
http://wrap.warwick.ac.uk/

Original citation:
Janowski, Tomasz (1994) Stepwise transformations for fault-tolerant design of CCS
processes. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-275

Permanent WRAP url:
http://wrap.warwick.ac.uk/60951

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60951
mailto:publications@warwick.ac.uk

1Stepwise Transformations for Fault-Tolerant Design of CCS Processes �Tomasz Janowski yDepartment of Computer Science, University of Warwick,Coventry CV4 7AL, United KingdomThis paper provides an approach to the formal design of distributed, fault-tolerantprocesses, using the language of CCS and the theory of bisimulations. The novel featureof the method is the language by which hypotheses about faults can be speci�ed and alsocombined. The development of a fault-tolerant process, under a fault hypothesis, makesuse of the structure of this hypothesis. This allows to �rst design a process which does nottolerate any faults and then to stepwise transform this process to tolerate an increasingvariety of faults. We illustrate this approach designing a protocol which ensures a reliabletransmission for weak assumptions about the faults of the underlying medium.1. INTRODUCTIONIt is widely believed that a retrospective proof of correctness, for programs of realis-tic size, is infeasible in practice. Much e�ort is thus spent to ensure that proof systemssupport the stepwise development of programs, allowing to reason about them composi-tionally: a program is correct if only its components can be proven correct. The resultingprogram is then correct by construction. However, the absence of (software) design faultsdoes not guarantee that the program will behave properly in practice. There is a class offaults that is not due to the wrong design decisions but to the malfunction of hardwarecomponents upon which the program relies. Such faults are often due to the physicalphenomena and only occur under speci�c environmental conditions e.g. electromagneticperturbation. Because they do not exist before a system is put into practice, they cannotbe removed beforehand but have to be tolerated.Clearly, it is not possible to tolerate arbitrary faults. Deciding which faults are antic-ipated (and thus should be tolerated) and which are not (such faults are catastrophical)is the role of the fault hypothesis. The task is then to design a program which behavesproperly in the presence of the anticipated hardware faults. A feasible approach to thistask is to separate concerns about the correctness of the program in the absence of faults(the functional correctness) and in the presence of the anticipated faults (fault-tolerance).This can be done in two stages:1: Designing a program which is correct but fault-intolerant.2: Transforming this program into the one which is correct and fault-tolerant.�To appear in the Proceedings of the Seventh International Conference on Formal Description Techniques,Berne, Switzerland, October 1994, Chapman & Hall.ySupported by the University of Warwick, under its Scholarship Scheme for East Europe, and by anOverseas Students Award from the Committee for Vice-Chancellors and Principals.

2 However, while the standard techniques (e.g. the stepwise development) can be used tosupport the �rst development stage, the author is not aware of any technique to handlecomplexity of the second stage. This complexity stems from the fact that the morefaults are anticipated, the more di�cult is the task to ensure that all these faults aretolerated. The lack of the appropriate support can be seen as a major obstacle in theformal development of highly-reliable, fault-tolerant systems.This paper presents a development method for concurrent processes, using the languageof CCS [1], which attempts to �ll this gap. The idea is to use a language where hypotheses	 about faults can be speci�ed and also combined. The development of a fault-tolerantprocess, under a given fault hypothesis, makes use of the structure of this hypothesis. Thisallows to �rst design a process which does not tolerate any faults and then to stepwisetransform this process to tolerate an increasing variety of faults.We use the standard semantic model for concurrent process description languages, thelabelled transition system (P;A;)) where P is the set of processes, A is the set ofactions and) � P � A� P is the labelled transition relation. In order to verify cor-rectness in the presence of the speci�ed faults, we need to represent the e�ect of thesefaults on the behaviour of processes. We do this �rst semantically, providing transitionrelation)	 � P � A � P for 	-a�ected processes Q, and then syntactically, applyingprocess transformation T (Q;) [2, 3]. We show that both methods coincide, i.e. that thesemantics of Q in the 	-a�ected environment (performing transitions)) is `the same'as the semantics of the transformed process T (Q;) in the fault-free environment (per-forming transitions)). This allows to reason about fault-tolerance using the standardveri�cation techniques e.g. applying bisimulation equivalence [1, 4]:Q is the 	-tolerant implementation of P , according �, i� P � T (Q;). (1)For multiple faults 	 and � we provide transition relation)	;� and show that it coincideswith transition relation)	�� for the combined fault 	��. The same is the case when wecompare transformations T (T (Q;�);) and T (Q;	��). As a result, if P � T (Q;	��)then Q is an implementation of P which tolerates (simultaneous) faults 	 and �. Thisenables to develop such Q in two steps:P � T (R1(P);) � T (R2(R1(P));	� �) (2)where R1 and R2 are fault-tolerant transformations which may employ various techniquesto detect (e.g. coding of data), con�ne (e.g. atomic actions) and recover (e.g. backwardand forward recovery) from erroneous states of P . Thus P is transformed to tolerate	� � in stages, one for each sub-hypothesis 	 and �.The rest of this paper is as follows. Both speci�cation languages, of processes and offaults are de�ned in Sections 2 and 3. The veri�cation theory, based on bisimulationsand transformations of processes is introduced in Section 4. In Section 5 we present thedevelopment method for fault-tolerance by the stepwise transformations of processes andexemplify this method designing a protocol which ensures a reliable transmission for weakassumptions about the faults of the underlying medium. Finally, in Section 6, we drawsome conclusions and comment on the directions for future work.

