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Feature Extraction for Very Low Bit RateVideo CodingP.R. Meulemans, Dr. R. WilsonDepartment of Computer Science,University of Warwick,CoventryAugust 31, 1995AbstractThe work described in this report is part of a project aimed at the design of animage sequence (video) coding method for very low bit-rates. The coding methodwill use multiresolution a�ne motion estimation combined with extracted imagefeatures to make accurate inter-frame predictions.This report is mainly concerned with extracting linear features (i.e lines andedges) from an image and combining them into more complex features that rep-resent object boundaries in the image. The linear features are extracted in amultiresolution scheme from local frequency estimates provided by the Multires-olution Fourier Transform (MFT).
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1 IntroductionThe use of video images in many areas of everyday life is very much increasing atthe moment and will probably continue to do so in the foreseeable future. With therise of multimedia, people are starting to see the value of adding moving images toareas of communication that were traditionally done just in print or by voice. Incommunications that until recently could only be done face-to-face (i.e. meetings),video links can now be used to conduct these meetings long-distance, thus savingtravelling time and costs.The advantages of video images are clear, but so is their main problem: the hugeamount of information necessary to transmit or store the video images. For instance,transmitting a grey level 8 bit/pixel image of size 256x256 pixels at 25 frames persecond takes over 13 million bits/sec. If this image was for instance used for a video-phone than the actual bit-rate available would be 64 thousand bits/sec (on an ISDN-line), which is less than one two-hundredth of the needed rate. Clearly there is a needfor compression of the information.Although modern technology is capable of sending information over at vast bit-rates, these bit-rates are usually not available to the users for a number of reasons.Firstly, there is the simple rule: the higher capacity a lines has, the more it costs torent or buy. So compression to low bit-rates will reduce costs. Secondly, the latesttechnology is not always available to everyone. A lot of non-commercial communi-cations will at the moment be done over existing telephone lines, using a modemthat can typically reach 28800 bits/sec. Thirdly, there is a trend towards wirelesscommunication which also has highly restricted bit-rates.Most video compression methods used to date operate on the principle of mak-ing inter-frame predictions using block matching motion estimates and coding theprediction errors using a DCT. These methods were originally developed for higherbit-rates and simply applying them to bit-rates under 64 kbit/sec does not give thebest possible results. Two main streams of coding methods have emerged that arespecially aimed at these lower bit-rates. The distinction between the two is that oneis `model-based' and the other one isn't. A model-based method extracts informationabout the contents of the image and uses this in the coding. Non model-based meth-ods do not analyse the image in this way. Gains in coding rates in these methodsover the conventional ones are obtained by for instance using better transformationsor quantisation schemes, and reducing overhead information.Model-based methods are in general more complex then non model-based methods,but they also are thought to have a potential for higher compression. This is especiallytrue when judging the result subjectively, because model-based methods can `shape'their errors in an observer-friendly way since they have information on the contents ofthe image. This potential for better compression has however not yet been convertedinto an actual method that clearly outperforms the non model-based methods.1



This report describes the start of a project which is aimed at creating a newmodel-based video coding method. As in conventional video coding methods, thisone is based on making a prediction of the next image in the sequence from theprevious ones and coding the hopefully small prediction error. The main di�erencesfrom conventional methods are:� Use of a�ne motion parameters instead of just translation motion vectors. Thisimproves modelling 3-D motion of objects in the image.� Use of linear features extracted from the image. These features (lines and edges)are used to enhance the motion estimates and to identify parts of the image thatbelong to the same object and therefore move together.Both above aspects are dealt with within a multiresolution context, which meansthat the image is segmented into blocks of variable size, according to its local contents,so that large structures can be dealt with at a large and e�cient scale and �ner detailsin an appropriate �ner scale. The calculation of both the a�ne parameters and thelinear features is done using the Multiresolution Fourier Transform(MFT), whichprovides local frequency spectra at multiple scales.The main topic of the research described in this report is how the linear featuresthat will be used in the proposed compression method can be extracted from theimages in the sequence and how the separate extracted features can be joined togetherto form a useful set of boundary representations.1.1 Video CodingConventional video coding methods based on block transform coding using temporalprediction and motion estimation (e.g. MPEG, H.261 [12] and H.263 [22]) seemto be reaching a plateau in performance. The low-level processing used by thesemethods, such as transforms, �ltering and correlations, is by now well understoodand major leaps in performance are therefore not to be expected. Still, improvementcan be achieved by using for instance di�erent transformation schemes, like subbandcoding [14][20]. In order to get major improvements in video coding, a lot of researchtherefore focused on compression methods that use a higher level of processing, whichdeals with higher level concepts such us global motions, surfaces, regions, boundaries,textures, etc. These concepts can be referred to as mid-level concepts [1] becausethey are sophisticated enough to produce powerful representations, and yet simpleenough to be computed.This higher level of processing can come in many di�erent forms. At one side ofthe range there are relatively simple methods like applying motion vectors to regionsinstead of blocks, where the regions are formed on the basis of quantised grey levelvalues [9]. On the other side of the range there are knowledge based model methods2



