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Multiresolution Image Analysis Based On LocalSymmetriesAndrew King, Roland WilsonDepartment of Computer Science,University of Warwick,CoventrySeptember 28, 1993AbstractThis report describes two seemingly distinct areas of work. First, there is thederivation of a new multiresolution image restoration algorithm, and secondlythere is the development of a new approach to feature extraction. A reviewof these two areas is presented, the new algorithms outlined, and some resultspresented. The unifying principle behind this work is the idea of image symme-tries. The background of this concept is reviewed, and its applicability to thecurrent work explained. Finally, some speculations and expectations concerningthe future direction of this research is included.
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1 IntroductionThe research described in this report can be divided into two separate areas. First,there is the work done on the restoration of noisy images, and secondly the analysisof shape features.This work is uni�ed by the concept of symmetry. Symmetry can be de�ned asthe invariance of an image under a particular transformation. A transformation cantherefore be referred to as a symmetry with respect to an image or a region of animage, if the result of its application upon the image block is to leave it unchanged.We deal with the idea of symmetry in two main related areas. First there is the roleof symmetry in perception, and secondly symmetry as a property of images, and asa method of representation.A common approach utilized throughout is that of multiresolution image process-ing. A brief description of this method is also included.1.1 Symmetry In PerceptionSymmetry in perception centres around the notion of invariant pattern recognition. Apattern recognition process is said to be `invariant' with respect to a particular typeof transformation, if the process is transparent to any change in the pattern resultingfrom such a transformation. For example, a pattern recognition process would beinvariant with respect to scaling if it could recognize similar patterns at di�eringscales. This can be seen to be a similar property to that of symmetry, in that ratherthan the image remaining invariant under a transformation, the recognition processitself will remain invariant. Gibson [13] was one of the �rst to consider the role ofinvariance in human vision.1.1.1 Invariant Pattern RecognitionOwing to the nature of real world perception, it is evident that to be of any practicaluse, a pattern recognition system will need to be invariant with respect to a particularset of commonly occurring transformations. These are known as the two-dimensionala�ne transform group, and consist of rotation, translation and scaling. Several ap-proaches to constructing a model of invariant pattern recognition with respect tothese transformations have since been taken. For example, Lamdan et al. [26] havedevised an algorithm for a�ne invariant object recognition based on the extraction of`interest points' from the image. The main drawback of their method though, is thatit requires a model of each object that may be in the scene, a reasonable assumptionin the industrial environment for which the algorithm was designed, but not so formany other real world problems. Simard et al. [31] have proposed a method wherebya�ne invariances are handled by using a priori knowledge about the derivatives of1



the function to be learned. This information is useful when we consider that fora�ne invariant recognition, the directional derivatives in the directions of particulartransformations will be zero. Again though, the assumption that this information isknown will not always be valid in real world perception problems. Teague [32] outlinesa method of image analysis based on image moments. He shows that an image canbe reconstructed from its set of moments, and that a�ne invariance can be achievedby `normalizing' these moments.As far as representing a model of mammalian vision is concerned though, little isclaimed for these methods. We now examine one important attempt at such a model.1.1.2 The Lie Transformation Group ModelThe concept of image symmetry is central to the Lie Transformation Group (LTG)model of visual perception. This model was �rst formulated by Ho�man [16] as longago as 1966. Its claim is that it can explain how the locally smooth phenomena thatoccur in the visual cortex can lead to a model of human vision.As Dodwell [11] argues, the information that our eyes receive is in a continual stateof ux owing to the motion of our head and body. The majority of this movementin our sensory input will be provided by transformations from the two-dimensionala�ne transform group. It is evident then, that in order for there to be any continuityin perception of objects over time, the role of such transformations in human visionmust be central.The Three Basic Lie Operator PairsTo account for the role of transformations mentioned above, the LTG model proposesa set of three basic pairs of operators, or transformations, which it claims can be usedto construct a model of human vision. These three pairs come in the form of mutuallyorthogonal orbits (smooth curves), and can be expressed in simple mathematicalterms. These orbits are shown in Figure 1. The operators are said to be natural, inthat the pattern recognition process should be transparent to motion in the directionof these orbits. Note that it is not claimed that the perceiver will not be aware ofmotion in these directions, just that such movement will not signi�cantly impair theoperation of the recognition process.The �rst of the operator pairs is the simple translation, in the x or y direction. Thisis illustrated in Figure 1(a). This pair is part of the two-dimensional a�ne transformgroup, and so would seem to be a fundamental requirement of any visual model, forthe reasons stated above, namely that in a world in which both the perceiver and theperceived are in constant motion, there is a need for continuity in object recognitionover time. It should be noted that the translation operator will not always be usedin isolation, but may be used in conjunction with one or more other operators (see2



(a) (b) (c)Figure 1: Orbits of the Three Pairs of Primitive Lie Operatorsbelow). The x and y translation operators can be de�ned asLX = @=@x (1)and L = @=@y (2)As well as lateral movement, perceived objects in the real world may also movelongitudinally, or towards or away from the perceiver. In addition, they may rotaterelative to the perceiver. The orbits for the pair of Lie Operators for these transfor-mations (the dilation and rotation) are shown in Figure 1(b). These are again partof the two-dimensional a�ne transform group, and can be de�ned asLS = x(@=@x) + y(@=@y) (3)and LO = �y(@=@x) + x(@=@y) (4)The orbits for the third, and for the moment, �nal pair of Lie operators, are shownin Figure 1(c). Their relationship to real world visual processing is not as immediatelyapparent as that of the �rst two pairs, and indeed their inclusion was suggested moreby the mathematical nature of the other two primitive operators, than by intuitive3



