THE UNIVERSITY OF

WARWICK

Original citation:

Paterson, Michael S. (1993) Computer science seminars 1992/93. University of
Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-249

Permanent WRAP url:
http://wrap.warwick.ac.uk/60931

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/



http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60931
mailto:publications@warwick.ac.uk

Computer Science Seminars
1992/93

compiled by
M.S. Paterson

Department of Computer Science
University of Warwick

Introduction

This report contains the abstracts of the programme of weekly seminars in the De-
partment of Computer Science for the 1992/93 academic year. There were 28 sem-
inars in all: 17 by external speakers and 11 from within the Department. With few
exceptions, the seminars were held in the Department’s Seminar Room on Tuesday
afternoons at 4pm after an informal gathering for refreshments.

Programme and Abstracts of Talks

13 October, 1992
A Parallel Graph Reduction Machine

Mike Joy

Department of Computer Science

A description of the parallel graph reduction machine, and the associated func-
tional language (Ginger), in use at Warwick is presented. The machine is a simu-
lated shared-memory processor, and Ginger includes parallel constructs which are
applicable both to shared-memory and distributed-memory computational models.
Results obtained with the current system are described, together with the work cur-
rently under way to implement the machine on the Department’s Parsytec parallel
processor.



20 October
Victorian Data Processing:
the Census, the Clearing House, and the Prudential

Martin Campbell-Kelly

Department of Computer Science

Large-scale data processing started in England long before the commercial avail-
ability of office machines in the 1890s. This seminar describes the emergence of
centralized data processing at three typical bureaucracies in the middle of the nine-
teenth century - the Census (¢.1840), the Railway Clearing House (c.1850), and
the Prudential Assurance Company (c.1860). All of these organizations employed
several hundred clerks for data-processing tasks that would today be be performed
by computers. The organizational and information-processing innovations are de-
scribed, and related to twentieth century developments. The role of data processing
in the wider Victorian economy is also discussed.

27 October
Self-Timed Circuits

Neil Wiseman

Computer Laboratory
University of Cambridge

There has long been the hope that asynchronous logic would allow an existing cir-
cuit technology to achieve the fastest operating speeds. Over some 35 years various
attempts to establish a methodology for asynchronous logic have found few prac-
titioners and the practical results have been disappointing. But at last something
useful seems to be happening and the talk will present some of the recent ideas, as
well as some older ones, that together may lead to large and fast systems becoming
easier to design and assemble.

3 November
Software Development using Definitive Scripts:
Experiments and Observations

Meurig Beynon and Simon Yung

Department of Computer Science
A definitive script is a set of definitions that describes the dependencies between
the values of procedural variables. In typical use, a script represents relationships

between observations of a physical object whose state can be transformed by exper-
iment.

This talk will describe how the study of definitive scripts has led us to look at
software development in a new light. The main themes of the talk, to be illustrated
by examples of software developed using our approach, are:



foundations for programming in observation and experiment
programming as modelling

what is a program?

design vs simulation

from agents and privileges to protocols

synchronous propagation of state-change

new abstractions for state.

The software experiments on which our observations are based include experiments
in:

design and modelling of objects

concurrent systems simulation

reactive systems specification

translating definitive models into procedural programs
abstract development of functional programs

The aim of the talk is to assess the prospects for future development of our concepts
and techniques as a new basis for software construction.

10 November
Autostereo Display

Neil Dodgson

Computer Laboratory
University of Cambridge

A new autostereoscopic 3D display has been developed as a joint project of the Com-
puter Laboratory and the Engineering Department at the University of Cambridge.
The device produces a three-dimensional effect without the need for special glasses
or other aids, and allows the viewer(s) to look around objects simply by moving
their head(s). This seminar will discuss the principle of this 3D display, how it is
actually implemented, and the uses to which it is being put, including 3D interactive
computer graphics.

