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Fault-Tolerant Bisimulation and ProcessTransformations ?Tomasz Janowski ??Department of Computer ScienceUniversity of Warwick, Coventry CV4 7AL, UKAbstract. We provide three methods of verifying concurrent systemswhich are tolerant of faults in their operating environment - algebraic,logical and transformational. The �rst is an extension of the bisimulationequivalence, the second is rooted in the Hennessy-Milner logic, and thethird involves transformations of CCS processes. Based on the commonsemantic model of labelled transition systems, which is also used to modelfaults, all three methods are proved equivalent for certain classes of faults.1 IntroductionMany models of concurrent systems have been proposed in the literature, basedon either actions or states. Examples include sequences [MP91], trees [Mil89],machines [LT87], partial orders [Pra86] and event structures [Win89]. They o�erdi�erent ways of representing executions of systems (linear or branching), theirconcurrent activity (interleaving or non-interleaving) and interaction (sharedmemory or message-passing). A concept which uni�es various models is a labelledtransition system [Kel76], a triple (P;A;!) where P is a set of processes, A a setof actions and! � P �A�P a labelled transition relation. Labelled transitionrelations are often de�ned by induction on the structure of processes, providingthe structured operational semantics [Plo81] of process description languages. Anexample of such a language is CCS [Mil89].As models of processes, labelled transition systems describe their behaviourin detail, including particulars of their internal computation. However, in orderto specify a process and then to prove its correctness, it is useful to decide whichproperties of the model are relevant and which can be ignored. Following [Mil89],it is most common to ignore these properties which cannot be observed in the�nite interval of time. Two ways to do so are as follows:{ we can identify a process with its equivalence class, according to the (weak)bisimulation equivalence � [Par81];{ we can identify a process with its properties, speci�ed by the (weak) formulasof the Hennessy-Milner logic [HM85] and veri�ed by satisfaction relation j=.? To be presented at the Third International Symposium \Formal Techniques in Real-Time and Fault-Tolerant Systems", L�ubeck, Germany, September 1994.?? Supported by the University of Warwick, under its Scholarship Scheme for EastEurope, and by an Overseas Students Award from CVCP.



A vital test of the usefulness of any formal theory is that statements of thistheory must be con�rmed in practice (by experiment). Given such statementsas P � Q or Q j=M , it is expected that the low-level process Q, when placed inthe real environment, behaves respectively as speci�ed by the high-level processP or the formula M . In practice however, such Q depends on various hardwarecomponents which often malfunction because of the physical faults. Such faultsa�ect the semantics of Q so that it may no longer behave as speci�ed. Moreover,physical faults do not exist before Q is put into practice and so cannot be removedbeforehand, they must be tolerated.Clearly, it is not possible to tolerate arbitrary faults. We have to decide whichfaults are anticipated (and thus should be tolerated) and which are not (suchfaults are catastrophical). To represent the e�ect of the anticipated faults on thesemantics of processes, we will use the set ������) of the faulty transitions. To verifyfault-tolerance is then to prove that the low-level process behaves `correctly' inthe presence of the transitions ������) . As such, fault-tolerance depends on thechosen notion of correctness. In this paper we provide three methods to verifyfault-tolerance for bisimulation equivalence and the Hennessy-Milner logic:1. A fault-tolerant bisimilarity <! where P <! Q if observing P in the fault-free environment (performing transitions ) ) and Q in the environmentwhich contains anticipated faults (performing transitions ) and ������) ),we cannot tell them apart in the �nite interval of time.2. A relation jj= to verify satisfaction of formulas of the Hennessy-Milner logicin the presence of the anticipated faults (when processes P undergo bothnormal and faulty transitions ) [ ������) ).3. A language D for specifying faults and a process transformation T (Q;	 )where given the CCS process Q, the e�ect of transitions ������)	 (speci�ed by	 2 D) on Q are represented syntactically. Then, verifying that Q is fault-tolerant involves proving either:(a) P � T (Q;	 ) for the high-level process P , or(b) T (Q;	 ) j=M for the formulaM .We show that, for wide classes of faults, all these methods are equivalent:P <! Q  ����������! 8M2M P j=M i� Q jj=M" "j j# #P � T (Q;	 ) ����������! 8M2M P j=M i� T (Q;	 ) j=M (1)When the `full' fault-tolerance is either impossible or too expensive to ensure,we may be still satis�ed with its conditional version, given certain assumptionabout the quantity of faults. To this end we will use n 2 N[f1g as the maximalnumber of times transitions ������) can occur successively (if n = 1 then ������)can occur at any time; if n = 0 then not at all). As before, we provide and provethe equivalence of the three methods for verifying n-conditional fault-tolerance:relations <! n and jj=n, and transformation eT ( : ; 	; n).2



The rest of this paper is as follows. In Section 2 we describe the semanticmodel. `Intolerant' bisimulation equivalence, its fault-tolerant and conditionalfault-tolerant versions are de�ned in Section 3. Their logical characterisation,in terms of the Hennessy-Milner logic, is given in Section 4. Both languages, ofprocesses and faults, are de�ned in Sections 5 and 6, followed by transformationsT and eT which are shown to provide the third, equivalent method of verifyingfault-tolerance and conditional fault-tolerance in Section 7. Finally, in Section8, we draw some conclusions and comment on the directions for future work.2 Semantic ModelConsider the labelled transition relation ) . If (P; �; P 0) 2 ) then we writeP )� P and say that P performs � and evolves into P 0 (we also use P )s P 0for the action sequence s 2 A�). One kind of transition we wish to largely ignoreis )� where action � is unobservable and represents the outcome of a jointactivity (interaction) between two processes. Interaction takes place on the pairof complementary actions a; a 2 L where L =def A�f�g is the set of observableactions and � is a function over A which is bijective and such that a = a, a 6= �and � = � . We use � to range over A and � to range over L" =def L [ f"gwhere " denotes the empty sequence. We also let b� be the function over A� suchthat b" = ", d� : s = bs and da : s = a : bs (: denotes concatenation).When placed in the `real' environment, a process may not behave accordingto ) : it may either perform transitions ������) which do not belong to ) ,������) \ ) = ;, or it may refuse to perform some of the transitions ) . The�rst case is demonstrated by transition P ������)c P 00 in Figure 1, the second (in part)by Q )b Q000. To represent the second case in full, we should physically removeQ )b Q000 from the diagram. This would complicate our model so suppose onlythat this transition may be refused. This is achieved by two more transitionsQ ������)� Q00 ������)a Q0 which may preempt (due to the occurrence of � ) transitionQ )b Q000. Given the set ������) of faulty transitions as the e�ect of faults, we let) contain both kinds of transitions, ) =def ) [ ������) (we also use)s for the action sequence s 2 A�).
P P’’ Q Q’’

a

τ

b

c

b

a
P’

P’’’

Q’

Q’’’

aFig. 1. Transition diagrams of P and Q with faulty transitions.3



3 Bisimulation and Fault-ToleranceThere are many equivalences by which to abstract from the behavioural de-tails of the transition relation ) . They di�er, among other things, in theadopted model of execution (linear- or branching-time) and concurrency (inter-leaving or non-interleaving). The best known of them and deemed to be thestrongest among interleaving and branching-time equivalences is that of bisim-ulation equivalence [Par81], �. Two bisimilar processes, their semantics de�nedby transition relation ) , cannot be distinguished by observing them in the�nite interval of time. This property may no longer hold in the presence of faultswhich result in the additional transitions ������) (of the low-level process). As such,� allows to verify correctness in the absence of faults only, it is fault-intolerant.How to verify fault-tolerance, i.e. correctness in the presence of transitions ������) ,and conditional fault-tolerance, where transitions ������) occur under assumptionn about their quantity, is the topic of the current section.3.1 Fault-IntoleranceBisimulation equivalence is de�ned as the maximal �xed point of the functionalF on the set of binary relations B on P, (P;Q) 2 F(B) i�whenever P )� P 0 then 9Q0;s Q )s Q0 ^ bs = b� ^ (P 0; Q0) 2 Bwhenever Q )� Q0 then 9P 0;s P )s P 0 ^ bs = b� ^ (P 0; Q0) 2 B (2)This maximal �xed point exists because F is monotonic: if B1 � B2 thenF(B1) � F(B2). Originally, it was reached `from above', as the limit of thesequence Fn(P � P) for all n � 0. Unfortunately, unless in�nite ordinals n aretaken into account, this requires that transition relations )� are weak-image-�nite i.e. that for all P 2 P, the set fP 0 j P )s P 0 ^ bs = b�g is �nite. Nosuch assumption is needed to reach � `from below', as the union of all pre-�xedpoints B of F , � =def SfB j B � F(B)g [Par81]. An additional advantage isthe useful technique for proving P � Q. It is enough to �nd a pre-�xed point Bof F such that (P;Q) 2 B. Such a B is called a bisimulation. We have:P � Q i� whenever P )� P 0 then 9Q0;s Q )s Q0 ^ bs = b� ^ P 0 � Q0whenever Q )� Q0 then 9P 0 ;s P )s P 0 ^ bs = b� ^ P 0 � Q0 (3)3.2 Fault-ToleranceIf observing two processes, the high-level in the fault-free environment (perform-ing transitions ) ) and the lower-level in the environment which is a�ected bythe anticipated faults (performing transitions ) ), we cannot tell them apartin the �nite interval of time, then we say that the lower-level process is fault-tolerant (with respect to the high-level one). To verify this property we providetwo relations, must-bisimilarity <! and may-bisimilarity <? .4