reasons. The precise details of their derivation are not important, but Ho�man [16]interprets their inclusion as being related to the properties of binocular space. This�nal pair can be expressed asL� = x(@=@x)� y(@=@y) (5)and Lb = y(@=@x) + x(@=@y) (6)It would be useful now to take a brief look at the way in which the Lie operatorsare derived. This is done by using the relationship between the equation F thatdescribes the trajectory of a Lie orbit, and its corresponding Lie operator L. Thisrelationship can be de�ned as LF = 0 (7)To take an example, consider F to be the horizontal line y�b = 0. As its correspond-ing Lie operator is @=@x, it can be clearly seen that the result of LF in this case iszero. We will return to this later.The basic postulate of the LTG model of human vision, is that the structure ofthe visual cortex is determined by these basic Lie operators. It should not, however,be supposed that these three pairs are the only ones that can be derived. Many morecould be discovered, especially when temporal properties are considered. This wouldprovide a new di�erential operator, @=@t, in addition to @=@x and @=@y. They arehowever, the three which would be the most common and useful in a two dimensionalvisual processing problem. Since the structure of the visual cortex is to a large degreedetermined by the information it receives from its environment, it would seem naturalthat these three basic pairs will be predominant.Pattern RecognitionIt should be noted here that there are certain image features that will remain invariantunder transformations corresponding to certain of the Lie operators mentioned earlier.For example, a straight edge will not be a�ected by a particular combination ofthe translation operators shown in Figure 1(a). For this reason, we refer to thesetransformations as local symmetries with respect to the corresponding local imagefeatures.Dodwell [11] goes on to outline a process by which pattern recognition could occurwithin the framework of the LTG model. The �ne details of this are not explained,but it should be noted that it centres around the idea of cancellation. That is tosay, the visual system will search for which operator(s) will minimize the output ofany orbit. To put this another way, it will �nd the orbit whose Lie operator bestsatis�es Equation 7. This process could be said to be recognizing the characteristiclocal symmetries of the pattern in question. It should be noted however, that this4



process is limited by its strictly local nature and by the small number of shapes thatcan described simply in these terms. For this reason it would seem that as a globalrecognition process it is less than satisfactory, but as a general low level model of theunderlying processes in human vision, it may be of some use.Neuropsychological EvidenceAs Dodwell [11] has pointed out, a lot of structure has been discovered in the mam-malian visual cortex [19], which may o�er evidence in support of the LTG model.In particular, it has been found [18] that receptive �elds have certain vector-likeproperties which would be in keeping with the cancellation process described above.In addition, Big�un [4] has noted the relevance of certain experiments ([21], [27])in which circularly symmetric shapes (i.e. shapes invariant under rotation, see Fig-ure 1(b)) were observed by subjects when low frequency magnetic �elds were appliedto their temples.It does seem though, that to suppose that the LTG model is a complete model ofmammalian vision would be optimistic. Ho�man [16] does not appear to place a highpriority on the biological aspect of the model, and it is di�cult to imagine that whathe proposes is the complete story. It seems likely though, that Lie transformationsmay play a signi�cant role in our visual processes.1.2 Symmetry In RepresentationPreviously we have discussed the role of symmetry in image processing. A similarproperty to symmetry is that of self-similarity. An image can be said to possess self-similarity when the image as a whole resembles a scaled up version of a part of itself.It has been pointed out [28] that this could be seen as a special case of symmetryinvolving scaling operations. We will return to this later.For now though, it was noted earlier that certain image features will have di�er-ent characteristic local symmetrical transformations. The local symmetries of imagescould be said to `represent' the image in question. It would seem then, that knowl-edge of the characteristic local symmetries of an image would be of use in trying toconstruct a method of image coding. We now examine one such method.1.2.1 Block Based Fractal CodingThe technique of Block Based Fractal Coding of images was �rst developed byJacquin [20]. The basic concept behind the technique is that for every image thereexists a transformation (the fractal transformation) upon that image, for which theresult of its application upon the image will be to leave it unchanged. It can be seenimmediately that there are similarities here to the idea of local image symmetriesdiscussed earlier. The image in question can be encoded as its fractal transformation.5



Furthermore, the result of applying this transformation to any other image will be toperform a contraction mapping, or to bring it closer by some measure of similarity tothe image to be encoded.The Contraction MappingTo expand upon this, we must �rst make clear the idea of a contraction mapping.As stated above, a contraction mapping is a function which increases some measureof similarity to an ideal image. To put this another way, it is a function whichreduces a distance measure between the domain image and the ideal image. If wede�ne a distance measure between two images x and y as d(x; y) then for the a�netransformation T (x) = Ax + b to be a contraction mapping, the following equationmust hold. d(T (x); T (y)) � L:d(x; y): (8)where L is a real number between 0 and 1. The speci�c distance measure used canvary, and the details of such measures are not currently relevant.We illustrate this with an example from Barnsley [2]. He provides several setsof a�ne transformations, each with an associated probability, which can be used toconstruct particular images, using what he calls the Random Iteration Algorithm.Each of these sets of transformations constitute a contraction mapping with respectto the image they represent. The algorithm works as follows. Starting with an imageof a single point, the transformations are iteratively applied, with the particulartransformation used in each iteration being dependent on the probabilities. Thiswill build up successive images of gradually increasing numbers of points. Thesesuccessive images are of a correspondingly greater complexity, although for a digitalimage a limit will be reached at which the image will no longer change. Thereforethese transformations together constitute the `fractal transformation' of the image inquestion.An example of this is shown in Figure 2. This illustrates the Random IterationAlgorithm run for varying numbers of iterations using the fern leaf set of transforma-tions. The top left image is the result after 100 iterations, the top right is after 500iterations, the bottom left after 1000, and the bottom right after 10000 iterations. Ascan be seen, the complexity of the image grows in proportion to the number of itera-tions applied. This image can also be said to possess a large amount of self-similarity,as de�ned earlier. To a certain extent, all images possess a degree of self-similarity,and the task of the encoding process (see below) is to identify ways in which this canbe expressed. 6



