THE UNIVERSITY OF

WARWICK

Original citation:

Papaefstathiou, E., Papay, J., Nudd, G. R., Atherton, T. J., Clarke, C. T., Kerbyson, D.
J., Stratton, A., Ziani, R. and Zemerly, M. J. (1993) A layered approach to modelling
parallel systems for performance prediction. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-247

Permanent WRAP url:
http://wrap.warwick.ac.uk/60929

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/



http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60929
mailto:publications@warwick.ac.uk

A Layered Approach to the Characterisation of
Parallel Systems for Performance Prediction

G.R. Nudd, E. Papaefstathiou, Y. Papay
T.J. Atherton, C.T. Clarke, D.J. Kerbyson, A. F. Stratton, R. Ziani, M.J. Zemerly

Department of Computer Science, University of Warwick,
Coventry CV4 7TAL, U.K.
email: warwick_peps@dcs.warwick.ac.uk

Abstract

An approach to the characterisation of parallel systems using a structured layered
methodology is introduced here. This approach is based upon two similar techniques which
have been suggested for use in the modelling of computer systems. Conventional modelling
techniques rely on workload parameters obtained from an existing system and the
development of a system model. For software under development this is a hindering factor
for performance evaluation and performance prediction. Software Performance Engineering
(SPE) offers a solution to this problem by using a software execution model, in addition to
the system model. The use of SPE for parallel software has several disadvantages:Ocomplex
nature of the SPE system model, non re-usableCdmodel components, and lack of analytical
methods to evaluate the system model. A novel layered approach for characterisation is
presented here, using separate hardware, parallel paradigm, and application layers to
overcome these disadvantages. Although this method can be used in modelling, it is
primarily targeted towards characterisation studies due to it's hardware independent nature.
The layered approach is illustrated, and results obtained, using an image processing
benchmark.

1. Introduction

The capabilities of parallel machines has exceeded the power of traditional mainframes and
vector supercomputers over the last decade. Although the popularity of parallel machines has
increased dramatically in the scientific and engineering community, it has not yet been able
to make an impact upon the mainstream computing community. A number of factors has
contributed to this including the huge investment already made in sequential software.

To make parallel computing more readily available and cost effective software technology
must mature that requires libraries allowing the reusability of parallel programs, and tools for
predicting, measuring, and enhancing performance [Chandy91].

Software performance prediction is being extensively researched [Miller90, Gabber90,
Pease91]. Software Performance Engineering (SPE) is a recent methodology that
incorporates software/system modelling and characterisation while focusing on software
efficiency [Smith90]. SPE has been successfully used in many sequential and a few parallel
software development projects [Smith82a, Smith82b, Weishar87]. It can be considered as
one of the strongest candidates for software performance prediction studies.

This paper focuses on software modelling and characterisation. A method is proposed for the
layered characterisation of parallel software which, in contrast to SPE, does not require time-
consuming procedures for the development of models but focuses on model reusability. It
uses techniques from SPE adjusted to the needs of parallel software characteristics. The
methodology can be incorporated into a software characterisation tool that will allow the
development of parallel software characteristics either based on a sequential version or on the
design of a new parallel application. Experimentation can be done with various re-usable
parallelisation techniques on different hardware without the need of further model
development.



One of the main features of characterisation models is their independence to the underlying
hardware, opposed to models derived from modelling studies. For example a model for a
master-slave paradigm that derives from a characterisation study will be independent of the
way that the paradigm maps onto a computer system. However, the generality of
characterisation studies leads to lower accuracy of performance prediction than in modelling.
Characterisation and modelling are considered complementary methodologies for predicting
the performance of parallel systems. Although the main ideas behind the layered approach
originate from modelling techniques, they are more appropriate for characterisation studies
since they focuse on re-usability and model generality.

