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Abstract: We propose a modelling process, based on observation and experiment,
which is well-suited to reactive systems, and which provides an integrated envi-
ronment for the requirements, specification and design phases of a development.
The modelling method depends on application-specific knowledge which can be
modified on-line by the intervention of the modeller. The process offers immedi-
ate experience of the model behaviour, allows for the concurrent refinement of a
requirement according to multiple viewpoints, and assists in the decomposition of
a system requirement into component requirements. We present arguments for the
principles of the process, and illustrate the application of the process with extracts
from a vehicle cruise control model built using our methods.
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1. Requirements and Programming for Reactive Systems

1.1 The Challenge for Requirements from Reactive Systems

The earliest requirements for the stored-program electronic computer were for well-established
tasks in areas such as code-breaking, ballistics modelling, numerical analysis etc. These were tasks
which had previously been carried out by skilled human operators with the aid of mechanical or
electromagnetic devices. The new computing machines were essentially replacements for previous
devices, and some of the skills of their operators. In such cases it is known in advance that the
requirement is satisfiable. The programming to meet such requirements would be equivalent today
to the construction of small programs in a high level language, and is what we shall call ‘one-person
programming’, using the phrase introduced by Harel in [11]. In many cases the programming called
for by these requirements was therefore relatively straightforward. However, requirements soon

1



escalated, programs became ‘software systems’, and the complexity of both provoked the comment
by Brooks in 1986 that, “The hardest single part of building a software system is deciding precisely
what to build” (p.17 of [6]).

Since then the challenge for requirements has become even more formidable. Dramatic
advances in technology have led to the availability of systems not only of unprecedented power but
also of a radically new functionality. These are complex systems comprising distributed software
and hardware components and offering facilities inconceivable, or infeasible, prior to the advent of
electronic computing devices. As well as providing new methods of meeting existing requirements,
these systems are inviting entirely new requirements. Often these are tentative and provisional
requirements in the face of the uncertainty as to how this new range of computing systems can
best be used. Some such requirements may be unsatisfiable for practical or physical reasons. A
particular kind of complex system, so-called reactive systems, are embedded, concurrent, real-time
systems; these are described by Harel in [11] as “posing some of the greatest challenges in systems
engineering”, and he concludes that whatever general framework is eventually adopted for system
modelling, “reactive behaviour will be one of its most crucial and delicate components”. We
believe that some of the deepest challenges of reactive systems are closely related to the effective
management of their requirements. In the same paper Harel maintains that in spite of numerous
“methodologies” for development, “The availability of a solid, general-purpose framework within
which one can conceptualize, capture, and represent a system model seems to be far more important
right now”. We shall show in this paper how our proposal for such a framework also addresses the
challenge of requirements in a powerful and flexible fashion.

1.2 Motivation and Objectives of this paper

The well-known problems of the conventional development cycle of requirement, specification,
design, program and testing, are exacerbated for reactive systems. The behaviours of such systems
are rich in observational and temporal patterns and can be exceptionally complex, therefore their
initial description, in either a requirement or a specification, is likely to be imperfect. But machine-
oriented specification usually excludes any subsequent influence from real world experience, and
so detailed knowledge of the imperfections may be long delayed, perhaps until testing. Prototyping
can never be rapid enough. Consequently our objectives here are to present a new modelling
process well-suited to reactive systems, and to show that it:

• integrates the requirement, specification and design phases of a development;
• allows for on-line intervention in a way that imitates immediate experience of the world;
• allows a provisional requirement to be elaborated and revised from different viewpoints con-

currently;
• assists in the decomposition of a system requirement into requirements for the system compo-

nents.

We shall illustrate our general approach, and each of these objectives, with examples from a vehicle
cruise control simulation built using this modelling process.

1.3 Generalised Programming for Complex Systems

Our approach to modelling, which is described in the next section, can best be understood
as complementary to a generalised, behavioural view of programming which has motivated our
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research for some years. On this view, programming at a behavioural level, actually is modelling
of our particular kind, when the latter is viewed prescriptively rather than descriptively. But this
behavioural view of programming is not one which abstracts away from experience. In our approach
both programming and modelling can well be described as empirical because they are explicitly
based on observation and experiment. In this section we shall outline this view of programming
by considering the similarities between one-person programming and the development of reactive
systems. (In the previous section we highlighted their differences with regard to requirements.) It
will be helpful in our discussion to make reference to three particular viewpoints which will recur
prominently in our main example of a vehicle cruise control system in §2.3, these are:

• what the system is going to do (user’s viewpoint);

• constraints on the context for operation (analyst’s viewpoint);

• the resources or devices that are available (implementer’s viewpoint).