Figure 2: Results of the Random Iteration AlgorithmThe Encoding ProcessWe will take a brief look at the way in which images can be encoded using thistechnique. The fractal transformation for an image is determined from a series oflocal transformations, each operating on a block of the image [20]. The domainimage is divided up into a set of non-overlapping image blocks, and the range imageis correspondingly divided into a set of blocks, each of which will be half the sizeof those in the domain image. The elementary transformations will then operateon these blocks. The precise nature of these transformations is not immediatedlyrelevant, but the important point to note is that they will consist of a combinationof two-dimensional a�ne transforms. Comparisons can be drawn here between thecalculation of the fractal transformation of an image, and the Lie Group patternrecognition process described earlier. Both consist of combinations of two-dimensionala�ne transforms, but the role of these transforms di�ers in each case. In the Liegroup process, the transformations were used in a cancellation operation in orderto recognize the local image structure, whereas here we are trying to describe thisstructure by �nding the appropriate symmetrical a�ne transformations.From the above, it follows that any image for which a fractal transformation canbe determined, can be encoded as this transformation, and that if the transformationcan be stored so as to take up less space than the original image, then the technique7



could be a useful tool in data compression. Impressive results have been claimed forthis technique [20].1.3 The Multiresolution Approach to Image ProcessingIt was mentioned in Section 1.1.1 that it is important that a pattern recognitionprocess should be invariant to certain transformations. These transformations includetranslation and scaling. In order for this invariance to be achieved we must �nd away of representing the image in such a way as to be able to examine it at di�eringpositions and scales. Such a representation is called a multiresolution representation.1.3.1 ReviewOne such approach that can be of use in facilitating scale invariance is the wavelettransform [10]. This is a way of analysing the frequency content of a signal locallyin time. In this sense it is quite similar to the Windowed Fourier Transform. Thewavelet transform can be used to considerably simplify the recognition of scaled pat-terns. To expand upon this, it can be shown that the wavelet transform of a scaledpattern is merely the wavelet transform of the unscaled pattern with a simple co-ordinate translation within the transform domain. To express this more formally, welook at a one-dimensional signal f(t), and de�ne its wavelet transform to be Twavm;n (f).The parameter m indicates the scale required, and n indicates the time locality re-quired. If f is then transformed by a scaling operation T = Ax + B (A > 0), thewavelet transform of the transformed signal can be de�ned as TwavAm;An+B(f). Thise�ectively reduces the scaling operation to a simple translation (in the transform do-main), thus making invariant pattern recognition signi�cantly easier. This principlecan be extended to two-dimensional signals.Another relevant multiresolution approach is that of scale-space �ltering, developedby Witkin [35]. In this technique, a one-dimensional signal is �rst convolved with asecond partial derivative of a Gaussian �lter at various scales. The scale-space ofthe signal is then de�ned as being the set of all zero-crossings of this signal. Thisapproach has also been discussed in depth by Koenderink [23]. As Bischof [5] haspointed out though, there are problems when it comes to generalizing this to two-dimensional images. In addition, the fact that these methods feature a continuousvariation of the scale parameter pose a practical `implementation' problem.The above examples help to illustrate another potential use of multiresolutionapproaches, notably that they can also be of use in identifying image features, asmost important features occur fairly consistently across scale. In addition, it is acommon property of natural and arti�cial images that there are features present inthe image which will vary with respect to their scale. Multiresolution approaches alsoallow a greater exibility in the analysis process, in that di�erent regions of the image8



can be analysed at di�erent resolutions, and in that no decision about which scaleshould be used for each region need be made in advance.A signi�cant example of the multiresolution approach which is utilised in the workdescribed in this report is the image pyramid. This is now dealt with below.1.3.2 The Image PyramidThe image pyramid has many similarities with the wavelet transform described earlier,and can also be viewed as a discrete form of scale-space representations. It should benoted that this use of discrete rather than continuous forms poses problems in termsof the decimation and interpolation operations which implement the change of scale,in that a certain amount of aliasing can be introduced, leading to a lack of circularsymmetry [34].The multiresolution approach takes into account the requirement for invarianceover scale by representing the image at several di�erent spatial resolutions. Thisnecessarily introduces an element of redundancy, but this is a relatively small price topay for the advantages it a�ords. In this technique, the original image is sub-sampledto create a set of images known as a pyramid, starting with the original image, andwith each successive image at a lower resolution (usually half) than its predecessor.Originally, most pyramids were built in a quad-tree structure, with each sub-sampledpixel having four children, and each child only one parent. In this case the parentsgrey level would be set to the average value of its four children. However, Burt andAdelson [8] proposed the use of a Gaussian weighting function to replace the quad-tree approach, in which for a 5 by 5 �lter each parent has 25 children, and each child9 parents. To state this more precisely, if w(m;n) is a Gaussian weighting function,and gl(i; j) the image at level l of the pyramid, then the construction of the pyramidcan be de�ned as gl(i; j) = 2Xm=�2 2Xn=�2w(m;n)gl�1(2i+m; 2j + n): (9)This method has the e�ect of lowpass �ltering each successive image as the pyramidis built, and has the advantage of reducing artefacts created by aliasing. It doeshowever, introduce an overhead in the amount of computation required, with 25multiplications required for each pixel in the constructed level.Once the pyramid has been built up to a certain level, a new sequence of imagescan then be reconstructed, back down to the bottom level again. This is done byinterpolating new pixel values in the child image given the values in the parent image.This process can be de�ned bygl(i; j) = 4 2Xm=�2 2Xn=�2w(m;n):gl+1(i�m2 ; j � n2 ): (10)9



