimate)2 < tolerance2

then newestimate
else (trapezoid f left mid newleft (tolerance / 2.0)) +

(offship (trapezoid f mid r newr ight (tolerance / 2.0)))
where
newestimate = newleft + newr ight
mid = (left+right) / 2.0

trapezoid f left right estimate tolerance
= check f left right estimate tolerance arealeft arearight

where
mid = (left+right) / 2.0
arealeft = area f left mid
arear ight = area f mid right

integrate f left right tolerance
= trapezoid f left right (area f left right) tolerance

Integration = integrate function 0.0 2.0 0.01
Figure 9: Adaptive Quadrature Integration

7. Results

We now giv e some statistics relating to the above examples, and discuss their importance.

-12-

7.1. Maximum Speedup

We look first at the relation between the maximum possible speedup (as measured by saturation paral-
lelism), and that produced by introducing explicit parallelism.For the purposes of this section, we assume
an unbounded set of processors.

Figure 10 contains statistics relating to the execution time (measured in cycles) of the programs detailed
above. Column 2 gives the actual time for the program to run (n, where appropriate, is the argument to the
function). Columns3 and 4 detail the value oft (from column 2) for the two strategies. Thefinal column
gives the ratio of columns 3 and 4, and represents the fraction of the available parallelism utilised by the
"explicit" strategy.

Example Speed Saturation Explicit Efficiency

Map tn + O(1) 8 226 0.035
Reverse tn + O(1) 8 133 0.060
Hanoi tn + O(1) 11 126 0.087
Quicksort tn2 + O(n) 1 23.5 0.043
Integration t 179 3224 0.056

Figure 10: constant of linearity

A combinator expression derived from a lambda expression will, by definition, contain a number of combi-
nators together with other operators mentioned in the lambda expression. Inorder to evaluate the expres-
sion, some or all of the combinators and operators will, at some time during the evaluation, be presented
with their required number of arguments. Asan expression evaluates, sub-expressions will be created
which can therefore be reduced concurrently (for instance, after anS combinator has been fired).

The principal reason for the high speed of saturation parallelism is the detection ofall of these concurrent
sub-expressions. Whenparallelism is explicitly described, only some of the processes which can be evalu-
ated in parallel are in fact offshipped.

Our results indicate that a speedup typically of more than an order of magnitude can be accomplished by
successfully detecting such sub-expressions, compared to the inherent divide-and-conquer parallelism in
the original functional program.It will be apparent that many of the sub-expressions will have a very short
lifetime, and therefore such parallelism could only be usefully captured on an architecture with small pro-
cess creation and communication overheads.

Suppose, on the other hand, we had an implementation where our functional program is coded so that the
defined functions are implemented as basic operators in their own right. Then we would expect no such
extra parallelism to exist. Thespeedup effected by saturation parallelism is a feature of the granularity of
the combinators and operators to which the functional program is compiled.

7.2. Utilisation of a Fixed Processor Set

We now look at the performance given a fixed set of processors.We use two measures. Firstly speedup,
namely

lazy_reduction_steps/ cycles

(wherelazy_reduction_stepsis the number of reductions where pure lazy evaluation is performed on a sin-
gle processor) and secondly "efficiency", being

number of processors× time taken

where the "time taken" for the 1-processor case is 1. In Figures 11 and 13 the columns represent the
speedup for particular numbers of processors, and Figures 12 and 14 the efficiency. The example programs
were run with a selection of arguments, where appropriate.

-13-

7.2.1. Saturation Parallelism

Number of Processors

2 16 128 1024

Map 1 1.19 2.75 12.93 18.43
Map 5 1.25 3.34 24.83 48.13
Map 9 1.44 8.88 73.73 286.72
Reverse 1 1.27 3.22 9.22 9.22
Reverse 5 1.51 7.52 32.77 32.77
Reverse 9 1.80 13.12 93.31 249.86
Hanoi 1 1.15 2.35 8.83 11.26
Hanoi 5 1.38 7.63 25.09 45.06
Hanoi 9 1.42 8.62 68.61 240.64
Quicksort 2 1.14 2.26 9.60 50.18
Quicksort 3 1.18 2.62 10.88 40.96
Quicksort 4 1.21 2.69 10.37 45.23
Integration 1.15 5.14 27.39 94.21

