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1 AbstractThis report is separated into two parts. In the �rst part a review of object repre-sentations is image analysis is presented. In the second part a new representation isproposed. The system presented here is one that can be used to project informationdescribing the corners of an object from some storage area, down onto a network.The idea is to reinforce the detection of object boundaries performed by a Hop�eldnetwork. These networks are e�cient in terms of detecting edges, but are less e�cientat detecting corners. This is because the Hop�eld network works by assuming that anedge will continue in a more or less straight line. A ripple �lter is used; this projectsripples of vectors onto the areas where corners are expected. Each vector consists of:a magnitude that indicates a level of certainty about the position of the corner, anda direction which indicates the expected orientation of the corner. The vectors areused by the Hop�eld network to override existing straight links with curved links, sohelping it to detect corners. We describe a method for projecting sectors of the rip-ples using circular harmonics. Possible extensions and improvements to the work areconsidered. In ?? a possible network architecture for a what-where vision system thatcan handle multiple, duplicate Whats is presented. A suitable object representationfor this network is suggested.
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2 Introduction2.1 Object RepresentationAll vision systems that perform object recognition have in common the need to makecomparisons between what has been detected and some stored representation of ob-jects. Many schemes for object representation have been used. Hummel and Beider-man [6] for example, used a system of geons (simple 3-dimensional geometric shapes);each object representation consists of a set of geons and their positional relations toeach other. Still others have been based on the generalised cylinder; the cylindermight be bashed, stretched and squeezed in a number of mathematical ways to �t a3D object description. Approaches based on geons, cylinders and the like are moresuited to man made environments such as the factory conveyor belt, or arti�cialworlds like `block' worlds worked on by many including Waltz [9] than to the mod-elling of natural classes of objects like mountain ranges. Fractal modelling can beused to create the most realistic looking models of natural objects as Mandelbrot'swork shows [7]; and fractal descriptions can be quite concise. Another alternativeis to store the entire image. Clearly this is costly in terms of processing time andstorage space, especially where multiple views of the same object must be stored.2.2 Object Representation by CornersThe method presented here uses a compact representation. All information aboutthe image except for that pertaining to the corners is discarded. What remains givesan object description in terms of the positions of the corners and their orientations.Information for one corner comprises: spatial information as an x; y coordinate, andtwo values which give the limits of an angle range.2.3 The Hop�eld NetA modi�ed Hop�eld network is used to perform edge detection on images. TheHop�eld net performs well in terms of detecting straight and gently curving edges.Corners are also detected on clean images, but when noise is injected into the image,corner detection su�ers most. This is because the Hop�eld net works by assuming thatan edge will continue in a more or less straight line. The stored corner information isuseful because it can be used to override links in the network, `helping' the Hop�eldnet to turn corners. The net result in noisy images is that both the corners and edgesof objects are more complete. Some examples of this are shown in section 4.1



2.4 Psychological RelevanceThis method has some intuitive appeal in that it has similarities to visual illusionssuch as the Kanisza triangle shown in Figure 1. The same Gestalt idea of closureis evident if the corner information is seen as the `top down' reinforcement of the`bottom up' illusion of the three non-existent straight lines that form the illusorytriangle.
Figure 1: The Kanisza TriangleThe Gestalt psychologists were much concerned with `perceptual organisation',seeing the process of visual perception as being largely concerned with organisingstimulus patterns into wholes (Gestalten). This organising into wholes was demon-strated with black and white �gures, mainly patterns concerned with dots. As Gre-gory tells us [4], even random dot patterns tend to be organised into con�gurations.Gestalt ideas have become unfashionable, mostly because they saw these tendenciesas being innate and exclusively `top down' processes, and partly because their the-ories were seen as `non explanatory'. It is nevertheless undeniable that grouping ofvisual stimuli does occur according to proximity, similarity, and `common fate' - therelated movements of the di�erent parts of the same object that make it appear asa whole. This need not be seen as an innate ability; it might as easily be seen aslearned. Current knowledge about the human visual system also tells us that a largeamount of preprocessing of visual information occurs before it reaches the `higher'centres of the brain - see Hubel [5]. But here again, Gestalt ideas can still be seen asvalid within the contemporary view of human visual processing as an interactive onebetween `bottom up' and `top down' processes.2.5 Circular HarmonicsThe major part of this work is involved not with the details of the representation, butwith a method for projecting the stored details down onto a layer within a network.2



This is done by using �lters which are designed to cause a ripple in the output ateach corner point. See Figure 2 for an illustration of the full ripple. The ripplesconsist of concentric rings of vectors which always point outwards from the origin ofthe circle and towards the circumference. Vectors are strongest near the origin of thecircles, becoming progressively weaker as the distance from the origin increases. Thestrength of the vector indicates how certain it is that the corner point will be found inthis position. The length of the arrows in Figure 2 reect the strength of the vectors.
