THE UNIVERSITY OF

WARWICK

Original citation:

Janowski, Tomasz (1994) Stepwise transformations for fault-tolerant design of CCS
processes. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-275

Permanent WRAP url:
http://wrap.warwick.ac.uk/60951

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60951
mailto:publications@warwick.ac.uk

Stepwise Transformations for Fault-Tolerant Design of CCS Processes *

Tomasz Janowski '
Department of Computer Science, University of Warwick,

Coventry CV4 TAL, United Kingdom

This paper provides an approach to the formal design of distributed, fault-tolerant
processes, using the language of CCS and the theory of bisimulations. The novel feature
of the method is the language by which hypotheses about faults can be specified and also
combined. The development of a fault-tolerant process, under a fault hypothesis, makes
use of the structure of this hypothesis. This allows to first design a process which does not
tolerate any faults and then to stepwise transform this process to tolerate an increasing
variety of faults. We illustrate this approach designing a protocol which ensures a reliable
transmission for weak assumptions about the faults of the underlying medium.

1. INTRODUCTION

It is widely believed that a retrospective proof of correctness, for programs of realis-
tic size, i1s infeasible in practice. Much effort is thus spent to ensure that proof systems
support the stepwise development of programs, allowing to reason about them composi-
tionally: a program is correct if only its components can be proven correct. The resulting
program is then correct by construction. However, the absence of (software) design faults
does not guarantee that the program will behave properly in practice. There is a class of
faults that is not due to the wrong design decisions but to the malfunction of hardware
components upon which the program relies. Such faults are often due to the physical
phenomena and only occur under specific environmental conditions e.g. electromagnetic
perturbation. Because they do not exist before a system is put into practice, they cannot
be removed beforehand but have to be tolerated.

Clearly, it is not possible to tolerate arbitrary faults. Deciding which faults are antic-
ipated (and thus should be tolerated) and which are not (such faults are catastrophical)
is the role of the fault hypothesis. The task is then to design a program which behaves
properly in the presence of the anticipated hardware faults. A feasible approach to this
task is to separate concerns about the correctness of the program in the absence of faults
(the functional correctness) and in the presence of the anticipated faults (fault-tolerance).
This can be done in two stages:

1. Designing a program which is correct but fault-intolerant.
2. Transforming this program into the one which is correct and fault-tolerant.

*To appear in the Proceedings of the Seventh International Conference on Formal Description Techniques,
Berne, Switzerland, October 1994, Chapman & Hall.

TSupported by the University of Warwick, under its Scholarship Scheme for East Europe, and by an
Overseas Students Award from the Committee for Vice-Chancellors and Principals.

However, while the standard techniques (e.g. the stepwise development) can be used to
support the first development stage, the author is not aware of any technique to handle
complexity of the second stage. This complexity stems from the fact that the more
faults are anticipated, the more difficult is the task to ensure that all these faults are
tolerated. The lack of the appropriate support can be seen as a major obstacle in the
formal development of highly-reliable, fault-tolerant systems.

This paper presents a development method for concurrent processes, using the language
of CCS [1], which attempts to fill this gap. The idea is to use a language where hypotheses
¥ about faults can be specified and also combined. The development of a fault-tolerant
process, under a given fault hypothesis, makes use of the structure of this hypothesis. This
allows to first design a process which does not tolerate any faults and then to stepwise
transform this process to tolerate an increasing variety of faults.

We use the standard semantic model for concurrent process description languages, the
labelled transition system (P,.A, —) where P is the set of processes, A is the set of
actions and — C P x A x P is the labelled transition relation. In order to verify cor-
rectness in the presence of the specified faults, we need to represent the effect of these
faults on the behaviour of processes. We do this first semantically, providing transition
relation > C P x A x P for V-affected processes (), and then syntactically, applying
process transformation 7 (Q, ¥) [2, 3]. We show that both methods coincide, i.e. that the
semantics of @ in the U-affected environment (performing transitions 5>) is ‘the same’
as the semantics of the transformed process 7(Q, V) in the fault-free environment (per-
forming transitions —). This allows to reason about fault-tolerance using the standard
verification techniques e.g. applying bisimulation equivalence [1, 4]:

@ is the U-tolerant implementation of P, according =, iff P ~ 7(Q, ¥). (1)

For multiple faults ¥ and ® we provide transition relation iz and show that it coincides
with transition relation e for the combined fault ¥ @ ®. The same is the case when we
compare transformations 7 (7 (Q, ®), ¥) and 7(Q, V& P). Asaresult,if P~ 7T(Q, Y5 D)

then @ is an implementation of P which tolerates (simultaneous) faults ¥ and ®. This
enables to develop such @) in two steps:

P~ T(Ry(P),T) ~ T(Ry(Ry(P)), T & ®) 2)

where Ry and Ry are fault-tolerant transformations which may employ various techniques
to detect (e.g. coding of data), confine (e.g. atomic actions) and recover (e.g. backward
and forward recovery) from erroneous states of P. Thus P is transformed to tolerate
¥ ¢ ¢ in stages, one for each sub-hypothesis ¥ and ®.