The �rst is the direct extension of � to take account of transitions ������) .We have P <! Q if P and Q are `bisimilar', the �rst performing transitions )and the second both ) and ������) . We de�ne <! using a must-bisimulation Bwhich is a binary relation such that if (P;Q) 2 B then any ) transition ofP is matched by some transition sequence ) of Q and any ) transitionof Q is matched by some transition sequence ) of P , such that the matchedtransitions have the same observable actions and B is preserved:whenever P )� P 0 then 9Q0;s Q )s Q0 ^ bs = b� ^ (P 0; Q0) 2 Bwhenever Q )� Q0 then 9P 0 ;s P )s P 0 ^ bs = b� ^ (P 0; Q0) 2 B (4)Then P <! Q i� (P;Q) 2 B for some must-bisimulation B. Such Q satis�es thebasic postulate: no external observer can distinguish between P which behavesaccording to transitions ) and Q which may additionally perform transitions������) . In one aspect however, such Q is unsatisfactory. Because <! allows tomatch transitions of the high-level process by faulty transitions of the low-levelone, such Qmay not behave properly in the environment where not all transitions������) are provided. For Q to behave as speci�ed, transitions ������) must occur.In practice however, it is more useful is to assume the mere possibility of faults(that faults may occur), not their necessity (that they must occur).This assumption is met by may-bisimilarity P <? Q where only normal tran-sitions of Q are allowed to match transitions of P . As before, may-bisimilarity<? is de�ned as the largest may-bisimulation which is a binary relation B suchthat if (P;Q) 2 B then:whenever P )� P 0 then 9Q0;s Q )s Q0 ^ bs = b� ^ (P 0; Q0) 2 Bwhenever Q )� Q0 then 9P 0 ;s P )s P 0 ^ bs = b� ^ (P 0; Q0) 2 B (5)Example 1. Consider the high-level process P in Figure 2 and four low-level,fault-a�ected processes Q, R, S and T . We have:1. P � Q because f(P;Q); (P 0; Q0); (P 0; Q00)g is a bisimulation but P 6<! Q andP 6<?Q because there is no must- or may-bisimulation which contains (P;Q):Q )� Q000 and P )s P (bs = ") only, however P )a P 0 but Q000 6 ) .2. P <! R because f(P;R); (P;R000); (P 0; R0); (P 0; R00)g is a must-bisimulationbut P 6� R and P 6<?R because there is no bisimulation or may-bisimulationwhich contains (P;R): P )a P 0 and R )s R0 (bs = a) only, however P 0 )b Pbut R0 has no normal transitions, R0 6 ) .3. P <! S because f(P; S); (P; S000); (P 0; S0); (P 0; S00)g is a must-bisimulation andP � S because f(P; S); (P 0; S0); (P 0; S00)g is a bisimulation. Also P 6<? S be-cause there is no may-bisimulation which contains (P; S): S )� S000 andP )s P (bs = ") only, however P )a P 0 but S000 6 )a .4. P <! T , P <? T and P � T because f(P; T ); (P; T 000); (P 0; T 0); (P 0; T 00)g issimultaneously a must-bisimulation, may-bisimulation and bisimulation. 25
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T’’’a bFig. 2. Transition diagrams of P , Q, R, S and T with faulty transitions.The example shows that � and <! are not comparable: <! does not imply�,nor does � imply <! . However, it is easy to show that any may-bisimulation issimultaneously a must-bisimulation and a bisimulation. As a result, because allrelations are de�ned as the union of the corresponding bisimulations, we have:<? � <! \ � (6)The example (P <! S and P � S but P 6<? S) also shows that this inclusion isproper i.e. that P <! Q and P � Q together are not enough to establish P <? Q.That is a pity since P <? Q which is more desirable than P <! Q, is also moredi�cult to establish (the equivalence diagram (1) for <! is only partly valid formay-bisimilarity <? ). However, for B to be a may-bisimulation, it is not onlynecessary but also su�cient that B is a bisimulation and a must-bisimulation:B is a may-bisimulation i� it is a must-bisimulation and a bisimulation. (7)Thus in order to prove P <? Q, it is enough to show that (P;Q) 2 B for B whichis a bisimulation and a must-bisimulation at the same time. This justi�es oure�orts to establish the properties of <! in the �rst instance. What both relationshave in common is that neither of them is reexive or symmetric (they are notpreorders). For processes in Figure 2 we have:{ Q 6<! Q because there is no must-bisimulation which contains the pair (Q;Q):Q )� Q000 and Q )s Q (bs = ") only, however Q )a Q0 but Q000 6 ) . Conse-quently Q 6<?Q because of (6).{ Q <? P because f(Q;P ); (Q0; P 0); (Q00; P 0)g is a may-bisimulation but P 6<! Qbecause Q )� Q000 and P )s P (bs = ") only, however P )a P 0 but Q000 6 ) .Consequently we have Q <? P and P 6<?Q, as well as Q <! P and P 6<! Q.The lack of these properties is not unexpected when verifying correctness inthe presence of faults. Because one and the same process has two di�erent se-mantics, as the high-level (fault-free) process and as the low-level (fault-a�ected)one, we cannot ensure that the underlying relation is reexive or symmetric.6



Transitivity is most desirable to support the stepwise development of pro-cesses and to support the reasoning in the presence of faults where it may be help-ful to deal with only some of transitions ������) (not all) at a time. To this end letus partition ������) amongm > 0 nonempty disjoint sets ������)j , ������) = Smj=1 ������)j .Given j = 0; : : : ;m we de�ne )j as the union of the normal transitions )and the �rst j partitions of ������) : )j =def ) [ Sji=1 ������)i . This gives anascending sequence ) = )0 � � � � � )m = ) of the transition relations.Suppose now that for 0 � j � l � m, <? jl and <! jl denote the correspond-ing bisimulation relations where transitions )j are regarded as normal andtransitions Sli=j+1 ������)i as abnormal:P <? jlQ i� whenever P )�j P 0 then 9Q0;s Q )sj Q0 ^ bs = b� ^ P 0 <? jlQ0whenever Q )�l Q0 then 9P 0 ;s P )sj P 0 ^ bs = b� ^ P 0 <? jlQ0 (8)Relation <! jl is de�ned alike. Then, given j � k � l, we can easily prove thefollowing transitive properties of <! and <? (� is the relational composition):<? jk � <? jl � <? jl <! jk � <! kl � <! jl (9)According to the �rst inclusion, to tolerate transitions Sli=j+1 ������)i (given <? ),at least once we must tolerate them altogether. According to the second, totolerate transitionsSli=j+1 ������)i (with respect to <! ), it is enough to �rst toleratetransitions Ski=j+1 ������)i and then transitions Sli=k+1 ������)i . Following the �rstinclusion, it is easy to see that <? is transitive. This is not the case for <! andin general the �rst inclusion does not hold for <! and the second for <? , asshown by processes in Figure 3. We have: P <! Q <! R but clearly P 6<! R. Also,P <? 01S and S <? 12T but P 6<? 02T because T ������)�2 T 000 and P )s0 P (bs = ") only,however P )a0 P 0 but T 000 6 )0 .
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3.3 Conditional Fault-ToleranceFor any may- or must-bisimilar processes P and Q, ������) is the assumptionabout faults of the operating environment of Q, where Q is guaranteed to behave`properly', as speci�ed by P . We call ������) a qualitative assumption, in oppositeto the quantitative assumptions n 2 N[f1gwhich are introduced in this sectionand specify the maximal number of times transitions ������) can occur successively(if n = 0 then ������) are assumed not to occur at all; if n = 1 then they canoccur at any time). The reasons for introducing such assumptions are threefold:{ For certain sets ������) , we cannot ensure fault-tolerance in full. In these cir-cumstances, we must be satis�ed with its degraded, conditional version, forcertain assumptions about the quantity of ������) .{ Even when the `full' fault-tolerance is (in theory) possible, we may chooseits conditional version because it is often easier to do so. This argument istrue for applications which are not safety-critical.{ Conditional fault-tolerance may facilitate the stepwise procedure where Qis �rst designed for restricted assumptions about faults and then stepwisetransformed for increasingly relaxed assumptions.Recall that if Q )s Q0 then Q evolves into Q0 performing the sequence s oftransitions ) and ������) . This may be no longer the case if transitions ������)can only occur under assumption n. It these circumstances we will use the familyf )ijgni;j=0 of relations )ij � P � A� � P. If (Q; s;Q0) 2 )ij then we writeQ )s ijQ0 and say that Q evolves into Q0 by the sequence s 2 A� of transitions) , under assumption n, and given that i is the number of times transitions������) have successively occurred before and j after Q )s ijQ0. Formally, relations)ij are de�ned by the following inductive rules:Q )" iiQQ )�:s ijQ00 whenever 9Q0 Q )� Q0 )s 0jQ00 _Q ������)� Q0 )s i+1j Q00 ^ i 6= n (10)The induction above is well-de�ned: the �rst rule provides the base, for the emptysequence ", and the second rule decreases the length of the action sequence byone. Given n = 0, we always have i = n, so transitions ������) cannot occur at all.Given n =1, it is never the case that i = n, so ������) can occur at any time.Consider conditional version of <? , <? n. We have P <? nQ if observing P inthe fault-free environment (performing transitions ) ) and Q in any environ-ment where itmay also perform transitions ������) (provided no more than n timesin a row), we cannot distinguish between them in the �nite amount of time. Inorder to keep track of the number i of the successive transitions ������) , <? n is de-�ned using [0; n]-indexed families fBigni=0 of binary relations Bi � P �P. Sucha family fBigni=0 is called a conditional must-bisimulation i� for all i; j 2 [0; n]and � 2 A, if (P;Q) 2 Bi then:whenever P )� P 0 then 9Q0 ;s;j Q )s ijQ0 ^ bs = b� ^ (P 0; Q0) 2 Bjwhenever Q )� ijQ0 then 9P 0 ;s P )s P 0 ^ bs = b� ^ (P 0; Q0) 2 Bj (11)8