which recognise highly speci�c objects, e.g. a head-and-shoulder model, that canbe represented almost totally by parameters [6][13]. These highly speci�c codingmethods are likely to get the best performance, but are only useful in highly restrictedapplications. In methods for general video compression a balance has to be foundbetween the generality and the performance of the method.A very basic aspect of the contents of almost all images is that it is a 3-D scenethat is projected on to the 2-D image. This knowledge can be used in compressionschemes in several ways. One consequence is that the motion in the image is actuallya projection of the 3-D motion in the scene. So unless an object in the scene movesparallel to the image plane, its motion in the image will not be a 2-D translation.The 2-D motion estimation used in conventional video coding can therefore be im-proved upon by using more appropriate motion parameters. In [17] three types of 2-Dtransformations are used that model the projection of the 3-D motion: a�ne, per-spective and bilinear transformation. It is shown that these motion estimations resultin better compression ratios than just translation motion estimation. The parametersof the transformation are in that work found by block matching, which presents aproblem because the transformations do not have just two degrees of freedom butsix (a�ne) or nine (perspective). This increases the search space and therefore thecomputational load dramatically.Adelson and Wang in [1][21] use the notions of regions and 3-D depth in theirwork by representing moving scenes with layers. The scene that is shown in thesequence is segmented into layers: one background layer and a number of occludinglayers, ordered by depth. As the sequence goes along, the layers are segmented byanalysis of a�ne motion and the image intensities of the layers are �lled in. Theimage is reconstructed by warping the �lled in layers according to the a�ne motionparameters.One of the advantages of this method is its ability to deal with occlusions, whichis an important aspect of video coding. Especially, the way that reappearing parts ofthe image that were temporarily occluded can be synthesised by virtue of the memoryfunction of the layer representation is a signi�cant gain. A problem for this codingscheme could be how to deal with 3-D rotating motion, because layers are inherently
at, or with local small scale movements which are to small to be represented withlayers.The coder being developed in this project will combine several ideas used in modelbased coding. The aim is to produce a coder that is generally applicable withoutknowledge of the contents of the image, yet approaches the performance of a 3-Dmodel knowledge based coder. A multiresolution technique will be used to estimatea�ne motion parameters for `planar patches' at an appropriate scale. A `212 -D' imagemodel can then be used in which surfaces are treated as assemblies of planar patchesmoving in 3-D.The a�ne motion estimation of the planar patches is implemented using a scheme3



consisting of two components:1. A block based a�ne motion estimation in which a block in this frame is modelledas an a�ne transform of a block in the previous frame.2. A linear feature extraction in which piecewise linear parts of object boundariesin the image are found.Both these aspects are done within a multiresolution framework to ensure that anappropriate scale is used in all parts of the image. To synthesise the predicted framefrom the previous frame, the estimated motion parameters are applied to the planarpatches whose boundaries are constrained by both the blocks and the linear features.The use of the linear features has several more advantages. One of these is thattheir position is established again for each frame. When inter-frame predictions aremade based on only motion estimates, parts of the image often have the tendencyto `drift o�' because of accumulating motion errors. Using the accurate positionof the linear features, this e�ect can be reduced. Another advantage is that thefeatures indicate likely occlusion boundaries. This knowledge can be used to improvepredictions for newly unoccluded parts of the image.It has been mentioned that �nding a�ne motion parameters can be a time consum-ing job when done by block matching. Therefore, in this work the motion parametersare calculated in a more e�cient way within the framework of the MFT. The estima-tion is based on a method developed by Hsu [10] in the context of texture analysisand synthesis.1.2 Feature ExtractionOne of the novelties of the proposed video compression method is that it makes useof linear features. So the question arises of how best to extract these features fromthe images in the sequence.The simplest kind of line and edge detectors are those that generate a map of theimage which indicates whether the corresponding pixel in the image is on an edge andpossibly what the strength and orientation of that edge is. This category includes:line and edge masks, gradient operators, and detectors of zero crossings of secondorder derivatives of the image [11].The low-level representation of edges that these methods produce is hard to usedirectly in a coding application. In order to use feature information in the proposedcoding scheme, it needs to be represented in a higher-level form. A suitable form ofrepresentation would be a set of feature types of interest, whose exact form (e.g. posi-tion and orientation) can be represented by a number of parameters. The extractionmethods would then produce a list of all features present in the image, with a set ofparameters for each feature.One well known method for doing this is the Hough Transform.4