We begin by asking how we might regard one-person programming as a ‘system’; this will
lead to seeing how the development of reactive systems can naturally be viewed as programming.

At an abstract level a software system has much in common with general engineering sys-
tems, for example, it involves: the formulation of requirements and their satisfaction subject to
limited resources, problems of the design and decomposition of systems, issues of efficiency and
maintenance of operation, etc. As a general context for both one-person programming and reactive
systems we shall therefore adopt a system comprising several components, each with some capacity
to respond to its environment and to initiate, or record, changes of system state. In one-person
programming the components of such a ‘system’ are the user and a conventional, purpose-built
computer. This context is so familiar that important and ever-present features of it are easily
overlooked. The following two features are especially instructive because they cannot be assumed
for reactive systems and yet they are essential for building such systems successfully:

(i) all state-changing components (including the user) need to be ‘programmed’;
(ii) all state-changing components (including the computer) are presumed to operate reliably.

For obvious reasons we are very conscious of the need to program the computer and of our own
ability to respond reliably, but less so of the fact that the user needs to be programmed and that we
are presuming the computer to be reliable.

The first feature will lead us to a generalised notion of programming. Consider the elementary
task of writing a program for the computer so that the user inputs two numbers and the computer
outputs their sum. The program prescribes a sequence of operations for the computer but it cannot
be used without a user who knows how to behave appropriately. The user must be able to enter
inputs and read the output, and do these things in the right order and at suitable speeds. No
matter how ‘user-friendly’ the interface there must be a significant protocol of action, observation
and interpretation for the user: in effect, both user and computer are programmed. The reciprocal
nature of the relationship between user and computer is characteristic of the interaction that pervades
complex systems. Input is the means by which the user influences the state of the computer, and
output the means by which the computer changes the environment of the user. In this context,
the user comes to the system both as client (with the requirement) and as essential participant, a
component in the system which is designed to meet that requirement.

Thus it is reasonable for an analyst, viewing one-person programming from outside the per-
spective of the user, to regard the activity as that of a system. To satisfy a given requirement with
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such a system means to prescribe appropriate behaviours to each component (user and computer).
This leads us to a definition of abstract, or generalised, programming as the prescribing of the
behaviour of the state-changing components of a system so as to guarantee an appropriate overall
behaviour of the system. In general, there will be a system-component hierarchy. In the case of
one-person programming it is clear that each of the components are themselves complex systems.
At each level the system requirement needs to be decomposed into the component requirements.
The decomposition continues until the components can be readily identified and realised in a
physical form. This is the realm of the implementer or engineer.

This generalised perspective on programming, which we have derived from one-person pro-
gramming, also suits reactive systems very well. The latter may contain many state-changing
devices, each capable of generating, and responding to, stimuli in different ways. Thus program-
ming such systems may involve specifying the responsiveness of sensory devices, prescribing the
speed of mechanical operations and the characteristics of electronic devices, as well as formulating
correct procedures for interaction with possibly many users. A consequence of defining programs
in terms of the real-world environment in which they are to operate, is that we can initially eliminate
the accidental features of particular computing devices and languages.

The second feature of one-person programming which we mentioned above was the reliability
of the computer. Having pointed out that the user also needs to be prescribed, we now draw
attention to how little we contribute to the prescription of the computer. The high-level program
that we give to the computer is only a fraction of the prescriptions that have been built in by
manufacturers in layers of software and hardware which ensure (nearly always) the expected
sequences of compilation and execution at appropriate speeds. The user is thus protected from all
the vicissitudes of mistimings, mismatched characteristics and unreliability which, in general, may
attend the assembly of disparate system components.