Similarly, fBigni=0 is called a conditional may-bisimulation i� for all i; j 2 [0; n]and � 2 A, if (P;Q) 2 Bi then:whenever P )� P 0 then 9Q0;s Q )s Q0 ^ bs = b� ^ (P 0; Q0) 2 Biwhenever Q )� ijQ0 then 9P 0 ;s P )s P 0 ^ bs = b� ^ (P 0; Q0) 2 Bj (12)Let i 2 [0; n]. We de�ne relations <! in and <? in as follows:P <! inQ i� (P;Q) 2 Bi for some fBigni=0which is a conditional must-bisimulationP <? inQ i� (P;Q) 2 Bi for some fBigni=0which is a conditional may-bisimulationThen we have P <! nQ i� P <! 0nQ and P <? nQ i� P <? 0nQ.Example 2. Consider processes in Figure 4. We have:{ P 6<?Q and P 6<? 2Q because of transition Q000 ������)a Q which enables two sub-sequent actions a. However P <? 1Q because then Q000 ������)a Q (as the secondone in a row) cannot be chosen.{ P 6<! R and P 6<! 3R because of transition R000 ������)� R00 which, after performinga and b, leads to R00 where action a is not possible. However P <! 2R becausethen transition R000 ������)� R00 (as the third one in a row) cannot be chosen.Finally P 6<! 1R because then R0 ������)b R000 cannot be taken but is needed tomatch transitions of P . 2
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4 Logic of ProcessesThe Hennessy-Milner logic [HM85] is a simple modal logic for specifying prop-erties of processes. It provides a language M of formulas M which extendspropositional logic by the modal operators h�iM .M is de�ned by the grammar:M ::= true j M ^M j :M j h�iM (14)The semantics of M (the set of all processes which satisfy M ) is de�ned byrelation j= � P �M where if (P;M ) 2 j= then we write P j= M . Following[HM85], j= is de�ned as the least set such that:P j= trueP j= M ^N i� P j= M ^ P j= NP j= :M i� not P j=MP j= h�iM i� 9P 0;s P )s P 0 ^ bs = � ^ P 0 j= M (15)We abbreviate :true as false, :h�i:M as [�]M and form > 1 de�ne h�imMas h�ih�im�1M and h�i1M as h�iM ([�]mM is de�ned alike).Algebraically, we can identify a process with its equivalence class. However,given a logic where properties of processes can be stated and veri�ed, we canidentify a process with its properties. When both algebraic and logical viewsagree, that is when two processes are equivalent i� they have the same properties,then we say that the equivalence is characterised by the logic. Following [HM85],if P � Q then P and Q satisfy the same formulas M 2 M and the other wayround but only for weak-image-�nite ) :P � Q i� 8M2M P j=M , Q j= M (16)The aim of this section is to provide similar statements for fault-tolerant andconditional fault-tolerant extensions of �. Consider the new relation jj= � P�Mwhich is de�ned like j= except that the transitions ) are now used to de�nethe semantics of formulas h�iM :Q jj= h�iM i� 9Q0 ;s Q )s Q0 ^ bs = � ^ Q0 jj=M (17)Applying j= for the high-level process and jj= for the low-level one, we can showthat for weak-image-�nite relations ) , must-bisimilarity <! is characterisedby the Hennessy-Milner logic:Proposition1. For weak-image-�nite relation ) we have:P <! Q i� 8M2M P j=M , Q jj=MProof. ()) By induction on the structure of M . (() We show that the relationB =def f(P;Q) j 8M2M P j= M , Q jj= Mg is a must-bisimulation. Fordetails see Appendix A. 210



Because P <? Q implies P <! Q, we also have P j= M i� Q jj= M for anyP <? Q and M 2M. The inverse however does not hold, as demonstrated by Pand S in Figure 2 which have the same properties (P with respect to j= and Saccording to jj=) but still P 6<? S.Example 3. Consider processes in Figure 2 and two formulas for m � 0:{ M = [b]2mhaitrue which asserts that the �rst action a is always possibleafter an even number of b's;{ N = [a]hbi2m+1haitrue where the second occurrence of a may be possibleafter an odd number of b's.We have P j= M ^ N and thus Q j= M ^ N and S j= M ^ N because ofP � Q � S. We also have P <! R what gives R jj= M ^ N and P <! S whatresults in S jj= M ^N . Finally Q jj= :M ^N and R j=M ^ :N . 2Consider n 2 N [ f1g which speci�es the maximal number of times transi-tions ������) can occur successively. The logical characterisation of <! n involvesconditional satisfaction relation jj=n which is de�ned in terms of the family ofrelations jj=in, indexed by [0; n]. Consider i 2 [0; n]. For all formulas except h�iM ,jj=in is de�ned like j=. For h�iM we have:Q jj=in h�iM i� 9Q0;s;j Q )s ijQ0 ^ bs = � ^ Q0 jj=jn M (18)Thus Q jj=in M if Q satis�es M , performing transitions ) and ������) butthe last no more than n times in a row and no more than n� i of them initially.Finally, we de�ne P jj=n M i� P jj=0n M . Given such jj=n and provided that )is weak-image-�nite, we can prove the following characterisation theorem:Proposition2. For weak-image-�nite relation ) we have:P <! nQ i� 8M2M P j=M , Q jj=n MProof. ()) By induction on the structure of M . (() We show that the familyfBigni=0 of relations Bi =def f(P;Q) j 8M2M P j= M , Q jj=in Mg is aconditional must-bisimulation. For details see Appendix A. 2As a result, because P <? nQ implies P <! nQ, we have P j= M i� Q jj=n Mfor all P <? nQ and M 2M.Example 4. Consider processes in Figure 4, m � 0 and the following formulas:{ M = haitrue ^ [a][a]falsewhere action a is possible but then it cannot be followed by another a;{ N = hbitrue ^ [b][a]falsewhere action b is possible but not followed by a either.We have P j= [a][b]2m+1(M ^ N ) and thus Q j= [a][b]2m+1(M ^ N ) becauseof P � Q. For Q we have Q jj= [a][b]2m+1N and Q jj= :[a][b]2m+1M , howeverQ jj=1 [a][b]2m+1(M ^N ) because then transition Q000 ������)a Q, which enables twosubsequent actions a, cannot be chosen. For R we have R jj= :[a][b]2m+1M andR jj= :[a][b]2m+1N , however R jj=2 [a][b]2m+1(M ^ N ) because then transitionR000 ������)� R00 cannot be chosen. 211