12 November (Thursday)
Parallelism in 3D Graphics

Mikki Larcombe

Department of Computer Science

In the overall pattern of 3D graphics there are 3 phases; firstly we have excerption,
deciding which parts of the world model will in fact be visible; secondly consecution,
deciding in which order to render or paint the items extracted by excerption to give
the correct appearance of depth; and finally the rendering itself where the surface
primitives of the world model are translated into coloured and shaded pixels. The
use of recursive convex space division structures provides a powerful tool for both



excerption and consecution but it is not immediately apparent how this approach
can be efficiently executed on a parallel machine. Rendering on the other hand
has been considered an obvious candidate for parallel approaches but realities of
hardware and of database access contention have bedevilled simplistic approaches
(such as ray-tracing on a processor per pixel model). The seminar will describe an
approach for “painters algorithm” visualisation which powerfully exploits parallelism
by subdividing the view volume, not just in terms of subdividing the image plane
but also in depth, allowing a proportional speedup, particularly in consecution. The
depth division process avoids many of the problems of database access contention by
providing the parallel processes with their appropriate parts of the database, rather
than processes seeking their relevant data.

17 November
Efficient Program Transformations for
Responsive Parallel Computing

Krishna V. Palem

IBM T. J. Watson Research Center
Yorktown Heights

High-level parallel programming languages are designed to present a simple vir-
tual machine model to the programmer. This allows the programmer to focus on
the essentials of the correctness and efficiency of programs, and thereby improves
productivity. However, engineering constraints do not always allow these idealized
abstractions to be directly implemented in practice. A natural approach to bridging
this gap is via mechanisms for automatically transforming the parallel algorithms
or programs designed in the (idealized) high-level language to execute correctly on
machines that can be actually realized in practice.

In this talk, we will describe program transformations which provide a basis for
the compilation of (ideal) synchronous programs to run efficiently on asynchronous
parallel machines with shared memory. The PRAM model for algorithm design,
and the virtual machine of the UC programming language, are instances of the ideal
programming model considered here. In addition to being correct and efficient,
the transformed programs have the important property that they are responsive.
Essentially, responsive computations always make progress on the asynchronous
target machine without waiting for slow or failed processors to complete their work.
Therefore, responsive executions are fault-tolerant in the following strong sense:
the computation will terminate correctly even if processors fail arbitrarily often
during the computation, so long as at least one processor is executing correctly
at any time. No implicit assumptions about the relative speeds of processors, or
about synchronization primitives built into the target machines, are required for our
methods to work. By using randomization, we can guarantee that the executions
on the asynchronous targets are guaranteed to require only O(logn) extra space and



O(log®n) additional expected work, compared to the given n-way parallel source
programs.

(This is joint work with Z. Kedem, M. Rabin and A. Raghunathan.)

24 November
Highly Efficient Asynchronous Execution
of Large-grained Parallel Programs

Michael O. Rabin

Harvard University, Hebrew University
Visiting Fellow, Merton College and Ozford University

An n-thread parallel program P is large-grained if the program variables are “large
objects” of size > log® n, and/or its individual thread instructions in each parallel
step are complex functions, requiring more than log® n machine operations. It is a
theoretically challenging and practically important problem to ensure correct execu-
tion of P on an n-processor asynchronous parallel system. Let P be a large-grained
program requiring total work W for its execution on a synchronous n-processor par-
allel system. In this talk, we present a transformation (compilation) of P into a
program T'(P) which correctly simulates P on an asynchronous n processor system,
requiring just O(Wlog™n) total work. In the case that the program variables are
large objects, the multiplicative memory (space) overhead is < 2. The solution in-
volves a number of novel concepts and methods. These include the concept of a
uniform schedule for an n-processor asynchronous machine, and the concept of a
processor’s responsibility set of computation threads. The latter concept, and its
mode of application, opens the way for organizing the program data in memory
so as to allow for computational locality considerations. The execution of T'(P)
is continually progressive, which ensures strong fault-tolerance. The implications
of the present work for data-processing programs are obvious. Our algorithm are
randomized, producing both Monte Carlo and Las Vegas style results.

(This is joint work with Y. Aumann, Z. Kedem and K. Palem.)

