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This paper presents a calculus that enables a designer of an embedded, real-time system to reason
about and calculate whether a given requirement will hold with a sufficiently high probability for
given failure probabilities of components used in the design of the system.

The main idea is:

. to specify requirements and design in DC (Duration Calculus, an extension of
real-time, interval logic).

. to define satisfaction probabilities for formulas in this calculus.

. to establish a basic probabilistic calculus, PC, with rules that support
calculation of the satisfaction probability for a composite formula from
probabilities of its constituents

. and - finally - to develop a collection of theorems expressing specific
important PC formulas in terms of the probability matrices used in
classical reliability engineering. These theorems are oriented towards
systematic numerical calculations.

This ensures that reasoning about probabilities is consistent with requirements and design
decisions. We thus avoid introducing separate models for requirements and dependability
analysis. The system model is a finite automaton with fixed transition probabilities. This defines
discrete Markov processes as basis for the calculus.
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Abstract

This paper presents a calculus that enables a designer of an embedded, real-time system to reason
about and calculate whether a given requirement will hold with a sufficiently high probability for
given failure probabilities of components used in the design of the system.

The main idea is:

e tospecify requirements and design in DC (Duration Calculus, an extension of real-time, interval

logic),

e to define satisfaction probabilities for formulas in this calculus,

e to establish a basic probabilistic calculus, PC, with rules that support calculation of the satis-
faction probability for a composite formula from probabilities of its constituents

e and - finally - to develop a collection of theorems expressing specific important PC formulas in

terms of the probability matrices used in classical reliability engineering. These theorems are
oriented towards systematic numerical calculations.

This ensures that reasoning about probabilities is consistent with requirements and design deci-
sions. We thus avoid introducing separate models for requirements and dependability analysis. The
system model is a finite automaton with fixed transition probabilities. This defines discrete Markov
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1 Introduction

Requirements for an embedded, real-time system include functional and safety properties. Consider
for instance an on-off gas burner [SNH91]. It is required to turn the flame on or off a short time after
requested to do so by a thermostat. It must also prevent excessive leaks of gas to the environment. The
latter requirement can be stated as an integrated constraint: the duration of leaking states should only be
a small proportion of any interval of length, say 1 minute.

Such a system can be modelled by a dynamic system where a state changes over time. In the gas burner
example, we could for instance introduce a discrete state Leak which goes on and off with time. A
design for discrete control of the system will then be given by constraints on the transitions between
states. A designer may now use various mathematical techniques to verify that the design satisfies the
requirements. Among these the duration calculus [ZHR92] is recently found promising for reasoning
about requirements and designs of real-time, embedded systems [HRR91, RR91, SRRZ92]. A summary
of this calculus is given in Section 2.

However, a customer or a certification agency may legitimately ask about the dependability of the system
in terms of a failure probability within a certain period of time. Such a question cannot be answered
from the design or its mathematical model. In order to answer the questions, the designer may choose
to develop alternative models, cf. the two tiered approaches used in the SIFT project [MSS82], or the
stochastic model developed from a state machine model for a design in [SNH91].

A two model approach adds complexity to the design activity because the two have somehow to be
updated consistently whenever the design changes. Several researchers have seen that there is a potential
for making the design activity simpler by using a unified model in the form of a probabilistic automaton
with Markov properties [HJ89, LS89]. In [LS89] an untimed logic for specification is extended by
adding probabilities to the combinators; this allows reasoning about untimed probabilistic systems.
Time and probabilities are introduced together in [HJ89] which extends the computation tree logic
(CTL) of [CES83]. There is however not a proof system for the extended logic, and the expressiveness is
somewhat restricted. We have thus found it worthwhile to investigate the development of a probabilistic
duration calculus.

Based on probabilistic automata, this paper defines the satisfaction probabilities of duration formulas
in the duration calculus, and establishes a corresponding probabilistic calculus. The calculus has a set
of axioms and rules that support direct reasoning about and calculation of satisfaction probabilities for
formulas specifying a given design.

The probabilistic duration calculus, subsequently called PC, is based on three key ideas. The first is to
simulate imperfect systems with probabilistic automata. This is presented in Section 3. The second one,
in Section 4, is to extend the model of the duration calculus and define the satisfaction probability of a
duration formula by a probabilistic automaton. And the third one is to establish a calculus to calculate
and reason about satisfaction probabilities. This is done in section 5.

Running examples are given in each section and Section 6 contains a number of examples that illustrate
the possible application of the calculus.

However, the examples of Section 6 also indicate that calculation of satisfaction probabilities directly
by means of the basic PC rules may turn out to be fairly complex. What is needed is a higher level of
theorems provable from PC and oriented towards mechanisable numerical calculations. Such a level is
established in Section 7 by introduction of the classical probability matrices, and its ability to treat some
of the previous examples more succintly is illustrated.



The conclusion in Section 8 compares this work with related work and indicates directions for further
research.

2 The Duration Calculus

This section outlines the duration calculus DC and its application to specification of real-time systems.

2.1 Time
The original duration calculus [ZHR92, HZ92] uses continuous time. In order to have a simple, well
understood probabilistic model (see Section 3), we here assume discrete time. Time is represented by

the set N of non-negative integers. A time point is denoted ¢, #, etc. and a time interval [t, 8], 01 < B,
represents the set of time points from ¢; to %.

2.2 States

We assume a finite non-empty set A of primitive states. States, ranged over by P, @), P1, (1, etc., consist
of expressions formed by the following rules:

e Each primitive state P € A is a state.

o If P and Q are states, thenso are =P, (PA @), (PV Q), (P = Q), (P & Q).

A primitive state P is interpreted as a function I(P) : N — {0,1}. I(P)(t) = 1 means that state P is

- present at time point ¢, and I(P)(¢) = 0 means that state P is not present at time point £. We assume

that when a state is present at time £, it will persist for the next time unit. A composite state is interpreted
as a function which is defined by the interpretations for the primitive states and the boolean operators.

2.3 Duration

For an arbitrary state P, its duration is denoted [ P. Given an interpretation I of the states, a duration
J P will be interpreted over time intervals. It denotes the accumulated time during which P is present
within the time interval. So for an arbitrary interval [t;, t,], the interpretation I(f P)([t, t]) is defined
as the non-negative integer

Hh—1

I(f P)([t,ta]) = D I(P)(t)

t=4
where I([ P)([t,t]) = 0. So [ 1 always denotes the length of an interval. We will use [ to denote the
length of an interval. That is,

Definition1 [ 2 [1

The set of primitive duration terms consists of variables over the integers Z and durations of states. A
duration term is either a primitive term or an expression formed from terms by using the usual operators
on integers, such as addition + and multiplication *.



2.4 Duration Formulas

A primitive duration formula is an expression formed from terms by using the usual relational operators
on the integers, such as equality = and inequality <. A duration formula is either a primitive formula or
an expression formed from formulas by using the logical operators =, A, V, =, <, and the chop ; (see
below) and quantifiers V, 3 applied to variables ranging over Z.

A duration formula D is satisfied by an interpretation I with an interval [t;, ;] just when it is evaluated
to true [HZ92]. This is written

I, [tla tZ] F D
where I assigns every primitive state with a function from N to {0, 1}, and [¢;, t;] decides the observation

window. So the joint satisfaction relation has nothing to do with the values of the primitive state assigned
by I outside the observation window (¢, ;]. That is, for interpretations I; and b, if

I](P)(t) = Iz(P)(t) 1 <t<t
holds for any primitive states in D, then we can prove

L,[t,blED iff h,[h,0]ED

A chopped formula Dy; D, is true for I with [¢;, &;] if there exists a ¢ such that ¢} < ¢t < #, and D; and
D, are true respectively with [#;, t] and (¢, ;] for I.

We define shorthands for some duration formulas which are often used.
Definition 2 For an arbitrary state P,

[P12(JP=1)A(I>0)

This means that P holds everywhere in a non-point interval. We use [ ] to denote the predicate which is
true only for a point interval.

Definition3 []127=0
Definition 4 For a duration formula D,
OD 2 true; D; true
This is true of an interval in which D holds for some subinterval of it.
Definition 5 For a duration formula D,

oD é -O-D

This is true of an interval in which D holds for all subintervals of it.



2.5 Proof System of Duration Calculus
This subsection lists the axioms and rules of the duration calculus which have been shown to be sound

and (relative) complete in [HZ92] for the case of continuous time. We will make changes according to
the discrete time domain we use in this paper. We will number these axioms and rules by DA.

The duration of the state O is always 0.

DA1 [0=0

DA 2 For an arbitrary state P,
JP>0

The additivity rule of integrations is described as

DA 3 For arbitrary states P and Q,
JP+JQ=]FPVO)+ [(PAQ)

The following theorem is provable from these axioms.