5 Language of ProcessesThe structure of a process P has been ignored so far, it was de�ned as an elementof the abstract set P. The more complex is the behaviour of P however, thegreater is the need to treat P structurally. In this section, following [Mil89], wede�ne P as the language of processes which is given the structured operationalsemantics [Plo81] in terms of the labelled transition system (P;A; ) ).The syntax of P is based on two sets of symbols,A of actions and X of processidenti�ers, and involves two syntactic categories, E of process expressions andD of declarations. Let X;Y 2 X , L � L and f be a function over A such thatf(� ) = � , f(a) 6= � and f(a) = f(a). E is de�ned by the grammar:E ::= X j 0 j �:E j E +E j EjE j EnL j E[f ] (19)Informally, 0 is unable to take any action and �:E performs � and thenbehaves like E. The operator + represents summation, j parallel composition,n restriction and [ ] renaming. One derived operator is E a F where E and Fproceed in parallel with actions out of E and in of F `joined' and restricted,E a F =def (E[mid=out]jF [mid=in])nfmidg where mid is not used by E or F .We use X (E) for the set of all identi�ers in E and EfF=Xg for the processexpression E where all identi�ers X are replaced by F . In order to interpretX 2 X (E), we use declarations of the form X b= F . If also X 2 X (F ) thensuch X is de�ned by recursion. Given X b= F and Y b= G where X 2 X (G) andY 2 X (F ), such X and Y are de�ned by the mutual recursion. In the sequelwe will often need to manipulate declarations for mutually recursive identi�ers.Then, it will be helpful to use a simple language D for specifying collections ofsuch declarations. D, ranged over by � and r, is de�ned by the grammar:� ::= [ ] j �[X b= E] j ��� j ��r (20)Informally, [ ] is an empty declaration and �[X b= E] declares X as E andother identi�ers as in �. Moreover, � � � and � � r perform respective op-erations (�-pre�x and summation) on the right sides of all the correspondingdeclarations in � and r. Formally, � 2 D is assigned a partial function [[�]]from X to E which is de�ned in Figure 5 by induction on the structure of �. Weuse dom(�) as the domain of [[�]] (dom([ ]) =def ;) and ran(�) as its range.[[���]](X) =def �:[[�]](X) if X 2 dom(�)[[�[Y b= E]]](X) =def �E if X = Y[[�]](X) if X 6= Y; X 2 dom(�)[[��r]](X) =def ( [[�]](X) if X 2 dom(�)� dom(r)[[�]](X)+[[r]](X) if X 2 dom(�)\ dom(r)[[r]](X) if X 2 dom(r)� dom(�)Fig. 5. Denotational semantics of declarations D.12



We abbreviate [][X b= E][Y b= F ] as [X b= E; Y b= F ] and write [X b= E j p]for all declarations X b= E such that the predicate p holds. � is said to be closedif all identi�ers in the right side expressions of � are declared in �:[F2ran(�)X (F ) � dom(�) (21)A process P 2 P is �nally the pair hE;�i of the process expression E andthe closed declaration � for all identi�ers of E, X (E) � dom(�). We writehE;�i � hF;ri if hE;�i and hF;ri are identical.The semantics of hE;�i 2 P is de�ned in terms of the labelled transitionsystem (P;A; ) ) by induction on the structure ofE. IfE = X then transitionsof hX;�i involve the semantics of �, they are inferred from the transitions ofh[[�]](X);�i. Following [Mil89], transition relation ) is the least set de�nedby inference rules in Figure 6.h�:E;�i )� hE;�i hE;�i )� hE0; �ihE+F;�i )� hE0;�i hF;�i )� hF 0;�ihE+F;�i )� hF 0;�ihE;�i )� hE0;�ihEjF;�i )� hE0jF;�i hF;�i )� hF 0;�ihEjF;�i )� hEjF 0;�ihE;�i )a hE0;�i hF;�i )a hF 0;�ihEjF;�i )� hE0jF 0;�ihE;�i )� hE0;�ihE nL;�i )� hE0 nL;�i ; �; � 62 L hE;�i )� hE0;�ihE[f ];�i )f(�) hE0[f ];�ih[[�]](X);�i )� hE;�ihX;�i )� hE;�i ; X 2 dom(�)Fig. 6. Operational semantics of processes PExample 5. Consider n 2 N[f1g and the process Rn which performs actions aand b; the �rst at any time; the second no more than n times in a row. We haveRn =def hY0;�n �rni where:�n =def [Yi b= a:Y0 j 0 � i � n]rn =def [Yi b= b:Yi+1 j 0 � i < n] 2We compose processes by composing their expressions, using the processcombinators (19). For binary operators + and j we assume that the componentprocesses have disjoint sets of identi�ers. If dom(�) \ dom(r) = ; then:�:hE;�i =def h�:E;�ihE;�inL =def hE nL;�ihE;�i[f ] =def hE[f ];�ihE;�i+ hF;ri =def hE + F;��rihE;�i j hF;ri =def hE j F;��ri (22)13



In the language de�ned so far, processes interact by synchronising on com-plementary actions a and a. There is no directionality or value which passesbetween them. For pragmatic reasons, we also need a value-passing languagefor the set V of values (we assume, for simplicity, that V is �nite). To this endwe introduce value constants (like "), value variables (like x and s), value andboolean expressions (like e and p respectively), built using constants, variablesand any function symbols we need. The last include ]s as the length of the se-quence s, s0 its �rst element, s0 all but the �rst element and s : x as the sequences with value x appended. We also introduce parameters into process identi�ers:X(e1; ::; en) for X of arity n. Then we extend the basic language by input andoutput pre�xes a(x):E, a(e):E and conditionals if p then E else F . For theirtranslation into the basic language see [Mil89].Example 6. Consider a bu�er Bufm of capacity m > 0, which receives (by actionin) and subsequently transmits (by action out) all values unchanged, in the sameorder and with at most m of them received but not sent. We have:Bufm =def hX(");��riwhere � =def [X(s) b= in(x):X(s : x) j 0 � ]s < m]r =def [X(s) b= out(s0):X(s0) j 0 < ]s � m] 26 Language of FaultsAlthough a fault is modelled by a set of transitions, using this set directly isnot the most convenient way of specifying faults in practice, especially when theabnormal behaviour we want to describe is complex. The purpose of this sectionis to de�ne the language where faults can be speci�ed and combined.The idea is to use process identi�ers as `states' which can be a�ected by faults.Consider a process hX;�i. Transitions of hX;�i can be only inferred from thetransitions of h[[�]](X);�i where [[�]](X) is the process expression assigned toX by �. In order to specify faults, we will use an alternative, `faulty' declaration	 2 D. Suppose that X 2 dom(	 ). Then X is assigned yet another expression[[	 ]](X) which determines abnormal transitions of hX;�i, following transitionsof h[[	 ]](X);�i and denoted by )	 :h[[	 ]](X);�i )�	 hE;�ihX;�i )�	 hE;�i (23)Transition relation )	 is de�ned as the least set which satis�es inference rulesin Figure 7 and used to denote 	 -a�ected semantics of P. We also de�ne:Q ������)�	 Q0 i� Q )�	 Q0 and Q 6 )� Q0 (24)and relations )	 ij � P � A� � P (10), given i; j 2 [0; n] and faulty transitions������)	 , speci�ed by 	 . 14