Before we can consider the requirements for the components of a reactive system, there may
therefore be a problem in even identifying the components, that is, the reliable state-changing
components we can use as programmable devices. From the perspective of modelling we shall call
such devices or components in a system the agents. Typically an agent responds to the stimulus of
state change in its environment by making further state-changes according to given protocols. (We
are using the language of stimulus and response in relation to agents, in a similar way to that in
which Deutsch uses it in relation to objects in [8].) In the simple user-computer system the user’s
stimulus is generally provided by observations of the screen state. We generalise this notion of
observation to refer to any stimulus to an agent of the system. In specifying a reactive system,
there is an essential role for on-line experiments to establish the reliability of component, or agent,
responses. Reliability is closely connected with the constraints for the context of operation so
these will affect the kinds of experiments to be performed. And since synchronisation of actions is
crucial, guarantees about component responses must also reflect timing considerations. Thus our
analysis suggests that to prescribe system behaviour abstractly we need to have identified all the
relevant :

• observations of the system;

• agents that can be active in the system;

• stimulus-response patterns (protocols of agents);

• dependencies between system parameters;

• timing characteristics of agent interactions and reactions.
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The determination of the above characteristics calls for systematic experiments with the system
concerned, and for judgements on the regularity and reliability of the behaviours observed. This
is close to conventional engineering procedures. We first satisfy ourselves about the expected
behaviour of each component through experiment and observation, then organise components into
a system whose behaviour is guaranteed subject to assumptions about the reliability of components,
and the circumscription of the context for operation. In specifying a complex reactive system, it is
inconceivable that a designer can identify appropriate prescriptions for agents, and gain confidence
in the reliability of their behaviour, without first carrying out experiments with the components
of the system. It is generally only realistic to perform these experiments in a virtual setting, that
is, a modelling environment, since they may involve devices that have yet to be constructed, and
scenarios that may be hard to configure in practice.

In one-person programming the viewpoints of user, analyst and implementer are usually con-
flated. The user probably knows what they want the system to do, is very familiar with the context
for operation, and the only resource is the computer and interface. With reactive systems these
three aspects need to be separated and each given careful attention. They may be represented
by different people or teams of people, there will generally be conflicts of interest, and detailed
communication and negotiation will be necessary. To conduct such interactions powerful methods
of modelling are again called for which will embrace both software and hardware components, and
allow for continuous intervention and experiment.

User, analyst and implementer are each being regarded here as an application expert. In
the example of the vehicle cruise control used throughout §2.3 the user would ideally be an
experienced driver, the analyst a person with expert knowledge of the operational environment,
and the implementer an automotive engineer. This essential need for application experts illustrates
our belief that there can, in principle, be no general ‘method’ for the development of complex
systems. In particular, the relationship between system requirements and the requirements for the
components involves deep, application-specific, knowledge. We claim that there are two aspects
to a successful development of a complex system: the application-specific knowledge, and the
general framework for the representation and use of that knowledge, together with knowledge of
the requirement and its context. This general framework is the arena for the modelling process
which forms the core of any development, it is this to which we now turn attention.

2. Modelling Requirements for Reactive Systems

2.1 The Principles of the Empirical Modelling Process

The features of our empirical modelling process match closely the characteristics of generalised
programming which we have described in the previous section. Our models must begin from some
knowledge of the application domain, and reference to a provisional requirement, but they are
intended to be built as a prelude to the precise formulation of a specification. They exhibit
behaviours that are appropriate to the application but which are not preconceived: changes in
behaviour are possible which we had not anticipated, and which could not have been derived
in advance. The principles of our modelling process reflect to some extent the way in which
we as humans typically perceive, and interact with, the world. The process has four mutually
complementary, and inseparable, features:
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• it is state-based: the current state of the real-world context is always represented;

• it is agent-oriented: identification of the state-changing agents active in the system determines
the model structure;

• it is definition-based, that is, it uses spreadsheet-like definitions to express the dependencies
perceived between observations in the world;

• the fundamental entities are observations: these are associated with agents, they define the
state, and correspond directly to the variables which are the components of the definitions.

In our modelling framework, observables are represented by variables. In observing a be-
haviour, there are certain indivisible relationships amongst the observables. For instance, the
moment at which the minute-hand passes midnight may also herald a new year, or be the moment
at which a savings policy matures. Such dependencies are modelled by unidirectional constraints,
and expressed using systems of definitions, or definitive scripts.