32. SPECIFICATION: PROCESSESIn this section we present the language for describing concurrent processes. The lan-guage is a version of CCS which is slightly modi�ed for our purposes. It is given thestructured operational semantics [5] in terms of the labelled transition relation) . Weproceed describing �rst �nite then recursive and �nally value-passing processes.2.1. Finite ProcessesThe language E of �nite processes is based on a set A of actions. We have � 2 A where� is internal and represents the outcome of a joint activity (interaction) between twoprocesses. The set L =def A�f�g is partitioned between actions a and their complementsa where the function � is bijective and such that a = a. We extend � into A by allowing� = � . Let � 2 A, L � L and f : A ! A where f(�) = � , f(a) 6= � and f(a) = f(a). E,ranged over by E, is de�ned by the grammar:E ::= 0 j �:E j E + E j EjE j E nL j E[f] (3)Informally, 0 denotes a process which is incapable of any actions. �:E is a process whichperforms action � and then behaves likeE. E+F behaves either likeE or like F where thechoice may be nondeterministic. EjF is the parallel composition of E and F where E andF can proceed independently but also synchronise on complementary actions (performingaction �). E nL performs all actions of E except actions in L and their complements.Finally, E[f] behaves like E with all actions a renamed into f(a).The formal semantics of E 2 E is de�ned by induction on the structure of E, in termsof the labelled transition relation) � E � A � E. If (E;�;E 0) 2) then we writeE)� E 0 and say that E performs � and evolves into E0 (we also use E)s E0 for s 2 A�).Following [1],) is de�ned as the least set which satis�es all inference rules in Figure 1.�:E)� E E)� E0E+F)� E 0 F)� F 0E+F)� F 0E)� E 0EjF)� E 0jF F)� F 0EjF)� EjF 0E)a E 0 F)a F 0EjF)� E 0jF 0E)� E 0E nL)� E 0nL; �; � 62 L E)� E0E[f])f(�)E0[f]Figure 1. Operational semantics of �nite processes EWe use one derived operator, E a F , where E and F proceed in parallel with actionsout of E and in of F `joined' and restricted (mid is not used by E or F):E a F =def (E[mid=out]jF [mid=in])nfmidg (4)

42.2. RecursionIt is most common to model hardware devices by cyclic, possibly nonterminating pro-cesses. In order to specify such processes consider a set X of process identi�ers and, withslight abuse of notation, a new grammar for E which extends (3) by X 2 X :E ::= : : : j X (5)We call such E a process expression and use X (E) � X for the set of identi�ers occurringin E. We also use EfY=Xg for process expression E where all identi�ersX are replaced byY . The semantics of E is well-de�ned by) (Figure 1). Such a relation however treats Xlike 0, as incapable of any actions. In order to interpret X, we will use declarations of theform X b= E. IfX 2 X (E) then such X is de�ned by recursion. GivenX b= E and Y b= Fwhere X 2 X (F) and Y 2 X (E), such X and Y are de�ned by the mutual recursion. Inthe sequel we will often need to manipulate declarations for mutually recursive identi�ers.Then, it will be helpful to use a simple language D for specifying collections of suchdeclarations. D, ranged over by � and r, is de�ned by the following grammar:� ::= [] j �[X b= E] j ��r (6)Informally, [] is an empty declaration and X is de�ned as E in �[X b= E] and as E + Fin (�[X b= E])� (r[X b= F]). Formally, � is assigned a denotation [[�]] which is a partialfunction from X to E. We use dom(�) and ran(�) for the domain and the range of [[�]]respectively, and we de�ne [[�]] in Figure 2, by induction on the structure of �.dom([]) =def ;[[�[Y b= E]]](X) =def (E if X = Y[[�]](X) if X 6= Y; X 2 dom(�)[[��r]](X) =def 8><>: [[�]](X) if X 2 dom(�)� dom(r)[[�]](X)+[[r]](X) if X 2 dom(�) \ dom(r)[[r]](X) if X 2 dom(r)� dom(�)Figure 2. Denotational semantics of declarations D.We say that the declaration � is closed if all identi�ers of right-hand side expressionsof � are interpreted by �: SE2ran(�)X (E) � dom(�). A useful abbreviation is to take[X b= E; Y b= F] instead of [][X b= E][Y b= F] and [X b= E j p] for all de�nitions X b= Esuch that the predicate p holds.A process P 2 P is �nally the pair hE;�i of the process expression E and the closeddeclaration � for all identi�ers of E: X (E) � dom(�). The semantics of hE;�i isde�ned, with slight abuse of notation, by transition relation) � P � A� P which isthe least set which satis�es all inference rules in Figure 3. It is easy to see that � persiststhrough the transitions of hE;�i i.e. if hE;�i)� P 0 then there exists E 0 2 E such thatP 0 � hE 0;�i (� is the syntactic identity).