1.2.1 Hough TransformThe Hough transform [8] is used to go from a low-level representation of edges to ahigher level parametric representation of features of a chosen type. The input of theHough transform is the edge map produced by applying one of the above mentionededge detection methods to the image. All of the high intensity pixels in this maplie on (potential) features. The idea behind the Hough transform is that for eachcombination of parameter values it gives an indication of how well the correspondingfeature is supported by the input edge map.The Hough transform is a transformation from the spatial domain to a parameterdomain, whose parameters correspond to the chosen feature type. To demonstratehow the Hough transform works, consider the extraction of linear features.To represent a line in an x; y-plane, two parameters are needed. Several possiblesets of parameters can be used, for instance the ordered pair (a; b) which representsthe line given by: y = ax+ b: (1)The problem with this representation is that the values of a and b are not restrictedto a �nite interval. Therefore the Normal representation of a line is used, which hasparameters (�; p) and represents the line:p = x cos � + y sin �: (2)So to extract linear features from the edge map, the map is transformed from thespatial (x; y) domain to the parameter (�; p) domain.Consider a point (xi; yi) on the edge map. Through this point, a in�nite numberof lines can be drawn, with varying parameters � and p. Therefore this point (xi; yi)transforms to an in�nite number of points in the parameter space, which together forma curve in that space. Transforming a second point (xj; yj) will produce a di�erentcurve in the parameter space. The coordinate in the parameter space where these twocurves cross, indicates the parameter set for the straight line in the spatial domainthat both points lie on. Similarly, all points of the edge map whose value exceeds agiven threshold can be transformed, resulting in a parameter space �lled with curves.If there is a coordinate in this space through which a lot of these curves pass thenthis indicates that a lot of pixels in the edge map lie on the line that corresponds tothe parameter values of this coordinate, which can therefore be considered a featurein the image.In practice, �nding these points in the parameter space can be done by discretis-ing the parameter space. Each discrete coordinate than represents a small range ofparameter values, and the transformation of a point on the edge map increases anaccumulative counter of all appropriate discrete coordinates. A linear feature in theimage can then be found by looking for peaks in these counter values.5



1.2.2 Frequency spectrum methodA di�erent way in which parameterised features can be extracted from an image isby analysing its frequency spectrum. Calway [5] and Davies [7] have used a methodof extracting linear features directly from the Fourier spectrum of an image.Given that an image contains a single linear feature, certain properties of thespectrum are known: 1) the magnitude spectrum will have a preferred orientation,perpendicular to the orientation of the linear feature; 2) The phase of the spectrumwill be linear. By checking the spectrum of an image for these two properties, it canbe established whether the image has a single linear feature. Also, the orientationand position of the feature can be obtained from the spectrum.Davies extended the method to detecting multiple linear and arced features.The feature extraction method that will be used for the proposed video compressionscheme is based on this frequency domain method. It will be extensively describedin a later section.1.2.3 Hierarchical feature extractionUsing one of the methods described above, single linear features or other simplegeometric features can be extracted from an image. However, most images containfar more than one feature and of more complex forms. It would not be possibleto extract all these features in a global manner using the described methods. Toovercome this, a `divide and conquer' strategy can be adopted, dividing the imageinto smaller parts to each of which the feature extracting method can be applied.The simplest way to divide the image is to use �xed size square blocks. However,this presents the problem of choosing one block size. The blocks should be smallenough that they will not contain more features than the feature extraction methodcan detect. On the other hand, making the block size too small results in a veryine�cient representation of larger features, which will be divided over a large numberof small blocks, or even in missing large features that are not sharp enough to bedetected in a small window.It is clear that the optimal block size for an image depends on the contents of thatimage, and will usually be di�erent for di�erent parts of the image. It is therefore animprovement to use di�erent sized blocks in di�erent parts of the image. This can bedone using a hierarchical method. Hierarchical methods usually use a quad-tree-likerepresentation of the image. The process starts out with a big block size and decidesfor each block in the image either to keep this big block, or split it up into smallerblocks. This decision process is then repeated for all smaller blocks, until the optimalblock size for each part of the image is reached. Alternatively, a bottom up approachcan be used which starts out with all small blocks that can be merged into biggerones. 6



The clear advantage of hierarchical methods is that they adapt to the image con-tents so that each feature can be detected and represented using the best windowsize or scale. This is especially important in compression applications, because repre-senting a feature at a larger scale takes fewer (but bigger) blocks and therefore fewerfeature parameters.To extract the feature parameters of the local features in each block, and to decidewhether or not the block needs to be split again, the non-hierarchical feature extrac-tion methods described in the previous sections can be used. Complex features, suchas boundaries of objects in the image can be represented by combining the simplefeatures in the separate blocks.1.3 Image RepresentationsThe feature extraction in this work will be done in the frequency domain. One of thereasons for this is that in the video coding process the feature extraction needs to becombined with other aspects like the a�ne motion estimation and texture analysis.All these aspects are preferably dealt with within one uni�ed framework and it hasbeen established [5] that the Multiresolution Fourier Transform (MFT) is a suitablefrequency domain image representation to act as a basis for this framework. Thissection will discuss some much used frequency domain image representations, andcompare them to the MFT.The standard frequency domain representation is the two-dimensional FourierTransform (FT) [11]. The FT has good properties for extracting feature and a�nemotion parameters. Orientation information is obtainable from the magnitude andposition information from the phase of the spectrum. Furthermore, the FT basisvectors are closed under a�ne transformation. Consequently, a small a�ne transfor-mation in the image results in a small predictable change in the frequency coe�cients.The major problem of the FT is its inability to deal with locality. So if there areseveral features at di�erent areas of the image, it is hard to distinguish them in thespectrum.To avoid this problem of locality, space-frequency representations are used. Thebest known of these is the Short Time Fourier Transform (STFT) [2]. The STFTapplies a window to the image to ensure locality, before transforming the image.By shifting the window over the image, a set of local spectra is obtained. In theSTFT, the size of the window is �xed, so one appropriate size has to be chosen forthe entire image. Therefore, when using a STFT for feature detecting, all featureswill be analysed at one scale. As already mentioned in the previous section, it is anadvantage to analyse each region of the image at its own appropriate scale, thereforean image representation is needed that supports multiple scales.Representations that do support multiple scale analysis are called multiscale ormultiresolution representations. For frequency domain representations the choice of7