Theorem 1 For an arbitrary state P,

1. [P+ [-P=I

2. [P<I

The basic axiom relating chop (;) and integration ([) states that the duration of a state in an interval is
the sum of its durations in subintervals.

DA 4 Let P be a state and r, s non-negative integers
(JP=r+s)& ((JP=r) [P=5))

From this axiom, we have

Theorem 2 For a state P

1>2= (([P] & ([P); [P]))

Since we use discrete time, the condition [ > 2 is required. This is different from the continuous time.

The following induction rule extends a hypothesis over adjacent subintervals. It relies on the finite
variability of states and on the finitude of the intervals, that any interval can be split into a finite
alternation of state P and state —P. The discrete time model automatically satisfies such an assumption.

DA 5 Let X denote a formula letter occurring in the formula R(X), and let P be a state.



1. IfR([ 1) holds, and R(X V (X; [P])), R(X V (X; [-P])) are provable from R(X) then R(true)
holds.

2. IfR([ ]) holds, and R(X V ([P]; X)), R(X V ([-P]; X)) are provable from R(X) then R(true)
holds.

This rule can be used to prove that a proper interval ends with either P or - P.

Theorem 3 For a state P

(true; [P])V (true; [-P])V [ ]
As induction hypothesis, the proof uses R(X) Lx= (true; [P])V (true; [-P])V [].

2.6 Real Time Specifications

The duration calculus has been used to specify real-time constraints of embedded systems [HRRI1,
RR91, SRRZ92]. In [ZHR92], one of the time critical requirements of a Gas Bumer is specified by a
formula of the duration calculus denoted as Reg-1,

Req-1 > 60sec = (20 * [ Leak < I)

This says that if the interval over which the system is observed is at least one minute, the proportion of
time spent in the leak state is no more than one twentieth of the elapsed time.

The requirement is refined into two design decisions

Des-1 O([Leak] = I < 1sec)

Des-2 O([Leak]; [-Leak]; [Leak] = I > 32sec)

Des-1 says that any leak state must be detected and stopped within one second, and Des-2 says that leak
must be seperated by at least 30 seconds.

The correctness of the design is reasoned about by proving the implication
Des-1 A Des-2 => Reg-1
in the duration calculus [ZHR92].

However, we cannot expect, in practice, a real implementation to satisfy the decisions at all time. A
real implementation can only satisfy the design decisions with some probability within a given service
period. This raises the following problems which are the concerns of this paper. How can we model a
real (imperfect) implementation? How can we define and reason about the satisfication probability of a
duration formula (requirement or decision)?

3 Imperfect Systems and Probabilistic Automata

We will use a finite probabilistic automaton as a mathematical model of the behaviour of an imperfect
system in a discrete time domain. Such an automaton is well described by its transition graph. We will
continue with the Gas Bumer example.
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Figure 1: A Gas Bumer With Unreliable Detector and Failing Flame

3.1 Gas Burner with Unreliable Flame Detector and Failing Flame

A model of a Gas Bumer with an unreliable flame detector and a failing flame can be defined by the
transition graph shown in Figure 1. In this Gas Bumer, Leak is the only primitive state considered,
and - Leak denotes the absence of the primitive state. The probabilities of the system starting in states
- Leak and Leak are p; and p; respectively!, where 0 < p;, p» < 1 and p; + p; = 1. The probability of
the system to stay burning within one time unit is p;;. The probability of flame failure within one time
unitis pj2. So 0 < p11,p12 < 1 and py; + p12 = 1. The probability of the detector to detect the leakage
(thereby causing re-ignition of the flame) within one time unit is pp;. The probability with which the
detector fails to detect the leakage within one time unit is p;;, where 0 < po1, 22 < 1and pr; + p22 = 1.
Here we assume that the transition probabilities are independent of the transition history. This is the
main feature of a Markov chain.

3.2 Gas Burner with Unreliable Detector, Unreliable Ignition and Failing Flame

An implementation with more imperfect components is modelled by a larger graph. The model of a Gas
Bumer with an unreliable flame detector, an unreliable ignition system and a failing flame is illustrated
in Figure 2.

This graph uses two primitive states gas (gas is released), and flame (the flame is on) to model the
system:

e At any time the system can be only in one of the following mutually exclusive states,
V = {—~gas A ~flame , gas A flame , gas A ~flame}
So it is assumed that
—gas A flame = 0 and —gas A =flame V gas A flame V gas A -~flame = 1
e It starts in the idle state, i.e. both the gas and the flame are off,
=1 and pp=p3=0

e It idles with probability p;; for one time unit;

e The ignition succeeds with probability p;; within one time unit;

'We usually assume that the Gas Burner starts from the state ~Leak, ie. py = 1 and p, =0.
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Figure 2: A Gas Bumner With Unreliable Detector, Unreliable Ignition and Failing Flame

o The ignition fails with probability p;3 within one time unit;

The system finishes service with probability p;; within one time unit;

The system stays burning with probability p;; within one time unit;

The flame fails with probability p;3 within one time unit;

The system detects and stops a failure (by returning to the idle state) with probability p3; within
one time unit;

e Detection or recovery fails with probability p33 within one time unit.

Notice that ps; is assumed to be zero. This means that spontaneous re-ignition after a flame failure is
ruled out.

We have 0 < p;; < 1and
pitpatps=1 (i=12,3)
Leak is now the composite state

Leak & gas A —flame

3.3 Probabilistic Automaton
We end this section with a general definition of a probabilistic automaton (PA).

Definition 6 A PA isa tuple G = (V, 19, T) where



o V. = {vi,...,Vm}, is a finite non-empty set of multually exclusive states. That is, for any
Liti#jAL<i,j<m,
Vi AV = 0
V is also complete in the sense that
m
V Vi = 1
i=1

The set V is ranged by v, V', v;, etc.

o 70: V — [0, 1]is a function called the initial probability mass function, such that

Z To(v) = 1

vevy
10(v) defines the probability of the system starting from state v.

o 7: VXV — [0,1]is a function called the single-step probabilistic transition function such that
foreveryv eV

Z r(v,v) =1

viey

For example, in Section 3.1, V = {Leak, ~ Leak}. The initial probability mass function is 7o(—Leak) =
1, 7o(Leak) = 0, and the probabilistic transition function is as follows.

7(—~Leak,~Leak) = p11  7(—Leak, Leak) = p12

7(Leak,-Leak) = p;1  T(Leak, Leak) = pp

4 Satisfaction Probability

Given an automaton G = (V, 79, 7), let A be the set of primitive states each of which occurs in some
state in V.

4.1 Behaviour

Given a non-negative integer ¢, the sequence of states in V,
0'[‘] ¢ Mye-o, Ut

defines a possible behaviour of G within its first ¢ units of operating time. That is, start from state v
and transit from state v;_; to v; within one time unit, ending at v; within the ¢** time unit. We call (! a
behaviour of length ¢.

1o determines the probability of starting from an initial state, and 7 determines the probability of a
transition from one state to another. Therefore, 79 and 7 together determine the probability of the
behaviour o!*] within ¢ time units.



For example,
olll = Leak

is a behaviour of length one of the PA in Section 3.1. It means that the system starts from Leak. But
7o(Leak) = p, = 0, i.e. the system cannot start from Leak. So the probability of o!!] should be zero.
Let p(ol!)) denote the probability of o!] with respect to the given PA, then p(clll) = 0.

ol -~ Leak,— Leak, Leak, Leak,— Leak

is another behaviour of the PA in Section 3.1 with length 5. So
M(UIS]) = D1 * P11 * P12 * P22 * P21

In general if ol = vy, ..., v,

t—1
u(o) £ ro(v) * T 7(vi, vig1)
=1 g
where p(co!*l) = 1 when ¢ = 0 and (o) = 7o(v;) when ¢ = 1.
Let V' be the set of all state sequence of V with length t. Thus, V'* defines all the possible behaviours
of G with length ¢. From the definitions of 7 and 7, we can easily prove

Theorem 4 For any non-negative integer t and any behaviour o/l € V* of length 1,

0<pel) <1

Theorem S For any non-negative integer t,

> weth=1

ol eVt

Thus, for every non-negative integer ¢ we have a probabilistic space (V*, i) with elements of V! as the
probabilistic samples.

4.2 Satisfaction

A behaviour o) of G determines presence and absence of the primitive states in V at each of the first ¢
time units, and thus defines an interpretation I ¢ of duration formulas with A as the primitive states as
far as the first ¢ time units are concemed. That s,

Lua(P)(4) & { 5 Hol oo

wherej € Nand0<j <'t.