The rest of this paper is as follows. Both specification languages, of processes and of
faults are defined in Sections 2 and 3. The verification theory, based on bisimulations
and transformations of processes is introduced in Section 4. In Section 5 we present the
development method for fault-tolerance by the stepwise transformations of processes and
exemplify this method designing a protocol which ensures a reliable transmission for weak
assumptions about the faults of the underlying medium. Finally, in Section 6, we draw
some conclusions and comment on the directions for future work.

2. SPECIFICATION: PROCESSES

In this section we present the language for describing concurrent processes. The lan-
guage 1s a version of CCS which is slightly modified for our purposes. It is given the
structured operational semantics [5] in terms of the labelled transition relation — . We
proceed describing first finite then recursive and finally value-passing processes.

2.1. Finite Processes

The language £ of finite processes is based on a set A of actions. We have 7 € A where
7 is internal and represents the outcome of a joint activity (interaction) between two
processes. The set £ =44 A— {7} is partitioned between actions a and their complements
@ where the function = is bijective and such that @ = a. We extend ~ into A by allowing
T=1.Leta€ A, LC Land f: A— Awhere f(r) =7, f(a) # 7 and f(@) = f(a). &,
ranged over by E, is defined by the grammar:

E = 0| aFE | E+E | EIE | E\L | E[f] (3)

Informally, O denotes a process which is incapable of any actions. «.FE is a process which
performs action « and then behaves like E. E+ F behaves either like E or like F' where the
choice may be nondeterministic. E|F is the parallel composition of E and F where E and
F can proceed independently but also synchronise on complementary actions (performing
action 7). E \ L performs all actions of E except actions in L and their complements.
Finally, E[f] behaves like E with all actions a renamed into f(a).

The formal semantics of E € £ is defined by induction on the structure of F, in terms
of the labelled transition relation — C € x Ax E. If (E,a, E') € — then we write
E % E" and say that E performs o« and evolves into E’ (we also use E = E' for s € A*).
Following [1], — is defined as the least set which satisfies all inference rules in Figure 1.

E s F & B

oaF %S E E+F % B E+F &% F

E-% FE F F
E|F S E|F E|F % E|F’
E%E FSF
E|F o E'|F’
ES F o ES F
nroeg T B E

Figure 1. Operational semantics of finite processes £

We use one derived operator, E ™ F, where E and F proceed in parallel with actions
out of E and in of F ‘joined’ and restricted (mid is not used by E or F):

E ™ F =45 (E[mid/out]|F[mid/in]) \{med} (4)

2.2. Recursion

It is most common to model hardware devices by cyclic, possibly nonterminating pro-
cesses. In order to specify such processes consider a set X of process identifiers and, with
slight abuse of notation, a new grammar for £ which extends (3) by X € A"

E = ...]X (5)

We call such E a process expression and use X' (E) C & for the set of identifiers occurring
in E. We also use E{Y/X} for process expression E where all identifiers X are replaced by
Y. The semantics of E is well-defined by — (Figure 1). Such a relation however treats X
like 0, as incapable of any actions. In order to interpret X, we will use declarations of the
form X = E. If X € X(F) then such X is defined by recursion. Given X = Fand Y = F
where X € X(F) and Y € X(F), such X and Y are defined by the mutual recursion. In
the sequel we will often need to manipulate declarations for mutually recursive identifiers.
Then, it will be helpful to use a simple language D for specifying collections of such
declarations. D, ranged over by A and V, is defined by the following grammar:

A u= []| AX2E | AV (6)

Informally, [] is an empty declaration and X is defined as F in A[X = E] and as E+ F
n (A[X = E])& (V[X = F]). Formally, A is assigned a denotation [A] which is a partial
function from X to £. We use dom(A) and ran(A) for the domain and the range of [A]
respectively, and we define [A] in Figure 2, by induction on the structure of A.

dom([]) =des 0
~ E if X =Y
(A= EIIX) = { [A](X) it X 4Y, X € dom(A)
[A](X) if X € dom(A)—dom(V)
[A & V](X) =def IAJX)+[V](X) it X € dom(A)Ndom(V)
IVI(X) it X € dom(V)— dom(A)

Figure 2. Denotational semantics of declarations D.

We say that the declaration A is closed if all identifiers of right-hand side expressions
of A are interpreted by A: Ugeran(a) X (E) € dom(A). A useful abbreviation is to take
[X = E)Y = F|instead of [|[X = E][Y = F] and [X = FE | p] for all definitions X = E
such that the predicate p holds.

A process P € P is finally the pair (E, A) of the process expression E and the closed
declaration A for all identifiers of E: X(E) C dom(A). The semantics of (E, A) is
defined, with slight abuse of notation, by transition relation — C P x A x P which is
the least set which satisfies all inference rules in Figure 3. It is easy to see that A persists
through the transitions of (E, A) i.e. if (E, A) =5 P’ then there exists E’ € £ such that
P = (E',A) (= is the syntactic identity).

(Ei,A) 5 (E[,A), i€l E,*E, iel . _.
< ; for P in Figure 1
(E,A) % (E',A) ESE
([AI(X), A) = (E, A)
for X € dom(A
XA = Ea) e

Figure 3. Operational semantics of processes P.