Figure 11: speedup (saturation parallelism)

Number of Processors

2 16 128 1024

Map 1 1.68 5.82 9.90 55.56
Map 5 1.60 4.79 5.16 21.28
Map 9 1.39 1.80 1.74 3.57
Reverse 1 1.57 4.97 13.88 111.06
Reverse 5 1.32 2.13 3.91 31.25
Reverse 9 1.11 1.22 1.37 4.10
Hanoi 1 1.74 6.81 14.50 90.94
Hanoi 5 1.45 2.10 5.10 22.73
Hanoi 9 1.41 1.86 1.87 4.26
Quicksort 2 1.75 7.08 13.33 20.41
Quicksort 3 1.69 6.11 11.76 25.00
Quicksort 4 1.65 5.95 12.34 22.64
Integration 1.74 3.11 4.67 10.87

Figure 12: time× number of processors (saturation parallelism)

With the saturation strategy, and where the size of problem being solved is sufficiently large, speedup is
roughly half the number of processors employed. Inother cases, the speedup factor is typically 20% of the
number of processors available.

For the first three functions, where the number of steps necessary fully to evaluate the functions are small,
the amount of available speculative parallelism is also small, and the parallel efficiency is high. Quicksort,
however, requires a relatively large number of reduction steps, and there is ample opportunity for specula-
tive parallelism. We therefore, not surprisingly, find that a much greater proportion of the processors are at
any time engaged on evaluating unrequired sections of the graph.

For the function Reverse, we see identical speedups when 128 and 1024 processors are used, for arguments
1 and 5. These indicate that at most 128 processors were required.

Since allocation of processes to processors is via a queue on a "first come first served" basis, there is no dis-
tinction made at run-time between different processes of priorityPossible. For instance, Quicksort 3 has
marginally less speedup than Quicksort 2. This is simply a result of unrequired speculative processes hap-
pening to be fired, and spawning children, before required ones; thus theWaiting process queue becomes
overfull of unrequired processes. This behaviour will appear to a programmer to be non-deterministic.

-14-

7.2.2. Explicit Parallelism

Number of Processors

2 4 8 16 32

Map 3 1.15 1.32 1.65 1.65 1.65
Map 6 1.49 1.96 2.35 2.72 3.14
Map 9 1.85 3.21 4.49 6.77 8.96
Reverse 3 1.22 1.43 1.60 1.60 1.60
Reverse 6 1.61 2.32 2.90 3.44 4.32
Reverse 9 1.90 3.45 4.90 8.03 11.50
Hanoi 3 1.16 1.26 1.26 1.26 1.26
Hanoi 6 1.43 1.77 2.08 2.30 2.46
Hanoi 9 1.81 3.02 4.17 5.87 7.26
Quicksort 3 1.07 1.27 1.45 1.73 1.73
Quicksort 6 1.31 1.80 2.34 2.78 3.20
Quicksort 9 1.49 2.48 4.54 6.13 9.47
Integration 1.67 2.51 3.58 4.98 6.30

Figure 13: speedup (explicit parallelism)

Number of Processors

2 4 8 16 32

Map 3 1.74 3.03 4.85 9.70 19.39
Map 6 1.34 2.04 3.40 5.88 10.19
Map 9 1.08 1.25 1.78 2.36 3.57
Reverse 3 1.64 2.80 5.00 10.00 20.00
Reverse 6 1.24 1.72 2.76 4.65 7.41
Reverse 9 1.05 1.16 1.63 1.99 2.78
Hanoi 3 1.72 3.17 6.35 12.70 25.40
Hanoi 6 1.40 2.26 3.85 6.96 13.01
Hanoi 9 1.10 1.32 1.92 2.73 4.41
Quicksort 3 1.87 3.15 5.52 9.25 18.50
Quicksort 6 1.53 2.22 3.42 5.76 10.00
Quicksort 9 1.34 1.61 1.76 2.61 3.38
Integration 1.20 1.59 2.23 3.21 5.08

Figure 14: time× number of processors (explicit parallelism)

With explicit parallelism, we would expect poor performance when the number of processors exceeds the
available parallelism in the program. This is indeed the case.However, with relatively few processors, par-
allel efficiency is high.