Referring to Section 2.4, it is justifiable to define the satisfaction of a duration formula D (with A as
primitive states) by a behaviour of G as follows.

10
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r—

A duration formula D is satisfied by a behaviour o[}, denoted
ol =D

if and only if there is an interpretation I which is an extension? of I ;1 over [0, ¢}, such that
I,[0,t]= D

For example, let
olsl A - Leak, -~ Leak, Leak, Leak,— Leak

Then we have

oBle1=5 0Pl [~Leak=3, 0P O([Leak] = 1<2)

oBl B 1<3, b £ O([Leak] = 1< 1)

* 4.3 Satisfaction Probability

The probability of a PA satisfying a requirement (a duration formula) within a certain operating time
(starting from time zero) should be the probability of the set of behaviours of the system up to that time
which satisfy the requirement. Let D be a duration formula, and V(D) be the set of behaviours in V*
which satisfy D. Then p(D)[t], denoting the satisfaction probability of D by G within the time interval
[0, t], is defined

MRS DR 0

altle V(D)
which corresponds to an event in the space { V', u).

For example, for the PA defined in Section 3.1, let D £ O( [Leak] = ! < 1). Then the behaviours of
length 2 satisfying D are

V2(D) = {(~Leak,~Leak),(~Leak, Leak), (Leak, - Leak)}
Thus
p(D)2l=pm*pu+m*p2t+m*spi=pu+pr2=1

since p; = land p, = 0.

5 PC: A Probabilistic Calculus

This section establishes a calculus for determination of the satisfaction probability u(D)[t] which is
consistent with the semantic definition of x(D)[¢] in Section 4.3.

2For an interpretation I over a time interval [#, ], an interpretation L over N is an extension of I, if for every primitive

state P and any time point t € [4, &], L(P) = L(P).

11



The probabilistic logic is an extension of the first order real arithmetic with x.(D)’s as the only additional
functions. For an arbitrary duration formula D, u( D) belongsto N — [0, 1] and assigns each time point
t with the satisfaction probability p(D)[t].

Therefore, in this logic a primitive term is u(D)(t] or a variable z ranging in the real numbers. A term
is a primitive term, or an expression of terms built using the usual operators on real numbers, such as
addition + and multiplication *, with their standard meanings.

A primitive formula is an expression built from terms using the relational operators, such as equal = and
less than < with their standard meanings.

A formula is a primitive formula or an expression built from formulas using the first order logic
operators and the quantifiers over variables (including ¢ in the term u(D)[t]). We assume the standard
interpretations for the logic operators and quantifiers.

In this logic, we can write down and reason about probabilistic formulas such as (cf. Section 2.6)
Vit: pu(-Req-1)[t] < p(-Des-1)[t] + p(—Des-2)[t]

which asserts that the probability of violating the requirement will not be greater than the sum of the
probabilities of violating the design decisions. This formula tells the designer that there is a trade off
between the design decisions with respect to probabilities. It also allows the designer to consider the
reliability of each one separately.

Satisfaction probabilities can also be calculated with this logic by reasoning about formulas of the form
w(D)[t]=p
As an extension, PC will include all axioms and rules from the real arithmetic. We present in what

follows the additional ones for functions u(D)’s. We will use the abbreviation R(f, g) to stand for
Vt: R(f[t], g[t]), where R is a relation of functions f and g over N.

The duration formula true defines the set of all behaviours of G for any interval.
AR 1 For the duration formula true

w(true) =1

For any given interval, the sets of behaviours defined by D and - D form a partition of all the behaviours.
So the sum of their probabilities is 1.

AR 2 For an arbitrary duration formula D
u(D)+ p(-D) =1
The following axiom formalizes the additivity rule in probability theory.
AR 3 For arbitrary duration formulas Dy and D;
#(D1 V D2) + p(Dy A D2) = p(D1) + p(D2)
The satisfaction probability is monotonic in the sense that

12



AR 4 If D\ = D; holds in the duration calculus, then u(D1) < p(D2) holds in PC.

That is, if D; = D,, then no more behaviours satisfy D; than D,.

The above four axioms and rules follow directly from probability theory. The following theorem can
easily be proven from them.

Theorem 6 For arbitrary duration formulas D, Dy, D and D3

1. u(false) =0

2.0< (D)< 1

3. If D1 & D in the duration calculus, then p(D1) = p(D2)
4. If Dy A Dy = Dj in the duration calculus, then

(w(D1) = 1) = (u(D2) < p(D3))

Proof: The proofs first three items of this theorem are trivial. We present the proof of the last item as
follows.

By the second item of this theorem,

(). 0<u(D1vDr)<L1
From duration calculus,

(2). D1 =D, VD

% So by (2) and AR 4,

(3)- u(Dr) < w(DyV Dy)
Thus, by (1) and (3),
(4). (u(D1) =1)= (W(D1V D2) =1)
By AR 3,
(5). w(D1V D)+ pu(D1 A D) = p(Dr) + p(D2)
Hence by (4) and (5),
(6). ((D1) =1) = (u(D1 A Dz) = p(D2))
By D, A D, = Ds and AR 4,
(7). (D1 A Dz) < p(Ds)
Therefore, from (6) and (7),

(8). ((Dr) =1) = (u(D2) < u(D5))

13



Duration formulas D and D A (I = t) are satisfied by the same behaviours of length ¢. That is,
AR S For an arbitrary duration formula D,
u(D)[e] = u(D A (1= 1)1
Theorem 7
(=0l =1) A (p( # 0[] =0)
Proof: By AR 5, Theorem 6.3 and AR 1,
u(l = 0)[t] = p(true)[f] = 1
By AR 2,
pl# )t =1-p(l=1t)f]=0

O

A behaviour o] of length ¢ satisfies a duration formula D if and only if each extension of it to a behaviour
of length ¢ + t' satisfies the duration formula (D; [ = t’). Therefore,

AR 6 For an arbitrary duration formula D,
w(D; 1= 1)t + 1] = w(D)[]
Now we can prove the following theorem.

Theorem 8 For arbitrary duration formulas Dy and Dy, if u(D;1) = O, then u(Dy; D7) = 0.

Proof: From the monotonicity of the chop operator (cf. [ZHR92]) we have (Di; Dy) = (Dy; true).
Combining this with AR 4 we get

(1) w(Dy; Dz) < p(Dy; true)

We prove p(Dy; true) = 0by inductionon t. By (Dy; true) A(l =0) & (D A(l =0)), Theorem 6.3
and AR §,

(2). w(Dy; true)[0] = u((Dy; true) A (1=0))[0] = (D1 A (I = 0))[0] = p(D1)[0] =0
Assume that

(3). u(Dy; true)[t] =0, t=k
Since in duration calculus,

(4). (Dy; true) A(l=k+1)& ((Dy; true) A(I=k); I=1)V(DA(l=k+1)))
From Theorem 6.3 and Theorem 6.2, AR 3 and AR 5,

(5). wu(Dy; true)[k + 1) < u((Dy; true) A(L=k); L =1)[k+ 1]+ pu(Di)k + 1]

14



By induction assumption (3) and AR 6,
(6). p((Dy; true) A(L=k); 1 =1)k+ 1] = p(Dy; true)[k] =0
Since p(D;)[k + 1] = 0, from (5), (6) and Theorem 6.2,
(7). u(Dy; true)k +1]=0
By the natural induction rule,
(8). pu(Dy; true) =0
Thus, by (1) and Theorem 6.2,
(9). w(Di; D2)=0

O

The axioms and rules described so far are independent of the Markov properties of the PA defined by the
probabilistic space ( V'*, u). We consider, in this paper, only those PAs which are Markov chains. The
two following axioms formalize the Markov properties foraPA G = (V, 7, 7).

AR 7 For an arbitrary statev € V,

p(VIH] = mo(v)

Here we have used the convention [v]! 2 [v] A (I = 1).

This axiom formalizes the initial probability mass function 79. The probabilistic transition function 7 is
formalized as follows.

AR 8 For an arbitrary duration formula D and states v;,v; € V,
p((D A (true; [vi]")) 1)+ 1] = 7(vi, ) % p(D A (true; [vi]'))[1]
Notice that

(D5 Tuilh [91") & ((Ds [wil') A (trues Tuil'); [oi1')
Thus from AR 8, the following theorem holds.

Theorem 9 For an arbitrary duration formula D and states v;,vj € V,
w(D; % DI+ 1] = (v, vy) + w(D; vi])I]

This provides a way for calculating the probability of behaviours by chopping of unit intervals. The
following axiom gives a way to calculate the probability from the middle of a behaviour.