Example 1 Consider n € N U {oo} and let R, be a process which performs actions «
and b; the first at any time; the second no more than n times in a row (R can never
perform b and R can perform b at any time). We have:

Rn —def <X07 A S, v>

where A =45 [X;=aXo | 0<i<n

V =def [X,’—b.XH_l | 0<1<n 0

[ErEY

Operators (3) will be also used to combine processes, under syntactic restriction that
processes involved have disjoint sets of identifiers. If dom(A) N dom(V) = () then:
Oé<E,A> =def <Oé E A>
(E, A)\L =des (E\L,A)
(E, M) =aes (E[f],A) (7)
< A>—|—<F,V> =def <E—|—FA@V>
(E;A) | (FV) =4y (E|F,AGV)
2.3. Value-Passing

In the language defined so far, processes interact by synchronising on complementary
actions a and @. There is no directionality or value which passes between them. In
practice however, we may find it convenient to use a value-passing language for the set V
of values (we assume, for simplicity, that V' is finite).

To this end we introduce value constants, value variables x, value and boolean expres-
sions e and p built using constants, variables and any function symbols we need. These
include € as the empty sequence; #s as the length of the sequence s; s, its first element;
s', all but the first element; s : x, the sequence s with = appended. We also introduce
parameters into process identifiers: X(el,..,en) for X of arity n. Then we extend € by
input prefixes a(x).E, output prefixes @(e).E and by conditionals if p then E else F. The
semantics of the resulting language is defined by translation into the basic one [1].

Example 2 Consider a buffer of capacity m > 0, Buf,,, which receives (by action in)
and subsequently transmits (by action out) all values x unchanged, in the same order and
with at most m of them received but not sent. We have:

Bufm =def (X(e),A@V>

where A =45 [X(3) () X(s:a) | 0<4s<m]
Vo =aer [X(s) = out(so). X(s) | 0 <tfs <m] =

-~
-~

3. SPECIFICATION: FAULTS

We treat transition relation — as the semantics of processes in the idealised, fault-
free environment. The primary effect of faults however is that processes no longer behave
according to — . We use r— to model the fault-affected semantics and assume that
+— O — . In the first part of this section we show how to specify such relations. The
idea is to use process identifiers as ‘states’ which can be potentially affected by faults.
Each process (E, A) provides its own declaration A for process identifiers. In contrast to
this, ‘normal’ declaration, we specify faults by an alternative, ‘taulty’ declaration .

For certain faults, fault-tolerance cannot be ensured in full. In these circumstances,
we may be satisfied with its conditional version, for certain assumptions about the quan-
tity of faults. Even when the ‘full’ fault-tolerance is (in theory) possible, we may choose
its conditional version to first design a process for restricted assumptions about faults
and then to stepwise transform this process to ensure fault-tolerance for more relaxed
assumptions. For these reasons, it is important that in addition to possible ‘faulty’ tran-
sitions > =gy +—> — —>, we can also specify assumptions about the quantity of such
transitions. Such assumptions are introduced in the second part of this section.

3.1. Qualitative Assumptions

In order to specify faults we will use declarations D. As defined in Figure 3, transitions
of the process (X, A) are determined by the transitions of (JA](X), A) where [A](X) is
the process expression assigned to X by A. Consider ¥ € D which assigns yet another
expression [¥](X) to X. Such ¥ specifies the following transitions > of (X, A):

if ([OI(X), A) 5> (E,A) then (X, A) vp» (B, A).

¥ is not assumed to be closed. Instead, we assume that all process identifiers in the right-
side expressions of ¥ are declared in A, so that +> does not lead from the well-defined
process to the ill-defined one: Upe,anqw) X' (F) € dom(A). We use Py for the set of all
such (E,A). Given ¥ which specifies anticipated faults, we can define a new, W-affected
semantics of processes, in terms of transition relation > C Py X A X Py which is the

least set which satisfies inference rules in Figure 4. If (P,a, P') € > then we write
P 5> P’ (we also use P o> P’ for s € A*).

(B, A) S (Bl A), i€l E“5E, iel
(E,A) % (B, A) 4T ESE
(IAJ(X), A) > (E, A)
(X, A) > (E,A)
(I¥](X).A) > (E,A)
(X, A) 5 (E,A)

in Figure 1

for X € dom(A)

for X € dom(70)

Figure 4. Operational semantics of processes P affected by W.