The semantics of a definitive script resembles that of a spreadsheet, in that it typically represents
one state in a real world behaviour that is immediately experienced. For instance, in a spreadsheet
that represents the current state of a financial account, it is in general impossible to predict the
form and effect of the next transaction. The use of definitive scripts as the fundamental method of
representing perceived system state is consistent with the idea that directly experienced behaviour
is more primitive than circumscribed behaviour. A script is automatically updated exactly like
cells defined by formulae in a spreadsheet. The user, or the machine, may make re-definitions to
effect a state transition. User intervention in this way corresponds to an on-line ‘re-programming’
of the model. This explains how such models can both be continuously responsive and yet also
behave in a way that is not preconceived. Thus our models are constantly open to revision in the
light of new experience of the world, and experience (e.g. via visualisation) of the current state
of the model. This power to model immediate experience distinguishes our approach from most
other computational frameworks, many of which are based solely upon abstractions for describing
circumscribed behaviour.

The correspondence between our computer model M, and the real-world system S it represents
is unusually close. There is a rich and precise correspondence between the states of M and the
states of the system S, so that we can simulate many different modes of interaction with S and its
components through interacting with M. This virtue derives in part from the explicit state-based
nature of our model. But, more significantly, the association between S and M is based upon
the correspondence between observations of S and variables in the model M. As a result, we can
simulate the effect of adopting a new perspective on S, of choosing to view parts of S, and interact
with S in an unrestricted manner. This will be illustrated in the discussion of the vehicle cruise
control system in §2.3.

In modelling the behaviour of a system of agents, the first step is the description of those
observables that are bound to an agent (state variable), those that it is conditionally privileged to
change (handle), and those to which it responds (oracle). This description is represented using a
special-purpose notation known as LSD. In animation from an LSD description we take account
of the enabling conditions that must be satisfied before the values of observables can be changed,
and the perceived events that serve as stimuli for agent action. The animation is executed in the
computational framework of the Abstract Definitive Machine (ADM), an environment in which
the modeller can act as a superagent to impose, dynamically, appropriate scenarios for action and
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interaction upon agents. The overall development of this modelling process is presented as a
general schema in Figure 1.

script of
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Figure 1: The empirical modelling process

The ‘developer’ of Figure 1 has to combine the role of an application expert and a modeller.
The developer makes an initial model by identifying relevant agents, and the observations and
behavioural protocols which are associated with them. This forms a partial description in the
LSD notation. When supplemented as described above, this leads to a set of definitions which
can be evaluated by the ADM. The resulting ‘value’ is a state of the model, and is automatically
displayed by whatever physical devices are available. Re-definitions entered by the developer, or
automatically, allow for animation of the current behaviours of the model. Initially the developer
seeks to reproduce identifiable behaviour from the agents described and this is gradually refined by
experiment and observations into the required behaviour. These experiments and observations can
always be made on the model, but may be restricted in the real world system depending on how
much is accessible or in existence. The refinement is made at two levels indicated by the branched
arrows at the top of the diagram. Temporary re-definitions are made directly to the ADM, more
permanent revisions are made to the LSD script. In principle the extraction of the specification
in a textual form, derived from the LSD script, can occur incrementally during the development
process as commitments are made. For a fuller discussion of our overall approach to computation
and modelling than is possible here see [2],[4].

2.2 Comparison with other Modelling Methods

Many mathematically-based, or formal, modelling methods make an early commitment in
which features of the application domain are represented by abstract objects and operations. This
necessarily means preconceiving the possible future states of the model; revision in the light of
experience requires a new model. Formal models, when they can be constructed in such a way as
not to abstract from the essential behaviour of a system, have highly desirable properties, such as the
precision and reasoning power which they offer. But the mathematics required to underpin them is
only available where aspects of the application are well understood, or can be put under controlled
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conditions. Many complex systems which we wish to model are ones drawn from contexts of social
interaction, economic and biological systems etc. The mathematics, or scientific theory, adequate
to describe such systems in detail does not yet exist, and in many cases may not, in principle, be
possible. Even where it does exist, the fact that formal models do not directly reference states in
the real world renders them severely limited for the general modelling of reactive systems.

