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On the Complexity of String Folding �Mike PatersonDepartment of Computer ScienceUniversity of WarwickCoventry CV4 7AL, EnglandMike.Paterson@dcs.warwick.ac.uk
Teresa PrzytyckaDepartment of Mathematics and Computer ScienceOdense UniversityDK 5230 Odense M, Denmarkprzytyck@imada.ou.dkAbstractA fold of a �nite string S over a given alphabet is an embedding of S in some �xed in�nitegrid, such as the square or cubic mesh. The score of a fold is the number of pairs of matchingstring symbols which are embedded at adjacent grid vertices. Folds of strings in two- and three-dimensional meshes are considered, and the corresponding problems of optimizing the score orachieving a given target score are shown to be NP-hard.1 IntroductionThe motivation for the string-folding problems considered here lies in computational biology. Pre-diction of the three-dimensional structure of a protein from its known linear sequence of aminoacids is an important practical open problem, which seems to be extremely challenging. The wayin which a protein folds determines many of its biological and chemical properties. A natural ap-proach is to look for a spatial con�guration achieving a minimum free energy level. The energyis determined by such factors as the number of chemical bonds established between amino acidresidues in the sequence and the number of hydrophobic interactions.While most people would expect that �nding a minimum energy con�guration would be com-putationally intractable, previous results to this e�ect are very limited. Ngo and Marks [6] considerthe problem of embedding a string of atoms of length exponential in the input size. The string isdescribed by giving its length (in binary) and the locations and descriptions of the small number ofspecial atoms along the chain which do not have the default geometric characteristics. The energywhich is to be minimised is based on the dihedral angles of the (non-default) bonds. The proofuses a transformation from the PARTITION problem (see [3]). Unger and Moult [7] use a modellike ours in that they embed a string over an arbitrary alphabet into the three-dimensional mesh,but their \distance function" is very arti�cial. In e�ect it forces the active subsequence of a stringto lie in one straight line. It is then easy to design a transformation from the OPTIMAL LINEARARRANGEMENT problem (see [3]). Fraenkel's construction [2] is much more elaborate. He usesa model with charged atoms (his alphabet is f�1; 0; 1g), where the interactions are taken betweenall pairs of atoms embedded at adjacent vertices of the (two- or three-dimensional) mesh. He usesa reduction from 3-DIMENSIONAL MATCHING (see [3]). The most signi�cant limitation of thisresult, in comparison with our problem, is that the object to be embedded is a (rather exotic) graphrather than just a string.�Supported in part by the ESPRIT Basic Research Action Programme of the EC under contract No. 7141 (projectALCOM II). Most of this work was done while the second author was visiting the University of Warwick.1
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Figure 1: Fold of bacbbcacba in Z2 with a score of 4We too prove an NP-completeness result for a much-simpli�ed model, in which we attemptto capture rather more of the essential character of the protein-folding problem. The proteinmolecule is represented by a string of symbols, a bond can be made only between a pair of identicalsymbols, and we seek an embedding of the given string in a grid so as to maximise the numberof pairs of matching symbols at adjacent grid points. This version of the folding problem involvesa mixture of combinatorial, geometric and topological considerations. Hart and Istrail [4] havegiven an approximation algorithm for the \hydrophobic-hydrophilic" model over the same grids.This corresponds to our model, but with a binary alphabet in which the only matches counted arebetween adjacent 1's.2 PreliminariesA �xed in�nite grid G is given. In our paper this graph will be either the two-dimensional squaremesh Z2 or the three-dimensional cubic mesh Z3, though other grids such as the triangular meshor tetrahedral meshes would also be of interest. A given �nite string S, of length n say, is to beembedded in G . A fold of S in G is an injective mapping from [1; : : : ; n] to G such that adjacentintegers map to adjacent nodes of G . (Each node of Z2 has four neighbours.) The score of a foldof S in G is the number of bonds in the fold, where a bond is a pair of identical symbols mappedto adjacent nodes of G . For convenience we do not count a pair of successive identical symbols inS as forming a bond. In Figure 1 we show a fold of S = bacbbcacba in Z2 which has a score of 4.Readers may like