Observe that each of the three inference rules in Figure 4 determines a set of rules: one
for each rule in Figure 1 and one for each process identifier X € dom(A) and X € dom(¥)
respectively. It is easy to see that — C > . We will write:

P-$»P iff P3P and PP

Example 3 Consider the following declarations which specify various communication
faults of the bounded buffer Buf,,, creation (¥.), corruption (¥.), omission (¥,), repli-
cation (¥,) and permutation (¥,) of messages:

Ve =aer [X(s) = 7.0ul(y/).X(s) | 0<ts < m]
Ve =aer [X(s) = T0ut(y/).X(s) | 0 <fs<m]
Vo =acy [X(s)=7.X(s") | 0 <ts <m]
U, =45 [X(s)=To0ut(s).X(s) | 0<ts < m)]
W, sy [X(5) = rout(so) X(s0: ") | 1<t <m]

Because we are not interested in the particular value of the corrupted or created messages,
we represent them all by the same, distinguished message /. An implicit assumption is
that corruption and creation can be easily detected (although not easily distinguished).
We also assume that when permuted, only one message is delayed. a

Consider assumptions ¥ and ® about faults which affect the semantics of (X, A).
Suppose that X € dom(¥) N dom(P). In addition to the ‘normal’ transitions of (X, A),
following transitions of ([A](X),A), two kinds of faulty transitions are also possible for
(X, A), according to the ‘faulty’ declarations [¥](X) and [®](X) of X. We use transition
relation 5z for the semantics of P affected by both ¥ and ¢ (provided all process
identifiers in right-side expressions of ¥ and ¢ are declared). Such a relation is defined
by inference rules in Figure 5.

; ; N
(Ei, A)go (Ei,A), i€l for E,*E, 1€l in Figure 1

(E, A> & (B, A) ESE
([AJ(X), > (E,A)
(X, A) 2y (B, A)

([¥1(X), > (E,A)
(X, A) o <E A)

[B)X).A) 9 (ED) . oo,
(XA g (B.a) lor A edom(®)

for X € dom(A)

for X € dom(70)

Figure 5. Operational semantics of processes P affected by both ¥ and ®.

It is easy to show that the joint semantic effect of faults ¥ and ® (on processes P) is
the same as the effect of the combined fault ¥ ¢ ®:

Proposition 1
U, ®eDand Q € Pyao
then for all & € A we have: Q gz Q" iff Q 552Q'.

The proof proceeds by induction on the inference of transitions @ gz Q" and Q HQ'.

Example 4 According to Proposition 1, the joint effect of the three communication
faults, creation, omission and permutation of messages, can be specified as ¥. G ¥, G ¥,
Following denotational semantics of D in Figure 2, ¥, ¢ ¥, ¢ ¥, equals:

[X(s) = T.out(y/).X(s) | s = 0]
[X(s) = Toout(y/).X(s)+ 7.X(s") | s = 1]
[X(s) = 1oout(y/).X(s) + 7.X(s") + Toout((s)o). X(s0: ") | 1 < $s < m] 0

3.2. Quantitative Assumptions

Consider ¥ € D and suppose that transitions ;> are assigned types: — having type
0 and -» having type 1. In order to specify the quantity of faulty transitions we will use
sets H C {0,1}" of all admissible sequences of transition types. Because H is intended to
constrain transitions -y> only, we assume that ¢ € H and if h € H then h: 0 € H (H is
closed with respect to the concatenation of 0).

Example 5 Suppose that n € NU{oo} denotes the maximal number of times transitions
~» can occur successively (if n = oo then they can occur at any time; if n = 0 then not
at all). The set H,, of all admissible sequences of 0’s and 1’s, under assumption n, equals:

o {0,1}~ if n=o0
0,1 = {h 1 | he {0,1)7) if n e [0,00) .

Recall that Q > Q' if Q) evolves into @)’ performing the sequence s of transitions —
and 3> . This may be no longer the case if transitions 3> can only occur under assump-
tion H about admissible sequences of transition types. When this is the case then we use
the family { =%}, wen of transition relations w7, C Py x A* x Py. If (Q,5,Q") € T
then we write @ +»",Q’ and say that) evolves into ()’ by the sequence s € A* of transi-
tions r5> , under assumption H and given that % is the history of transition types before

and &' after transition. Formally, +%, is defined by the following inductive rules:

Q 54 @
Q'O%Z,Q” iff EIQ’ Q&Q’ ,%)ZIO IRV, (8)
Q "?ij'* Q’ ,%)Z;IQ// A h:lcH

Observe that the induction is well-defined: the first rule provides the base, for the empty
sequence ¢, and the second rule decreases the length of the action sequence by one. The
family { " }nwen denotes the semantics of processes Py when they are affected by ¥
and under assumption H about the quantity of transitions - .

4. VERIFICATION: BISIMULATION AND TRANSFORMATIONS

Fault-tolerance is a crucial property for safety-critical systems. Such a system is said
to tolerate anticipated faults when its behaviour is ‘correct’ in an operating environment
which contains these faults. As such, fault tolerance depends on the chosen notion of
correctness. For verifying correctness we provide the choice of the three relations: trace
equivalence, bisimulation equivalence and bisimulation preorder. They give rise to dif-
ferent notions of fault-tolerance which is verified using transformations 7 (-, ¥) to model
effects of faults on the semantics of processes. Transformations are also used to verify
conditional fault-tolerance, under assumption H about the quantity of faults.