AR 9 For arbitrary duration formulas Dy and Dy, and v;,vj, v €V,
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T(vi, i) * 7(vj, i) * w(D1 A (L =1); [vi]Ys [vi]'s D2)[t]
= T(viyvi) * w(Dy A (L= 1) [vil's [y1hs [vel's Da)le + 1]
Theorem 10 For arbitrary duration formulas D, D1 and D3, and v,v' € V,
L. (ro(v) = 0) = (u([v]; D) =0)

2. (r(v,v') =0) = (u(D; [v]; [V']; D2) =0)

Proof: We prove the first item as follows.

(1). ([vl; D) = ([v]; true)

(2). ([v]; true) = ([v]}; true)

By Theorem 7 and AR 7,
(3). (ro(v) = 0) = (u([v]"; true) =0)
By Theorem 8

(4). (ro(v) = 0) = (u([v]"; true) = 0)
By (1), (2), AR 4 and Theorem 6.2,

(5)- (ro(v) = 0) = (u([v]; D)=0)

To prove the second item of this theorem, we can first prove,
(4) (1(v,v") = 0) = (u(Dy; [v]; [+]) = 0)

Then by Theorem 8, the result is proven. For proving (i), we have only to prove,
(i1). (1(v,v") = 0) = (u(true; [v]l; [v]}; true) = 0)

This can be proven by using AR 8 and Theorem 8 again.

6 Examples

6.1 A Gas Burner

In this exarﬁple we show how to estimate the satisfaction probability of Req-1 stated in Section 2.6 for
the simple Gas Bumner discussed in Section 3.1. We assume that the time unit is one second, and as the

starting point we take the following result proved in [ZHR92],

(Des-1 A Des-2) => Reg-1 (i.e. -Req-1 = (-Des-1 vV —Des-2))

From AR 3 and AR 4, we then have

p(—-Reg-1) < p(—Des-1V —-Des-2) < p(-Des-1) + p(-Des-2)
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where, from Section 2.6

p(—Des-1) = p(true; ([Leak] A (I > 1)); true)

p(—Des-2) = u(true; (([Leak]; [~Leak]; [Leak]) A (I < 32)); true)

In what follows, we present a recursive calculation of p(—Des-1)[t]. From the duration calculus,
—-Des-1 A (I £ 1) & false
Therefore, by Theorem 6.1 and Theorem 6.3,

t < 1= p(-Des-1)[t] =0

Also, (~Des-1 A I = 2) & [Leak]'; [Leak]'; but mo(Leak) = 0 thus
u(—Des-1)[2] = 0, by Theorems 6.3 and AR 7 and AR 8.

Des-1 is violated for the first ¢ + 1 time units, ¢ > 1, if and only if Des-1 has been violated for the first
t time units already, or Des-1 holds for the first ¢ time units but is violated one time unit later. This is
written

(-Des-1Al=t+1) & ((-Des-1Al=1t)l=1)V

(
((Des-1; I =1)A-Des-1Al=1t+1)
where the two disjunctive terms on the right side are mutually exclusive.

For ¢t > 2 and - due to the specific form of Des-1 - the second term on the right side is equivalent to
(Des-1; [~Leak]!; [Leak]!; [Leak]))A (I=1t+1)

From Theorem 6.3, AR 3, AR 5, AR 6 and Theorem 9 it then follows that

p(-Des-1)[t+ 1] = p(-Des-1)[t] + pi2 * P22 * u(Des-1; [~Leak]!)[t — 1]
where £ > 2

In order to solve this recursive equation we need an auxiliary recursive equation for the second p-
expression on the right side. This is established as follows:

For ¢ > 2 and - due to the specific form of Des-1 - we have

(Des-1; [~Leak])Al=t+1) & ((Des-1; [~Leak]!; [~Leak]!)Al=1t+1)V
((Des-1; [Leak]!; [~Leak]')) Al=1t+1)

& ((Des-1; [~Leak)l; [~Leak]))Al=t+1)V
((Des-1; [~Leak]'; [Leak]'; [-Leak]')Al=1t+1)

again, the two disjunctive terns on the right side are mutually exclusive. From Theorem 6.3, AR 3, AR 5,
and Theorem 9 it then follows that

p(Des-1; [-Leak]')[t+1] = pi1 * w(Des-1; [-~Leak]!)[t]
+  piz * po1 * p(Des-1; [~Leak]")[t — 1]
where t > 2
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It is easy to show, that u(Des-1; [-Leak]!)[1] and p(Des-1; [~Leak]!)[2] both are 1. These are the
initial values for the recursion.

In summary, if we introduce the functions P(t) and Q(t) by

P(t) £ p(-~Des-1)[t]
Q(t) £ p(Des-1; [-Leak])[],

the probability P(t + 1) that design-decision 1 is violated in the observation interval: [0, ¢ + 1], where
t > 2, can be calculated by solution of the mutually recursive equations

P(t+1)=P(t)+pra*pa* Qt — 1)

Qt+1)=pnu*Q(t)+ p2*p21 *Q(t = 1)
where t >2; P(2)=0,9(1)=1and Q(2)=1

The calculation of p(—Des-2)|[t] is given recursively as follows. From AR 2,
p(—-Des-2) = 1 — u(Des-2)
And in the duration calculus,
(Des-2 Al > 0) < (Des-2 A (true; [Leak]')) V (Des-2 A (true; [~Leak]!))
So by AR 3 and Theorem 6.3, we have
p(Des-2) = p(Des-2 A (true; [Leak]!)) + u(Des-2 A (true; [-Leak]!))

Let 24(t) and V(t) be the functions defined as

U(t) 2 p(Des-2 A (true; [Leak]!))[t]
V(t) & p(Des-2 A (true; [~Leak]!))[t]

then, recalling that p; (= m0(—Leak)) = 1 and p; (= 7o(Leak)) = 0, we can derive the following
recursive equations for #(t) and V(t) in the calculus.

' pRapx V(t—29) ift>29
Ut+1)=p+U)+4 piT" *p2 if1<t<29
0 ift <1
\ .
_ ) puxU)+pn*V(t) ift>1
v(tH)_{l ift <1
| where ¢ > 0and ¢(0) = V(0) =0

Using the above mutually recursive equations, we can calculate p(Des-2) and thus p(—Des-2).

6.2 A Protocol Over an Unreliable Communication Medium

Consider a medium through which a sender process sends messages to a receiver process. To describe
the behaviour of the protocol, we introduce the following states.
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Figure 3: A Protocol Over an Unreliable Medium

e s, b, m and r represent that the sender, buffer, medium and receiver are active respectively. e
represents an error state of the medium.

e The protocol starts from state s, i.e. the sender is active to send a message.
e The sent message is written into a buffer within one time unit.
e The medium receives the message from the buffer within one time unit.

e Within one time unit, the message sent by the medium may be received by the receiver with
probability p and the protocol enters state r, or the message is lost with probability 1 — p and the
protocol enters error state e.

o If the message is lost, within one time unit, the medium re-reads the message from the buffer.

e If the message is received by the receiver, within one time unit, the receiver acknowledges the
sender and the sender is ready to send another message.
The protocol is illustrated in Figure 3, where the transitions with O probability are eliminated.

The first kind of properties we are interested in are the so called soft-deadline properties [HJ89]. It
describes that starting from the state s, within ¢ time units, i.e. within the interval [0, t], the receiver
receives at least one message with probability ¢. This is formalized in terms of PC as

p(=(J r=0))[t] = ¢ orequivalently, pu(fr>0)[t] =g
It is not difficult to derive
3k<t<3(k+1)=p(=(fr=0)[t]=1~(1-p)

When p = 0.9, i.e. ten percent of the messages are lost, we have p(([ 7 > 0))[7] = 0.99. This gives the
same result as presented in [HJ89].

Another kind of properties is to describe the upper bound of error occurrences for a given interval [0, ].
This property can be specified by the satisfaction probability of [ e < n, and also reasoned about in the
calculus.
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Now let us discuss the probability of the reoccurrence of the error state. We define the following formulas
for shorthands.

Dy £ (true; [e]) A (1= k); [~e] A (L =k); [e]; true
DA (true; [e]) A (I =k); true

The conditional probability of D; under D, defines the probability of error reoccurrence in k; time units.

.. #(D1 A Dy)[t]
When p(D;)[t] # 0, it is equal to —————=—, denoted a(t, k; ).
WD) i)
Using natural induction on k;, we can derive
1-p ifk =2
a(t,ki)=<{ p"*'x(1—-p) ifk=4n+6(n>0)
0 otherwise

by proving

t2k+k+1= pu(DiAD)t] = a(t, k1) * p(D2)[¢]

7 Calculation Technique

The examples in the previous section illustrate, that even though it is possible to calculate p(D)(¢] for
specific problems directly by means of the basic rules and theorems of PC, the establishment of the
necessary equations following this approach is somewhat intuistic and may turn out to be fairly complex.
What we need is a higher level of theorems, provable from PC and oriented towards more mechanisable
numerical calculations.