1 December
Phase-space representations in signal analysis

Roland Wilson

Department of Computer Science

A phase-space signal representation is one in which one or more analysis co-ordinates
are conjoined to the original co-ordinate system of the signal. For example, an audio
signal, which is a function of time, may be represented using a Short-Time Fourier
Transform (STFT), in which a frequency co-ordinate is conjoined to the original time
co-ordinate, so that the signal is described as a function of the time and frequency



co-ordinates. In recent years, several new types of phase-space representation, such
as scale-space and wavelet transforms, have found use in signal analysis. Each of
these representations can be computed by linear transformation of the signal; each
approach has its advocates. So what are the significant differences between them and
what do they have in common ? Why should we want to use such representations
in the first place? Is there anything better? The aim of the talk is to shed some
light on these issues, with illustrations taken from the work done by the image and
signal processing group.

3 December
Large General Purpose Parallel Computing

Bill McColl

Programming Research Group, Ozford University

A major challenge for computer science in the 1990s is to determine the extent to
which general purpose parallel computing can be achieved. The goal is to deliver
both scalable parallel performance and architecture independent parallel software.
(Work in the 1980s having shown that either of these alone can be achieved.) Success
in this endeavour would permit the long overdue separation of software considera-
tions in parallel computing, from those of hardware. This separation would, in turn,
encourage the growth of a large and diverse parallel software industry, and provide
a focus for future hardware developments.

In recent years a number of new routing and memory management techniques have
been developed which permit the efficient implementation of a single shared address
space on distributed memory architectures. We also now have a large set of efficient,
practical shared memory parallel algorithms for important problems. In this talk I
will introduce and discuss some of the current issues involved in the development of
parallel computing systems which support fine grain concurrency in a single shared
address space. The talk will cover algorithmic, architectural, technological, and
programming issues.

8 January, 1993
The Extended Duration Calculus

Zhou Chaochen

International Institute of Software Technology
Macau

The talk will be about the extension of the Duration Calculus to deal with continuous
systems, the so-called ‘hybrid’ systems that are of great interest now.



12 January
Specification and Verification of Fault Tolerant Designs

Jens Nordahl

Department of Computer Science
Technical University of Denmark

This talk presents an approach to specification and verification of fault tolerant de-
signs based on CSP (*) and using CSP’s trace logic specifications and its proof rules,
rather than its processes and algebraic laws. The approach allows a designer of a
fault tolerant system to specify assumptions on failure prone components, including
global failure assumptions, i.e. assumptions on how many, and which components
that are allowed to fail simultaneously. Based on these assumptions it offers a strat-
egy for verifying that the design tolerates the specified faults.

Local assumptions on proper and failing behaviour are for each component given
by the designer as two or more separate specifications (one specification for each
considered behaviour type). Global fault assumptions can be specified either as
constraints on parameters of local specifications, or as constraints on the occurrence
of certain events. In either case, verification of system properties is carried out using
the compositional proof rules of CSP.

21 January
Avoidance of Work-related Upper Limb Disorders

Peter Rayner
Univ. of Warwick Safety Officer

A brief explanation and description of the symptoms leading to and the methods of
avoiding such injuries.

26 January
A brief history of Boolean function complexity

Mike Paterson

Department of Computer Science

I will explain some of the motivation for studying the complexity of Boolean func-
tions and survey some old and new results in this area.



2 February
The asymptotic complexity of merging networks

Jun Tarui

Department of Computer Science

Let M(m,n) be the minimum number of comparators in a comparator network that
merges two ordered chains of lengths m and n where n > m. Batcher’s odd-even
merge vields the following upper bound.

M(m,n) < 1/2.(m+ n)log(m+ 1)+ O(n), e.g., M(n,n) < nlogn + O(n).

We prove a new lower bound that matches the upper bound asymptotically:

M(m,n) > 1/2.(m+ n)log(m+ 1) — O(m), e.g., M(n,n) > nlogn — O(n).

Our proof technique extends to give similarly tight lower bounds for the size of mono-
tone Boolean circuits for merging, and for the size of switching networks capable of
realizing the set of permutations that arise from merging.

(This is joint work with Peter Bro Miltersen and Mike Paterson.)