4.1. Functional Correctness
Consider the ‘weak’ transition relation = C P x (LU {e}) x P where transitions
are ignored and let 3 range over £ U {¢}. We define = as the reflexive and transitive
closure of = and == as the composition = -%» = of relations. If (P, 3, P') € =
then we write P =2 P’. We also write P == , s € L*, if there exists P’ such that P = P'.
Trace equivalence, denoted =¥, identifies a process with all sequences of (observable)
actions that it can perform, like in the standard automata theory:

~ Q iff forallse £ P== iff Q= (9)

Examples are processes P,), R and S in Figure 6 which can all perform the same
sequences of actions a and b. Thus P &~ Q ~; R =~y S§. Trace equivalence however
admits a linear-time approach to process executions, ignoring at which execution stages
which choices are made. For example P /7 () but action b is always possible for P and not
always for (). As a result, in the environment which continually demands b, P will always
meet this demand and @) will sometimes deadlock. Thus a2 is insensitive to deadlock.
This is not the case for bisimulation equivalence, ~ [1, 4], which is defined in terms of

relations B such that if (P, Q) € B then for all € LU {c}:

whenever P =% P’ then Jor Qé@' N (P,Q')eB

10
whenever Qé@’ then 3, P poA (P',Q')e B (10)

Such B is called a bisimulation and we have P ~ () iff there exists a bisimulation B
which contains the pair (P, Q). For processes in Figure 6 we have P % () because
(QQ = Q' and P = P only, however P L. P’ but Q' /:b> Also P =~ R ~ S because
{(P,R),(P',R"),(P',R")} and {(P,S), (P, S"), (P, S")} are bisimulations. However, only
S can engage (after a or b) in the infinite sequence of actions 7 so bisimulation equivalence
1s insensitive to divergence.

The closest to &2, divergence-sensitive relation is bisimulation preorder, C [6, 7]. Infor-
mally, P C @ iff P and () are bisimulation equivalent, except perhaps when P diverges,
and @) diverges no more than P does. Thus @) is at least as ‘good’ as P: whenever P
converges, () must converge as well, however if P diverges then () need not diverge. Con-
sider the predicate | C P where if P € | then we write P | and say that the process P
converges. Based on |, we define P |} 3 if there is no process P’ such that P 2. P’ and

10

P Q
a b T b
P Q% ~Q
R S
a b a b
Ré.[R” S%S

Figure 6. Transition diagrams of P, (), R and S.

which performs action 7 indefinitely:

Ple iff P| and whenever P P’ then P’ | ¢ (11)
Plla if Pl e and whenever P = P’ then P’ ¢

Bisimulation preorder C is defined in terms of relations B, called partial bisimulations,

such that if (P,Q) € B then:

whenever P =% P’ then Jor @ N Q N (P.,Q)eB
whenever P 3 then Q5 A (12)
if Q=L Q' then 3, PL P A (P.Q)€EB

We have P C Q iff (P,Q) € B for some partial bisimulation B. For processes in Figure
6 we have P C R because {(P,R),(P',R'),(P’, R")} is a partial bisimulation and P [Z S
because P |} a and S | a.

4.2. Fault-Tolerance

Suppose that =< denotes any one of relations /1, ~ or C, and consider the high-level
process P. Such P determines the set of admissible implementations), P < (), where
semantics of both P and () is defined by transition relation — . The situation however
is different if we want to ensure that () is a fault-tolerant implementation of P, according
to = and the specification ¥ of faults. Informally, such) should behave ‘properly’ in
any environment where faults are specified by ¥. Such a U-affected behaviour of @ is
then defined by transition relation 5>, in contrast to P which still behaves according to
—> . This raises the problem of comparing two processes which behaviour is defined by
different transition relations — and 5> . In order to solve this problem consider the
following transformation 7 of processes:

THE,A),9) =45 (E,AGT) (13)

11

It is easy to show that such 7 provides an equivalent to > , syntactic method of repre-
senting effect of faults on the behaviour of processes, i.e. we can show that:

Proposition 2
If ¥ € Dand Q € Py
then for all o € A we have: Q5> Q' iff 7(Q,¥) 5 T(Q', V).

The proof proceeds by induction on the inference of transitions 7 (Q, V) > 7 (Q’, ¥) and
Q5> Q. Thus the semantics of) in the U-affected environment is the same as the
semantics of 7(Q,¥) in the fault-free environment and in order to prove that @ is a
U-tolerant implementation of P (according to <) it is enough to show that:

P<7T(Q,9) (14)

Example 6 Consider the task to ensure a reliable communication (specified by the
bounded buffer Bu f,,11, Example 2) over a medium of capacity m which creates messages
(specified by ¥., Example 3). To this end we can use a process Ret which ignores all /’s:

Ret =4y (Z,[Z =2 in(x).if © =/ then Z else out(x).Z])

Given such Ret, it is easy to prove that Bu fy,11 &1 7 (Buf,, " Ret,¥.). However, we have

Bufmi1 % T(Buf, ™ Ret, ¥.) because after receiving @ # / and before its transmission,
Ret does not accept any more /. The ‘better’ implementation is Re:

in(x).if @ = \/ then Z else Z(x)]
in(v/).Z(x) 4 out(x).Z])

Then we have Bufy,i1 ~ 7 (Buf, ™ Re,¥.) but Bufpni1 £ T(Buf, ™ Re, U.) because
T(Bufy, " Re,VU.) but not Buf,41 can diverge, due to arbitrary creation of messages. O