In this section we establish such a level by introduction and application of the classical single-step
transition probability matrix P and initial state occupation probability vector p. These matrices are
defined by means of 7 and 7y respectively.

The computation theorems will then of the form w( D)[t+1] = f(p, P)oru(D)[t+1] = f(p, P, u(D1)[t1])
where ; < .

7.1 Introducing Matrices

An m X n matrix M ,, «, of real numbers is a function
My {1,...,m}x{1,...,n} — R

where m and n range over the positive integers and R is the set of real numbers.

An m X n matrix M, x, is then totally determined by assigning a real number m;; to M .5, (¢,5) for
(i,7) €{1,...,m} x {1,...,n}. Thus, such a matrix is also denoted

my - Min
A
men =

Mm1 © © Mg
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where m;; is called the (¢, j)-element of M x5 When there is no confusion, M ..« is simply wrriten
as M.

Let M, xn denote the set of all m X n matrices and M the set of all matrices of real numbers. Operations
on matrices are defined interm of their elements. For example, the addition “4” of matrices is defined
on Mpxn X Muyxn by

(M + M")(3,5) = M(i,5) + M(i,5)

where (7,7) € {1,...,m} x {1,...,n}.
Similarly, the multiplication “-” is defined on M ;xn X Mpyxm' by

(M pxn - My mxm(3,9) = S M(i, k) + M (K, §)
k=1
where (i,5) € {1,...,m} x {1,...,m'}.

Predicates of matrices are defined in terms of predicates of their elements. For example, the equality
“=" between two matrix is defined by

(m,n)
Muxa = My 2 (m=m)A(n=n)A( A (M(i,5) = M'(3,5))
(£.5)=(1,1)
These definitions show that the arithmetic of matrices of real numbers is within the first order real
arithmetic which is the basis of PC.

7.2 Auxiliary Notation
Definition 7 The following auxiliary vectors and matrices will be needed:

Let 1. denote an m x 1 matrix (column vector) in which all elements are 1.

Let 1, denote an 1 X m matrix (row vector) in which all elements are 1.

Let E denote the m X m identity matrix (E(i,j) = 1 fori = jand E(i,j) = 0 for i # j).
Let E; denote the m x m identity matrix with the (i,i)-element changed from 1 to 0.

Let Z; denote the m x m matrix of zeros with the (i,i)-element changed from 0 to 1.

Let z; denote the 1 X m matrix of zeros with the i’th element changed from O to 1,

Let h; denote the m x 1 matrix of zeros with the i’th element changed from 0 to 1.

Notice that Z; + E; = FE and that z; and h; are just short-hand notations for the row vector (1, - Z;)
and the column vector (Z; - 1.) respectively.

Definition 8 Let I denote the index set {1, --,m} and I denote the subset I \ {j} where q € I.
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7.3 The Probability Matrices and some Basic Theorems

Definition 9 With V = {v1,va,- -+, Vm}, where the subscripts are in the fixed index set I, the single-step
transition probability matrix P is a real m X m matrix defined by:

pu * * Pim p,-j-ér(v,-,vj)

A . .
P = where:
' ' > pi=1
Pmli * * DPmm jeI

and the initial state occupation probability vector p is a real 1 X m row vector defined by:

A
pi = 1o(vi)
A
=(P1,"**yPm here:
P (pl p ) w Zpi=1
iel

In the litterature on stochastic processes (e.g. [CM90]), p;; and p; are normally defined in the following way:
p.-jéP[v=vjatn'met+1 | v=viattimet], (1 >0)
A .
p = P[v = v; at time 0]

The first theorem is well known from the theory of Markov chains [CM90].

Theorem 11 Fort > 0:
P.1.=1

where PP is defined to be the identity matrix E.

The theorem expresses that the sum of each row in the #’th power of the single-step transition probability
matrix is 1.

Proof: Use induction on z.

Fort =0,

P . 1.,=E-1,=1,
Further, for 1 = 1, using the fact that foralli € I: Y p; =1,
jeI
Pl k. IC = lc
Assume that the result holds for ¢ < k, then:
Pl =P (P 1) =PF 1. =1,

This ends the proof. d
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Definition 10 Ler p9) (¢ > 0) denote the row vector (pgt), . -,p,(,i)) defined by

A
p(l) =p- Pt

The following theorem states that p,(') is the (unconditional) probability, that the system occupies state
v; after the £’th transition. This is also well known from the theory of Markov chains, but here it is
expressed and proved in terms of PC.

Theorem 12 Fort > 0,
(u(true; vt + 1), -, p(true; [va]Y)[t+ 1)) = p®
Proof: Use induction on ¢.
For t = 0, the result follows from AR7 and the fact that,
P = (V1) -+, 70(Vm))
Assume that the result holds for ¢ = k, then from Theorem 9 and the definition of pj;,
p(true; [vilDk+2] = > p(true; vl [vi]')k +2]
jel
E,u(true; [vi] 1)[k + 1] = 7(vj, vi)
jel

= Y p(true; vi1 )k + 1] *pji
jeI

By the induction assumption,

p(true; [v1Hlk+ 1] =p/Y
Therefore, fori € I,

w(true; [vilHk+2] = ZP}}:) * Dji

jeI

Thus from the rules in Section 7.1,

(u(true; Pi1M)k +2],- -, pltrue; [vm]')lk +2]) = p*) - P
But,

p® . P= (p.pk).P = p. Pl = pkt])

This proves the theorem. -

Theorems 11 and 12 imply that the initial probability vector p and the single-step transition matrix P
suffice to determine the distribution p(¥). Taken together, the theorems characterise P* as the t-step
transition probability matrix®.

The last theorem in this section gives a symbolic interpretation of p(true)[t + 1] and its proof constitutes
a proof-model for the subsequent computation oriented theorems.

3In the theory of stochastic processes the elements of P, denoted p,(j'), are defined by:

p,(j') L Plv=vjattimen+1|v=vattimen], (t>0)
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Theorem 13 For a non-negative integer t:
p(true)t+1]=p-P'- 1. =1
Proof: From AR 1,
p(true)[t+1] =1
From definition 10,
p-P 1. =p0.1,
From Theorem 11,
(u(irue; 1Dt + 10, -+, p(true; [va]')fe + 1]) = p®
Thus,

p-P-1. = (u(true; i)t +1],. .., u(true; [ve])lt+1]) -1
= Zp(true; fvj]l)[t+1]
jeI
Again from PC,

Zp(true; )+ 1] = p(true)ft + 1]
jel

This proves the theorem. O
Example
For a two-state system such as the simple Gas Bumer and for a time interval of length 3
2 (1
.| P11 P2 .
(plap2) (PZI P2 ) ( 1 )

= p1P11P11 + P1P1P12 + piPi12P21 + P1P12P22
+  pap21p11 + Pap21p12 + P2p2p21 + pap2p, = 1

p(true)(3]

7.4 Computation Oriented Theorems

The first theorem is useful for computation of e.g. the probability that a transition to a catastrophic state
does not occur (case a) or occurs (case b) within the the first ¢ 4 1 time units.

Theorem 14 For a state v; and a non-negative integert:
a: pO-vil)t+1]=p-Ei-(P-E)-1.
by wOMNt+1]=1-p-E;-(P-E) -1
(Notice, that p- E; is the row vector obtained from p when p; is changed to zero and that P- E; is the matrix

obtained from P when all elements in column i are changed to zero. Accordingly p - E; - (P - E;)" - 1,
isequaltop - P’ 1. (i.e. p(true)[t + 1)) with all terms containing p; and pj; , j € I removed.)

In order to prove this theorem we need the following lemma:
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Lemma 1 For a state v; and a non-negative integer t:
(WD)t + 1], p(D)[t + 1)) = p - E; - (P - E;i)
where: fork € I

Dy & (O-[vi]) A (true; [wi))

This lemma states, that the k’th element of the row vector p - E; - (P - E;)' is the probability that the
system occupies state v after the #’th transition and that state v; does not occur during the first # 4 1 time
units.

Proof: Use induction on ¢.

Fort =0Owehave p- E;- (P - E;) =p- E;- E = p- E;. The result then follows from AR 7 and the
fact that:

P Ei=(r0(n), -, 10(vi=1),0, 70(Vis1), -, T0o(Vm))

For ¢t > 0, assume that the result holds for t = n, then fort = n + 1 and for the k’th element of the vector:
p((O-[vi]) A (true; [ve]))n+2] = p((O-[vi]) A (true; [vi]'))n+2] =
> u((T=vi) A (trues [v1h [vil'))in+2]

jel
For k = i this sum is zero by Theorem 6.1 (u(false) = 0).