The layered characterisation techniques originated from work in model structural
decomposition [Jain89, Patel92]. The main goal of structural decomposition is to sub-divide
the model into simpler models and to integrate various modelling methodologies, e.g.
queuing networks, petri nets etc. These sub-models are loosely coupled and can be re-used in
further characterisation and modelling studies. Structural decomposition suggests the sub-
division of the model into four basic sub-models:Oworkload scheduling, workload definition,
resource scheduling, and resource definition. The proposed structure of such models has been
modified here in order to include parallel software characteristics and SPE components.

This paper is structured as follows: An introduction is given for the methodology followed in
SPE in section 2. The disadvantages of the methodology are identified especially for the
characterisation of parallel software. The layered approach is introduced in section 3.00Each
layer of this characterisation approach is analysed in detail in section 4 using a case study of
an image processing benchmark. Finally, in section 5,0an implementation is described and
results obtained are compared with real measurements.

2. Software Performance Engineering

A conventional modelling process starts by an examination of the computer system. The
next step is the construction of a model; either a queuing network, petri-net, or simulation.
Then the current execution pattern is measured, the workload is characterised, and the input
parameters for the model are developed. The model results are compared with real
measurements of the system and can be refined. Finally the model is re-evaluated after
modifying workload and computer system resource parameters.

Software Design Spec.

Resource Usage .
Execution Environment > Execution

Workload Scenario Spec. Models

Software

Performance
Metrics

System

Execution Environment
— Models -

Other Workloads

Figure 1 - Software Performance Engineering Process

A problem arises with the use of conventional modelling in the case of performance
evaluation of software under development. The workload cannot be measured since the
software has not yet been constructed or in our case, for the development of parallel
software. Software Performance Engineering (SPE) enables these workload parameters to be
determined without first constructing the parallel software.



Software Performance Engineering is a relatively new methodology for constructing
software to meet performance objectives [Smith90]. The use of SPE begins early in the
software life cycle and continues throughout design, coding, and testing stages. It uses
quantitative methods to identify appropriate coding alternatives to give satisfactory
performance.

4 Processing Control State )
Nodes Flow Identification
Elementary @ Loop A Iﬁ%ﬂiiﬁ?g
Case Send-Receive
Expanded Acquire-Release
- J

Figure 2 - Software Execution Graph Notation

The problem caused by the absence of workload information, in our case, is solved by
complementing the conventional computer system model with a software execution model,
Figure 1. The software execution model represents the key characteristics of the execution
behaviour. The results of the evaluation of the software execution model are similar to the
workload data used in conventional system models.

The software execution model uses workload scenarios, software design, execution
environment, and resource usage to construct an execution graph model. Each component of
the software is represented by a node in the graph. The graph notation includes control
statements, hierarchical components, state identification nodes (lock-free, send-receive), and
split nodes (concurrent processes). The basic elements of the graph notation are shown in
Figure 2. The software execution model is evaluated by graph analysis algorithms to
determine the workload parameters used in the system execution model.

The use of SPE provides a software execution notation, it integrates software and hardware
models, and is a proven technology. However, it has a number of disadvantages that are
particularly apparent in the case of performance prediction of parallel programs :

*OThe development of the system model, especially for parallel computers, is a time
consuming and complicated procedure.

*OQueuing networks and other analytical methods can not be used for the evaluation of the
system model, due to factors including complex model topologies. In order to overcome
this drawback extensive simulation, supported by sophisticated modelling tools, is
required.

*OThe system model must incorporate software characteristics such as phase changes,
resource allocation, process creation and destruction etc. The resulting system execution
model is both hardware and software dependent. Consequently the model can be not
reused in further modelling studies.

3. A Layered Approach to Characterising Parallel Software

The major problem in SPE is the development and evaluation of the system execution model.
The purpose of this model is to determine the contention of system resources. In this paper
an alternative approach for building a system execution model is presented. This method
divides the system execution model into two separate sub-models: the parallel paradigm
model and the hardware model.



The splitting of the system execution model is based on results from the Cm* project at
Carnegie Mellon, including the performance degradation of a parallel application caused by
algorithmic penalty, implementation penalty, and algorithm/implementation interaction
[Gehringer88].