Re =def <Z, [Z
[Z(2)

1

The same approach can be used to verify that) tolerates multiple faults, say faults
specified by ¥ and ®. Applying Proposition 1 which shows that the joint effect of ¥ and
P, gz, is the same as the effect of the combined fault ¥ ¢ @, =z, and Proposition 2

which allows to express gz in terms of — and 7(-, ¥ @ @), it is enough to prove that:

P2T(Q. ¥ 9) (15)

4.3. Conditional Fault-Tolerance

Suppose now that we want to verify (E, A} in the presence of faulty transitions -»
and under assumption H C {0,1}* about admissible transition type histories. To this
end, like before, we will use process transformations. The idea is to use a family { X, }ren
of the process identifiers, for each identifier X of A or ¥. The index % of X}, denotes the
history of transition types. Consider h € H and the following transformation Th(-, U, H):

Th({E,A), ¥, H) =4es T({En, Anr), ¥n) (16)

where Eh =def E{Xh/X | X € X(E)}
An Zas [Xn 2 F{Yio/Y | Y € X(F)} | [A(X)= F A h € H]
Uy =as [Xn 2 F{Yia /Y | Y € X(F)} | [9[(X)=FAhe€ HAL: 1€ H

12

Thus Ej, is obtained from E by replacing all process identifiers X € X (E) by Xp; Ag
is obtained from A by replacing each declaration X = F by the family of declarations
Xn = F{Yio/Y | Y € X(F)} for all h € H, and Uy is similar like Ay but only taking
h € H such that h: 1 € H. Finally, we define 7Zi(<E,A>,\I/,H) as f’]i((E,A%\I/,H).

Recall that the effect of ¥ on the semantics of Py, under assumption H about the
quantity of transitions -y» , is defined by the family { >/ }rprem of transition relations.
There are two problems to obtain the same effect using transformations:

1. Consider X € dom(A) N dom(¥) and transition (X, A) rg> (E,A) which can be
either inferred from ([A](X),A) 5> (E,A) or from ([¥](X),A) 5> (E,A). The
problem appears when (X, A) 5> (E, A) can be inferred from both of them. Then
it is regarded as ‘normal’ by rp%, but either as ‘normal’ or ‘faulty’ by 7Zv'h(-, U, H).
If no such F and « exists then we say that ¥ has the proper effect on A.

2. The second problem is that in case of 7Zv'h(-, T, H) (but not +5>%,), some transitions do
not contribute to the history & of transition types. Suppose that ¥ =45 [X = 7.a.X]
and A =45 [X = b.X]. Then we have: (X, A) %> (a. X, A) = (X, A) LN (X,A)
and thus (X, A) $2;100<X7A>7 however 7Zv'h(<X,A>, U, H) Taf Th:10(<X,A>, U, H).
We can solve this problem assuming that all expressions involved are linear i.e.
they are of the form Y% | a;.X; (A is linear if all F € ran(A) are linear).

Under both conditions it is easy to prove the following proposition:

Proposition 3
If U € D and (X,A) € Py where
U has the proper effect on A and ¥ and A are linear

then (X,A) =sm(V,A) iff TL((X,A), ¥, H) 2 T((Y,A), ¥, H)

The proof proceeds by induction on the length of s. Thus the ‘normal’ semantics of

T((X,A), ¥, H) is the same as the U-affected semantics of (X, A), under assumption H.
As a result, in order to prove that (X, A) tolerates ¥ under assumption H (with respect
to P and according to <), it is enough to show that:

P < T((X,A), ¥, H) (17)

Although the linear form of A and W is necessary to prove Proposition 3, the meaning of

T((E,A), U, H) for non-linear A and ¥ is also well-understood. While in the first case
all transitions are significant, they all contribute to the history A, in the second case only
chosen ones are significant. Thus the main reason for ‘mismatch’ between Th(-, U, H)
and 7, for non-linear expressions lies in the restrictive form of the latter. In the sequel
we will adopt (17) to verify conditional fault-tolerance for (£, A) and ¥ where process
expressions of A and ¥ are not necessarily linear.

For example we have Buf,,11 C 7Zi(Bufm ™ Re,¥., H,) for process Re (Example 6)
which ignores all created messages y/ and for H,, (Example 5) where n # oo is the bound
on the number of successive occurrences of ¥, (Example 3).

13

Example 7 Consider n,m > 0 and the task to ensure a reliable communication (specified
by Bt fuint2 and according to C) over a medium of capacity m which permutes messages.
To this end we will use two processes: the sender Sp, and the receiver Rp,. In order to
determine the proper transmission order, messages will be send by Sp,, with their sequence
numbers modulo n. The value of n determines the number of parallel components St,
of Rp, (i = 0,...,n — 1), each one used to store a message with the sequence value 7,
received out-of-order. The value of | means that no message is stored. Suppose that the
summation ¢ + 1 below is taken modulo n. Then we have:

Spn =des (Z(0),[Zs(i) = in(x).out(x,2).Zs(i+1) | 0 <i < nl)

an =def (Ctr | Sto | tee | Stn_l) \{Sto, ceey Stn_l}
Ctr =gy (Zr(0), [Zr(i) = in(z,j)ifi=j then out(z).Zm(i+1)
else st;(x).Zr(i) | 0 << n]