5hEi;�i)�i hE0i;�i; i 2 IhE;�i)� hE0;�i for Ei)�i E 0i; i 2 IE)� E 0 in Figure 1h[[�]](X);�i)� hE;�ihX;�i)� hE;�i for X 2 dom(�)Figure 3. Operational semantics of processes P.Example 1 Consider n 2 N [f1g and let Rn be a process which performs actions aand b; the �rst at any time; the second no more than n times in a row (R0 can neverperform b and R1 can perform b at any time). We have:Rn =def hX0;��riwhere � =def [Xi b= a:X0 j 0 � i � n]r =def [Xi b= b:Xi+1 j 0 � i < n] 2Operators (3) will be also used to combine processes, under syntactic restriction thatprocesses involved have disjoint sets of identi�ers. If dom(�) \ dom(r) = ; then:�:hE;�i =def h�:E;�ihE;�inL =def hE nL;�ihE;�i[f] =def hE[f];�ihE;�i+ hF;ri =def hE + F;��rihE;�i j hF;ri =def hE j F;��ri (7)2.3. Value-PassingIn the language de�ned so far, processes interact by synchronising on complementaryactions a and a. There is no directionality or value which passes between them. Inpractice however, we may �nd it convenient to use a value-passing language for the set Vof values (we assume, for simplicity, that V is �nite).To this end we introduce value constants, value variables x, value and boolean expres-sions e and p built using constants, variables and any function symbols we need. Theseinclude " as the empty sequence;]s as the length of the sequence s; s0, its �rst element;s0, all but the �rst element; s : x, the sequence s with x appended. We also introduceparameters into process identi�ers: X(e1; ::; en) for X of arity n. Then we extend E byinput pre�xes a(x):E, output pre�xes a(e):E and by conditionals if p then E else F . Thesemantics of the resulting language is de�ned by translation into the basic one [1].Example 2 Consider a bu�er of capacity m > 0, Bufm, which receives (by action in)and subsequently transmits (by action out) all values x unchanged, in the same order andwith at most m of them received but not sent. We have:Bufm =def hX(");��riwhere � =def [X(s) b= in(x):X(s : x) j 0 �]s < m]r =def [X(s) b= out(s0):X(s0) j 0 <]s � m] 2

63. SPECIFICATION: FAULTSWe treat transition relation) as the semantics of processes in the idealised, fault-free environment. The primary e�ect of faults however is that processes no longer behaveaccording to) . We use) to model the fault-a�ected semantics and assume that) �) . In the �rst part of this section we show how to specify such relations. Theidea is to use process identi�ers as `states' which can be potentially a�ected by faults.Each process hE;�i provides its own declaration � for process identi�ers. In contrast tothis, `normal' declaration, we specify faults by an alternative, `faulty' declaration 	.For certain faults, fault-tolerance cannot be ensured in full. In these circumstances,we may be satis�ed with its conditional version, for certain assumptions about the quan-tity of faults. Even when the `full' fault-tolerance is (in theory) possible, we may chooseits conditional version to �rst design a process for restricted assumptions about faultsand then to stepwise transform this process to ensure fault-tolerance for more relaxedassumptions. For these reasons, it is important that in addition to possible `faulty' tran-sitions ������) =def) �) , we can also specify assumptions about the quantity of suchtransitions. Such assumptions are introduced in the second part of this section.3.1. Qualitative AssumptionsIn order to specify faults we will use declarations D. As de�ned in Figure 3, transitionsof the process hX;�i are determined by the transitions of h[[�]](X);�i where [[�]](X) isthe process expression assigned to X by �. Consider 	 2 D which assigns yet anotherexpression [[]](X) to X. Such 	 speci�es the following transitions)	 of hX;�i:if h[[]](X);�i)�	 hE;�i then hX;�i)�	 hE;�i.	 is not assumed to be closed. Instead, we assume that all process identi�ers in the right-side expressions of 	 are declared in �, so that)	 does not lead from the well-de�nedprocess to the ill-de�ned one: SF2ran()X (F) � dom(�). We use P	 for the set of allsuch hE;�i. Given 	 which speci�es anticipated faults, we can de�ne a new, 	-a�ectedsemantics of processes, in terms of transition relation)	 � P	 � A � P	 which is theleast set which satis�es inference rules in Figure 4. If (P;�; P 0) 2)	 then we writeP)�	 P 0 (we also use P)s	 P 0 for s 2 A�).hEi;�i)�i	 hE0i;�i; i 2 IhE;�i)�	 hE0;�i for Ei)�i E0i; i 2 IE)� E 0 in Figure 1h[[�]](X);�i)�	 hE;�ihX;�i)�	 hE;�i for X 2 dom(�)h[[]](X);�i)�	 hE;�ihX;�i)�	 hE;�i for X 2 dom()Figure 4. Operational semantics of processes P a�ected by 	.