For k # i we can rewrite the sum, denoted Sum, as follows (notice the brackets !)

Sum =Y p(((O=[vi]) A (true; [v1")); [vel))ln +2]

jel
By AR 8 we then get
Sum =Y p((O-[vi]) A (true; [vi1")[n+ 1]+ (v}, vi))
Jel

Replacing 7(vj, v) by pjx and returning to the vector form this implies:
(D) +2],- -+, w(Dm)[n +2]) = (w(D1)[n + 1], - - -, D)1 + 1]) - (P - E;)

where the factor E; takes care of the exception for k = i.

By the induction assumption the last expression is equal to
p-E;-(P-E) - -(P-E)=p-E;-(P-E;)"*!
This proves the lemma. o

Proof of Theorem 14:

Notice that b is proven from Aa and the fact that:
p(OiDle+ 1] =1 — p(O=[vi])[t + 1]
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From lemma 1,

P-Ei-(P-EY-1. = Y p((O~[vi]) A (true; [ve]))[t + 1]
kel
= w(V (@) A Gerues Fo)e+1)
kel
= p(O-[vil)[r+1]

This proves a and thereby Theorem 14. a

Notice, that if state v; is absorbing (p; = 1), then theorem 14 gives the probability that absorption in this
state has occurred (b) or has not occurred (@) within the first ¢ + 1 time units.

The next theorem is useful for computation of e.g. the probability that a transition from a hazardous state
v; to a catastrophic state v; does not occur (case a) or occurs (case b) within the first 7 + 1 time units.

Theorem 15 For states v;, v; and a non-negative integer t:
a: p(O-(vils WINt+1]=p-(P-Zi-P-Z;)' -1
br w(O(vils t+1]l=1-p-(P~2;-P-Z)) -1,
(Notice, that (P — Z; - P - Z;) is the matrix obtained from P when the element pij is changed to zero.

Accordinglyp- (P — Z;- P- Z;) -1. isequal to p - P*- 1. (i.e. u(true)[t+ 1]) with all terms containing
pij removed.)

The proof of this theorem follows exatly the same pattern as the proof of theorem 14, and is omitted.
The required lemma, which resembles lemma 1, is:

Lemma 2 For states v; and vj and a non-negative integer t:
(WD)t +1],- -, u(Dm)lt + 1)) =p- (P ~ Z; - P - Z;)'
where: fork € I

Di £ (O-([vils [])) A (true; [v])

This lemma states, that the k’th element of the row vector p- (P — Z; - P - Z;)* is the probability that the
system occupies state vy after the #’th transition and no transition from state v; to state v; occurs during
the first # 4+ 1 time units.

Theorem 15 has the following immediate corollary:

Corollary 1 For a state v; and a non-negative integer t:
a: p(O(v]=1<))|t+1l]=p-(P-2Z;PZ;)-1
b: pwO(vilAl>1))t+1]=1-p-(P-2;PZ;)-1

(Notice that this corollary provides a more straight-forward way to calculate w(Des-1) (case a) or
w(—~Des-1) (case b) for the Gas Bumner example, cf. Section 6.)

The next theorem deals with certain chopped formulas, which generalize and unite AR 8 and AR 2.
However, before we can state the theorem a definition is needed.
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Definition 11 For each subsetJ of the index set I = {1,---,m},J C I, we define:

. an auxiliary matrix Pj from the single step transition probability matrix P as follows:

1 /
Pii © ° Pim
A . .

Py where p,fj_—.{pij ifjes

: x 0 ifjel
p;nl T p;nm
here J is the complement I \ J of J.

. a composite state V; as follows:

VJéVVj

Notice that, according to the definition of vy, ([vs] A | = t) represents any sequence
([le]l; I‘vfz-ll; tt [vj:]l)
of elementary states of duration 1 such that j; € J fori € {1,---,t}.
The theorem makes use of the short-hand notation z; for the row vector (1, - Z;) (cf. Definition 7).

* Theorem 16 For an arbitrary index set J C I, an arbitrary duration formula D and an arbitrary state
v,eV

a: DA (rues []) A= K [+ K +1] =
w(D A (true; [vi))[k] - zi - (Pr)*! - 1c

b: p(DA(true; [vi))A(I=k); OvDlt+k+1] =
p(D A (true; [vil)lk] - (1= zi - (Pp)*! - 1)

To prove this theorem, the following notations and the following lemma are helpful.

q 2 u(D A (true; [vi]))[K]

Andforje I

q.mg{ p((D A (true; [vi]) A(I=Kk); [vs]) A (true; )t +k+1] ifjed
' 0 ifje7

Lemma 3 For the q, gj[t] defined above,

(@1lf]s -1 gmlt]) = g - zi - (P)H

The proofs of lemma 3 and theorem 16 are placed in appendix A and appendix B respecitively.

A common feature of all the previous theorems in this section is that they are obtained by means of
matrix functions which replace certain entries in the probability matrices p and P by zeros.

A more general class of theorems dealing with state sequences is based on matrix functions which also
introduce deficiencies in the probability matrices, but now these matrices are of increased order (more
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specifically, they can be interpreted as the probability matrices for a probabilistic automaton which is
obtained form the original one by addition of auxiliary state(s) in such a way, that the terms in the
expansion of u(true)(t 4+ 1] (cf. the example following Theorem 13) remain the same. This idea was
suggested to the authors by Niels Herman Hansen, Institute of Mathematical Statistics and Operations

Research, Technical University of Denmark.). The last theorem in this paper is an illustration of this
approach.

Before we can state the theorem a definition of the relevant matrices is needed.

Definition 12 For the m x m transition probability matrix P let P,

Jx denote the (m + 1) X (m + 1)
matrix obtained from P as follows:

A B
P+ — nxn nxl
gk { Can Dlxl

where:

. r hl#ij
A R L e

pi for h=i
0 for h#i

_ ) pjn for h#kANh#k
" 10 for h=kVh=k

B.x1 £ Z:PZ]1, ie by
Clxn “ l,ZjPEjEk i.e. cp

Dix1 21,Z;PZ;El, ie d= { i ;Z: ji’l:

Further, for the 1 x m initial probability vector p let p* denote the 1 X (m + 1) vector:
A
Pt = (p1,p2,* - -Ps,0)

Finally, let 1} denote the (m + 1) X 1 column vector in which all elements are 1.

Example

For:

P11 P12 P13 Di4
p=/J Pa Pn P23 Pn
P31 P32 P33 P34
P41 P42 P43 P44

we have:
pu 0 pi3 pua|p2 pu 0 pi3 pua|pr2
pa1 p22 p23 pa| O P21 pn2 p23 pa| O
Pl.={ ps pn pu pa| O and Pi, =4 pa pn p3s pa| O
Pa1 P2 ps3 pas| O Pa1 P42 pa3 pas| O
pa1 0 0 pu|pn pai 0 pas paa| O
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(The deficiency of the probability matrix Pf'23 is manifested by the lack of the element py3 in row 5
(thus, the sum of the elements in this row becomes less than 1 if p,3 > 0. Similarly the deficiency of
Pi'_zz is manifested by the lack of the element py; in row 5.)

Theorem 17 For alli,j,k € I and for a non-negative integer t:
a: p(@-(ls 1 [l + 1] = p*(PE)1F

br (Ol [yl et + 1] =1 - p*(PFH)1F
In order to prove this theorem we need the following lemma

Lemma 4 Foralli,j,k,n: {1,---,m} and for a non-negative integert:

(D1t + 1], - - (D))t + 1)) = pH (PR

where:
D A (true; [va]) ifn#j
D, 2 D A (true; [vj]) A -(true; [vil; [vj]) ifn=j
D A (true; [vil; [v]) ifn=m+1
D £ o=(Pils [yl [wel)

The proof of lemma 4 is lengthly and is therefore placed in appendix C.