h�:E;�i )�	 hE;�i hE;�i )�	 hE0; �ihE+F;�i )�	 hE0;�i hF;�i )�	 hF 0;�ihE+F;�i )�	 hF 0;�ihE;�i )�	 hE0;�ihEjF;�i )�	 hE0jF;�i hF;�i )�	 hF 0;�ihEjF;�i )�	 hEjF 0;�ihE;�i )a	 hE0;�i hF;�i )a	 hF 0;�ihEjF;�i )�	 hE0jF 0;�ihE;�i )�	 hE0;�ihE nL;�i )�	 hE0 nL;�i ; �;� 62 L hE;�i )�	 hE0;�ihE[f ];�i )f(�)	 hE0[f ];�ih[[�]](X);�i )�	 hE;�ihX;�i )�	 hE;�i ; X 2 dom(�) h[[	 ]](X);�i )�	 hE;�ihX;�i )�	 hE;�i ; X 2 dom(	)Fig. 7. Operational semantics of processes P a�ected by the fault 	 .	 is not assumed to be closed. However, in order to ensure that )	 doesnot lead from the well-de�ned process (where all identi�ers are declared) to theill-de�ned one, we assume that all process identi�ers in the right-side expressionsof 	 are declared by �: [F2ran(	)X (F ) � dom(�) (25)We use P	 � P for the set of such hE;�i and assume that )	 � P	 �A�P	and )	 ij � P	 �A� �P	 .Example 7. Consider the following declarations which specify various commu-nication faults of the bounded bu�er Bufm, creation (	e), corruption (	c),omission (	o), replication (	r) and permutation (	p) of messages:	e =def [X(s) b= �:out(p):X(s) j 0 � ]s � m]	c =def [X(s) b= �:out(p):X(s0) j 0 < ]s � m]	o =def [X(s) b= �:X(s0) j 0 < ]s � m]	r =def [X(s) b= �:out(s0):X(s) j 0 < ]s � m]	p =def [X(s) b= �:out((s0)0):X(s0 : s00) j 1 < ]s � m]We use p to denote messages which has been corrupted or created. This is a wayto abstract from their particular value which is immaterial. Also, we assume thatwhen permuted, only one message is delayed. In order to specify more complexfaults, e.g. simultaneous creation, omission and permutation of messages, we canuse the summation 	e� 	o� 	p of declarations:[X(s) b= �:out(p):X(s) j ]s = 0][X(s) b= �:out(p):X(s) + �:X(s0) j ]s = 1][X(s) b= �:out(p):X(s) + �:X(s0) + �:out((s0)0):X(s0 : s00) j 1 < ]s � m] 215



7 Fault Transformation of ProcessesThe primary e�ect of faults is that a process no longer behaves according tothe normal transition relation ) . In addition to ) , it can also performtransitions ������)	 , speci�ed by 	 2 D. This is a direct, semantic method to repre-sent e�ects of faults on the behaviour of the process. In this section we presentan alternative, syntactic method. The idea is to capture the e�ect of faults,speci�ed by 	 , by the process transformation T ( � ; 	 ) where for any Q 2 P	 ,its behaviour in the 	 -a�ected environment is `the same' as the behaviour ofT (Q;	 ) in the environment which is free of faults [Liu91, LJ91]. We show thatT (Q;	 ) yields the binary relation on P � P	 which coincides with <! and thesatisfaction relation which agrees with jj=. In the conditional case we provide atransformation eT ( � ; 	; n) which is shown to coincide with <! n and jj=n.7.1 Fault-ToleranceConsider 	 2 D which speci�es transitions ������)	 and a process hE;�i 2 P	with the well-de�ned, 	 -a�ected semantics )	 . If hE;�i has no identi�ers incommon with 	 then hE;�i is not a�ected by the transitions ������)	 . Supposethat X 2 dom(�)\ dom(	 ) and that transitions of hE;�i can be inferred fromhX;�i )�	 hE0;�i. We have eitherh[[�]](X);�i )�	 hE0;�ihX;�i )�	 hE0;�i or h[[	 ]](X);�i )�	 hE0;�ihX;�i )�	 hE0;�i (26)where the �rst transition is normal (it uses � to interpret X) and the secondis faulty (it uses 	 ). The ability of hE;�i to perform the second transition (withrespect to ) ) can be syntactically represented by summation, by rede�ningits process identi�er X as [[�]](X) + [[	 ]](X). To represent the capacity for alltransitions in ������)	 , such a summation must be performed for all identi�ers X 2dom(�) \ dom(	 ). This leads to the following transformation:T (hE;�i; 	 ) =def hE;�� 	 i (27)We would like to show that T (hE;�i; 	 ) captures the e�ect of faults, speci�edby 	 on hE;�i. Observe �rst that declarations (and thus transformation T )`persist' through the transitions )	 and ) :If hE;�i )�	 Q0 then Q0 � hE0;�i for some E0.If T (hE;�i; 	 ) )� R0 then R0 � T (hE0;�i; 	 ) for some E0. (28)Both statements can be shown by transitional induction. Transitional inductionis also employed to prove the following lemma (for details see Appendix B):Lemma3.If Q 2 P	then Q )�	 Q0 i� T (Q;	 ) )� T (Q0; 	 ).16



Transformation T ( � ; 	 ) induces the satisfaction relation on P	 �M whichholds between a process Q 2 P	 and a formula M 2 M i� T (Q;	 ) j= M .Applying Lemma 3, we can show that this relation coincides with jj=:Proposition4.If M 2M, Q 2 P	 andtransitions ������) are speci�ed by 	then Q jj=M i� T (Q;	 ) j= MProof. By induction on the structure of formulas M , applying Lemma 3. Fordetails see Appendix B. 2Transformation T ( � ; 	 ) also induces the binary relation on P � P	 whichholds between P 2 P and Q 2 P	 i� P � T (Q;	 ). The following propositionasserts that this relation coincides with must-bisimilarity <! :Proposition5.If P 2 P, Q 2 P	 andtransitions ������) are speci�ed by 	then P <! Q i� P � T (Q;	 )Proof. It is easy to see that for weak-image-�nite )	 , this statement followsfrom the characterisation theorem (16) and Propositions 1 and 4. For any )	 ,it follows from the fact that:B � P � P	 is a must-bisimulation i� T(B; 	 ) is a bisimulation (29)where T(B; 	 ) =def f(P; T (Q;	 )) j (P;Q) 2 Bg. For details see Appendix B. 2Thus for must-bisimilarity <! , we have the equivalence diagram (1) of allthree approaches to verify fault-tolerance, given ������)	 such that )	 is weak-image-�nite. For )	 which is not weak-image-�nite, we cannot guarantee thatP j= M i� Q jj=M for all M 2 M implies P <! Q.Moreover, for may-bisimilarity <? , we cannot guarantee that P � T (Q;	 ) im-plies P <? Q. However, applying equivalences (7) and (29) it is easy to see thatB � P �P	 is a may-bisimulation i� it is a bisimulation together with T(B; 	 ).As a result, given transitions ������)	 , we have the following statements:P � Q i� (P;Q) 2 B for B which is a bisimulationP <! Q i� (P;Q) 2 B for B such that T(B; 	 ) is a bisimulation.P <? Q i� (P;Q) 2 B for B which is a bisimulation together with T(B; 	 ):17



Example 8. Consider m;w > 0 and the task to ensure a reliable communication,speci�ed by the bounded bu�er Bufw, over a medium of capacity m whichomits and replicates messages. To this end, we will use a version of the slidingwindow protocol with the window size w. The protocol consists of two processes,the sender So and the receiver Ro. The �rst transmits all messages with theirsequence numbers i modulow+1, such that at mostw messages are sent withoutbeing acknowledged. Suppose, for simplicity, that acknowledgements take placeby synchronising So and Ro on the action ack. We use s for the sequence ofmessages sent but not acknowledged (]s � w) and repeatedly retransmit s0. Forall arithmetic operations taken modulo w + 1 we have:So =def hZs(0; "); [Zs(i; s) b= in(x):Zs(i; s; x) j 0 � ]s < w]�[Zs(i; s) b= ack:Zs(i; s0) j 0 < ]s � w]�[Zs(i; s) b= out(i � ]s; s0):Zs(i; s) j 0 < ]s � w][Zs(i; s; x) b= out(i; x):Zs(i + 1; s : x) j 0 � ]s < w]�[Zs(i; s; x) b= ack:Zs(i; s0; x) j 0 < ]s < w]�[Zs(i; s; x) b= out(i � 1; s0):Zs(i; s; x) j 0 < ]s < w]iRo =def hZr(0); [Zr(i) b= in(j; x): if i = jthen out(x):ack:Zr(i+ 1)else Zr(i)]iGiven such So and Ro, we can prove that:Bufw � (So a T (Bufm; 	o� 	r)a Ro)nfackgand consequently Bufw <! (So a Bufm a Ro) n fackg, following Proposition 5and the fact that processes So and Ro are not a�ected by 	o � 	r (they havedisjoint sets of identi�ers). However, the above statement does not depend onthe transitions speci�ed by 	o�	r and we can �nd a bisimulation B such that(Bufw ; (So a Bufm a Ro) n fackg) 2 B and T(B; 	o � 	r) is a bisimulation.Thus we have Bufw <? (So aBufm aRo)nfackg. 27.2 Conditional Fault-ToleranceConsider declaration 	 and a process hE;�i 2 P	 . Suppose that we want toverify hE;�i in the presence of transitions ������)	 and under assumption n abouttheir quantity. To this end, like before, we will use process transformations. Theidea is to use a family fXigni=0 of identi�ers for each identi�er X of � or 	 .Consider i 2 [0; n] and the following transformations bT i(�; n) and eT i(�; 	; n):bT i(hE;�i; n) =def hEi;�ni andeT i(hE;�i; 	; n) =def T ( bT i(hE;�i; n); 	n)where Ei =def EfXi=X j X 2 X (E)g�n =def [Xi b= FfY0=Y j Y 2 X (F )g j [[�]](X) = F ^ 0 � i � n]	n =def [Xi b= FfYi+1=Y j Y 2 X (F )g j [[	 ]](X) = F ^ 0 � i < n]18