scale, i.e. the choice of the size of the analysis window, is a trade-o� between frequencyand spatial resolution. Due to Heisenberg's uncertainty principle, which gives anupper bound for the product of the spatial and frequency resolutions, it is not possibleto get simultaneous arbitrarily high spatial and frequency resolutions [24].One popular multiresolution representation is theWavelet Transform (WT) [16][19].The WT is a space-scale representation which means that each coe�cient of the WTis identi�ed by a position and a scale. The WT decomposes the signal onto a setof analysis functions that are all obtained from one basis function by a translation(according to the position) and a dilation (according to the scale). The frequencyassociated to a WT coe�cient is inversely related to its scale, because the dilationof the analysis function of a large scale will reduce its frequency. In terms of thetrade-o� between frequency and spatial resolution this means that at low frequenciesthe WT has a high frequency and low spatial resolution, and at high frequencies ithas a low frequency and high spatial resolution.The WT has the advantage over the STFT that it does represent the image at arange of scales, but it also has some disadvantages compared to the STFT when usedfor feature extraction. The STFT inherits the pleasant properties of the FT for featureextraction that have been mentioned earlier. The WT lacks some of these properties,e.g. the useful phase information to determine position and a `nice' reaction to smalltranslations in the image [18]. Another reason why the WT is not very useful forfeature extraction is that its notion of scale is quite limited. For each frequency, onlyone �xed scale is available which means that there is no freedom to choose the optimalscale or to use several scales in the detection process. For these reasons, the WT isnot used.The image representation that is used in this work is called the MultiresolutionFourier Transform (MFT). This representation satis�es all of the above indicatedproblems. The discrete MFT can be seen as a stack of STFT's of which each leveluses a di�erent window size. It therefore retains all the good properties of the STFTand provides di�erent scales through the levels. Because the MFT is an over-completerepresentation, it provides all scales for all positions and frequencies.2 The Multiresolution Fourier TransformThe MFT [5] is a linear transform, that provides spatially localised frequency spectraof a signal, over a range of scales. A coe�cient of the continuous MFT is identi�edby three parameters: the spatial position ~�, the frequency ~! and the scale parameter�. For a signal x the MFT x̂ is de�ned by [7]:x̂(~�; ~!; �) = �1=2 Z +1�1 w(�(~�� ~�))x(~�) exp[�j~� � ~!]d~�; (3)8
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Figure 1: MFT structure of an 8�8 image.where j = p�1 , w(�) is a window function and `�' denotes the inner product. It canbe seen that for a �xed scale � this de�nition is identical to that of a STFT, wherethe window size is determined by �. By varying � the coe�cients of various scales ofSTFT can be obtained, thus changing the frequency/spatial resolution trade-o�.In this work, a 2-dimensional discrete version of the MFT is used, which is appliedto a discrete image. The discrete MFT consists of a number of levels, each of whichprovides local spectra for a number of spatial regions of the image, as shown in�gure 1. At the lowest level (level 0), there is only one region (the whole image) andit is therefore comparable to the DFT of the image. At each level up, the number ofregions is doubled in each dimension, thus increasing the spatial resolution. However,the number of frequency coe�cients is halved in each dimension, which results in areduced frequency resolution. The highest level, at which each pixel of the image isan individual region, is simply the spatial representation of the image.In its simplest form, the local spectrum of an image region is obtained by takingthe 2-dimensional DFT of that region. This corresponds to using a spatially limitedrectangular window of the size of the region. In this case, at any given level l,the number of spatial regions in one dimension, Sl, and the number of frequencycoe�cients per region in one dimension, Nl, satisfy the equation:Sl �Nl = M; (4)where M �M is the size of the image. It can be shown that this is the minimalrequirement for the product of Sl and Nl in order for any given level of the MFT tofully represent the image.However, for the purpose of image coding, this simplest form of the MFT is notvery suitable, for the use of non-overlapping image regions will lead to a `blocky'reconstructed image. Therefore, in this work a `relaxed' MFT [7], with overlappingwindows, is used. In this case, each MFT-level has two times as many coe�cients in9