We obtain a speedup of typically 50% of the number of processors utilised.These figures can be compared
with those obtained in [9] where Hudak and Goldberg report processor utilisation and speedup for a divide-
and-conquer factorial on a distributed memory machine.A direct comparison cannot be made, for two rea-
sons; they use a metric which includes communication costs for their simulated machine configured as a
torus with up to 128 processors, and their algorithm for offshipping processes is simply the divide-and-
conquer paradigm. Their heuristic produces a speedup factor typically 50% of the number of processors
used. For our simulated machine, when the size of the problem being evaluated is large compared to the
number of available processors, and where the problem naturally allows divide-and-conquer parallelism, we
also obtain a speedup of around 50% of the number of processors utilised.

It is dangerous to utilise massively parallel evaluation strategies with a small number of processors, unless
some mechanism is in place to prevent the machine being swamped with unrequired tasks. The Queue
method we use for this exercise ensures that the Needed processes will always be evaluated in preference to

-15-

speculative Possible processes, and the speedup factor, which will always be at least 1, will be a measure of
the efficiency with which ones offshipment algorithm accurately detects the correct subgraphs to evaluate in
parallel.

8. Conclusions

We hav eexamined combinator graphs derived from a number of benchmark programs, and obtained experi-
mental results relating to running the program on a parallel machine. Our aim was to compare the number
of parallelism opportunities and the idealized speedup factors when using various different strategies for
introducing parallel evaluation. Many problems lend themselves naturally to divide-and-conquer paral-
lelism. We hav e assumed that the problems are sufficiently large to ensure efficient utilization of our
machine.

We hav edemonstrated that by using a "fine-grained" set of combinators one can compensate for the granu-
larity of the operators used, and the consequent large number of basic reduction steps needed to evaluate a
function, by employing massive parallelism. We hav e also confirmed that explicitly introducing divide-
and-conquer parallelism with a small number of processors, and using the same machine, enables a speedup
approaching linear in the number of processors used. Our machine provides a vehicle for modelling paral-
lelism at both small and large scale.

Our results show that there is potentially a large amount of parallelism present in functional programs writ-
ten in the divide-and-conquer style, but the problem size must be larger than the number of processors if
good speedups are to be possible. As we have ignored the overheads of process creation and interprocessor
communication, our figures are essentially upper bounds on the parallelism that can be achieved in this
way. Nev ertheless, the explicit divide-and-conquer parallelism is large-grain parallelism, particularly in the
earlier stages of the division part of divide-and-conquer, and not likely to be much affected by overheads.
On the other hand, the extra parallelism obtained with saturation parallelism is typically fine-grain paral-
lelism, and probably realisable only if process creation overheads are very small indeed.

The present analysis is applicable only to shared-memory architectures.Further work remains to be done
on using a similar approach for distributed memory architectures, and on larger and more realistic applica-
tions using the divide-and-conquer paradigm.

References

1. L. Acker and D. Miranker, “On Parallel Divide-and-Conquer,” Report TR-91-27, Department of
Computer Sciences, University of Texas at Austin, Austin, TX (1991).

2. T.H. Axford and M.S. Joy, “List Processing Primitives for Parallel Computation,” Computer Lan-
guages,19, 1, pp. 1-17 (1993).

3. H.B. Curry, W. Craig, and R. Feys, Combinatory Logic, volume 1,North-Holland, Amsterdam, NL
(1958).

4. M.I. Greenberg, “An Investigation into Architectures for a Parallel Packet Reduction Machine,” Tech-
nical Report UMCS-89-1, Department of Computer Science, University of Manchester, Manchester,
UK (1989). PhD Thesis.