[Zm(i) = sti(x). if @ = Lthen Zr(7)
else out(x).Zm(i+1)|0<1:<n])
St; =def <Zm,, [Zm, = st,(:z;)s_t,(:z;)Zm, —I-S_t,(J_)Zm,D, 0<i<n

It can be shown that Sp, ™ Buf,, ~ Rp, tolerates ¥, provided the number of successive
permutations is not greater than n: Bu f,ini2 E 7Zi(Spn ~ Bufm " Rp,,V,, H,). a

5. DEVELOPMENT: STEPWISE TRANSFORMATIONS

So far we were only concerned with how to verify that given a high-level process P, a
fault hypothesis ¥ and a low-level, W-affected process (), () is an implementation of P
(according to some =) which tolerates ¥ (perhaps under a certain assumption H about
its quantity). The problem of how to design such @) has been completely ignored. This
problem is the topic of the current section.

In most cases, () can be obtained by the transformation R(P) of P. For example we
have: R(Bufy,) = Bufn—1 ™ Re to tolerate ¥, according to ~ (Example 6, m > 1) and
R(Bufm) = Spn" Bufm_n_2" Rp, to tolerate ¥, according to C (Example 7, m > n+2).
Thus, when no assumption about the quantity of faults is made, our problem is to find a
transformation R such that:

P <T(R(P),¥) (18)

To this end, R(P) will employ various techniques to detect, confine and to recover from
erroneous states of P, by introducing some additional, recovery processes. Our task is
easier when the recovery processes are assumed not to be affected by ¥, i.e. when they do
not share any process identifiers with ¥ (like Re, Sp, and Rp,). It this case, T(R(P), ¥)
is identical with R(7 (P, ¥)) and it is enough to prove that:

P X R(T(P,T)) (19)

For example, in order to verify Buf,+1 ~ 7 (Buf, ™ Re,¥.), it is enough to prove that
Bufmi1 ~ T (Bufm, ¥.)" Re. It is out of scope of this paper to investigate any particular

14

technique to design such R(P). Instead, when ¥ = Uy G- - -$ ¥, we would like to propose
that R(P) is obtained from P by the sequence of transformations, one for each component
¥, of ¥. Then, we can expect that the task to tolerate each ¥, is easier than the task to
tolerate them altogether. This suggests the following development process:

Po=T(P,U) 2T (P01 869y) R 2T(P,, 0157, (20)

where Py = P and P, = R;(P,—1) for ¢ = 1...n. Such P, aims to tolerate ¥, in the presence
of faults specified by ¥y,..., ¥; 1 and in general depends on the recovery processes used
in the earlier stages of the design. The final transformation R(P) = R,(...R1(P)...).
Our task can be largely simplified if < is preserved by R; i.e. whenever P = () then
Ri(P) = Ri(Q) and if recovery processes of R, are not affected by Uy & ... & ¥, ie.
T(Ri(Piz1),¥1 & ... 8 T,) is identical with R;(7 (Pi-1,¥1 & ... & ¥;)). Then, in the
© + 1-st stage, it is enough to find R;;; which transforms P;,_;, not F;:

TP, U1 8...070,) 2 T(Rit1(Picq), U1 b ... 8 ¥,4q) (21)

This means that P;;; does not depend on the recovery processes used in the z-th step,
i.e. that both steps are independent. When =< is preserved by all transformations R;
and when none of the recovery processes is affected by faults then all stages are mutually

independent and the final transformation R(P) = Ri(... Rn(P)...).

Example 8 Consider the task to ensure a reliable communication (specified by Buf,,
and according to &) over a medium of capacity m which corrupts, creates, omits and
replicates messages, i.e. to find a transformation R(Buf,,) of Buf, such that:

Bufy, ~T(R(Bufn),¥Ye &Y. b ¥, S ¥,)

Applying development procedure (20) we will design such R(Buf,,) in two steps, by first
tolerating ¥, & ¥, and then ¥, ¢ ¥.. To tolerate ¥, & ¥, we will use a version of the
sliding window protocol with the window size m. The protocol consists of two processes,
the sender So,, and the receiver Ro,, such that at most m messages are sent by So,,
without being acknowledged by Ro,, (we acknowledge messages by actions ack). Soy,
uses s as the sequence of messages sent but not acknowledged (we have fs < m) and
repeatedly retransmits s until acknowledgement for this message is received. Taking all
arithmetic operations below modulo m + 1, we have:

in(x).Z(1,s,x) | 0<fs<mA0<i<m
ack.Z(1,s") | 0<gs<mA0<i<m
out(i — 4s,80).Z(1,8) | 0<fs<mA 0<i<m
out(i,2).Z(i4+1,s:2) | 0<fs<mA 0<i<m
ack.Z(i, s, x) |0<fs<mA 0<i<m
out(i —1,80).2(1,8,2) | 0<gs<mA 0<i<m
in(j,z).if ¢ = 5 then out(z).ack.Z(i + 1)
else Z(1)])