where only terms for which (i�m)=2 and (j � n)=2 are integers are considered. Theresult of constructing a pyramid in this manner is that we then have two sets ofimages, one generated `on the way up' the pyramid, and one reconstructed `on theway down'. It is apparent that the interpolated images will have been subjected to alowpass �lter and so will be smoothed.The image pyramid has been used in many di�erent problems in image processing.Some of the more important examples are reviewed below.An early example of predictive image coding using a quad-tree pyramid structurewas developed by Wilson [33]. In this work, the transmission of the coded imagewould commence with the image at the top level of the pyramid, which will consistof a single pixel. A succession of images would then be transmitted each being equalto the di�erence between a reconstruction of the data from the level above, and theactual image at the current level. By using this method, the receiver of the imagecan construct a prediction of the transmitted image, which will then be re�ned byeach successive transmitted image.Another example which was applied to the problem of image restoration is that byClippingdale [9]. In this work, a quad-tree pyramid was built starting with a noisyimage at its base, and ascending the pyramid up to the top, where there is a singlenode containing the average grey level. This structure was then used to constructan estimate of the original clean image, by combining information vertically in thepyramid.Bhalerao [3] provided a further example, this time concerned with the problem ofimage segmentation. This approach used combined a boundary estimation processwith a region estimation process, the results of which are iteratively improved.1.3.3 Neuropsychological ParallelsNeuropsychological parallels to the multiresolution approach centre around the notionof scale. As Hubel [17] has pointed out, there are cells present in the mammalianretina and visual cortex that respond to features at several scales. This would seemto tie in well with the analysis over several scales that occurs in multiresolution imageprocessing. Indeed, it is di�cult to imagine a complete visual model which did notincorporate some notion of scale. This would seem then, to o�er some encouragementfor the use of multiresolution approaches to image processing, although it should benoted that no claims are being made as to the biological plausibility of the model.
10



2 AMultiresolution Approach To Image Restora-tion2.1 ReviewMuch work has been done in the past in the �eld of restoration of images degradedby noise. The task of removing noise from a purely uniform image would be fairlystraightforward, a simple smoothing (averaging) algorithm would eliminate the degra-dations. However, although images do often contain large areas of uniformity, theywill also feature areas of higher grey level variation, or edges. In these areas a simplesmoothing operation will result in a loss of information. It is clear then, that a di�er-ent sort of processing will be required in these areas. The problem which has facedresearchers therefore, can be split into two main sub-problems. Firstly, there is theproblem of knowing where the lower frequency areas of the image are, in order thatsmoothing algorithms can be applied to remove the noise, and secondly there is thequestion of what to do in the higher frequency areas.Smoothing of images whilst preserving the edges has many important applications,and so has been a popular area of research in previous years. A useful review ofexisting averaging techniques was given by Du Buf and Campbell [7]. The �ltersthey considered used various techniques to overcome the problem of what to do atedges. A common method is to take the median rather then the mean of the localneighbourhood of pixels. This kind of approach is more likely to reduce the amountof blurring in the boundary regions than normal mean averaging. In addition to this,some methods attempt to make some sort of allowance for the orientation of the edge(e.g. [15]), although the techniques employed to do this are rather unsophisticated.As was described in Section 1.3.2, Clippingdale [9] has adopted a multiresolutionapproach to noise reduction. Essentially, this work still uses a form of averaging toachieve the noise reduction, but the determination of the boundary areas di�ers inthe inclusion of a notion of scale.2.2 The AlgorithmThe new restoration algorithm described in this section could be said to be con-ceptually similar (although not the same) to the median approaches referred to inSection 2.1, in that all that is happening at the edges is that one pixels grey levelvalue is being replaced by anothers. However, the reasons for taking this directionwere somewhat di�erent.To understand the motivation for the approach taken in this work, we �rst need torefer back again to the concept of local symmetries mentioned earlier. It was statedthen that a transformation is a symmetry with respect to a part of an image if itsapplication leaves that part of the image unchanged. It can further be stated that11



applying the transformation to any other image block will bring that block `closer'to the image block for which the transformation is a symmetry. That is to say, thetransformation is a contraction mapping as described in Section 1.2.1. Therefore, ifwe knew the appropriate local symmetries for an image, then the restoration process(whether from a noisy or blurred version) would be easy.The basic data structure used is a Gaussian �ltered image pyramid similar to theone described in Section 1.3.2. Use of this structure will automatically have the e�ectof smoothing the image, owing to the reduction in information further up in thepyramid. The amount of smoothing will depend upon how many levels there are inthe pyramid.Certain processing will be performed on the images as they are reconstructed fromhigher levels in the pyramid. The aim of this processing will be to minimize the MeanSquared Error (MSE) between the pairs of images at the same level of the pyramid(the generated and reconstructed images). Whenever MSE is referred to from here on,it will refer to this value.The basis of this processing is the application of a set of translations in the edgeregions with the aim of sharpening up the blurred edges. It should be clear thatif these translations are applied towards the notional edge, such a sharpening willoccur, thus reducing the MSE. This idea is conceptually similar to the idea of localsymmetries discussed in Section 1, in that a clean version of the edge would remaininvariant under these translations.2.2.1 Orientation EstimationTo start with though, we must make some sort of estimation of the directions in whichthe translations should be applied. This is done by a fairly simple process.First, the reduction in MSE produced by applying each of four primary translationdirections is calculated. These are NE, NW, SE and SW. From these values, fourvectors can be derived in these four directions. A simple addition of these vectors isenough to provide a rough estimate of the desired translation direction at this point.This orientation is represented using a double angle format, a method �rst em-ployed by Granlund [14]. The doubling of the angle e�ectively treats opposite angles(di�ering by 180 degrees) as being identical, removing the phase shift as the boundaryis crossed. The advantage of this representation is that it allows us to smooth theorientation vectors without the opposing vectors in the edge regions cancelling eachother out. This smoothing can help to counter the e�ects of noise in the orientationestimate.2.2.2 Vertical PropagationIn order to take full advantage of the multiresolution model however, we should notethat owing to the lower amount of noise higher up the pyramid, the orientation12