7Observe that each of the three inference rules in Figure 4 determines a set of rules: onefor each rule in Figure 1 and one for each process identi�erX 2 dom(�) and X 2 dom()respectively. It is easy to see that) �)	 . We will write:P ������)�	 P 0 i� P)�	 P 0 and P 6)� P 0Example 3 Consider the following declarations which specify various communicationfaults of the bounded bu�er Bufm, creation (e), corruption (c), omission (o), repli-cation (r) and permutation (p) of messages:	e =def [X(s) b= �:out(p):X(s) j 0 �]s � m]	c =def [X(s) b= �:out(p):X(s0) j 0 <]s � m]	o =def [X(s) b= �:X(s0) j 0 <]s � m]	r =def [X(s) b= �:out(s0):X(s) j 0 <]s � m]	p =def [X(s) b= �:out((s0)0):X(s0 : s00) j 1 <]s � m]Because we are not interested in the particular value of the corrupted or created messages,we represent them all by the same, distinguished message p. An implicit assumption isthat corruption and creation can be easily detected (although not easily distinguished).We also assume that when permuted, only one message is delayed. 2Consider assumptions 	 and � about faults which a�ect the semantics of hX;�i.Suppose that X 2 dom() \ dom(�). In addition to the `normal' transitions of (X;�),following transitions of h[[�]](X);�i, two kinds of faulty transitions are also possible forhX;�i, according to the `faulty' declarations [[]](X) and [[�]](X) of X. We use transitionrelation)	;� for the semantics of P a�ected by both 	 and � (provided all processidenti�ers in right-side expressions of 	 and � are declared). Such a relation is de�nedby inference rules in Figure 5.hEi;�i)�i	;� hE0i;�i; i 2 IhE;�i)�	;� hE0;�i for Ei)�i E 0i; i 2 IE)� E 0 in Figure 1h[[�]](X);�i)�	;� hE;�ihX;�i)�	;� hE;�i for X 2 dom(�)h[[]](X);�i)�	;� hE;�ihX;�i)�	;� hE;�i for X 2 dom()h[[�]](X);�i)�	;� hE;�ihX;�i)�	;� hE;�i for X 2 dom(�)Figure 5. Operational semantics of processes P a�ected by both 	 and �.It is easy to show that the joint semantic e�ect of faults 	 and � (on processes P) isthe same as the e�ect of the combined fault 	� �:

8Proposition 1If 	;� 2 D and Q 2 P	��then for all � 2 A we have: Q)�	;� Q0 i� Q)�	��Q0.The proof proceeds by induction on the inference of transitions Q)�	;� Q0 and Q)�	��Q0.Example 4 According to Proposition 1, the joint e�ect of the three communicationfaults, creation, omission and permutation of messages, can be speci�ed as 	e�	o�	p.Following denotational semantics of D in Figure 2, 	e �	o �	p equals:[X(s) b= �:out(p):X(s) j]s = 0][X(s) b= �:out(p):X(s) + �:X(s0) j]s = 1][X(s) b= �:out(p):X(s) + �:X(s0) + �:out((s0)0):X(s0 : s00) j 1 <]s � m] 23.2. Quantitative AssumptionsConsider 	 2 D and suppose that transitions)	 are assigned types:) having type0 and ������)	 having type 1. In order to specify the quantity of faulty transitions we will usesets H � f0; 1g� of all admissible sequences of transition types. Because H is intended toconstrain transitions ������)	 only, we assume that " 2 H and if h 2 H then h : 0 2 H (H isclosed with respect to the concatenation of 0).Example 5 Suppose that n 2 N[f1g denotes the maximal number of times transitions������)	 can occur successively (if n =1 then they can occur at any time; if n = 0 then notat all). The set Hn, of all admissible sequences of 0's and 1's, under assumption n, equals:Hn =def (f0; 1g� if n =1f0; 1g� � fh : 1n+1 j h 2 f0; 1g�g if n 2 [0;1) 2Recall that Q)s	 Q0 if Q evolves into Q0 performing the sequence s of transitions)and ������)	 . This may be no longer the case if transitions ������)	 can only occur under assump-tion H about admissible sequences of transition types. When this is the case then we usethe family f)	 hh0gh;h02H of transition relations)	 hh0 � P	�A��P	. If (Q; s;Q0) 2)	 hh0then we write Q)s	 hh0Q0 and say that Q evolves into Q0 by the sequence s 2 A� of transi-tions)	 , under assumption H and given that h is the history of transition types beforeand h0 after transition. Formally,)	 hh0 is de�ned by the following inductive rules:Q)"	 hhQQ)�:s	 hh0Q00 i� 9Q0 Q)� Q0)s	 h:0h0 Q00 _Q ������)�	 Q0)s	 h:1h0 Q00 ^ h : 1 2 H (8)Observe that the induction is well-de�ned: the �rst rule provides the base, for the emptysequence ", and the second rule decreases the length of the action sequence by one. Thefamily f)	 hh0gh;h02H denotes the semantics of processes P	 when they are a�ected by 	and under assumption H about the quantity of transitions ������)	 .