D
D

o~
VA
~—

> 1 1p

]
]
]
]
]
]

o :Cn o
=
S’

11

®
®
)

=
<
3

Il
&
~
N
=
N

1

15

For such So,, and Ro,, we can prove the following equivalence:
Bufm ~ (Som ™ (T(Bufm, ¥, & V,) " Bufi) ™ Rom)\{ack}

Recall a process Re (Example 6) to tolerate ¥, by ignoring all messages /. If we apply Re
to the medium which creates, corrupts, omits and replicates messages (V. ¥ . G ¥, H¥,)
then the resulting medium is only affected by the last two faults (¥, & ¥,):

T(Bufm, V& 9,) " Bufi~T(Bufn, Y. ® ¥ . dY, 5 7T,) " Re

Finally, because none of the processes So,,, Ro,, or Re is affected by faults and because
~ is preserved by ™ and \, we get the desired transformation:

R(Bufy) = Ri(Ra(Bufy))
= Ri(Bufm ™ Re)
= (Som ™ (Bufn " Re) "™ Roy)\{ack}

The resulting process is a two-layered protocol where the lower layer tolerates ¥, & W,
and the higher one tolerates ¥, & ¥,. It is not possible, using only bounded sequence
numbers, to extend this protocol to tolerate permutation ¥, [8]. O

It is often the case that recovery processes are affected by faults themselves. Even
worse, that they introduce new faults (not specified by ¥), as in case of the sliding win-
dow protocol and acknowledgements which are not exchanged by simple synchronisations
but using a medium which itself may be faulty. Suppose that ® specifies ‘new’ faults,
introduced by recovery processes of R(P). In this case we have to prove that:

P<T(R(P), V&) (22)

So far, we were not concerned with assumptions H about the quantity of faults. However,
such assumptions can be used to support the stepwise procedure (20). To this end, we
can first design a process for strong assumptions about the quantity of faults (say H) and
then to stepwise transform this process to ensure fault-tolerance for increasingly relaxed
assumptions (H' where H C H’). Such a stepwise procedure will be described elsewhere.

6. CONCLUSIONS

Currently, there is a number of methods for specifying and proving correctness of fault-
tolerant systems [3, 9-15]. In this paper, we did not aim to provide yet another formalism.
Our purpose was to show how the well-established theory of CCS can be extended to rea-
son about fault-tolerance, with emphasis placed on reasoning under weak assumptions
about faults. This extension includes two languages (for specifying processes and faults),
verification theory based on transformations of processes (and exemplified using bisim-
ulations and partial bisimulations) and the development approach where multiple faults
are proposed to be tolerated incrementally, by stepwise transformations.

16

We plan to continue this work in all three aspects: specification, verification and (first
of all) development of fault-tolerant processes. When the last is concerned, we plan
to provide some constructive proof rules for certain, well-known techniques for fault-
tolerance, e.g. backward recovery and modular redundancy. Also, to utilise assumptions
about the quantity of faults for the stepwise design of fault-tolerant processes.

ACKNOWLEDGMENTS

I am gratetul to my supervisor, Mathai Joseph, for many valuable comments on draft
versions of this paper, to Zhiming Liu for useful discussions on fault-tolerance, and to
David Walker for helptful comments and for putting some literature to my attention.
Thanks are also to the referees for their comments.

REFERENCES

1. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

2. 7. Liu. Fault-Tolerant Programming by Transformations. PhD thesis, University of
Warwick, 1991.

3. Z. Liu and M. Joseph. Transformations of programs for fault-tolerance. Formal
Aspects of Computing, 4:442-469, 1991.

4. D. Park. Concurrency and automata on infinite sequences. LNCS, 104, 81.

5. G. Plotkin. A structural approach to operational semantics. Technical report, Com-
puter Science Department, Aarhus University, 81.

6. R.Milner. A modal characterisation of observable machine-behaviour. LNCS, 112:25—
34, 81.

7. D.J. Walker. Bisimulation and divergence. Information and Computation, 85:202—
241, 90.

8. D. Wang and L. Zuck. Tight bounds for the sequence transmission problem. In Proc.
§th ACM Symp. on Princ. of Distributed Computing, pages 73-83, 89.

9. F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Transactions
on Software Engineering, 11(1):23-31, 1985.

10. He Jifeng and C.A.R. Hoare. Algebraic specification and proof of a distributed recov-
ery algorithm. Distributed Computing, 2:1-12, 1987.

11. J. Nordahl. Specification and Design of Dependable Communicating Systems. PhD
thesis, Technical University of Denmark, 1992.

12. J. Peleska. Design and verification of fault tolerant systems with CSP. Distributed
Computing, 5:95-106, 1991.

13. D. Peled and M. Joseph. A compositional approach for fault-tolerance using specifi-
cation transformation. LNCS, 694, 1993.

14. K.V.S. Prasad. Combinators and Bisimulation Proofs for Restartable Systems. PhD
thesis, Department of Computer Science, University of Edinburgh, 1987.

15. H. Schepers. Tracing fault-tolerance. In Proc. Srd IFIP Working Conference on
Dependable Computing for Critical Applications. Springer-Verlag, 1993.