estimation will be more accurate the higher up we go. Bhalerao [3] has outlined amethod by which information can be propagated downwards to improve the accuracyof the orientation estimates further down the pyramid. This can be de�ned as�̂i;j(l) = �i;j(l)�̂i=2;j=2(l� 1) + (1� �i;j(l))~�i;j(l): (11)where �̂i;j(l) is the double angle orientation estimate at level l after vertical propaga-tion, and ~�i;j(l) the double angle estimate before propagation. �i;j(l) is the feedbackcoe�cient for level l, and is a measure of how much information is propagated down-wards in the pyramid. The calculation of the feedback coe�cient at each level isbased upon estimation of the signal and noise variances on the respective levels, andis outlined in [3].Once a reliable orientation estimate has been arrived at, a decision must then bemade as to whether to perform a translation at a given pixel, or whether to leaveit unchanged. Since the orientation is held in a double angle format, there are twopossible directions for the translation to be performed in. The decision is based on asimple thresholding mechanism. First, the reduction in MSE resulting from each ofthe two possible translations is calculated, then if the greater of these exceeds a giventhreshold, that translation is performed. The actual threshold used was equal to theMSE for the level above the current level.In order to counter the e�ects of noise, an improvement in performance can beobtained by looking at a local neighbourhood of pixels, and averaging the reductionin MSE over these pixels. This necessarily incurs an overhead in computational costhowever. A 3 X 3 neighbourhood was found to produce a signi�cant improvementwithout too great an overhead.2.3 Computational RequirementsThe major computational cost of this algorithm lies in the multiplications needed tocompute the MSE at various points. The number of multiplications necessary perimage pixel is summarized in Table 1. This data was derived on the assumption thata 3 X 3 window was being used to make the translation decision.2.4 ResultsThe restoration algorithm was run on the shapes image, with added white Gaussiannoise of several di�erent variances. A summary of the results is shown in Table 2.In order that the subjective improvement can also be gauged, the results for the6dB image are shown in Figures 3 and 4.These results compare favourably with those achieved by Clippingdale [9]. Heprovided two sets of results using the `blobs' images (an arti�cial image comparableto the `shapes' image used here). The �rst of these was for the use of an isotropic13



Process No. MultiplicationsOrientation Estimation 4Vertical Propagation 2Translation Decision 18Calculation of MSE 1Estimation of Variances/Covariance 4Total 29Table 1: The Computational Cost (Per Image Pixel) of the Restoration AlgorithmInput SNR Output SNR-12dB 9.7dB-6dB 14.8dB0dB 17.5dB6dB 19.5dB12dB 20.5dBTable 2: The Improvements Made on a Noisy 'Shapes' Image

Figure 3: Noisy Shapes Image (SNR = 6dB)14



Figure 4: Restored Version of Noisy Shapes Image (SNR = 19.5dB)�lter, and the second for the use of an anisotropic �lter. For a -12dB image, therestored versions were 9.5dB and 9.6dB respectively, for the 0dB image, they were15dB and 14.6dB, and for the 12dB image, they were 22.1dB and 19.4dB.Overall then, the results appear to be quite impressive, especially at straight edges.Performance at corners of shapes seems to be comparatively poor, with a certainamount of degradation owing to blurring. At edge regions the algorithm will sharpenup this blurring, but it seems to have di�culty in doing this at areas of high curvature(i.e.corners). We will return to this problem in Section 4.2.
15



3 Bilinear Operators for Local Symmetry Detec-tion3.1 ReviewFeature extraction methods have traditionally concentrated on simple image featuressuch as edges. It is obvious though, that any model of human vision will need toincorporate processes to analyse higher level features.One example of such a higher level feature of both natural and arti�cial im-ages is curvature. Previous work on the detection of curvature in images can bedivided into two distinct categories. Firstly, there is the use of one-dimensional op-erators. These methods take a previously determined edge map, and process this insome way (e.g. di�erentiate it twice) to give a measure of the amount of curvaturepresent (e.g. [30], [6]). A slightly di�erent approach has been taken by, for example,Freeman [12] or Anderson [1], in which steerable �lters are used to obtain informationabout possible multiple orientations in one region, indicating the presence of complexneighbourhood features such as corners. Also, a scale based method was proposedby Rattarangsi and Chin [29]. These methods are still similar to the one-dimensionalapproaches in that we must have a priori knowledge of edge information. It has beenpointed out [24], that if we are concerned with the problem of human (or mammalian)vision, then the inherent sequentiality of such methods makes them less biologicallyplausible (see Section 3.3).The second category, that of the two-dimensional operators, operate directly onthe grey level image. This approach has not been as common as the one-dimensionalmethod, but an example of it can be provided by Koenderink (e.g. [24], [25]). Heoutlines a process which combines various derivatives of the luminance image to yielda measure of curvature. Interesting though this work is however, it is di�cult toevaluate its e�ectiveness without any experimental results provided.A more promising and relevant approach is taken by Big�un [4]. His work incor-porates the idea of local symmetries referred to earlier. He proposes a techniquewhich can be used to obtain a measure of certainty as to whether a local imageneighbourhood is circularly symmetric. By circularly symmetric he means symmetricwith respect to rotation and/or scaling (i.e. an area of curvature). Again though,the method consists of a complex �lter operating on a partial derivative image, thusintroducing an element of sequentiality into the process. He does however go on todeal with central (i.e. dilation) and linear (i.e. translation) symmetries, and appliesthese to the problem of pattern recognition. The neuropsychological plausibility ofthis approach was discussed in Section 1.1.2.16



3.2 The Feature Extraction OperatorsAs was noted earlier, it is possible to describe the structure of an image in terms ofits various spatially distributed local symmetries. Bearing this in mind, it would beof use if we had a way of determining these local symmetries. A simple and elegantway of doing this would seem to be the use of a set of two-dimensional �lters to detectshape features.The technique used to detect shape features consists of applying a pair of 3 X 3�lters developed by Wilson and Bhalerao [34]. Each of these �lters determine the �rstpartial derivative of the image, and are oriented in mutually orthogonal directions.These orientations are at 45 degrees to the x and y axes, we shall call these axes theu and v axes. This is illustrated in Figure 5. These derivatives can then be combinedto determine two more �rst partial derivatives, oriented along the x and y axes, usingthe following relationships. @f@x = 1p2  @f@u + @f@v! (12)@f@y = 1p2  @f@u � @f@v! (13)By applying the �lters again we can determine second order derivatives for the uand v axes. The second order derivatives for the x and y axes are then determinedusing the following relationships.@2f@x2 = 12  @2f@u2 + @2f@v2!+ @2@uv (14)@2f@y2 = 12  @2f@u2 + @2f@v2!� @2@uv (15)Various combinations of these �rst and second order partial derivatives constituteour feature extraction operators. The purpose of these operators is to signal thebreaking of image symmetries in local neighbourhoods of the image. A typical pixelnot in an edge or textured region can be characterized by noting that its neighbour-hood can be replaced by one translated in an arbitrary direction, dilated about thepixel, or even rotated, without being changed signi�cantly. Near edges, in particular,this is no longer true. The symmetry is broken. The aim of these operators is to iden-tify in what way the symmetry has been broken. That is to say, is some subgroup ofthe symmetries still valid?Four di�erent combinations of these �lters are performed. These are summarizedbelow. In the following sections, the four orientations will be denoted by the axes x,y, u and v. The image to be �ltered will be called f(x; y). Hence the �rst derivativeof the image in the x direction can be expressed as @f@x , and so on for the other axes17