Thus eT i is de�ned in terms of transformations T and bT i. Also, �n is obtainedfrom � by replacing each declaration X b= F with the family of declarationsXi b= FfY0=Y j Y 2 X (F )g, for all i 2 [0; n], and similarly for 	n but only giveni 2 [0; n). Finally, we de�ne bT (�; n) and eT (�; 	; n) taking i = 0:bT (hE;�i; n) =def bT 0(hE;�i; n)eT (hE;�i; 	; n) =def eT 0(hE;�i; 	; n) (30)Recall the family f )	 ijgni;j=0 of relations which denotes the e�ect of transitions������)	 on the semantics of P	 , under assumption n about their quantity. Thereare two problems to obtain the same e�ect using transformations:1. Consider X 2 dom(�) \ dom(	 ) and hX;�i )�	 hE;�i which can be in-ferred from h[[�]](X);�i )�	 hE;�i or h[[	 ]](X);�i )�	 hE;�i. The problemappears when hX;�i )�	 hE;�i can be inferred from both of them. Then itis always regarded as `normal' by )	 ij but not always by eT (�; 	; n). If nosuch E and � exists then we say that 	 has the proper e�ect on �.2. The second problem is that in case of eT (�; 	; n) (but not )	 ij), some tran-sitions do not `update' the index i. Suppose that 	 =def [X b= �:a:X] and� =def [X b= b:X]. Then we have: hX;�i ������)�	 ha:X;�i )a hX;�i and thushX;�i )�a	 00hX;�i, however eT 0(hX;�i; 	; n) )�a eT 1(hX;�i; 	; n). We cansolve this problem assuming that all expressions involved are linear i.e. theyare of the formPki=1 �i:Xi (� is linear if all F 2 ran(�) are linear).Under assumption about the linear form of � and 	 , we can easily show that:if hX;�i )�	 Q0 then Q0 � hY;�i andif eT i(hX;�i; 	; n) )� R0 then R0 � eT j(hY;�i; 	; n) (31)where Y 2 X and j 2 [0; n]. Then we have the following lemma:Lemma6.If hX;�i 2 P	 where	 has the proper e�ect on � and 	 and � are linearthen hX;�i )s	 ijhY;�i i� eT i(hX;�i; 	; n) )s eT j(hY;�i; 	; n)Proof. By induction on the length of s. For details see Appendix C. 2Like before, transformation eT ( � ; 	; n) induces two relations: the satisfaction re-lation which holds between Q 2 P	 and M 2M i� eT (Q;	; n) j=M and the bi-nary relation which holds between P 2 P and Q 2 P	 i� P � eT (Q;	; n). Underassumptions of Lemma 6, we can show that the �rst relation coincides with con-ditional satisfaction relation and the second with conditional must-bisimilarity:Proposition7.If M 2M and hX;�i 2 P	 where	 has the proper e�ect on � and 	 and � are linearthen hX;�i jj=n M i� eT (hX;�i; 	; n) j=M19



Proof. We show that for all i 2 [0; n], hX;�i jj=in M i� eT i(hX;�i; 	; n) j= M .The proof proceeds by induction on the structure of M , applying Lemma 6. Fordetails see Appendix C. 2Proposition8.If P 2 P and hX;�i 2 P	 where	 has the proper e�ect on � and 	 and � are linearthen P <! nhX;�i i� P � eT (hX;�i; 	; n)Proof. For weak-image-�nite )	 , this statement follows from (16) and Propo-sitions 2 and 7. For any )	 and family fBigni=0 such that if (P;Q) 2 Bi thenQ � hX;�i, it follows from the fact that:fBigni=0 is a conditional must-bisimulation i�eT(fBigni=0; 	; n) is a bisimulation (32)where eT(fBigni=0; 	; n) =def Sni=0f(P; eT i(Q;	; n)) j (P;Q) 2 Big.For details of the proof see Appendix C. 2Assuming additionally that all right-side expressions in 	 are of the formPki=1 �:Xi, the same result can be obtained applying auxiliary actions, concur-rent composition and processes Rn (Example 5):eT 0(hX;�i; 	; n) =def (hX; (�� a)� (b� 	 )i j Rn)nfa; bgwhere [[�� a]](X) = [[�]](X)fa:Y=Y j Y 2 X ([[�]](X))g.Thus for <! n and under assumptions of Lemma 6, we have the equivalencediagram similar to (1), given ������)	 such that )	 is weak-image-�nite. Con-sider bT(fBigni=0; n) =def Sni=0f(P; bT i(Q;n)) j (P;Q) 2 Big. For <? n we canshow that fBigni=0 is a conditional may-bisimulation i� eT(fBigni=0; 	; n) andbT(fBigni=0; n) are bisimulations.Although the linear form of � and 	 is necessary to establish these results,the meaning of eT and bT for non-linear � and 	 is also well-understood. Whilein the �rst case all transitions are signi�cant, they all `update' the index i, inthe second case only chosen ones are signi�cant. The main reason for `mismatch'between eT (�; 	; n) and )	 ij for non-linear expressions lies in the restrictive formof the latter. In the following example we will illustrate using transformationseT to verify conditional fault-tolerance for hE;�i and 	 which is not linear.Example 9. Consider n;m > 0 and the task to ensure a reliable communication(speci�ed by Bufm+n+2) over a mediumof capacitym which permutes messages.To this end we will use two processes: the sender Spn and the receiver Rpn. Inorder to determine the proper transmission order, messages will be send by Spnwith their sequence numbers modulo n. The value of n determines the numberof parallel components Sti of Rpn (i = 0; : : : ; n � 1), each one used to store amessage with the sequence value i, received out-of-order. The value of ? meansthat no message is stored. Suppose that the summation i + 1 below is takenmodulo n. Then we have: 20