Figure 2: A Complete RippleThe complete ripple is never output. It is possible to output just a sector ofthe ripple; this then indicates the orientation of the corner. Vectors always pointtowards the insides of corners. Note that a `corner' could be a steep curve, a simple2-dimensional corner or a vertex. The more acute the corner, the smaller the speci�edsector of ripple will be. Partial ripples are shown in Figure 3.
Figure 3: Partial RipplesThe mathematical method used to achieve partial output of the ripple involves theuse of circular harmonics. If a complete ripple were always output then just one �lter3



would be required. However, if the �lter output is set to be the sum of a series of�lters instead, then each of the �lters in the series can be manipulated so that whenthe series is added together only the required section of the ripple is output. Each�lter becomes a member of a circular harmonic series. The mathematics underlyingthe circular harmonics is described in section 3.2.6 QuadtreesA quadtree structure is used for mapping the two levels of the network. The inputlevel is one step further up the pyramid than the output level (the ripple layer).Each parent node in the input layer thus has four children in the output layer, andeach child node in the output layer has just one parent node in the input layer.Activation always ows from the input layer to the output layer. The architecture isillustrated in Figure 4. The ripple �ltering system thus works as a pyramidal feed-forward network. No learning is involved; the weights are predetermined by a �lterand the corner information. The pyramid consists of only two levels and so is verysmall, but in section 6 the possibility of implementing the circular harmonics withina multi-resolution framework is discussed.
Figure 4: Quad Tree StructureBurt and Adelson [2] used multiresolution pyramids to build their Gaussian andLaplacian pyramids. Although these did not have a quadtree construction, they diduse a gaussian weighting function . Bhalerao [1] used quadtrees for multiresolutionimage segmentation; boundaries and regions are estimated, then iteratively improved.Coarse features such as large regions are detailed higher up the pyramid than �nefeatures such as boundaries, which are detailed at the lower levels. Clippingdale [3]used the multiresolution pyramid to restore clean images from noisy ones. As anotherexample, Wilson [10] used quadtree pyramids for predictive image coding. The useof multiresolution pyramids for computer vision systems is intuitively appealing be-cause it provides the framework for the analysis of objects at several di�erent scales.4



Humans perform scale invariance in a seemingly e�ortless manner, and we know thatthere are complex cells in the retina that respond to features at di�erent scales. Thereis above all, a need for visual systems to compress and coalesce image data withoutlosing detail. The multiresolution pyramid provides a ideal way of doing this.
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3 TheoryThe original �lter is an NxN array. Each element of the array contains a complexnumber. In polar form, the argument of each complex number gives a direction; thisis calculated from the angle between the �lter element and the positive direction ofthe x axis. The modulus takes the value of the distance from the centre of the �lter,modi�ed by a Gaussian function. More formally:6 w(n;m) = ej 6 (x;y) = ej� (1)and jw(n;m)j = e�x2+y22�2 (2)Where: n and m are the �lter indices, x and y are the distances of the �lter elementw(n;m) in the x and y directions relative to the centre of the �lter, �2 represents thevariance, and � is the angle whose (signed) tangent is the ratio between x and y.Figure 5 shows how the Gaussian function acts to emphasise the moduli of the�lter values closest to the centre of the �lter, and to diminish those furthest away. �is chosen to give the Gaussian function a value of near 1 at the centre of the �lter,and near zero at the edges of the �lter. Figure 6 illustrates the directions given bythe arguments of the complex �lter elements. This fundamental unit becomes the�rst harmonic of a series. In the next step, the �lter is expanded into a series by
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Figure 6: The Arguments in the Complex FilterTo �nd the coe�cient for a given harmonic (ie: a given value of i) over a speci�edrange of �, from �1 to �2 say, the function ej� is integrated within these limits - see�gure 7: The function:
Θ1Θ2Figure 7: Integrating over a speci�ed rangef(�) =Xi Cieji� (5)becomes: f(� �  ) =Xi Cieji(�� ) =Xi C 0i eji�; C 0i = Cie�ji (6)because of the trigonometric identity:cos(� �  ) = cos � cos + sin � sin (7)Fourier coe�cients are calculated:Ci = 12� Z �2�1 ej� e�ji� d�; �1 � � < �2 (8)= 12� Z �2�1 ej(i�1)� d� (9)7