each direction as there are in the original image:Sl �Nl = 2M; (5)The windows used are still spatially limited, but now have a 50% overlap on each ofthe neighbouring windows, as shown in �gure 2. The local spectrum of a region isnow obtained by performing a DFT on the window after weighting the coe�cients ofthe window with the window function. For e�ciency reasons, the origin of the DFT ischosen to be on one of the four centre coe�cients of the region, rather than in betweenthem as done by Calway and Davies. The use of a spatially limited window functioninstead of a frequency limited and therefore spatially in�nite window function is oneof the main di�erences between this work and previous work by Calway and Davies.The image regions at a given level l are indexed from (0; 0) to (Sl� 1; Sl� 1). Let�l;~� be the region at level l with index ~� = (�1; �2). The distance between the centrepositions of two consecutive regions, or in other words, the spatial sampling intervalat level l is given by: �l = M2l : (6)The position of the lower-right pixel of the four centre pixels of region �l;~� is givenby: ~�l;~� = (�l;�1; �l;�2) = (�l(12 + �1);�l(12 + �2)): (7)The local spectrum of region �l;~� can now be de�ned by:x̂(l; ~�; k1; k2) =Xn1 Xn2 wl(n1; n2)x(�l;�1 + n1; �l;�2 + n2) exp[�j 2�Nl (n1k1 + n2k2)]; (8)where � Nl2 � k1; k2 < Nl2 (9)are the discrete frequency coe�cients. The window used wl(�) is a Cartesian separablecosine window centred on one of the centre coe�cients of the region:wl(n1; n2) = ( cos(n1) cos(n2) , if �Nl2 � n1; n2 < Nl20 , otherwise (10)The discrete MFT is very well suited for the hierarchical feature detection processbecause its structure of levels with doubling block size supports the quad-tree struc-ture of that process. Each image region can be checked on features at a certain scaleby analysing the local spectrum from the appropriate level and spatial position.10
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3 Feature Extraction - OutlineThe process of getting a parameter based description of the features in an image canbe divided into three parts:� Extracting local feature parameters from local spectra supplied by the MFT.� Hierarchically determining the optimal division of the image into variable sizedfeature blocks.� Linking the found single features together to form meaningful object boundariesin the image.The following three sections will describe these three aspects of the feature extractionprocess, discuss the implementation and show the results of applying them to a smallsequence of images.In the local feature extraction, only single linear features will be looked for.4 Local feature extractionThe task of deciding if an image region contains a single linear feature, and if soestimating its parameters, is done by analysing the local spectrum given by the MFT.In order to do this, a model of the spectrum of a linear feature is needed.4.1 Linear feature modelAs in [7], a straight line or edge of in�nite length is considered to start with. Such afeature, as shown in �gure 3, can be represented in the continuous spatial domain byx(~�) = x(~� � ~v�); (11)where ~v� = " cos �sin � # (12)is the orientation unit vector and the one dimensional function x(�) represents thepro�le of the feature. The Fourier spectrum x̂(~!) of such an image is concentrated inthe orientation perpendicular to that of the feature:x̂(~!) = x̂(~! � ~v�)�(~! � ~v�?); (13)where ~v�? is the unit vector perpendicular to ~v� and x̂(�) is the one dimensional Fourierspectrum of x(�). Furthermore, it can be shown [15] that the spectrum has a linear12



~v�? ~v� ��
Figure 3: An in�nite lenght linear feature.phase, which relates to the position of the feature relative to the image's origin inorientation �. The phase �(~!) of x̂(~!) is given by:�(~!) = �(~! � ~v�) = �~! � ~v� + "(~! � ~v�) (14)where � is the centroid of the one dimensional function x(�). The function "(!) isdependent on the pro�le of x(�). If the feature is a line, then"(!) = 0: (15)If the feature is an edge, then"(!) = ( �=2 if ! < 0��=2 if ! < 0 (16)However, the features in the spatial regions of the MFT are not in�nitely long,but always of �nite length, because of the spatially �nite cosine window. The in�nitefeature becomes �nite when it is multiplied in the spatial domain with the windowfunction w(�): xw(~�) = x(~�)w(~�) (17)In the frequency domain, this windowing results in a convolution of the linear featurespectrum with the Fourier transform of the window:x̂w(~!) = x̂(~!) � ŵ(~!): (18)13



The spectrum ŵ(~!) of the cosine window is real. The e�ect of the convolution of thespectrum x̂(~!) with ŵ(~!) can be separated in two orientations. In the orientationof ~v�? , perpendicular to the main direction of the spectrum, the convolution causesthe spectrum of the feature to be spread out. This means that the spectrum changesfrom a perfect line to something more like an ellipse shape.In the direction of ~v�, along the main axis of the spectrum, the phase of thespectrum can be a�ected by the convolution. The convolution in this direction canbe seen as a weighted averaging of the neighbouring coe�cients. Now, if the spectrumhas a linear phase and the magnitude of the coe�cients is about the same, then thisaveraging will not change the phase much. From (14) it is seen that the spectrumindeed has linear phase in the direction of ~v�, so the assumption could be made thatthe convolution will not have too much e�ect on the phase of the spectrum. However,there are two problems with this assumption. First, at the origin of the spectrum thesign of "(!) changes, which means that there is a phase jump. Therefore the phasearound DC will be a�ected by the convolution. In the case of a line, this problemdoes not occur, since "(!) = 0. The second problem is that if the feature is an edge,the magnitude of the coe�cients will increase quite rapidly around DC. This can alsocause the convolution to change the phase. These two problems cause the actualspectrum to deviate from the linear phase model, especially in the case of an edge(rather than a line) and especially around DC.However, in this model the assumption is made that the windowing of the in�nitelinear feature has an e�ect only in the orientation of ~v�? , perpendicular to the mainaxis of the spectrum. The spectrum can then be written as:x̂w(~!) = x̂(~! � ~v�)ŵ(~! � ~v�?): (19)The phase �w(~!) can now be written as:�w(~!) = ~! � (�~v� + �0~v�?) + "(~! � ~v�); (20)where �0 is the centroid of the linear feature, after windowing, in the direction alongthe feature, as shown in �gure 4.In this formula the phase is given relative to the axes parallel and perpendicularto the feature orientation �. For practical use, it is helpful to transform it so that itis given relative to the normal ~�-axes:�w(~!) = ~�0 � ~! + "(~! � ~v�); (21)where ~�0 is the spatial point that is associated with � and �0, i.e. the centroid of thefeature.This model of the spectrum has two properties that can be used in identifying alinear feature:1) The form of the spectrum is concentrated in one direction, which is perpendicular14