Spn =def hZs(0); [Zs(i) b= in(x):out(x; i):Zs(i + 1) j 0 � i < n]iRpn =def (Ctr j St0 j � � � j Stn�1)nfst0; : : : ; stn�1gCtr =def hZr(0); [Zr(i) b= in(x; j): if i = jthen out(x):Zm(i + 1)else stj(x):Zr(i) j 0 � i < n][Zm(i) b= sti(x): if x = ?then Zr(i)else out(x):Zm(i + 1) j 0 � i < n]iSti =def hZmi; [Zmi b= sti(x):sti(x):Zmi + sti(?):Zmi]i, 0 � i < nWe can shown that the process Spn a Bufm a Rpn tolerates 	p, provided thenumber of successive permutations is not greater than n:Bufm+n+2 � eT (Spn aBufm a Rpn; 	p; n) 28 ConclusionsCurrently, there is a number of methods for specifying and proving correctness ofsystems which are tolerant of faults in the operating environment [Cri85, JH87,LJ91, Nor92, Pel91, PJ93, Pra87]. Based on di�erent formalisms and varioussemantic models, of systems and faults, using di�erent ways to represent e�ectsof faults on the behaviour of systems, they are di�cult to compare and relate. Inparticular, it is not certain whether a system which is fault-tolerant with respectto one of these methods is also fault-tolerant according to the others.This relationship is clear for three methods de�ned in this paper: algebraic,logical and transformational. Based on the common semantic model of labelledtransition systems, which is also used to model faults, all three methods havebeen proved equivalent for certain classes of faults. The equivalence holds in twocases, unconditional, where no assumption is made about the quantity of faults,and conditional, given the maximal number of times they can occur successively.There is a number of directions that we plan to develop this work. We planto study the use of other bisimulation-like relations, like the partial [Wal90],the `terminating' [AH92] and the context-dependent [Lar87] bisimilarities forfault-tolerance. In the presence of faulty transitions, a convergent process maydiverge and the one which terminates (successfully) may deadlock. We planto relate our theory with modal speci�cations [LT88] which constrain possibleimplementations by two kinds of transitions, necessary and admissible (any nec-essary transition is also admissible). Bisimulation gives rise to the re�nementordering between modal speci�cations which is di�erent however from the re-lations de�ned in this paper. We plan to determine the class of contexts (builtfrom the operators of the process language) where our relations, especially thestronger, may-bisimilarity, is substitutive. Last but not least, we plan to supportthe development of fault-tolerant processes, based on the veri�cation theory ofthis paper and using the decomposition of faults speci�ed in our language.21
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A Proofs from Section 4Lemma9.B is a must-bisimulation i� for all (P;Q) 2 B and s 2 A�:whenever P )s P 0 then 9Q0;t Q )t Q0 ^ bs = bt ^ (P 0; Q0) 2 Bwhenever Q )s Q0 then 9P 0 ;t P )t P 0 ^ bs = bt ^ (P 0; Q0) 2 BProof. ()) Consider (P;Q) 2 B and let P � P0 )�1 � � � )�n Pn � P 0 wheren � 0 and s = �1 : : :�n. If n = 0 then P 0 � P and it is enough to take t = "and Q0 � Q. If n > 0 then for all k 2 [1; n] there exists Qk and tk such thatQk�1 )tk Qk, btk = c�k and (Pk; Qk) 2 B. Let t =def t1 : � � � : tn. Then Q )t Q0,bt = bs and (P 0; Q0) 2 B. For Q )s Q0 the proof is the same.(() It is enough to take s such that ]s = 1. 2Proof of Proposition 1.()) Let P <! Q andM 2M. We will show that P j=M i� Q jj=M , by inductionon M . Let P j= h�iM1 (for true, M1^M2 and :M1 the proof is obvious). ThenP )s P 0 where bs = � and P 0 j= M1 for some s and P 0. Applying Lemma 9,there exists t and Q0 such that Q )t Q0, bt = bs and P 0 <! Q0. Then, by inductionwe have Q0 jj=M1 and �nally Q jj= h�iM1. For Q jj= h�iM1 the proof is similar.(() Consider B =def f(P;Q) j 8M2M P j= M , Q jj= Mg and supposethat ) is weak-image-�nite. We will show that B is a must-bisimulation. Let(P;Q) 2 B and P )� P 0. Then P j= hb�itrue and Q jj= hb�itrue what givesQ )s Q0 for some s (bs = b�) and Q0. Let Q be the set of all such Q0. Because) is weak-image-�nite, we have Q = fQigni=1 for some n > 0. Then, it isenough to �nd i 2 [1; n] such that (P 0; Qi) 2 B. Suppose on the contrary, thatfor all i 2 [1; n] there exists Mi 2 M such that P 0 j= Mi and Qi 6jj= Mi. LetM =def M1 ^ � � � ^Mn. Then we have P 0 j= M and so P j= hb�iM , howeverQ 6jj= hb�iM in spite of (P;Q) 2 B. For Q )� Q0 the proof is the same ( ) isalso weak-image-�nite). 2Lemma10.If Q )s ijQ0 )t jkQ00 then Q )s:t ikQ00.Proof. By induction on the length of s. If Q )" ijQ0 )t jkQ00 then we have Q0 � Qand i = j what implies Q )":t ikQ00. If Q )�:s ijQ0 )t jk then either i < n andQ ������)� Q000 )s i+1j Q0 )t jkQ00 or Q )� Q000 )s 0jQ0 )t jkQ00 for some Q000. In the�rst case by induction Q000 )s:t i+1k Q00 so we get Q )�:s:tikQ00. In the second case byinduction Q000 )s:t 0kQ00 so we �nally get Q )�:s:tikQ00. 2Lemma11.Consider fBigni=0 where Bi � P � P for i 2 [0; n]. fBigni=0 is a conditionalmust-bisimulation i� for all i; j 2 [0; n], (P;Q) 2 Bi and s 2 A�:whenever P )s P 0 then 9Q0;j;t Q )t ijQ0 ^ bt = bs ^ (P 0; Q0) 2 Bjwhenever Q )s ijQ0 then 9P 0 ;t P )t P 0 ^ bt = bs ^ (P 0; Q0) 2 Bj23



Proof. ()) Consider i 2 [0; n], (P;Q) 2 Bi and s = �1 : : :�n. Suppose thatP � P0 )�1 � � � )�n Pn � P 0 for n � 0. If n = 0 then it is enough to take t = ",j = i and Q0 � Q. It n > 0 then for all k 2 [1; n] there exists Qk, tk and ik suchthat Qk�1 )tk ik�1ik Qk, btk = c�k and (Pk; Qk) 2 Bik where Q0 � Q and i0 = i. Lett = t1 : � � � : tn. Then bt = bs, (P 0; Qn) 2 Bin and from Lemma 10, Q )t iinQn.For Q )s ijQ0 the proof is similar.(() It is enough to take s such that ]s = 1. 2Proof of Proposition 2.()) Let i 2 [0; n], P <! inQ and M 2M. We will show that P j= M i� Q jj=in Mby induction on M . Let P j= h�iM1 (for true, M1 ^M2 and :M1 the proof isobvious). Then P )s P 0 and bs = � for some P 0 such that P 0 j= M1. ApplyingLemma 11, there exists t (bt = �) and j such that Q )t ijQ0 and P 0 <! jnQ0 forsome Q0. Then by induction we have Q0 jj=jn M1 and thus Q jj=in h�iM1. ForQ jj=in h�iM1 the proof is similar.(() Let Bi =def f(P;Q) j 8M2M P j= M , Q jj=in Mg and suppose that) is weak-image-�nite. We will show that fBigni=0 is a conditional must-bisimulation. Suppose that i 2 [0; n], (P;Q) 2 Bi and P )� P 0. Then we haveP j= hb�itrue and Q jj=in hb�itrue so Q )s ijQ0 for some j and s such that bs = b�.Let Qj be the set of all such Q0. Because ) is weak-image-�nite, we haveQj = fQjkgkjk=1 where kj � 0 and there exists j such that kj > 0. Then it isenough to show that for some j there exists k 2 [1; kj] such that (P 0; Qjk) 2 Bj .Suppose on the contrary: for all j 2 [0; n] and for all k 2 [1; kj] there existsM jk 2M such that P 0 j= M jk and Qjk 6jj=M jk . LetM =def Vnj=0 Vkjk=1 M jk . Thenwe have P 0 j= M so P j= hb�iM , however Q 6jj=in hb�iM in spite of (P;Q) 2 Bi.For Q )s ijQ0 the proof is the same, because ) is also weak-image-�nite. 2B Proofs from Section 7.1Proof of Lemma 3.We proceed by transitional induction. Let � =def �� 	 .()) If Q � hE;�i )�	 Q0 then Q0 � hE0;�i (28) and we will show thathE;� i )� hE0; � i by induction on the inference of transition hE;�i )�	 hE0;�i.There are six cases:1. E � �E0. Then h�:E0; � i )� hE0; � i.2. E � E1 + E2. Then either hE1;�i )�	 hE0;�i or hE2;�i )�	 hE0;�i. Forthe �rst (the second is symmetrical), by induction hE1; � i )� hE0; � i andso we have hE1 + E2; � i )� hE0; � i.3. E � E1jE2. Then there are three cases:(a) hE1;�i )�	 hE01;�i where E0 � E01jE2. Then by induction we havehE1; � i )� hE01; � i and so hE1jE2; � i )� hE01jE2; � i.(b) hE2;�i )�	 hE02;�i where E0 � E1jE02 is similar.(c) hE1;�i )a	 hE01;�i and hE2;�i )a	 hE02;�i for � = � and E0 � E01jE02.By induction hE1; � i )a hE01; � i and hE2; � i )a hE02; � i and so we havehE1jE2; � i )� hE01jE02; � i. 24