94. VERIFICATION: BISIMULATION AND TRANSFORMATIONSFault-tolerance is a crucial property for safety-critical systems. Such a system is saidto tolerate anticipated faults when its behaviour is `correct' in an operating environmentwhich contains these faults. As such, fault tolerance depends on the chosen notion ofcorrectness. For verifying correctness we provide the choice of the three relations: traceequivalence, bisimulation equivalence and bisimulation preorder. They give rise to dif-ferent notions of fault-tolerance which is veri�ed using transformations T (�;) to modele�ects of faults on the semantics of processes. Transformations are also used to verifyconditional fault-tolerance, under assumption H about the quantity of faults.4.1. Functional CorrectnessConsider the `weak' transition relation =) � P � (L[f"g)�P where transitions)�are ignored and let � range over L [f"g. We de�ne =)" as the re
exive and transitiveclosure of)� and =)a as the composition =)")a =)" of relations. If (P; �; P 0) 2 =)then we write P =)� P 0. We also write P =)s , s 2 L�, if there exists P 0 such that P =)s P 0.Trace equivalence, denoted �1, identi�es a process with all sequences of (observable)actions that it can perform, like in the standard automata theory:P �1 Q i� for all s 2 L� P =)s i� Q=)s (9)Examples are processes P , Q, R and S in Figure 6 which can all perform the samesequences of actions a and b. Thus P �1 Q �1 R �1 S. Trace equivalence howeveradmits a linear-time approach to process executions, ignoring at which execution stageswhich choices are made. For example P �1 Q but action b is always possible for P and notalways for Q. As a result, in the environment which continually demands b, P will alwaysmeet this demand and Q will sometimes deadlock. Thus �1 is insensitive to deadlock.This is not the case for bisimulation equivalence, � [1, 4], which is de�ned in terms ofrelations B such that if (P;Q) 2 B then for all � 2 L [f"g:whenever P =)� P 0 then 9Q0 Q=)� Q0 ^ (P 0; Q0) 2 Bwhenever Q=)� Q0 then 9P 0 P =)� P 0 ^ (P 0; Q0) 2 B (10)Such B is called a bisimulation and we have P � Q i� there exists a bisimulation Bwhich contains the pair (P;Q). For processes in Figure 6 we have P 6� Q becauseQ=)" Q0 and P =)" P only, however P =)b P 0 but Q0 6 =)b . Also P � R � S becausef(P;R); (P 0; R0); (P 0; R00)g and f(P; S); (P 0; S0); (P 0; S00)g are bisimulations. However, onlyS can engage (after a or b) in the in�nite sequence of actions � so bisimulation equivalenceis insensitive to divergence.The closest to �, divergence-sensitive relation is bisimulation preorder, v [6, 7]. Infor-mally, P v Q i� P and Q are bisimulation equivalent, except perhaps when P diverges,and Q diverges no more than P does. Thus Q is at least as `good' as P : whenever Pconverges, Q must converge as well, however if P diverges then Q need not diverge. Con-sider the predicate # � P where if P 2 # then we write P # and say that the process Pconverges. Based on #, we de�ne P + � if there is no process P 0 such that P =)� P 0 and

10
ba

τ

R

b

P

a bτ

a

Q

τ

a b

S

Q’ Q’’

R’ R’’ S’ S’’

P’

Figure 6. Transition diagrams of P , Q, R and S.which performs action � inde�nitely:P + " i� P # and whenever P)� P 0 then P 0 + "P + a i� P + " and whenever P =)a P 0 then P 0 + " (11)Bisimulation preorder v is de�ned in terms of relations B, called partial bisimulations,such that if (P;Q) 2 B then:whenever P =)� P 0 then 9Q0 Q=)� Q0 ^ (P 0; Q0) 2 Bwhenever P + � then Q + � ^if Q=)� Q0 then 9P 0 P =)� P 0 ^ (P 0; Q0) 2 B (12)We have P v Q i� (P;Q) 2 B for some partial bisimulation B. For processes in Figure6 we have P v R because f(P;R); (P 0; R0); (P 0; R00)g is a partial bisimulation and P 6v Sbecause P + a and S 6+ a.4.2. Fault-ToleranceSuppose that � denotes any one of relations �1, � or v, and consider the high-levelprocess P . Such P determines the set of admissible implementations Q, P � Q, wheresemantics of both P and Q is de�ned by transition relation) . The situation howeveris di�erent if we want to ensure that Q is a fault-tolerant implementation of P , accordingto � and the speci�cation 	 of faults. Informally, such Q should behave `properly' inany environment where faults are speci�ed by 	. Such a 	-a�ected behaviour of Q isthen de�ned by transition relation)	 , in contrast to P which still behaves according to) . This raises the problem of comparing two processes which behaviour is de�ned bydi�erent transition relations) and)	 . In order to solve this problem consider thefollowing transformation T of processes:T (hE;�i;) =def hE;��	i (13)