to verify that this score is maximal and that the fold achieving it is unique up tothe obvious symmetries. The maximum score for a fold of S in Z3 is 5 however.We de�ne the following recognition version of the problem of �nding an optimal fold.STRING-FOLDInstance: A �nite string S, an integer k, and a grid G .Question: Is there is a fold of S in G with a score of at least k?Note that the alphabet of symbols is not �xed but is implicitly part of the instance. We have beenunable to extend our results to deal with a �xed alphabet.A variety of di�erent models for bonding are possible. We may wish to represent \neutral"elements which can form no bonds. However, any symbol which occurs exactly once in S obviouslyhas this property and can be regarded as a neutral or blank symbol. For notational clarity andconvenience we will use a single new symbol, �, for such blanks. Also we may want bonds to beformed between pairs of \complementary" symbols, a+ and a� say. This feature comes automati-cally, though somewhat arti�cially, for string folding in bipartite grids such as Zd, since alternatesymbols in the string must map into grid nodes of opposite parity. Since adjacent grid nodes haveopposite parity, we can regard a symbol a as being an a+ or an a� according to whether it occurs2



in an even or odd position in S.Our main results are that STRING-FOLD is NP-complete when G is either Z2 or Z3. These willbe proved in Sections 3 and 4. The proofs involve transformations from two known NP-completeproblems, 3SAT [1, 3] and \planar" 3-satis�ability, P3SAT [5, 3]. These useful technical problemsare de�ned as follows.3SATInstance: A set X = fx1; : : : ; xmg of variables and a collection B = fC1; : : : ; Ckg of clauses overX such that each clause has three literals.Question: Is there a truth assignment for X such that each clause in B has at least one trueliteral?The planarity condition for P3SAT is given in terms of the following associated graph. Givenclauses B and variables X as above, the graph G(B) = (V;E) is given by V = B [ X, andE = E1 [E2 where:E1 = f(Ci; xj)jxj 2 Ci or :xj 2 Cig are the so-called variable-clause edges andE2 = f(xj ; xj+1)j1 � j � mg [ f(xm; x1)g are the so-called variable-variable edges.P3SATInstance: A set X of variables and a collection B of clauses as in 3SAT, such that G(B) is planar.Question: Is B satis�able?3 STRING-FOLD in Z2In this section, we show that the STRING-FOLD problem for the grid Z2 is NP-complete, by usinga transformation from P3SAT.Given a planar formula B with k clauses, we construct a string S = s1s2 : : : sn such that S canbe embedded with score f+k if and only if B is satis�able, where f is a value that follows from theconstruction of the string. The string S is composed from several substrings designed separately.In combining substrings, a symbol � from one string will sometimes be replaced by a symbol fromanother string so that the corresponding substrings �t together. A substring composed entirely of�'s is called a exible substring.Conict graph. Given a set S of substrings of S, a conict graph for S is a graph G, whose vertexset is the set of pairs (i; j), 1 � i < j � n, such that si = sj and i; j have opposite parity. Thus thevertices of G represent potential bonds. The edge set of G has the property that if ((i; j); (i0 ; j0))is an edge of G then, for every fold of S, the bonds (i; j) and (i0; j0) are mutually exclusive.Note that we do not require that a conict graph be maximal, i.e., that every pair of conictingbonds is represented by an edge of G. Any conict graph can be used to give an upper boundfor the maximum score of a fold of S, since the following property follows immediately from thede�nition.Lemma 1 If G is a conict graph for a set S of substrings of S then in any fold of S the bonds ofS form an independent set in G.Our basic tool for constructing conict graphs is given by the following easy lemma.Lemma 2 Let S = Ua1V b1Wa2Xb2Y , where U; V;W;X; Y are substrings, and a1 = a2, b1 = b2are pairs of symbols of opposite parity. If (jW j > (jV j+jXj)2 and minfjU j; jY jg > (jV j+jW j+jXj)2then, in any fold of S, the bonds (a1; a2) and (b1; b2) exclude each other.3