9 February
Constraining Interference in a Design Method
for Object-Based Concurrency

Cliff Jones

Department of Computer Science
University of Manchester

A development method (whether formal or otherwise) which is ‘compositional’ can
increase productivity; ‘interference’ is what makes it difficult to find compositional
development methods for concurrent systems. Earlier research on documenting rely
and guarantee conditions did something to tame interference but the approach still
required too much work to expect it to be used even as widely as methods like
VDM. My recent research has used concepts from object-oriented languages to help
constrain and structure the reasoning about concurrent programs. This seminar
will concentrate on the idea of constraining the interference in a transformational
development style and the delicate question of how to justify the transformation
rules themselves.



16 February
Taming Infinite State Spaces

Colin Stirling

Department of Computer Science
University of Edinburgh

Process calculi such as CCS provide an elegant framework for modelling interactive
systems. Complex systems can be described within such a calculus as an expression
whose behavioural meaning is precisely determined by the rules for transitions,
and two expressions may be deemed, for all practical purposes, to have the same
behaviour when they are bisimulation equivalent.

In this talk I will examine some of the ramifications of bisimulation equivalence on
process expressions which describe infinite state systems. In particular I will address
the question: for which classes of systems is bisimulation equivalence decidable and
why? Positive answers will be given for context free processes and a family of
recursive parallel processes. These results depend on decomposition and cancellation
properties. The intended ultimate goal of this research is find a process calculus with
Turing power (the ability to generate all recursively enumerable languages) but for
which bisimulation equivalence is decidable.

23 February
Intervals and Actions in a Timed Process Algebra

David Murphy

Department of Computer Science
University of Birmingham

This paper presents a timed process algebra, interval process algebra or IPA, with
two novel features; nonatomic actions, and eager or urgent actions. Nonatomic-
ity is achieved by associating actions with intervals of time. Timing allows us to
distinguish between eager and lazy actions; eager actions are ones that happen at
once, whereas lazy actions must wait until they are triggered. Having both sorts of
action allows us to model systems with broadcast concurrency, and allows liveness
properties to be accurately specified.

A novel timed operational semantics is presented for the calculus, and branching
bisimulation is defined over it. We then show that recursive process specifications
have unique solutions. Moreover our notion of equivalence is shown to be composi-
tional and a congruence of action refinement.

We discuss an operation of closure that corresponds to putting a process in an empty
environment. This allows us to associate a finite timed process graph with a finite
process, and to give a form of expansion theorem for the calculus. The use of ill-
timed but well-caused traces is crucial here; we discuss timing and causality in the



calculus, and show that, under mild restrictions, all timed process graphs are the
meanings of some process.

2 March
New Directions in Parallel Computing

Tan Watson

Department of Computer Science
University of Manchester

Truly general purpose parallel computing is still not a reality. Although there
have been many different parallel computer structures and parallel programming
approaches advocated over the last twenty or so years, the styles of problem which
can be tackled sensibly in parallel are strictly limited.

This seminar attempts to identify the reasons for this and examines those direc-
tions which appear to offer hope for the future. The issues are both to do with
machine architecture and programming languages although it is believed that the
latter area, although of greater importance, has received less serious attention than
the construction of high performance hardware.

New directions in programming language development being pursued at Manchester
will also be outlined.

9 March
Using Formal Methods for Real Software

Anthony Hall

Prazis Systems plc

Software Engineering is the application of scientific principles to the economical
development of software. It is, as yet, a poorly understood discipline and most
software development is in fact still at the craft stage. One of the proposed remedies
for this state of affairs is the use of Formal Methods, which use mathematics to
express the properties of the software under development. These methods are highly
controversial, and many people doubt the practicality of their application to ‘real’
projects.

Praxis is a software engineering company which does use formal methods, among
others, for its development projects. On the basis of this experience we can un-
derstand what the real, as opposed to the theoretical, strengths and weaknesses of
formal methods actually are. We are finding answers to questions like: Do formal
methods work? If so, why? If not, why not, and what can we do about it? When
and why are they better than more conventional methods? What sort of projects
benefit from formal methods? What are the advantages and disadvantages of the
different formal methods which have been proposed?