Proof of theorem 17: Notice that b is proved from a and the fact that:
p(O(vils [yils D))t + 1] =1 = p(O=([vils [vls [vel)le + 1]

From lemma 4 (and recalling that I = {1,---,m}and I; =TI\ {j} ):

pH(PILT = ZG; #(Da)t + 1]+ (D)t + 11+ p(Dmt1)[t + 1]
= gu(ﬂﬁ(fw’]; [l [vel) A (trues [va]))le+ 1]
= p(V(©~(ls vl [vel) A (trues [val))le +1]
= u(n;:(fw]: [vils vl + 1]
This proves a and thereby theorem 17. O
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7.5 Applying to The Examples
Gas Burner

Consider the Gas Bumner illustrated in Section 3.1. Let

A .. A ) —Leak ifi=1
V. = {v,v2} where: v,—{ Leak ifi=2
A
p = (p1,p2) (where p; = 1and p; =0)
p &

b P2
P21 P22
As we mentioned in connection with the corollary of Theorem 15,

U

In duration calculus we can rewrite —Des-2 as follows:

-Des-2 & O(([Leak]; |-Leak]; [Leak]) A (I < 31))
& 3k ((true; [Leak]) A (I =k); [-Leak] A (I <29); [Leak]!; true)

For a given ¢, u(—Des-2)(t]is only non-zero ift > k+ h+ 1 wherek > 1and 1 < h < 29.
Introducing
hmax = min((t — k — 1),29)

we can express u(—Des — 2[f] by a double summation over all possible k’s and A’s (this is because we
can treat the existential quantification as a disjunction over all possible k’s and A’s in which the disjuncts
are mutually exclusive).

p(-Des-2)[1]
(by AR 6)
1~ B
= Z E,u(true; [Leak]) A (I = k); [-Leak] A (I = h); [Leak]))[k+ h + 1]
k=1h=1
(by Theorem 16 and Definition 7)
=2 Romax
= Z Zu(true; [Leak]) A (I =k); [-~Leak] A (I =h))k+h]-(z1- Py -1c)
k=1h=1
(by Theorem 16 again)
1—2 Amax
= )Y u(true; [Leak])[k] - (z2- Pyy - 1e) - (21 - Py - 1o)
k=1h=l1
(by Theorem 12, Definition 9 and Definition 7)
23 Bz
= > > (p- P k) (22 Plyy-1o) - (21 Py - 1e)
k=1h=1
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The Protocol

For the protocol over an unreliable medium in Section 6.2, we define the following notations. For
I={1,2,3,4,5},let

A .
V = {vilieI,vi=s,v2=b,v3=m,v4=r,v5 = e}

0100 O
0010 O
P2 loo0oo0pi1-p
1000 O
0100 O
p £ (1,0,0,0,0)

Consider the conditional reoccurrence of the error state e. Still let

D, 2 (true; [e]) A (I=k); [-e] A(I=ky); [e]; true)

1>

D; (true; [e]) A (1= k); true)

1(D1 A D)1

PO

We would like to find the conditional probabilisty of D; given D,. That is,

w(D2)[1] # 0.

Ift < k+k + 1, u(D1)[t] = 0. Therefore we are only intersted in cases where t > k + k; + 1 and
accordingly we consider the probabilities p(Dj)[k + k1 + 1 + u] and p(D2)[k 4 k1 + 1 4 u] where u > 0.

Notice also, that with the definitions of D; and D, given above, u(D1 A D;)[t] = p(D1)[t].
From AR 6, Theorem 12 and Definition 9
p(D2)lk+ ki +1] = p(true; [e])[k]

p-Pl.hs ifk>0
0 ifk=0

When k; = 0, u(D;)[t] = 0. Thus we assume k; > 0.
pD1)[t+k+ ki +1]

= u((:’ue; [e)) A =k); [me]l A= hka); [e])k + ki + 1] (ARS6)
= p(\/((true; [e]) A (1 =k); [-el A(I= ki) A (true; [vj]); e]))lk + ko +1] (Th.6(3))
Jj=1
4
= > p((true; Tel) A(I=k); [~e] A(I=k) A (true; [vj]); [el)lk + k1 +1] ( AR3)
Jj=1
4
= Y u((true; Te]) A(I=k); [~e] A(I=ki) A (true; [vj]))k+ki]- 2z - Pysy-le (Th.16)
j=1
= jp(true; [e])[k] - zs - (PI5)kl ‘E -1, (Lem.3)
= P(k_l)’hS'ZS'(PIS)k‘ ‘E-1, (Th. 12)

where:
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Zl'P{5}-1c 0 0 0 0
0 z-Pisy -1 0 0 0
E 2 0 0 z3- Psy -1 0 0
0 0 0 Z4-P{5}'1c 0
0 0 0 0 0
00 O 00O
00 O 0O
=100 1-p 0 0
00 O 0O
00 O 00O
; \_ (D1 ADy)[f] (D)) .
Finally, for a(t,k;) = WD~ pD) defined for u(D,)[t] > 0, we have:
01000\ / 0
00100 0
a(r,k1)=z5-P*Ils-E-lc=(o,o,o,o,1)- 000poO 1-p
1 0000 0
01000 0

where the last column vector is the product of E and 1..

8 Conclusion and Discussion

In this paper we have developed a Probabilistic Calculus (PC) based on Duration Calculus (DC), a time-
interval logic, and Markov chains over discrete time. The work was motivated by a desire to establish a
common framework for verification of correctness as well as dependability of a design.

The use of PC has been illustrated by two running examples

1. Dependability analysis of a simple Gas Bumer with unreliable flame detector and failing flame.
Here we estimate the probability that a safety requirement Req-1, known to be satisfied by
two design decisions Des-1 and Des-2, is violated during the first ¢ time-units because of the
imperfections. The analysis involves determination of the probabilities of violation of either
design decision.

2. Dependability analysis of a protocol for transmission via an unreliable communication medium.
Here we investigate soft-deadline properties as well as the conditional probability of error re-
occurrences within the first # time units.

It is shown, that these examples can be handled by means of the basic calculus, but these calculations
also reveals a need for more advanced computation theorems oriented towards mechanizable numerical
calculations.

Such a level has therefore been established by application of the probability matrices from the theory of
stochastic processes. So far, theorems for calculation of the probability of specific behaviours within the
first ¢ time units have been developed for the following cases:

¢ Transition to a specific state (e.g. an absorbing state representing that an accident has occurred),
Theorem 14. and Corollary 1.

32



e Transition from a specific state to another specific state (e.g. from a hazardous state to an accident
state), Theorem 15 and Corollary 1.

e Certain chopped behaviours, Theorem 16

¢ Transitions involving a specified path of three consecutive states, Theorem 17.

With this collection of theorems the running examples were revisited. Whereas Corollary 1 applies
directly to Des-1, it still takes some effort to prepare Des-2 and the re-occurrence problem for the
protocol for application of the theorems (this is especially true for Des-2 which is rather sophisticated).
This motivates future development of still stronger theorems.

For previous work on timed probabilistic calculi we refer to [HJ89] and [LRSZ92]

The approach in [HJ89], based on CTL in [CES83], can be used to analyse the soft-deadline properties
of the protocol. It can also be used to analyse Des-1; but we have not succeded in using it to analyse the
probabilities of Des-2 or the error re-occurrence problem of the protocol. In [LRSZ92], we presented
a probabilistic duration calculus which is a modal logic about the prefix time intervals. In the present
paper, however, we have developed a first order logic for calculation of p(D)[t]. We believe that a first
order logic is easier to be understand and can be used without loss of expressiveness. Compared to
[LRSZ92], the present paper also give more details on PC and adds computation oriented theorems to
the theory.

A more indirect approach to joint verification of correctness and dependability of a design has been
reported in [SNHO1]. In this work the dependability analysis is based on a Markov model over continous
time, developed in such a way that it is consistent with a CSP model used for verification of correctness.
With this approach, a main problem is that all waiting times must be stochastic with exponential
distributions, i.e. it is not suited for problems involving fixed time intervals.

Future work will include reinforcement of the collection of computation oriented theorems with regard
_ to important topics in reliability engineering (for example, we have not considered asymptotic behaviour
or determination of mean values in this paper).

Finally, a major goal is to investigate how this theory can be merged with existing theories for design
of fault-tolerant systems [LJ91, Liu91, Nor92] with regard to joint verification of design as well as
dependability.

Acknowledgements: We would like to acknowledge helpful discussions with N.H. Hansen, M.R.
Hansen and H. Rischel.
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A Proof of Lemma 3

The proof is by induction on ¢.

t=0:

It is easy to check that

(91[0), - - -,m[0]) = ¢ - (£)

Assume that the lemma holds fort =u >0

(1), - -+ qmlu]) = q - - - (Py )+

We want to prove that

(@lu+1], - guu+ 1)) =q-1; - (Py)*+2
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Look at the right hand side of this equation
q-1i- (Pr)“t? q-1- (Py+! - Py

= (q[ul,- -, qm[u]) - Py (by induction assumption)
m m
= O qlul*pj,-- 2D gjlu] * Pjm)
jel j=1

We now have to prove that forn € I
m .
Y qilu] *Pjn = qu[u+ 1]
For n € J, since p}, = 0,
> ajlu] # pj, = 0 = ga[u + 1]
o
For n € J, since gju] = 0if j € J,

qu[u *pjn
= qu[u] *Pjn

jes
= S (D A Gerues 1) A (1= K): [o]) A Grues [yD)luc+ k+ 1% pjn
€]
jz:,u((D A (true; [vi]) A (I =k); [vr]) A (true; [vi]); a]u+k + 2 (ARSY)
Jj€J
p(\V (D A (trues [vi]) A (= k); [vs]) A (rues 1)) Tval'))le+ 2] (AR3)

J
p(J(i) A (true; [vi] A (L= k); [vs]) A (true; [va]))[u + 2] (Th.6(3))
dn [u + 2]

This ends the proof of the lemma.