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Figure 2: (a),(b) Two optimal folds of a shift-line, and (c) the conict graph (for m = 4)We will apply Lemma 2 in cases where V and X have lengths bounded by a small constant,and W can easily be made large enough to satisfy the �rst inequality. Since we can extend Uand Y suitably just by adding extra blank symbols at the beginning and end of the string S, theinequalities in the statement of the lemma can be easily satis�ed.Shift-lines. A shift-line of order m is a pair of strings, S1 = a1a1 � A1a2a2A2A2 : : : aiaiAiAi : : :amamAmAm � �Am+1, S2 = A1 � �A2A2a1a1A3A3a2a2 : : : AiAiai�1ai�1 : : : AmAmam�1am�1Am+1�amam, such that S1 and S2 are substrings of S with S1 preceding S2, where S denotes the reversalof S and the occurrences of the �rst symbols of S1 and S2 have the same parity.Lemma 3 The maximum score of a shift-line of order m is 2m. Furthermore the maximum scoreis achieved only by the fold whose bonds are formed by the pairs of upper case letters or by the foldusing the pairs of lower case letters.Proof: It is easy to con�rm that the score 2m is obtained by a fold that has one of the two typesof bonds speci�ed in the statement of the lemma (see Figure 2(a) and (b)).To show that 2m is the maximum possible score and that it is attained by no other set ofmatches, we use the conict graph argument. Denote by si the ith occurrence of a symbol s inthe string S1 or in the string S2, and construct a conict graph Gm for fS1; S2g as follows (seeFigure 2(c)). Gm has 4m vertices fA1; A12; : : : ; A1m; A2m; Am+1; a11; a21; : : : a1m; a2mg where vertex Ati(resp. ati), t = 1; 2, corresponds to the bond fAti; Atig (resp. fati; atig). For any i, 1 < i � m,the graph induced by A1i ; A2i ; a1i�1; a2i�1; a1i ; a2i is a complete bipartite graph with the bipartitioncorresponding to upper case and lower case letters. Furthermore A1 is adjacent to a11 and a21 andAm+1 to a1m and a2m. By Lemma 2, the resulting graph Gm is a conict graph.We claim that Gm has precisely two maximum size independent sets: I1 = fa11; a21; : : : a1m; a2mgand I2 = fA1; A12; A22; : : : A1m; A2m; Am+1g. To show this, let I be an arbitrary independent set.Regarding Figure 2(c) as a 2� 2m array, no two elements of I can be in the same column, and sojIj � 2m. Furthermore, if jIj = 2m then every column of the array contains exactly one elementof I. If I has some element from each row of the array, then it must have a pair of such elementslying in adjacent columns. However this is impossible since any such pair is adjacent in Gm. Thiscontradiction concludes the proof. 24
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Figure 3: (a),(b) Two optimal folds of a shift-line containing an exposer that correspond to assign-ments to the variable which satisfy and do not satisfy clause Ci respectively. For a negated variablethe pair Ci � would be inserted between symbols denoted by upper case letters. (c) Representationof a variable trap for clause Ci.The fact that there are only two possible sets of bonds for an optimal fold of a shift-line does notimply that there are only two embeddings of a shift-line. Each optimal embedding of a shift-line canbe visualised as a double chain of matched intervals of length two interleaved with double exiblestrings of length two. This exibility would allow a shift-line which starts horizontally to move upor down in a series of steps, while maintaining its horizontal orientation. We also observe that itwas not essential for the shift-line to be constructed from two continuous substrings. Between anypair of adjacent matching symbols in a shift-line we can insert a short subsequence, built over aset of symbols disjoint from the symbols in the shift-line. Provided the inequalities for Lemma 2are satis�ed, Lemma 2 still holds. Similarly, a longer subsequence could be inserted provided thatthere are several bonds due to be formed between matching pairs of symbols in the initial and �nalparts of the subsequence. Then, if the ends of the subsequence are not embedded closely enoughtogether to apply Lemma 2, enough of these bonds would be lost to negate any possible advantagegained by a non-standard embedding of the shift-line.The reduction. We are ready to prove the main theorem of this section. Most structures will bepresented by example and picture rather than formally.Theorem 1 STRING-FOLD is NP-complete for the grid Z2.Proof: We will have a unique symbol Ci corresponding to each clause Ci, and we design thestring S so that there is an occurrence of Ci, each with the same parity, corresponding to eachvariable in the ith clause, and there is one occurrence of Ci with the opposite parity correspondingto the clause itself. The occurrences are designed so that, in any optimal fold, Ci can form at mostone bond. In an optimal fold, the creation of a bond corresponds to a satisfying literal for thecorresponding clause.Each variable is represented by a shift-line. For each occurrence of the variable in a clause, sayCi, we insert in the shift-line a so-called exposer (see Figure 3(a),(b)) containing the symbol Ci.Each clause Ci is represented by a substring called a trap containing the symbol Ci with oppositeparity to the parity of the Ci's in the exposers (see Figure 3(c)). The two optimal folds of theshift-line allow or prevent an extra bond between the Ci from the exposer and the Ci from thetrap.It remains to show how the substrings corresponding to variables and clauses are composed to5