= 12�(�j(i� 1)) �e�j(i�1)�2 � e�j(i�1)�1� (10)= e�j(i�1) �1+�22 �ej(i�1) �1��22 � e�j(i�1) �1��22 ��2�j(i� 1) (11)= e�j(i�1) �1+�22 2j sin (i� 1) �1��22�2�j(i� 1) (12)= �e�j(i�1) �1+�22 sin(i� 1) �1��22�(i� 1) (13)In the case where i = 1 the sine function is tending to zero and so is the term(i � 1)�. L'Hôpital's rule for �nding the limit of a ratio of two functions each ofwhich separately tends to zero is used. It states that for two functions f(x) and g(x)the limit of the ratio f(x)=g(x) as x ! a is equal to the limit of the ratio of thederivatives f 0(x)=g0(x) as x! a. In this case where i = 1 (from 10):C1 = (�2 � �1)2� (14)Having found the coe�cients for speci�c values of �1 and �2 using equations 13 and14, the �lter series can be calculated by creating a series of NxN arrays. Calculatefor each �lter element: ej� in the �rst �lter multiplied by the harmonic number i,and multiplied by the coe�cient Ci. This 'stack' of circular harmonic �lters is thenadded to create the penultimate �lter. The �nal �lter is created once the Gaussianfunction has been reapplied. The �nal �lter can then be used to convolve the relevantcorner point of the input image to produce the output for that point. Since �1 and �2are likely to be di�erent for each corner point, the �nal �lter needs to be calculatedseparately for each corner point in the image.
8



4 Results4.1 Harmonic SymmetryWhen calculating the �lter coe�cients it becomes clear that the harmonics are sym-metrical around harmonic one, rather than around zero as might be expected. Thisis because of the (i � 1) term in the equation for calculating the coe�cients - seeequations 13 and 14 in the 3 section. This means that the most accurate resultsare to be obtained when the harmonic range is chosen to have the median harmonicnumber as 1, with an equal number of harmonics to either side; from -5 to 7, say. Ifthis constraint is not observed, then the �lter values falling within the required rangeof �1 to �2 will be skewed and the arguments of the complex �lter values will fail toconverge to their original values.4.2 Harmonic SeriesThere is a compromise to be made when deciding on the number of �lters to use inthe harmonic series. Since each harmonic is e�ectively a sampling point taken from ain�nite number of possible points, there is an obvious advantage in terms of accuracyin using as many harmonic �lters as possible. The disadvantages are in terms ofincreased processing time and storage space. Figure 8 shows the response in termsof the magnitudes of the moduli of a �lter set for a range of � from �=4 to 3�=4 fordi�erent numbers of harmonics. Note that the Gaussian function has been omittedfor the sake of clarity. Figure 8 shows how the response more closely approximatesthe ideal step function as the number of �lters used increases.4.3 Filter SizeAll �gures and examples of the �lters in this report are shown as 8 x 8 squares, butthe �lter could be almost any size. This size was chosen because 8 x 8 is the smallestpractical size for a working �lter. If the �lter is too large then there is a risk thatoutput ripples will collide. The mapping between the input layer and the outputlayer is �xed in a quad-tree architecture, so if the �lter is bigger than 2 x 2 then it ispossible for the output from two separate input points to overlap, thus confusing theoutput. Keeping the �lter fairly small minimises this possibility.4.4 ExamplesFigures 9 and 10 show the state of the �nal �lters for the three corner points of asimple isosoles triangle like the one in the `shapes' image - see �gure 11(a). Figure 9shows the �lter before the Gaussian function is applied. Figure 10 shows the �lterstate after the Gaussian has been applied. (a) to (c) show the imaginary parts of the9
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complex �lter values; (d) to (f) show the real parts. The greyscale progresses fromblack for large negative values, through mid-grey for zero values and on towards whitefor large positive values. This method of presentation is chosen because it allows themagnitude and direction of the �lter values to be appreciated simultaneously. Forexample: where a pair of spatially corresponding �lter values are both the samecolour intensity, an angle of �=4 or some multiple of this is indicated. If the pair arethe same colour also, then the angle is either �=4 (both light) or �3�=4 (both dark);if the colours are di�erent but of the same intensity then the angle is 3�=4 (real dark,imaginary light) or ��=4 (real light, imaginary dark). The intensity values give anindication of the magnitudes of the moduluses. This is most easily seen in �gure 10where the Gaussian function has reduced the intensity of all but the most central�lter values. It is worth noting that some �lter intensities are not quite as expected.This is because the step function is only approximated, as shown by �gure 8. Forexample, the �lter values lying on the �=4 and 3�=4 lines in �gure 9(a) and (d) wouldideally be more de�nite than they are.Figure 11 shows: (a) the clean shapes image, (b) edges generated by the Hop�eldnetwork using (a), (c) the shapes image with 6dB of noise added, (d) edges generatedby the Hop�eld network using (c), (e) the ripple �le and (f) edges generated by theHop�eld net using (c) and (e) together. A comparison between (d) and (f) shows thatcorner and edge detection is enhanced. One missing corner has been recovered fromthe square, three from the triangle, four from the star, and one from the crescent.Out of 19 corners, 9 were found when the ripple �le was not used but 18 were detectedwhen it was used.