Therefore the overall system contention is attributable to two main factors:

*[the resource contention caused by the Application Domagin
characteristics of the parallel algorithm
which is independent of the
implementation. For example, in an
application that uses a master-slave
paradigm the dominant resource Sub-Task Layer
contention, as the number of slaves
increases, is the master process. It receives
messages from all slaves but can only v 4
process them sequentially [Greenberg91].

Application Layer

Parallel Paradigm Layer

*Othe contention caused by the competition
for hardware resources which is
dependent on the parallel paradigm v 4
implementation. In the case of an
application using a master-slave paradigm
the processors exchange messages through Hardware Layer
the interconnection network. This can lead
to contention in the communication

network. Figure 3 - Layered Parallel Software
Modelling Approach

Our model representing the parallel paradigm
is application and hardware independent. This leads to the suggested layered modelling
approach, as shown in Figure 3. A model developed using this approach is organised into the
following which are described below: application layer, sub-task layer, parallel paradigm
layer, and hardware layer.

4. Using the Layered Approach

An image processing benchmark, ipkernel, is considered here as a case study [Nudd92,
Measure92]. This benchmark detects objects within an image and reports their centroids. The
benchmark consists of a collection of sub-tasks such as a sobel filter, dynamic thresholding, a
spoke filter etc. The layered modelling approach is described below illustrated using the
ipkernel benchmark.

4.1. Application Layer

The purpose of the application layer is to characterise the application in terms of a sequence
of sub-tasks using a software execution graph. The execution graph is used to determine the
overall performance of the application using graph analysis algorithms. The metrics for each
sub-task is determined in the lower sub-task layer. Resource contention is not considered in
this layer but it is taken into account in the lower layers.

The software execution graph for the ipkernel benchmark is shown in Figure 4. The structure
of the benchmark is straightforward consisting of a sequence of parallel steps without any

control statements. The overall execution time for this application is:
n

o = Y ()

where 7 is the number of sub-tasks (6 for ipkernel) and ¢; is the response time of each task.



The nodes of the software execution graph in the application layer consist of a number of
elementary processing types, that are classified in the

following categories:
Sobel

*OSequential Processing Nodes:Tasks that are
appropriate to be performed sequentially. *

Dynamic

*OUser Defined Parallel Sub-Tasks: These are Thresholding]
defined in the lower sub-task application layer
using the same graph execution notation. This is *
illustrated, using the dynamic threshold operation Spoke
in the ipkernel, in section 4.3.

*OParallel Processing Generics: These are *
frequently used pre-defined parallel sub-tasks Median
which exist as a model library. The formation of
such a library is currently under investigation *
[Peps93]. Connected

Components
4.2. Parallel Paradigm Layer *
The purpose of the parallel paradigm layer is to Centroids
identify the resource contention caused by the Calculation

characteristics of the algorithm. It has been noted that

a large number of computations fall into a Figure 4 - Software Execution Graph
surprisingly small number of prototypical structures for the Ipkernel Benchmark
[Gehringer88]. In many areas it is possible to identify

a small set of algorithm structures that can be modelled using traditional modelling
techniques [Allen86]. A number of models already exist for parallel paradigms
[Greenberg91, Agrawal83, Rolia92].

In order to identify the most commonly used parallel paradigms a classification scheme is
required. The aim of classification is to determine different classes, on the basis of
similarities, amongst different parallel algorithms. The classification enables the extraction
of the most frequently used constructs and also the definition of application independent
parameters.

There have been several attempts to find a systematic approach to the description of the large
variety of parallel algorithms including :

* The Cm* project which classified the algorithms according to their co-ordination
mechanism [Gehringer88]. These classes are: asynchronous, synchronous, multiphase,
pipeline, partitioning, and transaction processing some of which are shown in Figure 5.

e The BACS (Basel Algorithm Classification Scheme) scheme which examines three
attributes of parallel algorithms namely, processes, data and interaction [Burkhart93].