11It is easy to show that such T provides an equivalent to)	 , syntactic method of repre-senting e�ect of faults on the behaviour of processes, i.e. we can show that:Proposition 2If 	 2 D and Q 2 P	then for all � 2 A we have: Q)�	 Q0 i� T (Q;))� T (Q0;).The proof proceeds by induction on the inference of transitions T (Q;))� T (Q0;) andQ)�	 Q0. Thus the semantics of Q in the 	-a�ected environment is the same as thesemantics of T (Q;) in the fault-free environment and in order to prove that Q is a	-tolerant implementation of P (according to �) it is enough to show that:P � T (Q;) (14)Example 6 Consider the task to ensure a reliable communication (speci�ed by thebounded bu�er Bufm+1, Example 2) over a medium of capacitym which creates messages(speci�ed by 	e, Example 3). To this end we can use a process Ret which ignores all p's:Ret =def hZ; [Z b= in(x):if x = p then Z else out(x):Z]iGiven such Ret, it is easy to prove that Bufm+1 �1 T (BufmaRet;	e). However, we haveBufm+1 6� T (BufmaRet;	e) because after receiving x 6= p and before its transmission,Ret does not accept any more p. The `better' implementation is Re:Re =def hZ; [Z b= in(x):if x = p then Z else Z(x)][Z(x) b= in(p):Z(x) + out(x):Z]iThen we have Bufm+1 � T (Bufm a Re;	e) but Bufm+1 6v T (Bufm a Re;	e) becauseT (BufmaRe;	e) but not Bufm+1 can diverge, due to arbitrary creation of messages. 2The same approach can be used to verify that Q tolerates multiple faults, say faultsspeci�ed by 	 and �. Applying Proposition 1 which shows that the joint e�ect of 	 and�,)	;� , is the same as the e�ect of the combined fault 	 � �,)	�� , and Proposition 2which allows to express)	�� in terms of) and T (�;	��), it is enough to prove that:P � T (Q;	��) (15)4.3. Conditional Fault-ToleranceSuppose now that we want to verify hE;�i in the presence of faulty transitions ������)	and under assumption H � f0; 1g� about admissible transition type histories. To thisend, like before, we will use process transformations. The idea is to use a family fXhgh2Hof the process identi�ers, for each identi�er X of � or 	. The index h of Xh denotes thehistory of transition types. Consider h 2 H and the following transformation fT h(�;	;H):fT h(hE;�i;	;H) =def T (hEh;�Hi;	H) (16)where Eh =def EfXh=X j X 2 X (E)g�H =def [Xh b= FfYh:0=Y j Y 2 X (F)g j [[�]](X) = F ^ h 2 H]	H =def [Xh b= FfYh:1=Y j Y 2 X (F)g j [[]](X) = F ^ h 2 H ^ h : 1 2 H]

12Thus Eh is obtained from E by replacing all process identi�ers X 2 X (E) by Xh; �His obtained from � by replacing each declaration X b= F by the family of declarationsXh b= FfYh:0=Y j Y 2 X (F)g for all h 2 H, and 	H is similar like �H but only takingh 2 H such that h : 1 2 H. Finally, we de�ne fT (hE;�i;	;H) as fT "(hE;�i;	;H).Recall that the e�ect of 	 on the semantics of P	, under assumption H about thequantity of transitions ������)	 , is de�ned by the family f)	 hh0gh;h02H of transition relations.There are two problems to obtain the same e�ect using transformations:1. Consider X 2 dom(�) \ dom() and transition hX;�i)�	 hE;�i which can beeither inferred from h[[�]](X);�i)�	 hE;�i or from h[[]](X);�i)�	 hE;�i. Theproblem appears when hX;�i)�	 hE;�i can be inferred from both of them. Thenit is regarded as `normal' by)	 hh0 but either as `normal' or `faulty' by fT h(�;	;H).If no such E and � exists then we say that 	 has the proper e�ect on �.2. The second problem is that in case of fT h(�;	;H) (but not)	 hh0), some transitions donot contribute to the history h of transition types. Suppose that 	 =def [X b= �:a:X]and � =def [X b= b:X]. Then we have: hX;�i ������)�	 ha:X;�i)a hX;�i)b hX;�iand thus hX;�i)�ab	 hh:100hX;�i, however fT h(hX;�i;	;H))�ab fT h:10(hX;�i;	;H).We can solve this problem assuming that all expressions involved are linear i.e.they are of the form Pki=1 �i:Xi (� is linear if all F 2 ran(�) are linear).Under both conditions it is easy to prove the following proposition:Proposition 3If 	 2 D and hX;�i 2 P	 where	 has the proper e�ect on � and 	 and � are linearthen hX;�i)s	 hh0hY;�i i� fT h(hX;�i;	;H))s fT h0(hY;�i;	;H)The proof proceeds by induction on the length of s. Thus the `normal' semantics offT (hX;�i;	;H) is the same as the 	-a�ected semantics of hX;�i, under assumption H.As a result, in order to prove that hX;�i tolerates 	 under assumption H (with respectto P and according to �), it is enough to show that:P � fT (hX;�i;	;H) (17)Although the linear form of � and 	 is necessary to prove Proposition 3, the meaning offT (hE;�i;	;H) for non-linear � and 	 is also well-understood. While in the �rst caseall transitions are signi�cant, they all contribute to the history h, in the second case onlychosen ones are signi�cant. Thus the main reason for `mismatch' between fT h(�;	;H)and)	 hh0 for non-linear expressions lies in the restrictive form of the latter. In the sequelwe will adopt (17) to verify conditional fault-tolerance for hE;�i and 	 where processexpressions of � and 	 are not necessarily linear.For example we have Bufm+1 v fT (Bufm a Re;	e;Hn) for process Re (Example 6)which ignores all created messages p and for Hn (Example 5) where n 6=1 is the boundon the number of successive occurrences of 	e (Example 3).