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5 Discussion5.1 Circular Harmonic Networks?5.1.1 ArchitectureThe question arises as to whether the algorithm for obtaining output of partial ripplescould be implemented within a neural network. A literal interpretation would involveallocating a layer of the network for the circular harmonic �lters. The harmoniclayer could be sectioned into areas, each of which would correspond to a harmonic�lter. Each harmonic �lter would be connected by NxN connections to the inputlayer, where NxN is the size of the �lter. There would be no connections betweenthe harmonic layers. The �nal �lter would also have connections to each of the theharmonic layers, and the �nal �lter would feed forward into the output layer. If theweights on the input layer to �lter lines were set to the harmonic number multipliedby ej�, and the weights between the �nal �lter and the output layer were set so as toperform the Gaussian function, then the coe�cients for the corners could be fed downthe input lines as activation. This implies that for every corner point, n coe�cientswould have to be stored, n being the number of harmonics used. The number n couldbe small as it would be a fairly simple matter to implement a linear threshold on theoutput from the �nal �lter so that it would always be either 0 or 1.5.1.2 Anticipated ProblemsSo far in this description the problem of implementing a neural net using complexvalues has been ignored. There are several possible approaches that could be used.Two networks could be implemented side by side; one could perform the real part ofthe arithmetic, the other handling the imaginary part. Alternatively the two networkscould handle the arithmetic in polar form, one performing the arithmetic concerningthe moduli, the other handling the arguments. Another problem that would haveto be tackled would be that of mapping spatial information from the stored valuesonto the network. This would need to be implemented at both the input end wherethe information is stored and at the output end where the information needs to bemapped according to the quadtree architecture.5.2 Other NetworksIt would be possible to achieve the same sort of ripple output using a di�erent typeof network altogether. One could take a simple three layer network consisting ofan input layer, an output layer and some hidden units. The network could then betrained to give the correct output according to the input pattern which would includethe spatial information (ie: where to map the input to) and the ripple information.15



The network could then be trained by supervised learning to produce the correctoutput pattern in the output layer. The main disadvantage of this would be that thetraining would have to be long and exhaustive. The training set would be very largebecause of the large number of possible input patterns involved.5.3 Multiresolution Image RepresentationMultiresolution image analysis schemes are currently proving very successful. Forthis reason it is pertinent to rationalise new ideas for computer vision schemes withina multiresolution context. Corner information could be used to provide an objectdescription at di�erent resolution levels. For example, a leaf might be described atthe top level of a multiresolution pyramid as an overall shape, with corners at onlythe base and tip of the leaf. Further down the pyramid, a description of the cornersaround a leaf's lobes would become relevant. At the lowest level, corner informationpertaining to the serrations around leaf boundaries and details of the veins wouldbe required. The idea of combining corner descriptions with multiresolution imageprocessing does not pose any obvious problems.5.4 3D Corner InformationIt would be possible too extend the output of ripples from 2D to 3D. Another metricwould be required to represent the extra axis. The information which would then berequired to describe a corner could be stored using a quarternion representation. Aquarternion is a four component object which is the sum of a scalar and a vector.Quarternions can be added and subtracted like a four component vectors, and thereare mathematical methods for multiplying and dividing them. Quarternions are putto practical use by [8]. Their advantage in the ripple �lter context is that they wouldprovide the support for the mathematics involved in the output of ripples as conesfrom concentric spheres of bubbles rather than sectors of concentric circles.5.5 Dynamic Gaussian FunctionsIn practice it is sometimes di�cult to decide precisely where to position a cornerpoint so that the ripple appears in the output at the correct location. The di�cultyarises because there is often a conict between which part of the �lter contains themaximummodulus, and the part of the �lter where the arguments are pointing in thecorrect direction. This is best seen when considering a corner which is bisected by aline orientated at �=2 or some multiple thereof. The only �lter values approachingthis value are near the edges of the �lter, exactly where the modulus value is weakest.The strongest �lter values are in the centre of the �lter and have orientations of�=4 + n�=2 - see �gure 6 and �gure 5. It is therefore not always possible to position16