� �0~�0
Figure 4: An windowed linear feature.to the direction of the feature in the spatial domain.2) The centroid of the feature can be derived from the �rst order partial derivativesof the linear phase of the spectrum.In the next sections, it will be explained how those properties are used for the pa-rameter estimation.The model given here is based on a continuous and in�nite frequency domain.However, the local spectra of the MFT in the work are calculated using a discreteDFT. One problem that is encountered when using a discrete transformation is a`wrap-around' artifact in the spectrum. In the case of the spectrum of a linear feature,this artifact can be seen clearly if the magnitude of the spectral coe�cients does notdecrease much at higher frequencies along the main axis of the ellipse. Figure 5 showsthe spectrum of an image displaying a line with gradient 1/2. It can be clearly seenthat the ellipse in which the energy is concentrated `wraps around' the border of thespectrum and continues on the other side. This is not predicted by the model andcauses some problems, especially with the orientation estimation.As mentioned before, the actual spectrum can deviate from the linear phase modeldue to the windowing, especially around DC. To minimise this deviation, a highpass version of the image is used to estimate the feature parameters from. The lowfrequencies that deviate most from the linear phase model will be reduced in thishigh pass version, so the parameter estimation will be more accurate. The high passversion of the image is obtained by subtracting a low pass version from the image.This low pass version is created by constructing a Gaussian pyramid of the image,from which a low pass sub-sampled level is interpolated back to the original size; aprocedure described in [4]. The amount of low pass signal that is removed has to bechosen so that on the one hand, enough is removed to improve the accuracy of the15
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Figure 5: Magnitude of local spectrum showing `wrap-around' artifact.
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parameters, but on the other hand, enough signal energy is left compared to the noiseenergy to detect the feature. The optimal amount of low pass signal to be removeddepends on the size of the block. Therefore, for di�erent levels of the MFT di�erentlow pass versions are used. These di�erent low pass versions can be obtained by usingdi�erent levels of the Gaussian pyramid to interpolate the low pass image from. Fora �ner regulation of the amount of low pass energy, particular linear combinations ofthe di�erent levels of the Gaussian pyramid can be used, as described in [23].4.2 Feature parametersGiven the model of the spectrum of a linear feature, a check can be made whether aregion of the image contains one linear feature by comparing its local spectrum withthe model. There are four parameters of the model that will be calculated from thespectrum:The orientation �. This parameter gives the principal orientation of the spectrum.The dispersion measure �. This parameter gives a measure of the preference ofone orientation of the spectrum. From the model it is seen that a region with alinear feature has a very distinct preferred orientation.The spatial position ~�0. This is the estimate for the ~�0, the spatial position of thecentroid of the linear feature.The correlation measure 
. This parameter gives a correlation measure of the realspectrum, and a spectrum of which the phase is synthesised from the estimatedorientation and position parameters. This measure is used as a check whetherthe spectrum is well represented by the parameters.4.3 Orientation and dispersion estimationIf an image contains a linear feature, the energy of the spectrum of this image canbe modelled as an ellipse, with its major axis in the orientation perpendicular tothat of the feature. The orientation of the feature can therefore be estimated bycalculating the orientation of this major axis. Furthermore, by calculating the ratiobetween lengths of the major and the minor axis of this ellipse, a good indication ofthe dispersion of the spectrum energy can be derived.Following [7] the calculation of the axes is done by de�ning the moment of inertiamatrix of the spectrum. Of a region �l;~� of size Nl � Nl the inertia matrix is givenby: I = " I11 I12I21 I22 # (22)17