With object-oriented modelling methods the situation is more subtle but there are clear and
significant commitments. Following such a method it is necessary to be able to decompose a system
into distinct, coherent objects. According to Davis (p. 61 of [7]), “For the purposes of requirements
an object is defined as:

• a real world entity

• related to the problem domain

• with crisply defined boundaries

• encapsulated along with its attributes and behaviour

• whose behaviour and attributes must be understood in order to understand the problem at hand.”

In some applications a decomposition into objects with such properties is no problem, and is
subsumed by an observational viewpoint. But the understanding of the behaviour and attributes of
objects, to which Davis refers, implies a level of commitment and knowledge about the problem that
may not be realistic initially. In general, we believe our emphasis on observations as primitive is
much more flexible, and allows for a greater openness to the immediate experience of the real world.
For example, the indivisible propagation of state changes which is implicit in our spreadsheet model
may need to cross ‘object’ boundaries. Also, by dealing with observations rather than objects, we
can take account of synchronisation issues crucial in the semantics of assemblies and components.
By expressing how changes in observations are coupled together – as in a mechanical linkage – we
can represent the indivisible operations associated with each computational agent. The distinction
between our model and an object-oriented model is best appreciated by considering the design of an
entirely new engineering product, where we have first to conceive the functions for sub-assemblies
and the observations that are essential in interpreting their cooperative behaviour. In contrast, an
object-oriented model presumes sufficient knowledge of the system decomposition and interaction
to allow the encapsulation referred to in the quotation above.

Some software development frameworks for modelling concurrent systems are superficially
similar to that described in §2.1. For instance, animation plays an important role in systems using
Statecharts [10] and Actors [12]. Such methods of animation are used in analysis and design
activity following a preliminary system specification. It is less clear to what extent they are used, or
could in principle be used, for exploring a requirement in order to develop a system specification.
The same comment applies to the application building techniques in [17] which adopt spreadsheet
principles similar to ours. The significance of stimulus-response analysis is explored in the context
of object-oriented design by Deutsch [8], while active object systems like SAOS [15] have some
resemblance to the definitions and protocols in an LSD script.

2.3 Requirements for a Vehicle Cruise Control System: a Case Study

2.3.1 Overview

A vehicle cruise control system has been the focus of several software specification studies
[5],[8],[9]. The examples in this section are drawn from a vehicle cruise control simulation
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developed within in our framework and which we regularly use for demonstration purposes. The
model was not built primarily as a simulation: it was built to explore our modelling methods.
The simulation effects are an inevitable by-product of the modelling process in which realistic
observation and experiment in the model is the chief instrument for development and refinement.
In the following sections we give a condensed description, and a few extracts, to illustrate the
application of our method to requirements analysis. Fuller technical details of the modelling
involved in this example can be found in [3] and [16].

In keeping with the objectives set out in §1.2, we shall adopt as a provisional requirement: “the
vehicle should have a cruise controller, set by the driver, that maintains the set speed under varying
load conditions in a manner that is safe, efficient and comfortable”. As explained in §1.3, it will
be useful here to consider three conceptually distinct ‘views’ of the modelling process: those of
the user (driver), the analyst (who manages the environment and the context for operation), and
the implementer (or engineer, who will specify the components of the system). To simplify the
exposition we shall assume that each application specialist can act in the role of developer (see
Figure 1). The table in Figure 2 summarises the roles of the three developers with reference to their
contribution to the overall specification and the real world experience that informs it.

Developer Domain of experience Nature of specification

user driving and use user requirement
of a cruise control e.g. a safety cutout

analyst operational environment analyst requirement
and physical laws e.g. operation of cutout

implementer engineering devices implementer requirement
and their characteristics e.g. devices for cutout

Figure 2

In practice it is important that these views are represented within the same framework, and that
they can mutually interact, but it is convenient also to distinguish them for the sake of understanding
the progress of the process, and how it can assist in the decomposition of a requirement.