X

Y

U

VFigure 5: Four Orientations of the Partial Derivativesand the second derivatives. The orientations of the four axes are �x, �u, �y and �v,and their values can be seen from Figure 5 to be 0, �=4, �=2 and ��=4 respectively.3.2.1 TranslationThe most basic symmetry is translation, which can be represented as a two dimen-sional vector. Now if the image is not (locally) symmetric with respect to arbitrarytranslations, it may nonetheless be symmetric with respect to translations in a par-ticular direction. Recalling the discussion of Section 1.1.2, we can see that this isequivalent to saying that there is some direction � for which the gradient in thatdirection is zero. For smooth images, this amounts to selecting the axis which isperpendicular to the gradient direction. If ~g(x; y) is the gradient at (x; y), then weneed to �nd an orientation �(x; y) such that~g(x; y): cos �(x; y)sin�(x; y) ! = 0 (16)Now clearly if �(x; y) is such an orientation, then so is �(x; y) + �. The solutionto this ambiguity is the use of a double angle representation [14] (see Section 2.2.1).The double angle vector for the orientation is de�ned by~t(x; y) = @f@x:@f@y  cos 2�usin 2�u !+ @f@u:@f@v  cos 2�xsin 2�x ! (17)18



This combination of the �rst and second partial derivative �lters is quite similarto one proposed by Knutsson [22].In order to analyse the behaviour of this operator over edges at di�ering orien-tations, we de�ne our image to be an `ideal' edge of orientation ' as illustrated inFigure 6. f(x; y) = Erf(g(x; y)) (18)where g(x; y) = x cos'+ y sin' (19)The `Erf' represents an Error Function, and is the result of convolving the suppliedfunction with a circular Gaussian e�(x2+y2)2 . It can be de�ned asErf(z) = 2� Z z0 e�t2dt: (20)Now we can calculate the partial derivatives of Equation 18 (see Appendix A) andsubstitute them into Equation 17. This should gives us an equation in terms of x, yand ' which will express the response of the translation operator to the ideal edgeimage over various orientations. If this equation is evaluated and simpli�ed, it can beexpressed as ~t(x; y) = 2�e�2(x cos'+y sin')2  cos 2'sin 2' ! (21)This shows that the double angle returned should give an accurate indication ofthe orientation of the symmetry breaking feature.3.2.2 DilationThe dilation operator signals the local image neighbourhoods where other symmetriesmay have broken down, but the dilation symmetry still holds. Intuitively, we can seethat this operator should respond to edges and corners. Its response is similar tothe translation operator mentioned above (Section 3.2.1), with the exception that theangle of the vector returned is a single angle vector. For this reason, the phase shiftshould remain intact. The vector should point towards the edge, or into the corner.It can be expressed as ~d(x; y) =  dxdy ! (22)where 19
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Figure 6: 'Ideal' Edge20



dx = @f@x:@2f@x2 cos �x + @f@u:@2f@u2 cos �u + @f@y :@2f@y2 cos �y + @f@v :@2f@v2 cos �v (23)dy = @f@x:@2f@x2 sin �x + @f@u:@2f@u2 sin �u + @f@y :@2f@y2 sin �y + @f@v :@2f@v2 sin �v (24)If we now substitute the partial derivatives of the same edge image as was usedfor the dilation operator (see Appendix A) into Equation 22, the response over ' ofthe dilation operator can be found to be~d(x; y) = 34� (x cos'+ y sin')e�2(x cos'+y sin')2  cos'sin' ! (25)Again this shows that the single angle returned should be an accurate indicationof the orientation of the image feature.3.2.3 CornerThis operator should respond to corners, or areas of high curvature. The vectorreturned should point into the corner, bisecting the angle. It should give a lowerresponse to ordinary edge regions. It can be de�ned as~c(x; y) =  cxcy ! (26)wherecx = @2f@x2 :@f@y cos �y + @f@x:@2f@y2 cos �x + @2f@u2 :@f@v cos �v + @f@u:@2f@v2 cos �u (27)cy = @2f@x2 :@f@y sin �y + @f@x:@2f@y2 sin �x + @2f@u2 :@f@v sin �v + @f@u:@2f@v2 sin �u (28)As this operator responds primarily to corners rather than edges, in order toanalyse its behaviour we need to de�ne a di�erent `ideal' image. Instead of the edgeused previously, we now use an `ideal' corner, oriented as before at an angle '.f(x; y) = (1 + Erf(g(x; y)))(1 + Erf(m(x; y))) (29)where g(x; y) = x cos'+ y sin' (30)m(x; y) = �x sin'+ y cos' (31)21