the �lter so that the ripple is optimally �tted to the corner. For this reason, it wouldbe preferable to have a Gaussian function that could be applied dynamically, ratherthan having it �xed at the centre of the �lter.5.6 Alternative Corner FunctionsThere is some doubt as to whether the idea of using partial ripples to represent cornersis based on sound principles. The shape of a partial ripple is a sector, and the line thatbisects the sector also bisects the corner it maps to. Given that the sector is usuallypositioned on the corner so that its point is within a node or two of the place wherethe corner is expected to appear, there is more ripple outside the corner than insideit. This is a problem because what the partial ripple output is `saying' is that thereis a greater probability that the corner will be found inside this sector than outside it.This is not true; if the corner is not where it is expected to be, it is equally likely tobe found in a place away in any direction. The idea of projecting partial ripples arosebecause it was found that complete ripples caused problems for the Hop�eld net. TheHop�eld net would sometimes �nd false corners when the whole ripple was projected.But this problem was caused by the orientation of the superuous vectors and not bytheir presence. A more satisfactory solution might have been to derive a function torotate the arguments of the complex �lter values so that all of them pointed in thecorrect direction ie: along the line that would bisect the expected corner. This wouldalso avoid the awkwardness involved in positioning the �lter for optimal direction andmagnitude; the revised �lter would always be optimally positioned with its centre overthe position of the expected corner. The ripple �lter has the advantage of being ableto `guide' the Hop�eld network links around a corner. If the �lter were revised asjust proposed, then the links would be overridden to encourage an abrupt change indirection, more suited to sharp, acute corners than a steep curve. Also, it should benoted that the ripple �lter is a fairly loosely constrained method and seems to workwell enough in practice, so perhaps it is of little relevance that it cannot be used withgreat degrees of exactitude. It is a description that can be used to describe any shape,and so gains some merit for its generality and exibility.
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6 ConclusionThe system presented here has worked fairly well and has largely achieved its objec-tive in providing reinforcement for a Hop�eld net so that it can detect corners moreeasily. The mathematical method has proved sound. The features of the mathemat-ical method that have been considered include: the size of the �lter, the number ofharmonics to use in the harmonic series, and the choice of � to ensure the correctresponse for the Gaussian function. The number of harmonics used in the harmonicseries has been the single most important factor a�ecting the accuracy of the results.To achieve a high level of accuracy around 60 �lters need to be used. This ratherheavy computational load could be reduced by using fewer �lters (13 say), and push-ing the �lter response through a linear threshold, so that the output is always either0 or 1.Much of the discussion was concerned with the validity of using sectors of ripplesto represent the probable location of the corner. Whilst there are some reservationsabout this, the method has been shown to be a workable one. Further work with morecomplicated images could be undertaken, and this would reveal any other potentialweak points of the ripple �ltering method. It was also shown that there are someproblems associated with positioning the �lter over the corner. These arise becausethe Gaussian function is �xed to have its maximum in the centre of the �lter. It maybe possible to implement a dynamic Gaussian, that allows the 'peak' of the �lter tobe determined by the requirements of each corner. The disadvantage of this wouldbe that the amount of stored information would be increased.Re�nements and extensions to the work have been discussed. It has been concludedthat the ripple �lters should be amenable to systems using 3D and multiresolution.Consideration has been given to the possibility of implementing the ripple �lters inneural networks. There are anticipated problems for all the methods suggested, butthese are not seen as being insurmountable. In particular, the circular harmonic neu-ral network seems promising, provided that the problems foreseen for spatial mappingcan be overcome.
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