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Figure 4: (a) The graph G(B) for formula B = C1 ^ C2 ^ C3, where C1 = x1 _ :x2 _ :x3,C2 = x1 _ x2 _ :x3 and C3 = :x1 _ x3, and (b) its representation on Z2. The embedding ofexible strings realizing the connection between the base of a trap and the exposer corresponds tonon-intersecting paths in G(B) denoted in diagram (a) with dashed lines.form the string S. First we construct the string T = [Si1]ni=1 � [Sn+1�i2 ]ni=1 where Si1; Si2 is a shift-linerepresenting xi. We think of [Si1]ni=1 as the top side of T and of [S2n+1�i]ni=1 as the bottom side ofT . The shift-lines are constructed using disjoint sets of symbols.Next, we add exposers and traps to T . Consider a �xed planar embedding of the graph G(B).See Figure 4. The traps and exposers that correspond to the clauses in the interior of the cycle(x1; : : : ; xn) in the embedding of G(B) will be added to one side (say the top side of T ), and trapsand exposers corresponding to the clauses embedded in the exterior of this cycle on the oppositeside. The order of placing the exposers on each side of the shift-line for xi is de�ned by the cyclicordering of edges adjacent to xi. On the top side of the shift-line the exposers follow the cyclicorder of the variable{clause edges about xi inside the variable cycle, from the edge (xi; x(i�1) mod n)to (xi; x(i+1) mod n), and similarly for the bottom side and the edges outside the variable cycle.A clause Ci is represented by a trap containing symbol Ci. The trap is attached using exiblestrings to any of the shift-lines corresponding to a variable that occurs in Ci. We call the placeof attachment of a trap the base of the trap. The trap is attached to the corresponding shift-linenext to the exposer with the symbol Ci (i.e., the substring separating the base of the trap and theexposer cannot contain other traps or exposers | it can contain only shift-line symbols).We assume that all shift-lines will be embedded horizontally along the �rst coordinate axis. Thelengths of the exible substrings from bases to traps are su�cient for each trap to reach any exposercorresponding to occurrences of variables in its clause, independently of other traps reaching theirexposers.By the planarity of G(B), there are no topological obstructions to such simultaneous connectionbetween pairs of trap-bases and corresponding exposers (see Figure 4(a)). However we have totake into account that the exible strings use some area and have �xed length. This presents nosigni�cant problem and details are omitted from this abstract.Let f be the number of bonds in an optimal fold of the string S0 obtained from S by replacing allsymbols Ci (1 � i � k) with �. The bonds of S0 are called construction bonds. A fold of S can havef + k bonds only if it is possible to create a bond between each symbol Ci from its trap and somesymbol Ci from an exposer. It is impossible to create a bond with a non-exposed exposer withoutbreaking some construction bond. Similarly, a symbol Ci from a trap cannot be adjacent to two6
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Figure 5: Overall constructionsymbols Ci from two exposers without breaking at least two construction bonds in the exposers orthe trap. Thus B is satis�able if and only if an optimal fold of S has f + k bonds. 24 STRING-FOLD in Z3In three dimensions we will use a di�erent mechanism to transmit the truth value of a variable toits clauses. In a faint echo of the biological origins of the problem, we represent each variable by adouble helix. The truth value is expressed by the chirality (left- or right-handedness) of the helix.The proof of NP-completeness uses a reduction from 3SAT.The intended layout of the string S is as a doubled string, following the overall shape of a\comb", in which each \tooth" consists of a helix corresponding to a variable. The teeth areattached to the spine of the comb in such a way that, although they are constrained to lie parallelto each other in a regular planar array, there is an independent choice of chirality for each tooth.There are docking points on each tooth corresponding to each clause in which a literal of thatvariable occurs. Depending on the chirality of the embedding chosen for that tooth, a docking siteis either exposed on the top or bottom surface of the comb and available for docking, or hidden inthe crevice formed with an adjacent tooth.For each clause, there is, attached to the comb at any suitable place, a long exible loop at theend of which is a \ligand" corresponding to that clause. The loop is long enough for the ligandto dock with any one exposed docking site corresponding to that clause on a tooth. The targetscore is such that it can be attained if and only if there is a choice of chirality for each tooth (i.e.,truth value for each variable) such that at least one docking site for each clause is exposed (i.e.,each clause is satis�ed by at least one literal). An impression of the overall structure is shown inFigure 5.We proceed to describe the components in more detail. A string S = S1S2 is called a (rooted)helix of order m if S1 = (s10; s11; s12; : : : s16m+2) = (1; [4i; 4i�1; �; 4i+1; 4i+2; 4i+1]mi=1 ; �; 4m+3), andS2 = (s20; s21; : : : s26m+1) = (2; 3; [4i; 4i+1; 4i; 4i+3; 4i+2; �]mi=1 ). (See the bold lines in Figure 6(a).)7