B Proof of Theorem 16

For the case a:

g (P i = Y gl

- Sall (MNotcegf=0ifj€)

= jf:u((D/\(true: [vil) A (1= k) [vi]) A (true; D)l +k +1]

= JEJV((D/\(true [vil) A (1= k); [vs]) A (trues Tyl +k +1] (AR3)
= (D/\(true DA =k); D+ k+1] (Th.6(3))

Case b is proven from case a:
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q-(1-1;- (P! -1

= q-q 1 (Pp* -1

= q—u(DA(true; [vi]) A(I=k); [vy)t+k+1] (Th.17(a))

= WD A(true; i) A(I=k); (I=t+ 1))t +k+1]- (AR6)
#(D A(true; [vil) A(I= k) vzt +k +1]

= WD A(true; i) A(I=k); gl VOt +k+1]-  (Th6(3)

KD A (true; [vil) A(I=k); [yt +k+1]

= WD A(true; [vil) A (I=k); [vy])le+k+ 1]+
#D A (true; [vil) A (1= k) OTvlt+k +1]- (AR3)
w(D A (true; [vi]) A(I=k); [vy)lt+k+1]

= WD A(true; [vil) A (I=k); Ot +k+1]

Thus we have proven the theorem.

C Proof of Lemma 4

The proof of the lemma is by induction on .
t=0

It is easy to check that

(#(Dl)[l]’ ' ( m+l)[ ]) - ( qk)o - P
This shows the lemma holds for t = 0.

Assume that the lemma holds fort = u > 0
(D)4 +1], - -+, (D1 )1 + 1]) = p*(PF )
Lett=u+1:
+(P+ )u+1 =P (Ptjk)uPljk
From the induction assumption
+(qu)quL (Dl)[u+ 1]a : ’P’(Dm-‘l—l [u + 1]) yk

Notice that the right hand side of this equation is the following row vector, denoted ru + 2]

m+1 m+1
O wDW)u+ 1] g+, > w(Dn)[ + 1] * Ghmt1)
h=1 h=1

36



where gp, is the (h, n)-element of P;}'k, forh,ne {1,...,m+ 1}

Now we want to prove that the n’th element of this row vector equals to u(D,)[u + 2], for n €
{1,...,m+ 1}

For the index set I = {1,...,m}, let I; denote the index set I'\ {j}. Then the n’th element of r[u 4 2] is
m+1

Z ,u’(Dh)[u + 1] * Ghn
h=1
= Y MO+ 1]%gm - e (F1)
rel;
b oD rgn e (F)
+ pDOmp) U+ 1 *gmirn -+ o+ (F3)

Hence, we have to prove that, forn € {1,...,m+ 1}
u(Dp)u+2]=F1+F2+F3
There are five cases to be considered.

Casel:n#jAn<m+1

From the definition of P,-j-}, Ghn = Prn When h € I;. Thus

F = Y p(Dn)u+1]*pa

rel;

Z (D A (true; [vi])[u + 1] * pan

hel;

Z w(D A (true; [vi]); [va]')[u+ 2] (ARS)

rel;

p( \/ (D A (true; [vi]); [ValD[u+2] --- (F11) (exclusiveness)
hel;

Since n < m + 1, gj» = pjn
Fp = p(Dj)[u+1]*pjn

= (D A (true; [vi]) A=(true; [vil 1) val))lu+2] -+ (Fa)
Notice that
mn={ B0 12
Subcase 1.1 n # k
F3 = p(Dmy1)[u+1]+pjn
= u(D A (true; [vil [vj1) valDu+2] -+ (Fa1)

Now look at the duration formulas in F;, F12 and Fi3.
DA (true; [vi)A(l=u+2)&

V(D/\(true; Ve]); al DA (I=u+2)V -+« (Dn1)
hel;

(Z A (true; [vi]) A =(true; [vil; [v]); val)A(I=u+2)v --- (Du)
(D A (trues [v]: Ty Pral) A 1= u+2) .. (D)
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Also Dy1, D1 and D3 are mutually exclusive. Therefore

p(Dn)u+2] = u(D A (true; [va]) A(I=u+2))u+2]
= F1+F,+F;

Subcase 1.2: n = kin this case, F3 = 0. But
D1y VDyy & D A(true; [vi])A(I=u+2)

Thus, we still have

p(D)u+2]|=F1+F,+F3=F | +F;

Case2: n=j

Fi o= ) u(Dn)lu+1]#ps

rel;
= u(\V O AGrue; ) D)W+2] - - (Fr)
rel;

Notice that

gi = pj ifj#i

o 0 Hj=i

Also notice that gp41; = 0. Thus, F3 = 0.
Subcase 2.1: j # i

F2 = p(Dj)lu+1]+pj
= (D A (true; [vi]) A =(erues [vils [vj])s [vj]")[u +2]

As in the previous case, look at the duration formulas in Fq; and F»;.
D A (true; [vi]) A =(true; [vi]; DA =u+2) &
V (D A (true; [val); 1) A(I=u+2)V

rel;
(D A (true; [vj]) A—(true; [vils [vi]); fvj]l) ANl=u+2)

Also, Dy; and D;; are exclusive. Thus
p(D)u+2=F +F,=F1+F,+F3

Subcase 2.2: j =i

In this case, F; = 0. But

V (D A (true; [ve]); 1D AU =u+2)
rel;

is equivalent to

D A (true; [vj]) A —(true; [vi])AN(I=u+2)
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Thus we still have

w(Dj)lu+2]=F1 =F1 + Fy + F3

Cased:n=m+1Aj#i

Notice that
_f py ith=i
o+l ‘{ 0 ifh#i
Fy = Y p(Dw)[u+ 1] * Ghms1
helj;
= u(Di)[u+ 1] *pj
= (DA (true; vil); v1Dm+2] --- (Fis)
Since j # i, gjm+1 = 0 and thus F, = 0. Also notice that

i ifj#k
‘1'"+1'"+1‘{0 ifj =k

Subcase 3.1: j # k

F3 = p(Dmi1)[u+1]*pj
w(D A (true; [vils [vi1); 1D+2] -+ (F3)

Again look at the duration formulas in F13 and Fs3s.

D A (true; [vi]; [viDA(I=u+2) &

(D A (true; [vi]) 1A =u+2)Vv -+ (D13)
(D A (true; [vils [vi1): 1A =u+2) -+ (D3)

D13 and D33 are exclusive. Thus

p(Dm1)u+2]=F1+F3=F 1 +F,+F3
Subcase 3.2: j =k

In this case, F3 = 0. However
D A (true; [vi]; [v1)A(I=u+2) < (DA (true; [vi]); 1D A(I=u+2)
Thus we still have

W(Dmy1)u+2)=F1 =F, +F,+F3
Cased:n=m+1Ai=j#k

Since gpm41 = O when h # i, thus F; = 0. And gjmq1 = pij when j = i. AlSO gmy1m41 = pjj when

J# k.
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Fy = w(Dj)[u+ 1] *pj
= (D A(true; [vi1) A(true; [vils [v1); 1D +2] -+ (Fae)

F3 = p(Dpy1)[u+ 1]#pj
p(D A (trues [vils [vil)s Ty 1D)u+2] -+ (Faa)

The same argument about the duration formulas of Fp4 and F34 as before leads to

WOmi)lu+2] = w(D A (rrues [l Ty1) A (= u+2)u+2]
= Fa+F3
Fi+F4+F;

CaseS:n=m+1Ai=j=k

In this case,
Ghm+1 =0 whenh #i=j
Qjm+1 = Pjj wheni = j
m+im+1 =0 whenj=k

Thus, F; = 0 and F3 = 0.

Fy = p(Dj)lu+1]*p;
= (D A (true; [vi]) A —(trues [yl [vi1)s [v1Dm+2] --- (Fas)

Notice that now
D =0=(y1; vls [vl)
Thus
D A (true; [vi]; vi)A(U=u+2)
is equivalent to
(D A (erue; [y]) A =~(erues [ 1) 1) A (1= +2)
Therefore
W(Dmy1)[u+2]=F, =F1 + F, + F3

This ends the proof of the lemma.
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