where I11 = Xk1 Xk2 j~x(l; ~�; k1; k2)j2k21 (23)I22 = Xk1 Xk2 j~x(l; ~�; k1; k2)j2k22 (24)I12 = I21 = �Xk1 Xk2 j~x(l; ~�; k1; k2)j2k1k2 (25)with � Nl2 � k1; k2 < Nl2 : (26)The orientations of the major and minor axes of the spectral energy ellipse are nowrepresented by the eigenvectors corresponding to the largest and smallest eigenvalues,respectively [3]. The eigenvalues �1 and �2 of I are the solutions to the characteristicequation of I, and are given by:�1 = I11 + I22 +qI11 + I22 � 4(I11I22 � I212)2 (27)�2 = I11+ I22 +qI11 � I22 � 4(I11I22 � I212)2 (28)The estimation of � can now be found by calculating the orientation of an eigenvectorcorresponding to �1: � = arctan �1 � I11I12 ! : (29)An indication of the dispersion of the energy spectrum is obtained by taking theratio of the eigenvalues: � = �2�1 : (30)Since �1 is the largest eigenvalue, the value of � will range from 0 to 1. A regionwithout any linear features, will not have an energy concentration at any particularorientation so the two eigenvalues will be roughly the same, therefore � is close to 1.A region with two (or more) linear features of di�erent orientation will have energyconcentrations along two (or more) orientations. In this case, � will still be ratherlarge. Only if a region contains one or more linear features in one orientation, will �assume values closer to zero.During experiments it was found that the orientation estimation as described abovewas in some cases inaccurate because of the `wrap around' problem described insection 4.1. The inertia matrix will clearly be `polluted' by the spectral energy of thewrap around parts of the spectrum. To solve this problem, a second stage was addedto the orientation estimation. In this stage, only coe�cients in a given area around18



first estimation second estimationused area

Figure 6: Second stage orientation estimation.the orientation estimated in the �rst stage, are used to calculate a new inertia matrix.In Figure 6 this area is shown. The second estimation of the orientation, based onthe new inertia matrix should be more accurate, as the experiments con�rmed.4.4 Position estimationThe estimation of the spatial centroid of the linear feature in a region can be madefrom the phase of the spectrum. According to the model, the spectrum of a linearfeature can be written as:x̂(~!) = ( jx̂(~!)j exp[�j(~�0 � ~! + ")] if ~! � ~v� > 0jx̂(~!)j exp[�j(~�0 � ~! � ")] otherwise (31)where � is the feature orientation that by now is known, and ~�0 is the centroid thatneeds to be estimated. Rewriting this formula in an appropriate form for an MFTregion �l;~� gives:x̂(l; ~�; k1; k2) = 8<: jx̂(l; ~�; k1; k2)j exp[�j(2�Nl (�01k1 + �02k2) + ")] if k1v�1 + k2v�2 > 0jx̂(l; ~�; k1; k2)j exp[�j(2�Nl (�01k1 + �02k2)� ")] otherwise (32)19
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Figure 7: Shaded area indicates ��. A phase shift occurs at the border of this area.(Copied from [4])The formula shows that the phase is linear in both dimensions, and that the positionof the feature centroid in each dimension is proportional to the phase di�erence of twoadjacent samples in that dimension. As in [7] a forward conjugate product betweenneighbouring samples in each dimension is de�ned as:d1(k1; k2) = x̂(l; ~�; k1; k2)x̂�(l; ~�; k1 + 1; k2) (33)d2(k1; k2) = x̂(l; ~�; k1; k2)x̂�(l; ~�; k1; k2 + 1) (34)with �Nl2 � k1; k2 < Nl2 . If the spectrum is linear phase, then all dm(k1; k2) will havethe same argument, 2�Nl �0m, except for those frequencies that are along the line wherethe sign of the inner product k1v�1 + k2v�2 changes. At frequencies along this line,which is shown in �gure 7, a phase shift of 2" occurs. In particular, the frequenciesaround DC will always be on this line, since it goes through the origin.The position ~�0 of the centroid of the feature can be estimated by calculating anaverage phase di�erence over all frequencies in each direction. This can be done bytaking the sum of all forward conjugate products:Rm =Xk1 Xk2 dm(k1; k2); (35)for m = 1; 2. However, the conjugate products which involve the DC-component, i.e.km = �1 and km = 0, should be excluded from this sum, for the 2" phase shift at DCwill negatively a�ect the accuracy of the estimation.The phases of R1 and R2 now give the estimate for ~�0:~�0 = Nl2� " argR1argR2 # (36)20



4.5 Correlation checkOnce the orientation and position parameters have been estimated, it is necessary tocheck whether the model with these parameters is accurate.Again following [7], the check is done by synthesising the local spectrum using theestimated parameters, and then comparing this with the real spectrum, by means ofa correlation function. The synthesised spectrum ~x(l; ~�; k1; k2), is generated using themagnitude of the real spectrum and the location parameters to estimate the phase:~x(l; ~�; k1; k2) = jx̂(l; ~�; k1; k2)j exp[�j(2�Nl (�01k1 + �02k2)] (37)The comparison of the synthesised and the real specta is done by calculating innerproduct of the real and synthesised coe�cients. However, the sum is only taken overthose frequency coe�cients (k1; k2) for which k1v�1 + k2v�2 > 0, i.e. for which thesign of the phase constant " is positive. This set of coe�cients is named �� and isshown in �gure 7.The correlation sum 
 can now be given by:
 = X(k1;k2)2�� ~x(l; ~�; k1; k2)x̂�(l; ~�; k1; k2) (38)where `�' denotes the complex conjugate.If the spectrum x̂(l; ~�; k1; k2) is linear phase and therefore given by (32), 
 can berewritten as:
 = exp[j"] X(k1;k2)2�� jx̂(l; ~�; k1; k2)j2 exp[j((�01 � �01)k1 + (�02 � �02)k2)] (39)This formula shows that 
 has a maximum value of 
max,
max = X(k1 ;k2)2�� jx̂(l; ~�; k1; k2)j2 (40)and that it reaches this maximum value when the estimation ~�0 for ~�0 is accurate. Asdescribed in [7], the ratio 

max can be used as in indicator of the accuracy with whichthe model and the estimated parameters describe the real spectrum.Experiments showed that very low intensity features, which were really a kindof structured noise, could result in a high correlation ratio. These features do notactually correspond to any object boundaries in the image and should therefore besuppressed. A simple way to reduce their correlation ratio is to add a suitable smallconstant 
c to 
max. The ratio 

max+
c will be reduced for the very low energy features,while the ratio for `real' higher intensity features will hardly be a�ected.21