-4

-2

0

2

4

-4

-2

0

2

4

0

1

2

3

4

-4

-2

0

2

4

-4

-2

0

2

4

0

1

2

3

4

Figure 7: 'Ideal' Corner22



This is illustrated in Figure 7.Now we can calculate the partial derivatives of Equation 29 (see Appendix A) andsubstitute them into Equation 26 to �nd an expression in terms of x, y and ', de�ningthe spatial variation of the response for corners of various orientations. Irrespectiveof the orientation of the corner however, the highest response of the operator shouldbe at the origin of our test image, since this is where our `ideal' corner is de�nedto be located. For this reason, we therefore substitute zero for both x and y intoEquations 58-61 and 69-72, yielding the following expression for the resulting vector~c(x; y) = 8p2�p�  cos'sin' ! (32)As can be seen, the corner detector should yield an accurate vector for all orien-tations. This is illustrated in Figures 8 and 9.3.2.4 Inside/Outside of CornerThe �nal feature detector returns a scalar value s, and gives a high response to theinsides of corners (i.e. the acute/obtuse angle), and a low response to the outsides ofcorners (i.e. the reex angle).s = @2f@x2 :@2f@y2 + @2f@u2 :@2f@v2 (33)3.3 Neuropsychological ParallelsAs was mentioned in Section 3.1, Koenderink and Richards [24] have argued that two-dimensional curvature operators can be said to be more biologically plausible than areone-dimensional operators. This is because of the large amount of parallelism that ispresent in biological visual systems. One-dimensional operators consist of two distinctsequential processes (the calculation of an edge map, followed by di�erentiation of thatmap), whereas two-dimensional operators which operate directly on the luminanceimage have a greater degree of inherent parallelism. This would seem to make thema more plausible model for the detection of curvature in mammalian visual systems.3.4 Computational RequirementsThe basic computational cost of the two initial partial derivative �lters (the u and vaxes) will obviously be 9 multiplications for each �lter. The second derivatives of eachrequire the appropriate �lter to be applied again, and so each cost another 9 multi-plications. In addition to this, we also need to calculate @2f@uv , which will take another9 multiplications. This gives a total of 45 multiplications for the derivatives in the uand v axes. Combining the values of these to determine the �rst derivatives in the x23
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Process No. MultiplicationsTranslation 2Dilation 16Corner 16Inside/Outside of Corner 2Table 3: The Computational Cost (Per Image Pixel) of the Feature Detection Filtersand y directions according to Equations 12 and 13, costs another 2 multiplications.Similarly the second partial derivatives in x and y according to Equations 14 and 15,will cost another 2 multiplications. Thus we have a �nal total of 49 multiplicationsfor the calculation of all of the partial derivatives.The additional requirements of the combinations of the results of these derivative�lters are shown in Table 3, and represent a relatively small overhead compared withthe basic �ltering operation.3.5 ResultsA greyscale representation of the result of applying the orientation, dilation, andcorner detection �lters on a clean version of the shapes image (see Figure 10) areshown in Figures 11, 12, and 13.An analysis of the behaviour of the corner detection operator is shown in Figure 15.This illustrates that the angle of the vector returned by the operator gives a reasonablyaccurate indication of the orientation of the corner in the image. The results wereobtained by applying the operator to a succession of 90 degree corners at varyingorientations.The result of applying the inside/outside of corners �lter is illustrated in Figure 14.
26



Figure 10: Clean Shapes Image

Figure 11: Results of the Translation Operator on the Shapes Image27



Figure 12: Results of the Dilation Operator on the Shapes Image

Figure 13: Results of the Corner Operator on the Shapes Image28



Figure 14: Results of Inside/Outside Operator on the Shapes Image
29
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4 Conclusions And Future Work4.1 SummaryThis report has described two separate lines of work. Firstly, there was the imagerestoration algorithm. This has produced encouraging results on arti�cial images,although its performance on natural images is not as impressive. Secondly, there wasthe feature extraction �lters. Work is still proceeding in this area, and results so farare again encouraging. These two seemingly distinct areas of work are united by thecommon theme of the role of local symmetries in visual processing. A review has beengiven of the �elds of fractal coding [20] and Lie algebra ([16], [11]), both of whichdeal with this theme. This is not a new concept then, although it would appear thatfor such a promising �eld it has been comparatively neglected. It would seem almostcertain that the role of transformations in a model of mammalian vision is pivotal.In particular, the three basic pairs of transformations suggested by the LTG modelof visual processing would seem to be especially signi�cant.4.2 Further Work on Image RestorationOne possible way of making an improvement to the results of the restoration algo-rithm could be to utilise some information from the results of the feature extractionprocess. Currently, after the multiresolution smoothing, the edge regions are sharp-ened by contracting the image towards the notional edge. This is e�ectively applyinga transformation which is a symmetry when applied at the clean edge. However, atcorner regions, a di�erent symmetry will be required to sharpen the image, and itis possible that the information derived from the feature extraction �lters could beused to decide which transformation to use, and hopefully make an improvement inresults.4.3 Further Work on Feature ExtractionAs was stated above, work on the feature extraction algorithm is still ongoing. Inparticular, the �lters' responses at di�ering scales have not been examined in any greatdepth as yet. Also, it may be possible to improve the accuracy of the informationreturned by the �lters by combining the information from several di�erent �lters.4.4 Uni�cation - Towards a Model of Object RecognitionThe scope of the local image symmetry concept is not limited to just restoration andfeature extraction. Other areas of image processing could bene�t from consideringthe implications and possibilities of the role of symmetries in vision. The futuredirection of this work will bear this in mind. It is envisaged, that the current work31



will progress with the aim of an eventual uni�cation of the two areas so far examined,whilst opening up new avenues to explore. The ultimate aim will be to work towardsa model of object recognition, based on the analysis of the local image symmetriesof the object. It is likely that this model will incorporate some kind of connectionistapproach to the problem. One possibility here would be the introduction of a Hop�eldNet to recognize information concerning local image symmetries derived from thefeature extraction process.
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A Calculation of the Partial DerivativesThis appendix shows the calculation of the �rst and second order partial derivativesof two `ideal' images, an ideal edge and an ideal corner. Each of these is dealt withseperately below. These derivatives are used in the analysis of the behaviour of threeof the feature extraction operators described in Section 3.2.A.1 Edge ImageThe ideal edge image is illustrated in Figure 6. It is oriented at an angle ' and it isde�ned by f(x; y) = Erf(g(x; y)) (34)where g(x; y) = x cos'+ y sin' (35)The de�ning equation of this edge image can now be di�erentiated to yield the�rst and second order partial derivatives with respect to x and y.@f@x = 2p� cos':e�g(x;y)2 (36)@2f@x2 = �4p� cos2 ':g(x; y):e�g(x;y)2 (37)@f@y = 2p� sin':e�g(x;y)2 (38)@2f@y2 = �4p� sin2 ':g(x; y):e�g(x;y)2 (39)To �nd the partial derivatives with respect to u and v, we need to rotate the axesby �=4 radians. This is done using the following relationships xy ! = 1p2  1 11 �1 ! uv ! (40)therefore x = u+ vp2 (41)y = u� vp2 (42)33