10



This talk will give an account of how formal methods are used in practice, and
try to explain why they work and what their place is among the various software
engineering techniques. It will explain in what sense formal methods are more
scientific than others, and what this implies for the practising software developer.

16 March
Generalising the Cyclesum Test

Steve Matthews

Department of Computer Science

In 1981 Wadge introduced the “Cyclesum Test” for proving that certain Kahn
Dataflow networks would not deadlock. Both the formulation of the Test and its
proof were expressed in terms of Kahn’s denotational semantic domain of finite and
infinite sequences partially ordered by initial segments. In particular the work re-
lied pivotally upon the notion of the “length” of a sequence. Unfortunately for the
Cyclesum Test, in order to incorporate lazy evaluation, Lucid and its descendants
use much larger domains than Kahn’s. In such countable product domains finite
sequences no longer exist, and so the Test cannot be formulated using the notion of
length. A generalisation of length for more sophisticated domains is clearly needed
to extend the Test to members of the Lucid family.

Following Wadge’s suggestion that it might be possible to measure the “agreement”
between objects in a domain this talk proposes “size” as the required generalisation
of “length”. The Cyclesum Test is reformulated using size and a proof given. Finally
it is demonstrated how this process of generalisation has shed new light on aspects
of both computability and the denotational semantics of functional languages.

27 April
A Practical Minimum Distance Method
for Syntax Error Handling

Julia Dain

Department of Computer Science

It is one thing to show a man that he is in an error, and
another to put him in possession of truth.
Locke: Essay on the Human Understanding

Syntax error at or near line 1 - bailing out.
Aho, Kernighan and Weinberger: awk

Sorry, too many errors.
Stroustrup: cfront

11



This talk presents a method for recovering from syntax errors encountered during
parsing. The method provides a form of minimum distance repair, has linear time
complexity, and is completely automatic. It is incorporated into the LR parser-
generator yacc in such a way that a compiler writer can generate a parser with error
recovery without providing any additional information to yacc. Error messages
phrased in terms of source input are generated automatically.

A formal method is presented for evaluating the performance of error recovery meth-
ods, based on global minimum-distance error correction. The minimum distance
method achieves a theoretically best performance on 80% of Pascal programs in the
Ripley-Druseikis collection. Comparisons of performance with other syntax error
recovery methods are given.

4 May
An Introduction to Descriptive Complexity Theory

Tain Stewart

Department of Computer Science
University College of Swansea

This talk is an introduction to some relatively recent novel applications of logic in
complexity theory known as descriptive complexity theory (or finite model theory).
Though this approach to complexity theory originated in a 1974 paper of Ron Fa-
gin, it lay dormant until the early 80’s, when it was taken up by Neil Immerman,
amongst others. Its most notable achievement so far is probably that it was by using
descriptive complexity theory that Immerman solved the longstanding open problem
of whether the class of context sensitive languages is closed under complementation.

I shall outline the basic framework of the subject and provide a selection from
the new results obtained so far. The talk should be especially accessible to non-
specialists.

11 May
A State-Dependency Approach to System Design

Barry Dwyer

Department of Computer Science
University of Adelaide

The seminar considers a formal method of decomposing a system into a network
of component systems connected by data flows. The decomposition often exposes
opportunities for sequential or parallel access to data structures. The specifications
of the system components can be derived from the system specification by a simple
rewriting rule.

12



Most of the information needed to design a system can be visualised by means
of an Attribute Dependency Graph, which is based on dependencies between state
variables. The Attribute Dependency Graph for a system provides the designer with
useful feedback, often leading to respecification of the problem.

18 May
Analysing coherence of intention in natural language dialogue

Paul McKevitt

Department of Computer Science

University of Sheffield

Oune of the problems in natural language processing is to build theories, models and
implementations of how individual utterances cling together into a coherent and
rational discourse. Current theories and models of natural language dialogue pro-
cessing argue for a measure of coherence based on three themes: meaning, structure
and intention.