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(b)Figure 6: The double helix of order m = 3Note that the parity of s10 is the same as the parity of s20.Lemma 4 The maximum score of an embedding of a helix of order m is 6m. Furthermore, givena �xed embedding of the �rst and last edges of the helix such that (s10; s11) and (s20; s21) lie parallelalong opposite edges of a unit cube, there are exactly two folds that achieve the maximum score.These consist of a right-handed and a left-handed double helix.Proof: The score of an embedding of S is maximized if all pairs of identical symbols of di�erentparity are adjacent. Such an embedding is possible (see Figure 6(b)) and we will argue that thereare only two di�erent optimal embeddings. The second optimal embedding is similar to the onepresented in Figure 6(b) but the two strings twist around each other in the opposite sense.Let the bond graph B(S) = (V;E) be the graph with set of vertices V equal to the set of elementsof S, and such that (x; y) 2 E if and only if x; y are either two consecutive elements of S, or x andy are equal symbols with di�erent parity, which implies that one is from S1 and the other from S2.(See Figure 6(a).) Then any optimal fold of S corresponds to a grid embedding of B(S) such thateach edge is embedded on an edge of the grid. In the full paper we complete the proof of Lemma 4with an inductive argument. 2Now we are ready to describe the details of the overall construction. All elements of the \comb"are built up using helices. We think of each helix as a sequence of adjacent cubes. The face de�nedby the last two elements of S1 and the last element of S2 (in Figure 6(b) the rightmost face) iscalled the extremal face. The outside faces along the length of the helix are called external faces.By Lemma 4, depending on the chirality of the optimal embedding each external face is in one oftwo pairwise perpendicular positions. Using this observation, the \comb" is designed as follows:teeth: Each variable x corresponds to a tooth of the comb and is represented by a helix. Foreach occurrence of the variable in a clause Ci, a pair of \diagonal" � symbols (i.e., two �'sthat are endpoints of an external face diagonal) in the helix are replaced by the pair ofsymbols (Ci;Di). This is done in such a way that in any optimal fold all the pairs of symbolscorresponding to non-negated occurrences of x are embedded on external faces perpendicularto those for negated occurrences of x.spine: The spine of the comb is built from one helix. For attaching teeth, we use the observationthat any optimal embedding of a helix contains external faces of the form A = (a; �; b; �̂)such that a; �; b are consecutive in the string and there are exactly two a symbols in the8
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helixFigure 7: Fold of special trap attached to a helixwhole string, these having opposite parity (for example, see face (11; �; 13; �) in Figure 6(b)).Since faces with the above properties occur periodically on a helix, the teeth can be placedregularly along the base parallel to one another. Let the new tooth be formed from the string1̂T 2̂, a variable helix with initial and �nal symbols 1̂ and 2̂. We replace the substring a � bby a 2̂ 1̂ T 2̂ a b. The new bond (a; a) forces the new symbol a to be embedded in the sameposition as the � symbol replaced. To make sure that the tooth is not loose, we replace the�̂ in A by 1̂.ligand: Referring to Figure 6(b), we see that the extremal face has a diagonal pair of � symbols.We let each ligand corresponding to a clause C = Ci be a helix at least as long as the distancebetween the teeth, to which is attached the special trap illustrated in Figure 7. (We use (C;D)for (Ci;Di).) The subsequence �(4m + 3)� which occurs on the extremal face of the helix isreplaced by � = CD �C �C �������D �D �CD. The sequence � has four occurrences of Cand four of D and, as Figure 7 shows, � can be embedded so that all three potential (C;C)bonds and all three potential (D;D) bonds are simultaneously achieved. The e�ect of