2.3.2 The User’s View

The user is concerned with the possible observations and actions of a driver and therefore
introduces agents for the driver, the vehicle, and the engine, each with associated observations
(e.g. the position of the brake, which is under control of the driver and belongs to the vehicle).
The description of the agent ‘driver’ in the notation LSD is shown in Listing 1. This makes use
of a ‘protocol’ section that consists of a set of guarded actions, each of which takes the form
of an enabling condition and an associated sequence of variable redefinitions or agent instance
invocations. Each guarded action is viewed as expressing a privilege to act: if an enabling
condition holds, a particular action may be performed. In interpreting a protocol for animation
purposes, application-specific assumptions are invoked in the ADM (see §2.1) to model the way
in which an agent exercises its privileges for action. There is no general principle to decide which
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action to perform when there is non-determinism (i.e. two or more enabling conditions hold), nor
is it always appropriate to presume that a privilege that is enabled will be exercised.

agent driver
�

const maxCruiseSpeed = 70.0 /* miles/hour */
minCruiseSpeed = 20.0 /* miles/hour */

handle engineStts, cruiseStts, cruiseSpeed
oracle

engineStts, cruiseStts,
cruiseSpeed, measSpeed, brakePos

derivate
brakePos = user input (brakePos Type)
accelPos = user input (accelPos Type)

protocol
engineStts == esOff � engineStts = esOn /* on */
engineStts == esOn � engineStts = esOff /* off */
cruiseStts != csOff � cruiseStts = csOff /* switch off cruise controller */
cruiseStts == csOff � cruiseStts = csOn /* switch on cruise controller */
cruiseStts == csMaintain � cruiseStts = csOn /* return to manual control */
cruiseStts == csOn � cruiseStts = csMaintain /* resume to cruiseSpeed */
cruiseStts == csOn � /* maintain the current speed */

cruiseSpeed =
�
measSpeed

�
; cruiseStts = csMaintain

cruiseStts != csOff ∧ cruiseSpeed < maxCruiseSpeed
� cruiseSpeed =

�
cruiseSpeed

�
+1 /* increase cruiseSpeed */

cruiseStts != csOff∧ cruiseSpeed > minCruiseSpeed
� cruiseSpeed =

�
cruiseSpeed

�
−1 /* decrease cruiseSpeed */

�
Listing 1

The user accesses the current state of significant observables (the status of the cruise control,
the speedometer etc.) through a visual interface (see Figure 3). The user can interact with the
display as a screen object, e.g. to redesign the interface, or observe the dynamic characteristics of
the system by introducing an agent to simulate the dynamics.

The sensitivity of the accelerator and brake windows is defined by the modeller in such a way
that the buttons and sliders initiate appropriate transitions under the control of the user. This user-
interface provides an environment for the user that closely matches the perceptions and privileges of
the driver. The user can thus experience the system as conceived through the model. In particular,
the user may revise and experiment with the interface content and style, and make experiments with
the perceived function of the controller for safety, efficiency and comfort. In principle, the display
could be augmented with a physical driving seat on a platform subjected to forces corresponding
to those in the model.
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View

User
View

Figure 3

2.3.3 The Analyst’s View

In the spirit of Jackson System Development [14] we emphasise the thorough modelling of
the application domain prior to the consideration of functionality. This is the particular focus of
the analyst, who has first been briefed by the user on the application domain and the provisional
requirement. In this case the context must include a road with varying gradients, wind, a vehicle
and time. These ingredients constitute the environment within which the cruise controller operates,
and the analyst must ensure they are modelled with a level of physical faithfulness and sensitivity
that will ensure a reliable context for the implementer’s components, and therefore useful feedback
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to the user. The analyst will be responsible for the representation of general physical laws (e.g.
Newton’s laws and air resistance). The ‘vehicle’ agent description in Listing 2 illustrates this, and
makes use of ‘derivate’ variables which express indivisible relationships, corresponding here to
physical laws.

agent vehicle
�

const
mass = 1500 /* total mass of car and contents [kg] */
windK = 10 /* wind resistance factor [N m−2 s2] */
rollK = 100 /* rolling resistance factor [N m−1 s] */
gravK = 9.81 /* acceleration due to gravity [N m2s2] */
brakK = 150 /* braking constant [N m−1 s] */

state
actSpeed : analog /* actual speed */
accel : analog /* acceleration */
windF : analog /* wind resistance force */
rollF : analog /* rolling resistance force */
gradF : analog /* gradient force */
tracF : analog /* engine traction force */
brakF : analog /* braking resistance force */
brakePos : analog (0.0, 1.0) /* normalised */
accelPos : analog (0.0, 1.0) /* position */

oracle brakePos
derivate

windF = windK � actSpeed 2

rollF = rollK � actSpeed
gradF = gravK � mass � sin (gradient � π/200 )
brakF = brakK � actSpeed � brakePos
tracF = enginePower / actSpeed
accel = (tracF − brakF − gradF − rollF − windF) / mass
actSpeed = integ wrt time (accel, 0)