 Jamieson [Jamieson87] identifies the characteristics of a parallel algorithm that have the
greatest effect on its performance. She also highlights the connection between
algorithmic characteristics and features of the hardware, in relation to the application's
performance.

By modelling the most representative parallel paradigms it is possible to cover the majority
of applications. A parallel paradigm model also includes the mapping of the algorithm onto
network topologies. The purpose of determining the algorithm mapping is to identify the
communication and synchronisation patterns that are inputs to the hardware layer. For
example, different mappings of the master-slave paradigm on a mesh topology result in



different communication radius which influences the communication delay. The automatic
mapping of a parallel paradigm enables the hardware complexity to be hidden from the user.

The use of a parallel paradigm is demonstrated here using the dynamic thresholding of
ipkernel benchmark. This operation is parallelised using the multiphase structure, Figure 5.
The multiphase paradigm is used for the class of algorithms that are comprised of alternating
serial and parallel phases. The response time for the multiphase algorithm, assuming the
master is constantly busy, is :

k koo . C
tr =N %lin(t:law,)) + Z (tlm + timseq) +1% + k BOWE (2)
i=1

i=1

where: N is the number of phases, t; is the system response time, t;512ve is the processing
time required from slave i during the parallel phase, t;i" is the communication delay for slave
1 to send the results of the parallel phase to master, t;5¢d is the processing time required for
the master to incorporate the results of slave i, {5¢4 is the sequential processing time for

master processor, toUt is the communication delay for master to send the results a slave, k is
the number of processors.

In the above equation there are application dependent parameters (e.g. ¢5¢9) that are

determined by the application sub-task layer and hardware dependent parameters (e.g. tout)
that will be determined by the hardware layer.

Multiphase Pipeline Divide & Conquer
Figure 5 - Task Graphs for Three of CM* Parallel Paradigm Classification Scheme

4.3. The Application Sub-Task Layer

In the sub-task layer the application specific models are defined for each sub-task. The result
of the evaluation of these models is the input to the parallel paradigm layer. The sequential
parts of the parallel paradigm must be modelled and their response time determined.

Initially for each sub-task a software execution graph is constructed. The user must then
identify the resource usage of each elementary node as defined in SPE. The methodology of
this process might include software instrumentation of the sequential version of the program,
measurement projection of the software running on a reference computer to the target
hardware, and software characterisation [Smith90].

For the ipkernel dynamic threshold operation a software execution graph has been developed,
part of which is shown in Figure 6. Each processor initially performs a local histogram for a
part of the image. This is the parallel phase of the multiphase paradigm. Each processor then
sends the local histogram to the master to generate a global histogram. Finally the master
calculates and broadcasts the dynamic threshold value to the slave processors.



The parameters required for the multiphase paradigm and hardware layer can be determined
using the software execution graph of the sub-task. For example:

t:lave = Npixels |]locallhist [Dl D(l’k)] (3)

4.4. Hardware Layer

The hardware layer is responsible for the characterisation of communication,
synchronisation, and contention. The information required for this layer can be organised
into a hierarchical structure similar to the one used in the architecture characterisation tool in
the PAWS project [Pease91]. The requirements of the hardware model are less complex than
the system model in SPE, making the development and evaluation procedure easier.

The hardware model consists of static and — > # of pixels

dynamic performance parameters. The static
parameters represent the delay of hardware
operations that are not influenced by the run- hist[pixel value]++ Yocathist
time environment and can be determined
either by benchmarking or configuration
information. The number of processors is an
example of a static configuration parameter.
The dynamic parameters are influenced by the
run-time environment and can be determined
by analytical models or hardware characterisation e.g. [Zemerly93].

Figure 6 - Software Execution Graph
for Local Histogram

5. Results Using the Structured Layered Approach

The results obtained here are for the dynamic thresholding operation of the ipkernel
benchmark modelled using the structured layered approach, as described in the previous
sections, and compared with results obtained on a 128 node (Transputer T800) Parsytec
Supercluster.