4. E � E1 nL. Then hE1;�i )�	 hE01;�i for �; � 62 L and E0 � E01 nL. Thusby induction hE1; � i )� hE01; � i and so hE1nL; � i )� hE01nL; � i.5. E � E1[f ] is similar.6. E � X. Then either h[[�]](X);�i )�	 hE0;�i or h[[	 ]](X);�i )�	 hE0;�i.Consider the �rst (the second is symmetrical), then X 2 dom(�) and byinduction h[[�]](X); � i )� hE0; � i. There are two cases:(a) X 62 dom(	 ). Then hX;� i )� hE0; � i because [[� ]](X) = [[�]](X).(b) X 2 dom(	 ). Then [[� ]](X) = [[�]](X)+[[	 ]](X) from (25) and so becauseh[[�]](X) + [[	 ]](X); � i )� hE0; � i, we have hX;� i )� hE0; � i.(() Let T (Q;	 ) )� R0 where Q � hE;�i. Then R0 � T (hE0;�i; 	 ) applying(28) and we will show that hE;�i )�	 hE0;�i, using the similar induction onthe inference of the transition hE;� i )� hE0; � i. Consider E � X only. Thenh[[� ]](X); � i )� hE0; � i and by induction we have h[[� ]](X);�i )�	 hE0;�i. Thusthere are two cases:1. X 62 dom(	 ). Then [[� ]](X)=[[�]](X) so hX;�i )�	 hE0;�i.2. X 2 dom(	 ). Then [[� ]](X) = [[�]](X) + [[	 ]](X) applying (25) so we eitherhave h[[�]](X);�i )�	 hE0;�i or h[[	 ]](X);�i )�	 hE0;�i. In both cases we�nally get hX;�i )�	 hE0;�i. 2Proof of Proposition 4.We will show that Q jj= M i� T (Q;	 ) j= M by induction on the structure ofM . Let T (Q;	 ) j= h�iM1 (for true, M1 ^M2 and :M1 the proof is obvious).Then T (Q;	 ) )s R0 where bs = �, R0 j= M1 and R0 � T (Q0; 	 ) applying (28).Thus Q )s	 Q0 from Lemma 3 and by induction we have Q0 jj= M1. As a resultQ jj= h�iM1. For Q jj= h�iM1 the proof is similar. 2Proof of Proposition 5.()) Let P <! Q. Then (P;Q) 2 B which a must-bisimulation for ������)	 . Wewill show that T(B; 	 ) =def f(P; T (Q;	 )) j (P;Q) 2 Bg is a bisimulation. IfP )� P 0 then Q )s	 Q0 where bs = b� and (P 0; Q0) 2 B for some Q0. But then(P 0; T (Q0; 	 )) 2 T(B; 	 ) and T (Q;	 ) )s T (Q0; 	 ) what follows from Lemma3. If T (Q;	 ) )� R0 then we get R0 � T (Q0; 	 ) (28) and applying Lemma 3 wehave Q )�	 Q0. Thus there exists P 0 such that P )s P 0, bs = b� and (P 0; Q0) 2 B.Because then (P 0; T (Q0; 	 )) 2 T(B; 	 ), T(B; 	 ) is a bisimulation.(() If P � T (Q;	 ) then (P; T (Q;	 )) 2 B which is the least bisimulation withthis property. Applying (28), it is easy to see that there exists C � P � P	such that B = T(C; 	 ) and it is enough to prove that C is a must-bisimulation.Let (P;Q) 2 C and P )� P 0. Then (P; T (Q;	 )) 2 B and applying (28) thereexists Q0 and s such that T (Q;	 ) )s T (Q0; 	 ), bs = b� and (P 0; T (Q0; 	 )) 2B. Then we have (P 0; Q0) 2 C and Q )s	 Q0 from Lemma 3. Let Q )�	 Q0.Then T (Q;	 ) )� T (Q0; 	 ) from Lemma 3 and there exists P 0 and s such thatP )s P 0, bs = b� and (P 0; T (Q0; 	 )) 2 B. Thus (P 0; Q0) 2 C what completes theproof that C is a must-bisimulation. 225



C Proofs from Section 7.2Proof of Lemma 6:We proceed by induction on the length of s. Let �n =def �n � 	n.()) For s = " it is immediate. Let hX;�i )�:s	 ijhY;�i. Because the right-sideexpressions of � and 	 are linear, applying (31) there exists Z and k such thathX;�i )�	 hZ;�i )s	 kj hY;�i. There are two cases:{ hX;�i )� hZ;�i where k = 0. Because 	 has the proper e�ect on �, thistransition can be only inferred from h[[�]](X);�i )� hZ;�i. Thus we haveh[[�n]](Xi); �ni )� hZ0; �ni and by induction:eT i(hX;�i; 	; n) )� eT 0(hZ;�i; 	; n) )s eT j(hY;�i; 	; n){ hX;�i ������)�	 hZ;�i where i 6= n and k = i + 1. It can be only inferred fromh[[	 ]](X);�i )�	 hZ;�i and so h[[	 ]](X);�i )� hZ;�i (	 is linear). Thus wehave h[[�n]](Xi); �ni )� hZi+1; �ni because i 6= n and by inductioneT i(hX;�i; 	; n) )� eT i+1(hZ;�i; 	; n) )s eT j(hY;�i; 	; n)(() For s = " it is immediate. Let eT i(hX;�i; 	; n) )�:s eT j(hY;�i; 	; n). Apply-ing (31), eT i(hX;�i; 	; n) )� eT k(hZ;�i; 	; n) )s eT j(hY;�i; 	; n) for some Zand k. The �rst transition can be only inferred from h[[�n]](Xi); �ni )� hZk; �niand there are two possible cases:{ h[[�n]](Xi); �ni )� hZk; �ni where k = 0. Then h[[�]](X);�i )� hZ;�i andby induction we have hX;�i )� hZ;�i )s	 0jhY;�i and hX;�i )�:s	 ijhY;�i.{ h[[	n]](Xi); �ni )� hZk; �ni where i 6= n and k = i + 1. Then we haveh[[	 ]](X);�i )� hZ;�i so hX;�i ������)�	 hZ;�i (	 has the proper e�ect on �).Thus by induction, hX;�i ������)�	 hZ;�i )s	 i+1j hY;�i so hX;�i )�:s	 ijhY;�i. 2Proof of Proposition 7:It is enough to show that for all i 2 [0; n] and M 2M:hX;�i jj=i M i� eT i(hX;�i; 	; n) j= MThe proof proceeds by induction on the structure of M .()) Let hX;�i jj=i h�iM1. Then hX;�i )s	 ijQ0 where bs = �, Q0 jj=j M1 and by(31), Q0 � hY;�i for some Y 2 X . Thus eT i(hX;�i; 	; n) )s eT j(hY;�i; 	; n)applying Lemma 6 and by induction, eT j(hY;�i; 	; n) j= M1. Then becausebs = �, we �nally have eT i(hX;�i; 	; n) j= h�iM1. In the remaining cases (true,:M1 and M1 ^M2) the proof is obvious.(() Let eT i(hX;�i; 	; n) j= h�iM1. Then eT i(hX;�i; 	; n) )s R0 where bs = �,R0 j= M1 and by (31), R0 � eT j(hY;�i; 	; n) for some Y 2 X and j 2 [0; n]. Thuswe have hX;�i )s	 ijhY;�i applying Lemma 6, and by induction hY;�i jj=j M1.Finally we get hX;�i jj=i h�iM1 (bs = �). The remaining cases are simple. 226



Proof of Proposition 8:()) Let P <! nhX;�i. Then (P; hX;�i) 2 B0 where fBigni=0 is the smallestconditional must-bisimulation with this property, and it is enough to show thateT(fBigni=0; 	; n) =def Sni=0f(P; eT i(hX;�i; 	; n)) j (P; hX;�i) 2 Bigis a bisimulation. Let i 2 [0; n] and (P; eT i(hX;�i; 	; n)) 2 eT(fBigni=0; 	; n)where (P; hX;�i) 2 Bi. We have:{ If P )� P 0 then hX;�i )s	 ijQ0 where bs = b�, j 2 [0; n], (P 0; Q0) 2 Bj andQ0 � hY;�i applying (31). Thus (P 0; eT j(hY;�i; 	; n)) 2 eT(fBigni=0; 	; n)and eT i(hX;�i; 	; n) )s eT j(hY;�i; 	; n) from Lemma 6.{ If eT i(hX;�i; 	; n) )� R0 then R0 � eT j(hY;�i; 	; n) for some Y and j (31)and applying Lemma6 we have hX;�i )�	 ijhY;�i. Because (P; hX;�i) 2 Bi,there exists P 0 and s (bs = b�) such that P )s P 0, (P 0; hY;�i) 2 Bj and�nally (P 0; eT j(hY;�i; 	; n)) 2 eT(fBigni=0; 	; n).(() Let P � eT (hX;�i; 	; n) and (P; eT (hX;�i; 	; n)) 2 B where B is thesmallest bisimulation with this property. Applying (31), it is easy to see thatthere exists fBigni=0 such that B = eT(fBigni=0; 	; n), and it is enough to showthat fBigni=0 is a conditional must-bisimulation. Let (P; hX;�i) 2 Bi wherei 2 [0; n]. Then (P; eT i(hX;�i; 	; n)) 2 B and we have:{ If P )� P 0 then eT i(hX;�i; 	; n) )s R0 where (P 0; R0) 2 B, bs = b� andR0 � eT j(hY;�i; 	; n) for some Y and j (31). Thus (P 0; hY;�i) 2 Bj andapplying Lemma 6 we have hX;�i )s	 ijhY;�i.{ If hX;�i )�	 ijQ0 then Q0 � hY;�i (31) and applying Lemma 6 we haveeT i(hX;�i; 	; n) )� eT j(hY;�i; 	; n). Thus there exists P 0 and s (bs = b�)such that P )s P 0 and (P 0; eT j(hY;�i; 	; n)) 2 B. Then it is enough to notethat (P 0; hY;�i) 2 Bj . 2
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