�
Listing 2

The equations of motion of the vehicle are represented by the derivate definitions in which the
variables represent analogue quantities. Such variables illustrate a process of idealisation involved
in the use of definitive scripts, whereby ideal entities (such as points and lines) are represented on
the display to a degree of approximation that can in principle be chosen with arbitrary accuracy.
In the animation, the values of these variables are updated by integration with a step-size that,
conceptually, is a parameter that can be chosen to be arbitrarily small. Other aspects of the
animation, such as the specification of the speed transducer, also involve integration – in this case
to reflect the process by which the actual speed of the vehicle is converted into a sampled signal.
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In this context, the step-size of the integration is a design feature of the model, chosen to satisfy
the requirements of the engineering model with respect to feedback control for the cruise speed
maintenance. It is on the basis of such explicit relationships that our animation may claim to have
explanatory power.

2.3.4 The Implementer’s View

The implementer has to choose suitable components, and determine realistic properties, so
they can be used to meet the overall requirement. For the vehicle dynamics, such agents as a
speed transducer, a throttle manager and a cruise cutout are introduced. For the interface, other
factors such as driver attributes, the speedometer, the ergonomics of the controls, need to be taken
into account. Assurance about meeting system requirements is based upon the faithfulness of the
component behaviour in the model. The role of the implementer in choosing appropriate models of
the component devices is therefore crucial. What is ‘appropriate’ depends on physical constraints,
the user’s requirement, and the characteristics of the display and other output devices in the model.
This is illustrated by the LSD description for the speed transducer (Listing 3).

agent speed transducer
�

const
wheelDiam = 0.45 /* wheel diameter [m] */
wheelCirc = π � wheelDiam /* wheel circumference [m] */
countPeriod = 0.2 /* counter/timer period */
maxCountVal = 65535 /* 16-bit counter */

state
measSpeed : analog
pulseRate : analog /* wheel revs / sec [s−1] */
countVal : analog /* counter/timer value [s−1] */

derivate
pulseRate = actSpeed div wheelCirc /* integer division */
countVal = (pulseRate � countPeriod) mod maxCountVal
measSpeed = (countVal � wheelCirc) / countPeriod

�
Listing 3

The speed transducer agent presumes that a transducer on a wheel emits one pulse per revo-
lution; the speed is measured by a counter/timer that estimates pulse-rate. With this model of the
speed transducer, it is possible to assess the effect of quantising the measured distance into multiples
of the wheel circumference and of finite counter length. So the accuracy is determined by the size of
the counter (in this case 16 bits) and the pulse rate. The process of incorporating such features into
the model introduces sets of definitions with parameters associated with the components. It is from
these definitions that we can extract detailed requirements for the components. The implementer
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can also investigate on-line the effects of, for instance, unreliability in the counter’s response to the
wheel pulses, and the precautions that could be incorporated as a safe-guard.

2.3.5 Integration of Views in the Development

It is important to notice that we have described three views of the same modelling process
which assumes a rich pattern of mutual interaction throughout its development. There is, for
instance, interaction between the viewpoints adopted. There are abundant examples of such possible
interactions. We can experiment with agent protocols and adapt system behaviour (e.g. modifying
the ‘look and feel’ of a user-interface on-line): this calls for user-implementer interaction. We can
explore the neighbourhood of a solution under small modifications (e.g. how degradation of the
speed transducer affects the feed-back mechanism): this calls for analyst-implementer interaction.
We can incrementally enrich the observational framework to reflect more subtle characteristics
of agent activity (e.g. whether wind resistance forces could take account of the vehicle shape):
this calls for user-analyst interaction. In this sense, the user, analyst and implementer are all
co-developers. There is also the orthogonal interaction, open to each developer and illustrated in
Figure 1, of experiment and observation with both the real world system and the model. We are
thus able to monitor the relationship between the system behaviour as partially realised by the
implementer and the system as conceived by the user. When the user and analyst believe that
an acceptable and realistic requirement has been identified, the current state of the model can be
‘frozen’ and regarded as a specification. The model that has evolved, and been viewed up until this
point as a description of a system, can then be interpreted as a prescription for system components.