For the model development, it was assumed that the source code for the benchmark had not
yet been ported on to the Parsytec machine. Consequently, the workload information could
not be measured. The only measurement required for the model was the resource requirement
of the sequential version of the ipkernel. If the hardware was not available for the
measurement other techniques could be used to identify the hardware resources. The
accuracy of the model was compared afterwards with measurements from the ported version
of the benchmark.

The model was developed using Mathematica which has also been proposed as a
characterisation and modelling tool by Patel [Patel92]. Mathematica is well suited for this
purpose since it combines all the advantages of traditional third generation languages with
additional features including advanced mathematical functions and presentation graphics.

The model has three types of input parameters: the hardware configuration, the resource
usage of each function measured from the sequential version, and data dependency
information such as the size of the image. The user can vary these parameters in order to
determine their impact on the overall performance.

Although the case study has been selected for its simplicity to demonstrate the modelling
approach, the results are interesting as shown by Figure 7. The response time of the operation
decreases for a processor configuration up to 4x4 but increases for larger processor
configurations. This phenomenon is caused by the parallelisation overhead. In the ipkernel
operation the overhead required for the master to receive the local histogram, from each slave
processor, and accumulating the global histogram causes the performance degradation.



The comparison between the results of the model and the measurements show a 7% error
margin for the various processor configurations. It is expected that this error margin will be
greater in a real application. However, this level of accuracy is acceptable and in some cases
better than other modelling techniques [Lazowska84].

Seconds

100
Measurement 4 81

Model

6
» 32 49
16

4 9
Number of Processors

Figure 7 - Ipkernel Model Results

6. Conclusions

In this paper a novel approach to parallel software characterisation and modelling has been
presented. The layered approach is based on the methodology provided in SPE and in model
structural decomposition. The main goal of the layered modelling procedure is to develop
independent models for the application, the parallel paradigm, and the hardware. Each of
these models can be determined by characterisation studies. The independence of the layers,
described here, has the following advantages:

*OThe time required for the development of models is reduced since there is no need for the
development of different system models for each study.

*OUsually the resulting model can be evaluated using analytical techniques as opposed to
the system model of SPE studies which cannot.

*OThe parallel paradigm and hardware models are reusable. By defining the application
layer and sub-task layer, experimentation can be performed to evaluate different
paradigms on different hardware.

A disadvantage of this methodology is that the parallel software must conform to the set of
parallel paradigms supported. This is not be a problem for the majority of applications, as it
has been observed that most of the parallel application conform to a limited set of paradigms
[Allen86, Gehringer88, Burkhart93].

Future work in the extension of the layered approach is in the selection of a set of frequently
used algorithms to form a library of generics [Peps93]. Another task required for the
refinement of the layered approach is the comparison of results with results from traditional
modelling techniques, e.g. queuing networks.

Acknowledgements

This work is funded in part by ESPRIT contracts 6942 - Performance Evaluation of Parallel
Systems (PEPS) and 6173 - Design by Simulation and Rendering on Parallel Architectures
(DESIRE).



Bibliography

[Agrawal83]
[Allen86]
[Burkhart93]
[Chandy91]

[Gabber90]

[Gehringer88]
[Greenberg91]
[Jain89]

[Jamieson87]

[Lazowska84]

[Measure92]

[Miller90]

[Nudd92]

[Peps93]

[Patel92]

[Pease91]

[Rolia92]
[Smith82a]
[Smith82b]
[Smith90]
[Weishar87]

[Zemerly93]

Agrawal, S.C. and Buzen, J.P., “The Aggregate Server Method for Analyzing Serialization
Delays in Computer Systems,” ACM Transactions on Computer Systems, vol. 1, no. 2,
pp.0O117-143, May 1983.

Allen, J., “Plenary Address,” in IEEE Workshop on VLSI Signal Processing, 1986.