u = x+ yp2 (43)v = x� yp2 (44)Now from Equations 41 and 42, we can express the edge image (Equation 18) interms of u and v as follows. f(u; v) = Erf(h(u; v)) (45)where h(u; v) = 1p2(u(cos'+ sin') + v(cos'� sin')) (46)The partial derivatives with respect to u and v are then equal to@f@u = (s2� )(cos'+ sin'):e�h(u;v)2 (47)@2f@u2 = �(s2� )(cos'+ sin')2:(u(cos'+ sin') + v(cos'� sin'))e�h(u;v)2(48)@f@v = (s2� )(cos'� sin'):e�h(u;v)2 (49)@2f@v2 = �(s2� )(cos'� sin')2:(u(cos'+ sin') + v(cos'� sin'))e�h(u;v)2(50)Using the relationships between x and y, and u and v (Equations 43 and 44), wecan now express these derivatives in terms of just x and y.@f@u = (s2� )(cos'+ sin'):e�g(x;y)2 (51)@2f@u2 = �( 2p� )(cos'+ sin')2:(x cos'+ y sin')e�g(x;y)2 (52)@f@v = (s2� )(cos'� sin'):e�g(x;y)2 (53)@2f@v2 = �( 2p� )(cos'� sin')2:(x cos'+ y sin')e�g(x;y)2 (54)A.2 Corner ImageThe ideal corner image is illustrated in Figure 7. It is oriented at an angle ' and itis de�ned by 34



f(x; y) = (1 + Erf(g(x; y)))(1 + Erf(m(x; y))) (55)where g(x; y) = x cos'+ y sin' (56)m(x; y) = �x sin'+ y cos' (57)This equation can be di�erentiated to yield the �rst and second order partialderivatives with respect to x and y.@f@x = ( 2p� )( cos'(1 + Erf(m(x; y))):e�g(x;y)2 �sin'(1 + Erf(g(x; y))):e�m(x;y)2) (58)@2f@x2 = �( 4p� )( 2p� cos' sin':e�g(x;y)2�m(x;y)2 +m(x; y) sin2 '(1 + Erf(g(x; y))):e�m(x;y)2 +g(x; y) cos2 '(1 + Erf(m(x; y))):e�g(x;y)2) (59)@f@y = ( 2p� )( cos'(1 + Erf(g(x; y))):e�m(x;y)2 +sin'(1 + Erf(m(x; y))):e�g(x;y)2) (60)@2f@y2 = �( 4p� )( � 2p� cos' sin':e�g(x;y)2�m(x;y)2 +g(x; y) sin2 '(1 + Erf(m(x; y))):e�g(x;y)2 +m(x; y) cos2 '(1 + Erf(g(x; y))):e�m(x;y)2) (61)As before we can now determine the partial derivatives with respect to u and v bysubstituting the values for x and y according to Equations 41 and 42 into Equation 29.f(u; v) = (1 + Erf(h(u; v)))(1 + Erf(n(u; v))) (62)where h(u; v) = 1p2(u(cos'+ sin') + v(cos'� sin')) (63)n(u; v) = 1p2(u(cos'� sin')� v(cos'+ sin')) (64)The partial derivatives with respect to u and v can then be expressed as35



@f@u = (q 2� )( (cos'� sin')(1 + Erf(h(u; v))):e�n(u;v)2 +(cos'+ sin')(1 + Erf(n(u; v))):e�h(u;v)2) (65)@2f@u2 = �( 2p� )( � 2p� (cos'� sin')(cos'+ sin'):e�h(u;v)2�n(u;v)2 +(cos'+ sin')2h(u; v)(1 + Erf(n(u; v))):e�h(u;v)2 +(cos'� sin')2n(u; v)(1 + Erf(h(u; v))):e�n(u;v)2) (66)@f@v = (q 2� )( (� cos'� sin')(1 + Erf(h(u; v))):e�n(u;v)2 +(cos'� sin')(1 + Erf(n(u; v))):e�h(u;v)2) (67)@2f@v2 = �( 2p� )( � 2p� (� cos'� sin')(cos'� sin'):e�h(u;v)2�n(u;v)2 +(cos'� sin')2h(u; v)(1 + Erf(n(u; v))):e�h(u;v)2 +(� cos'� sin')2n(u; v)(1 + Erf(h(u; v))):e�n(u;v)2) (68)Again, using the relationship between x and y, and u and v (Equations 43 and 44),we can now express these derivatives in terms of just x and y.@f@u = (q 2� )( (cos'� sin')(1 + Erf(g(x; y))):e�m(x;y)2 +(cos'+ sin')(1 + Erf(m(x; y))):e�g(x;y)2) (69)@2f@u2 = �( 2p� )( � 2p� (cos'� sin')(cos'+ sin'):e�g(x;y)2�m(x;y)2 +1p2((cos'+ sin')2g(x; y)(1 + Erf(m(x; y))):e�g(x;y)2 +1p2((cos'� sin')2m(x; y)(1 + Erf(g(x; y))):e�m(x;y)2) (70)@f@v = (q 2� )( (cos'� sin')(1 + Erf(m(x; y))):e�g(x;y)2 �(cos'+ sin')(1 + Erf(g(x; y))):e�m(x;y)2) (71)@2f@v2 = �( 2p� )( � 2p� (� cos'� sin')(cos'� sin'):e�g(x;y)2�m(x;y)2 +1p2(cos'� sin')2g(x; y)(1 + Erf(m(x; y))):e�g(x;y)2 +1p2(� cos'� sin')2m(x; y)(1 + Erf(g(x; y))):e�m(x;y)2) (72)36
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