3. Conclusion

The modelling process that we have described here is intended to form the major part of an
overall development process that would have wide application for the specification, design and
programming of complex systems. By addressing, for the most part, our original objectives as set
out in §1.2, we have focussed on the impact of our development process on the investigation and
evolution of requirements. It will have become clear that our development approach is indeed a
process, rather than the traditional cycle with feedback. We view it in the spirit of a high-level
concurrent design process between cooperating developers, and it is in this sense that it “integrates
the requirement, specification and design phases” (§1.2). Further details of applications to such
multi-agent cooperative tasks appear in [1].

As explained in §2.1, and illustrated many times in our case study, our modelling methods allow
for the direct intervention of the modeller in imitation of real world experience. It is this facility
which supports the cycles of observation and experiment which are central to the whole process and
which give us confidence in the reliability of the components, and the systems, which we are seeking
to specify and construct. The provisional, informal requirement for the vehicle cruise control given
in §2.3.1, is elaborated and refined from the viewpoints of user, analyst and implementer in the
succeeding sections. The final, precise and detailed requirement for the components and their
interactions is embodied in the specifications of the user, analyst and implementer. We have not
explicitly extracted the formulation of these requirements but we have indicated in more detail in
the case of the speed transducer (§2.3.4) how this can be done. This same example illustrates how
the requirement for a component of a system can be extracted from the system requirement, after
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negotiation between all developer viewpoints concerned, and in the light of their experiments and
experience.

Two further features of the modelling process, highly relevant to requirements, should be
emphasised. It is a remarkably flexible process, allowing on-line re-definitions during animation
of the model. This helps us to explore, and to meet, modifications of the requirements with the
minimum of additional work, and to respond rapidly to the future evolution of the requirement.
The fact that observations are fundamental in the model means that arbitrary enrichment of the
possible observations, and consequent modes of interaction, can be achieved by modification to
the model rather than its reconstruction. In addition, the physical faithfulness that we strive for in
the component models lends an explanatory power to the overall model. It behaves in a ‘realistic’
manner not for pragmatic, or arbitrary reasons, but because it embodies, at least to some extent,
elementary physical knowledge (such as Newton’s second law). Of course, the imperfect state
of our knowledge, quite apart from other shortcomings of our models, is a limitation on their
faithfulness which may be beyond our control. But the easy modifiability of the model allows for
the incorporation of new, or revised, knowledge, in a piecemeal fashion close to the way in which
we ourselves assimilate revisions to our knowledge.

The recent survey of methods and tools in requirements engineering by Hofmann [13] contains
a summary of eight major and representative approaches to requirements. The tools available
for these methods are not described in detail, but they appear to be limited essentially to editors
(including graphical editors), databases and code-generators. In this context the single most
distinctive feature of the modelling process we have presented is its capacity, throughout its use in a
development, to accommodate real world experience, and to offer direct experience from the model.
This may well be compared with the situation of an engineering team designing a large complex
structure, such as a ship. There will be a vast body of theory, data and experience at their disposal,
as well as their combined intelligence, imagination and creativity. They may have distributed
machine support to integrate these resources, and generate and record negotiated designs. But, in
addition to all this, they will probably build a model ship, and subject it to controlled experiments
in a wave tank. The role of the direct experience of our model in building a reactive system is
of a similar kind. It is one source of knowledge, among others, but being represented within the
same overall framework it is maintained in an interactive relationship with other sources, and the
requirement that is being refined and finalised.

As we showed in §1.3, a deeper understanding of programming arises from viewing it in its
real world context. The behaviour of software in context requires knowledge of the implementation
of the relevant interfaces and surrounding components. It is only in terms of such behaviour that
software can be useful, and that we can properly formulate a detailed requirement. This is why we
believe the traditional logical separation of requirements and implementation, while undoubtedly
valuable for many purposes, should not translate into a practical separation in development. It
is also why experience plays an integral part in our modelling process, thereby making it a truly
empirical process.

The relationship between formal models and our empirical models is complex, and is a current
topic of our research. In particular, we are investigating ways of deriving formal specifications
from our models. A complementary area of research involves devising suitable ‘metaphors’ for the
representation of a wider range of experience than is currently available within our models.
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