suchan embedding is to leave the circled occurrences of C and D with only one free edge in thegrid with which to make a further bond with an exposed symbol on a tooth. The target scorewill be set so as to require four (C;C) bonds and four (D;D) bonds. The ligand is attachedto the comb using exible strings long enough to reach any exposed pair (C;D). In this waya ligand can dock without a penalty with any (but with at most one) such pair exposed by avariable tooth.This completes the description of the structure used to establish our second main result.Theorem 2 STRING-FOLD is NP-complete for the grid Z3.Proof: One aspect of the proof is much simpler than in the corresponding theorem for Z2. Thetarget score which is set requires the simultaneous formation of the maximum possible numberof bonds for every alphabet symbol. We have shown that for most parts of the structure thisrequirement imposes an embedding which is unique up to mirror symmetry.Without loss of generality we can take one �xed embedding for the spine of the comb. Eachtooth is attached to �xed points on the spine by a pair of edges, which are the �rst and last edgesin these helices. By Lemma 4 there are just two embeddings of each tooth relative to the spine.The choice between these two embeddings determines which pair of opposite long faces of the toothare exposed in the plane of the comb and which are hidden in the gaps between successive teeth.Each ligand has several distinct embeddings, but the essential active part of each is the diagonalpair (C;D), circled in Figure 7, which is constrained to occur at the extremal face of the helix of the9



ligand. This helix is designed to be long enough so that the active pair cannot reach any dockingsite which is on a hidden surface of a tooth (see Figure 5). The exible loops which attach theligands to the spine of the comb o�er no obstruction to achieving any docking.The target score is reached if and only if every ligand achieves its bonds, and this is possible ifand only if there is an orientation of each tooth so that every ligand has a corresponding exposeddocking site to dock with. This last condition is equivalent to there being a choice of truth valuefor each variable in the instance of 3SAT such that each clause is satis�ed by at least one of itsliterals. 25 Open Problems and ConclusionTo obtain our results, we needed to allow an alphabet of unbounded size. The principal open prob-lem that remains is to resolve the complexity of STRING-FOLD in Z2 and Z3 for the \hydrophobic-hydrophilic" model considered by Hart and Istrail [4]. This corresponds to a binary alphabet inwhich only one symbol forms bonds. An intermediate problem, which still seems challenging, is toextend our NP-hardness results to some �xed �nite alphabet.The grids Z2 and Z3 that we have used are bipartite, and parity arguments were helpful inmaintaining control over the possible embeddings. This feature is not in keeping with the biologicalmotivation and more realistic models. It would be a signi�cant advance to extend our results totriangular and tetrahedral grids, which do not have the convenience of bipartiteness.We expect our results to be of interest more to computer scientists than biologists since ourmodel is very restricted and omits so many of the important characteristics of the protein-foldingproblem. The grid we impose does not capture the subtlety of molecular geometry, the model ofbonds is much too simple.It is not clear whether the biological motifs (e.g., the docking of ligands and the double helix)arose naturally in our solution or suggested themselves subconsciously because of the biologicalbackground to the problem. We hope that our examples and open questions will stimulate othersto tackle string-folding problems in a more biologically realistic model.AcknowledgementsWe are grateful to Aviezri Fraenkel for introducing this type of problem to us, and to William Hartand Sorin Istrail for making available to us an early copy of their paper.References[1] S.A. Cook. The complexity of theorem-proving procedures. Proc. 3rd ACM Symp. on Theoryof Comp. (1971), 151{158.[2] A.S. Fraenkel. Complexity of protein folding. Bull. Math. Biology 55, (1993), 1199{1210.[3] M. Garey and D. Johnson. Computers and Intractability. (W.H. Freeman and Co. 1979).[4] W.E. Hart and S. Istrail. Fast protein folding in the hydrophobic-hydrophilic model withinthree-eighths of optimal. Proc. 27th ACM Symp. on Theory of Comp. (1995), 157{168.[5] D. Lichtenstein. Planar formulae and their uses. SIAM J. Computing 11, (1982), 329{343.[6] J.T. Ngo and J. Marks. Computational complexity of a problem in molecular structureprediction. Protein Engineering 5, (1992), 313{321.10
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