We describe a theory of intention analysis for solving, in part, the problem of di-
alogue processing. A central principle of the theory is that coherence of natural
language dialogue can be modelled by analysing sequences of people’s intentions.
The theory is incorporated within a computational model, called Operating System
CONsultant (OSCON), implemented in Quintus Prolog, which answers, in English,
English questions about computer operating systems. The theory can be used to
model the level of expertise of a user. The results have implications for both the
theory and engineering of natural language interfaces.

Mec Kevitt, P. (Editorial) (1992) Natural language processing. In Artificial Intelligence
Review, Vol. 6, No. 4, 327-832, Dec, Dordrecht, The Netherlands: Kluwer-Academic
Publishers.

Mc Kevitt, P. and J. Rowe (1992) An emergent computation approach to natural language
processing. In Artificial Intelligence and Cognitive Science *91, Springer-Verlag British
Computer Society Workshop Series, Sorensen, Humphrey (Ed.), 199-218. Berlin, Hei-
delberg: Springer-Verlag.

Mc Kevitt, P., Derek Partridge and Yorick Wilks (1992) Approaches to natural language
discourse processing. In Artificial Intelligence Review, Vol. 6, No. 4, 333-864, Dec,
Dordrecht, The Netherlands: Kluwer-Academic Publishers.

Mec Kevitt, Paul, Derek Partridge and Yorick Wilks (1992) A survey of approaches to
natural language discourse processing. Technical Report 235, Department of Computer
Science, University of Exeter, GB- EX4 4PT, Exeter, England, UK, EC.

13



25 May
Parallel Computers: OK for Academics - but will they fly?

Graham Nudd

Department of Computer Science

We have seen, over recent years, a substantial increase in the sophistication of real-
time processing. This in part has been driven by the capabilities of the underlying
technologies. However, some of the more demanding applications (including, for
example, space-borne processing) have substantial system constraints. The advent
of 'concurrent computing’ offers the potential of performing some of the computa-
tionally intense operations with “paralle]” hardware. How feasible is this and what
demands does it place on the technology?

8 June
A Programmable Structured Editor

Mike Cowlishaw

IBM UK Scientific Centre
Winchester

Many sophisticated and specialised editing programs have been developed over the
yvears. These editors help people manipulate data, but the diversity complicates
rather than simplifies computer use. This talk describes an editing program that
can work with the syntax and structure of the data it is presenting, yet is not
restricted to just one kind of data. It is used for editing programs, documents,
electronic mail, and other material, and hence provides a consistent environment
for the user regardless of the editing task.

The ‘live parsing’ technique used by the editor means that it can be programmed
to handle a very wide variety of structured data. The structure information is, in
turn, used to improve the presentation of data (using colour, fonts, and formatting)
which makes it easier for people to deal with the text being edited. The first imple-
mentation of the editor, the VM/CMS Live Parsing Editor (known as LEXX), has
been a product in the UK and Europe for several years; its successor, LPEX, is a

product for OS/2 and AIX.

The editor was originally written for the New Oxford English Dictionary project,
and this will be described briefly as an introduction to the talk.

14



15 June
Issues and New Ideas in Computational Stereopsis

Andrew Calway

Department of Computer Science

Since its ‘discovery’ by Wheatstone in ¢.1838, stereopsis - the process of perceiving
a 3D world from disparate binocular views - has been of continual fascination and
interest, both to those wishing to understand the workings of the human visual
system and to those keen to exploit it (the stereoscope, the 3D movie). Not sur-
prisingly, it has also been the focus of extensive research within the computer vision
community: given two cameras and a suitable computational model, is it possible
to build up a description of the world, providing information about attributes such
as depth, surface orientation and textural structure?

The purpose of this talk is twofold: to give a brief overview of the basic principles
of stereopsis and summarise the progress that has been made towards a ‘binocular
vision machine’; and to present the ideas and results of some new research being
conducted by the speaker which aims to address some of the fundamental problems.
The talk will be wide ranging and primarily aimed at the non-specialist/curious,
touching on the physiological, psychological and computational aspects of the sub-
ject.

15