13Example 7 Consider n;m > 0 and the task to ensure a reliable communication (speci�edby Bufm+n+2 and according to v) over a medium of capacitym which permutes messages.To this end we will use two processes: the sender Spn and the receiver Rpn. In order todetermine the proper transmission order, messages will be send by Spn with their sequencenumbers modulo n. The value of n determines the number of parallel components Stiof Rpn (i = 0; : : : ; n � 1), each one used to store a message with the sequence value i,received out-of-order. The value of ? means that no message is stored. Suppose that thesummation i+ 1 below is taken modulo n. Then we have:Spn =def hZs(0); [Zs(i) b= in(x):out(x; i):Zs(i+ 1) j 0 � i < n]iRpn =def (Ctr j St0 j � � � j Stn�1)nfst0; : : : ; stn�1gCtr =def hZr(0); [Zr(i) b= in(x; j):if i = j then out(x):Zm(i+ 1)else stj(x):Zr(i) j 0 � i < n][Zm(i) b= sti(x): if x = ? then Zr(i)else out(x):Zm(i+ 1) j 0 � i < n]iSti =def hZmi; [Zmi b= sti(x):sti(x):Zmi + sti(?):Zmi]i, 0 � i < nIt can be shown that Spn aBufm aRpn tolerates 	p provided the number of successivepermutations is not greater than n: Bufm+n+2 v fT (Spn aBufm aRpn;	p;Hn). 25. DEVELOPMENT: STEPWISE TRANSFORMATIONSSo far we were only concerned with how to verify that given a high-level process P , afault hypothesis 	 and a low-level, 	-a�ected process Q, Q is an implementation of P(according to some �) which tolerates 	 (perhaps under a certain assumption H aboutits quantity). The problem of how to design such Q has been completely ignored. Thisproblem is the topic of the current section.In most cases, Q can be obtained by the transformation R(P) of P . For example wehave: R(Bufm) = Bufm�1 a Re to tolerate 	e according to � (Example 6, m > 1) andR(Bufm) = SpnaBufm�n�2aRpn to tolerate 	p according to v (Example 7, m > n+2).Thus, when no assumption about the quantity of faults is made, our problem is to �nd atransformation R such that:P � T (R(P);) (18)To this end, R(P) will employ various techniques to detect, con�ne and to recover fromerroneous states of P , by introducing some additional, recovery processes. Our task iseasier when the recovery processes are assumed not to be a�ected by 	, i.e. when they donot share any process identi�ers with 	 (like Re, Spn and Rpn). It this case, T (R(P);)is identical with R(T (P;)) and it is enough to prove that:P � R(T (P;)) (19)For example, in order to verify Bufm+1 � T (Bufm aRe;	e), it is enough to prove thatBufm+1 � T (Bufm;	e)aRe. It is out of scope of this paper to investigate any particular

14technique to design suchR(P). Instead, when 	 = 	1�� � ��	n, we would like to proposethat R(P) is obtained from P by the sequence of transformations, one for each component	i of 	. Then, we can expect that the task to tolerate each 	i is easier than the task totolerate them altogether. This suggests the following development process:P0 � T (P1;	1) � T (P2;	1 �	2) � � � � � T (Pn;	1 � � � � �	n) (20)where P0 � P and Pi � Ri(Pi�1) for i = 1 : : : n. Such Pi aims to tolerate 	i in the presenceof faults speci�ed by 	1; : : : ;	i�1 and in general depends on the recovery processes usedin the earlier stages of the design. The �nal transformation R(P) = Rn(: : :R1(P) : : :).Our task can be largely simpli�ed if � is preserved by Ri i.e. whenever P � Q thenRi(P) � Ri(Q) and if recovery processes of Ri are not a�ected by 	1 � : : : � 	i i.e.T (Ri(Pi�1);	1 � : : : � 	i) is identical with Ri(T (Pi�1;	1 � : : : � 	i)). Then, in thei+ 1-st stage, it is enough to �nd Ri+1 which transforms Pi�1, not Pi:T (Pi�1;	1 � : : :�	i) � T (Ri+1(Pi�1);	1 � : : :�	i+1) (21)This means that Pi+1 does not depend on the recovery processes used in the i-th step,i.e. that both steps are independent. When � is preserved by all transformations Riand when none of the recovery processes is a�ected by faults then all stages are mutuallyindependent and the �nal transformation R(P) = R1(: : :Rn(P) : : :).Example 8 Consider the task to ensure a reliable communication (speci�ed by Bufmand according to �) over a medium of capacity m which corrupts, creates, omits andreplicates messages, i.e. to �nd a transformation R(Bufm) of Bufm such that:Bufm � T (R(Bufm);	e �	c �	o �	r)Applying development procedure (20) we will design such R(Bufm) in two steps, by �rsttolerating 	o � 	r and then 	e � 	c. To tolerate 	o � 	r we will use a version of thesliding window protocol with the window size m. The protocol consists of two processes,the sender Som and the receiver Rom such that at most m messages are sent by Somwithout being acknowledged by Rom (we acknowledge messages by actions ack). Somuses s as the sequence of messages sent but not acknowledged (we have]s � m) andrepeatedly retransmits s0 until acknowledgement for this message is received. Taking allarithmetic operations below modulo m+ 1, we have:Som =def hZ(0; "); [Z(i; s) b= in(x):Z(i; s; x) j 0 �]s < m ^ 0 � i � m]�[Z(i; s) b= ack:Z(i; s0) j 0 <]s � m ^ 0 � i � m]�[Z(i; s) b= out(i�]s; s0):Z(i; s) j 0 <]s � m ^ 0 � i � m][Z(i; s; x) b= out(i; x):Z(i+ 1; s : x) j 0 �]s < m ^ 0 � i � m]�[Z(i; s; x) b= ack:Z(i; s0; x) j 0 <]s < m ^ 0 � i � m]�[Z(i; s; x) b= out(i� 1; s0):Z(i; s; x) j 0 <]s < m ^ 0 � i � m]iRom =def hZ(0); [Z(i) b= in(j; x):if i = j then out(x):ack:Z(i+ 1)else Z(i)]i