5. P.H. Hartel, “Performance of Lazy Combinator Graph Reduction,” Software - Practice and Experi-
ence,21, 3, pp. 299-329 (1991). Also Report D-27, Fakulteit Wiskunde en Informatika, Universiteit
van Amsterdam (1989).

6. W.D. Hillis and G.L. Steele, “Data Parallel Algorithms,” Communications of the ACM, 29, 12, pp.
1170-1183 (1986).

7. G. Hogen, A. Kindler, and R. Loogen, “Automatic Parallelization of Lazy Functional Programs” in
ESOP’92 - 4th European Symposium on Programming, Rennes, France,ed. B. Krieg-Brückner, pp.
254-268, Springer-Verlag, Berlin, DE (1992). Lecture Notes in Computer Science 582.

8. P.R. Hudak, “Conception, Evolution, and Application of Functional Programming Languages,” ACM
Computing Surveys,21, 3, pp. 359-411 (1989).

9. P.R. Hudak and B. Goldberg, “Experiments in Diffused Combinator Reduction” inACM Symposium
on Lisp and Functional Programming, Austin, TX,pp. 167-176 (1984).

-16-

10. P.R. Hudak and B. Goldberg, “Serial Combinators: "Optimal" Grains of Parallelism” inFunctional
Programming Languages and Computer Architecture, ed. J.-P. Jouannaud, pp. 382-399, Springer-
Verlag, Berlin, DE (1985). Lecture Notes in Computer Science 201; ISBN 3-540-15975-4; Proceed-
ings of. Conference at Nancy.

11. R.J.M.Hughes, “Super-Combinators” inConference Record of the 1980 LISP Conference, Stanford,
CA,pp. 1-11, ACM, New York (1982).

12. M.S.Joy and T.H. Axford, “GCODE: A Revised Standard Graphical Representation for Functional
Programs,”ACM SIGPLAN Notices,26, 1, pp. 133-139 (1991). Also Research Report 159, Depart-
ment of Computer Science, University of Warwick, Coventry (1990) and Research Report CSR-90-9,
School of Computer Science, University of Birmingham (1990).

13. J.R.Kennaway and M.R. Sleep, “Director Strings as Combinators,” ACM Transactions on Program-
ming Languages and Systems,10, 4, pp. 602-626 (1988). Also University of East Anglia Report
SYS-C87-06.

14. P.W.M. Koopman, M.C.J.D van Eekelen, and M.J. Plasmeijer, “Operational Machine Specification
in a Functional Programming Language,” Technical Report no. 90-21, Department of Informatics,
University of Nijmegen, Nijmegen, NL (1990).

15. K. Noshita and T. Hikita, The BC-Chain Method for Representing Combinators in Linear Space,
Department of Computer Science, Denkitusin University, Tokyo, JP (1985).

16. S.L. Peyton Jones,“Parallel Implementations of Functional Programming Languages,” The Com-
puter Journal,32, 2, pp. 175-186 (1989).

17. S.L. Peyton Jonesand M.S. Joy, “FLIC - a Functional Language Intermediate Code,” Research
Report 148, Department of Computer Science, University of Warwick, Coventry, UK (1989). Revised
1990. Previous version appeared as Internal Note 2048, Department of Computer Science, University
College London (1987).

18. P. Roe, “Some Ideas on Parallel Functional Programming” inFunctional Programming: Proceedings
of the 1989 Glasgow Workshop, 21-23 August 1989,ed. K. Davis and R.J.M. Hughes, pp. 338-352,
Springer-Verlag, London, UK (1990). British Computer Society Workshops in Computing Series;
ISBN 3-540-19609-9.

19. H.Seidl and R. Wilhelm, “Probabilistic Load Balancing for Parallel Graph Reduction” inProceed-
ings IEE Region 10 Conference,pp. 879-884, IEEE, New York (1989).

20. D.A. Turner, “A New Implementation Technique for Applicative Languages,”Software - Practice
and Experience,9, pp. 31-49 (1979).

21. D.A. Turner, “Another Algorithm for Bracket Abstraction,” Journal of Symbolic Logic, 44, 3, pp.
67-70 (1979).