Burkhart, H., Korn, C.F., Gutzwiller, S., Ohnacker, P., and Wasel, S., “BACS: Basel
Algorithm Classification Scheme,” Tech. Rep. 93-3, University of Basel, Switzeland, 1993.

Chandy, K.M. and Kesselman, C., “Parallel Programming in 2001,” IEEE Software, pp.011
20, November 1991.

Gabber, E., “VMMP: A Practical Tool for the Development of Portable and Efficient
Programs for Multiprocessors,” IEEE Transactions on Parallel and Distributed Systems, vol.
1, no. 3, pp. 304-317, July 1990.

Gehringer, E.F., Siewiorek, D.P., and Segall, Z., Parallel Processing: The Cm* Experience.
Digital Press, 1988.

Greenberg, G., A. and Wright, E., P., “Design and Analysis of Master/Slave
Multiprocessors,” IEEE Transactions on Computers, vol. 40, no. 8, 963-976, August 1991.

Jain, P., P. and Newton, P., “Putting Structure into Modeling,” in Proceedings of the 1989
Summer Computer Simulation Conference, Austin, Texas, USA, 1989, pp. 49-54.

Jamieson, L.H., “Characterizing Parallel Algorithms,” in The Characteristics of Parallel
Algorithms, Jamieson, L.H., Gannon, D., and Douglass, R.J., Eds. MIT Press, 1987, pp. 65-
100.

Lazowska, D., E., Zahorjan, J., Graham, G., S., and Sevcik, C., K., Quantitative System
Performance: Computer System Analysis Using Queueing Networks. Englewood Cliffs, New
Jersey, USA, Prentice Hall, 1984.

MEASURE, "Measurement of Array Architectures for Image Analysis Applications," Final
Report, ESPRIT 5669, Warwick Strategic Technology Laboratories, Coventry, U.K., January
1992.

Miller, P., B., Clark, M., Hollingsworth, J., Kierstead, S., Lim, S.S., and Torzewski, T., “IPS-
2: The Second Generation of a Parallel Program Measurement System,” IEEE Transactions
on Parallel and Distributed Systems, vol. 1, no. 2, pp. 206-217, April 1990.

Nudd, G.R., Atherton, T.J., and Kerbyson, D.J., “IPKERNEL: Image Processing
Benchmark,” Tech. Rep., Warwick Strategic Technology Laboratories, Coventry, U.K.,
1992.

PEPS, “Characterising Processing Needs,” Tech. Rep. D5.1, ESPRIT 6942, University of
Warwick, Coventry, U.K., July 1993.

Patel, M., N., “Structuring Analytical Performance Models Using Mathematica,” in Proc. of
the 6th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, Pooley, R. and Hillston, J. (Eds.), Ediburgh, U.K., 1992, pp. 273-
286.

Pease, D., Ghafoor, A., Ahmad, 1., Andrews, L., D., Foudil-Bey, K., and Karpinski, E., T.,
“PAWS: A Performance Evaluation Tool for Parallel Computing Systems,” IEEE Computer,
pp. 18-29, January 1991.

Rolia, J.A., “Predicting the Performance of Software Systems,” Ph.D. thesis, University of
Toronto, Canada, 1992.

Smith, C.U. and Browne, J.C., “Performance Engineering of Software Systems: A Case
Study,” in Proc. National Computer Conference, vol. 15, 1982, pp. 217-224.

Smith, C.U. and Loendorf, D.D., “Performance Analysis of Software for a MIMD
Computer,” in Performance Evaluation Review. ACM Press, 1982.

Smith, U., C., Performance Engineering of Software Systems, The SEI Series in Software
Engineering. Addison-Wesley Publishing Co., Inc., 1990.

Weishar, D.J., “Incorporating Expert Systems Technology into Software Performance
Engineering,” in Proc. Computer Measurement Group 1987, 1987, pp. 720-722.

Zemerly, M.J., “Characterisation of Multi-Processor Systems,” Tech. Rep., University of
Warwick, Coventry, UK., 1993.