15For such Som and Rom we can prove the following equivalence:Bufm � (Som a (T (Bufm;	o �	r) aBuf1) aRom)nfackgRecall a process Re (Example 6) to tolerate 	e by ignoring all messagesp. If we apply Reto the mediumwhich creates, corrupts, omits and replicates messages (e�	c�	o�	r)then the resulting medium is only a�ected by the last two faults (o �	r):T (Bufm;	o �	r) aBuf1 � T (Bufm;	e �	c �	o �	r) aReFinally, because none of the processes Som, Rom or Re is a�ected by faults and because� is preserved by a and n, we get the desired transformation:R(Bufm) = R1(R2(Bufm))= R1(Bufm aRe)= (Som a (Bufm aRe) aRom)nfackgThe resulting process is a two-layered protocol where the lower layer tolerates 	e � 	cand the higher one tolerates 	o � 	r. It is not possible, using only bounded sequencenumbers, to extend this protocol to tolerate permutation 	p [8]. 2It is often the case that recovery processes are a�ected by faults themselves. Evenworse, that they introduce new faults (not speci�ed by), as in case of the sliding win-dow protocol and acknowledgements which are not exchanged by simple synchronisationsbut using a medium which itself may be faulty. Suppose that � speci�es `new' faults,introduced by recovery processes of R(P). In this case we have to prove that:P � T (R(P);	� �) (22)So far, we were not concerned with assumptions H about the quantity of faults. However,such assumptions can be used to support the stepwise procedure (20). To this end, wecan �rst design a process for strong assumptions about the quantity of faults (say H) andthen to stepwise transform this process to ensure fault-tolerance for increasingly relaxedassumptions (H 0 where H � H 0). Such a stepwise procedure will be described elsewhere.6. CONCLUSIONSCurrently, there is a number of methods for specifying and proving correctness of fault-tolerant systems [3, 9{15]. In this paper, we did not aim to provide yet another formalism.Our purpose was to show how the well-established theory of CCS can be extended to rea-son about fault-tolerance, with emphasis placed on reasoning under weak assumptionsabout faults. This extension includes two languages (for specifying processes and faults),veri�cation theory based on transformations of processes (and exempli�ed using bisim-ulations and partial bisimulations) and the development approach where multiple faultsare proposed to be tolerated incrementally, by stepwise transformations.

16We plan to continue this work in all three aspects: speci�cation, veri�cation and (�rstof all) development of fault-tolerant processes. When the last is concerned, we planto provide some constructive proof rules for certain, well-known techniques for fault-tolerance, e.g. backward recovery and modular redundancy. Also, to utilise assumptionsabout the quantity of faults for the stepwise design of fault-tolerant processes.ACKNOWLEDGMENTSI am grateful to my supervisor, Mathai Joseph, for many valuable comments on draftversions of this paper, to Zhiming Liu for useful discussions on fault-tolerance, and toDavid Walker for helpful comments and for putting some literature to my attention.Thanks are also to the referees for their comments.REFERENCES1. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.2. Z. Liu. Fault-Tolerant Programming by Transformations. PhD thesis, University ofWarwick, 1991.3. Z. Liu and M. Joseph. Transformations of programs for fault-tolerance. FormalAspects of Computing, 4:442{469, 1991.4. D. Park. Concurrency and automata on in�nite sequences. LNCS, 104, 81.5. G. Plotkin. A structural approach to operational semantics. Technical report, Com-puter Science Department, Aarhus University, 81.6. R. Milner. A modal characterisation of observable machine-behaviour. LNCS, 112:25{34, 81.7. D.J. Walker. Bisimulation and divergence. Information and Computation, 85:202{241, 90.8. D. Wang and L. Zuck. Tight bounds for the sequence transmission problem. In Proc.8th ACM Symp. on Princ. of Distributed Computing, pages 73{83, 89.9. F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Transactionson Software Engineering, 11(1):23{31, 1985.10. He Jifeng and C.A.R. Hoare. Algebraic speci�cation and proof of a distributed recov-ery algorithm. Distributed Computing, 2:1{12, 1987.11. J. Nordahl. Speci�cation and Design of Dependable Communicating Systems. PhDthesis, Technical University of Denmark, 1992.12. J. Peleska. Design and veri�cation of fault tolerant systems with CSP. DistributedComputing, 5:95{106, 1991.13. D. Peled and M. Joseph. A compositional approach for fault-tolerance using speci�-cation transformation. LNCS, 694, 1993.14. K.V.S. Prasad. Combinators and Bisimulation Proofs for Restartable Systems. PhDthesis, Department of Computer Science, University of Edinburgh, 1987.15. H. Schepers. Tracing fault-tolerance. In Proc. 3rd IFIP Working Conference onDependable Computing for Critical Applications. Springer-Verlag, 1993.