Figure 8: Original missa077 image.
22



4.6 ResultsThe local feature extraction is applied to one greyscale frame out of the `Miss America'sequence, which is shown in �g 8. The resulting features for the levels 3 to 6 are shownin �g 9. The threshold values for the dispersion measure � and correlation measure

max+
c used here are the same as those that will be used for the hierarchical featuredetection, as is the constant 
c. It can be seen that most boundaries are found atsome level. At level 3 only very clear large scale features exeed the threshold values.At level 4 a good outline of the head and shoulder is found, except for where the hairmeets the background or the dark shoulders. At level 5 in addition to the outlinesmore smaller scale features are added in the face. At level 6 the details in the face arebetter found, but the larger scale features are less clear and are often found double.Clearly these should be represented at one of the larger scale levels.In none of the levels is the boundary between the hair and the background found.Although the grey level di�erence between the two regions is very low, one wouldhope that it can be detected. The reason that it is not found is that the MissAmerica sequence contains a global noise in one particular orientation (vertical).This structured noise can be seen when looking at the images on the display. Becauseof the directional structure, the noise shows up clearly at particular frequencies of thelocal spectra. At places where the boundary between two regions is very weak, thisnoise has signi�cant energy in the spectrum compared to the feature energy. Whencalculating the preferred orientation of the spectrum this noise causes a bias in theorientation estimate in the best case and totally dominates the estimate in the worstcase. No solution has been found for this problem.5 Hierarchical feature extractionIn this second part of the feature extraction process, a top-down hierarchical scheme isused to �nd the optimal division of the image into variable sized blocks. The optimaldivision in the work would be that in which each block represents at most one linearfeature, at its largest possible scale, without missing any relevant features.The local spectra are provided by the MFT, using an appropriate high pass versionof the image for each level.In �nding the right block size for a particular region of the image, the hierarchicalalgorithm makes use of a check between two consecutive levels of the MFT. Thischeck, the scale consistency check, is described �rst.5.1 Scale consistency checkWhen a region, on the grounds of its spectral parameters, is assumed to containexactly one linear feature, it is subjected to the scale consistency test. The objective23



Level 3 Level 4

Level 5 Level 6Figure 9: Local linear features in missa077 image at levels 3 to 6.24



of the check is to test once more if this is the right scale for this region of the image,by comparing the information found at this scale with that of a smaller scale, onelevel down in the MFT. Therefore this region is compared to its four child regions inthe quad tree. This can be done in two ways.The �rst way is to compare the parameters of the feature found in the parentregion to the parameters of those that are found in the child regions. The idea in thiscase is that if the parent region really contains only one feature, then the parametersof its child regions should not indicate incompatible features. The way in which theparameters are compared is as done in [5]. For each child region, the parametersof the model are calculated as usual. If the parameters of a child region indicatethat there is no linear feature present in this region then this child region is not incon
ict with the parent. If however the parameters do indicate a linear feature, thenthe orientation and location parameters of the child are compared with those of theparent, and a consistency measure is calculated. The parent region passes the scaleconsistency check if none of its children have a consistency measure below a chosenlower threshold value.The consistency measure used in this work is de�ned in [5]. It gives a result between0 and 1, becoming larger when both the orientation and the position of the parentand child features are similar. If either or both of the parameters are signi�cantlyinconsistent, then the result will be lower.The second way in which scale consistency can be checked is by using a spectrumcorrelation as described in section 4.5. If there is only one feature in the region,then the phase of the spectra of the child regions can be modelled from the positionof the centroid of this feature relative to the centre of each child region. For eachchild region the centroid of the feature is calculated from the position of the featurein the parent region. Then the phase of the child spectrum is synthesised and thecorrelation between this synthesised spectrum and the actual spectrum of the childregion is calculated. If a child region contained more than just this one feature, thecorrelation will be low, which indicates that the parent region should be split intosmaller regions.This second method is less ad hoc and more consistent with the rest of the workthan the �rst one. However, the correlation can be quite sensitive to small errors inthe position and orientation.At the moment, the �rst method is used.5.2 Hierarchical algorithmThe quad-tree structure representing the image at its best scale is constructed usingthis algorithm:Starting from a given start level ls the following analysis is done at each node:1. The total energy of the spectrum is calculated and checked against a threshold25



value dependent on the mean energy of the image. If the energy is below thethreshold the region is classi�ed as low pass. The quad-tree is truncated at thisnode, which thus becomes a leaf node.2. Otherwise, the orientation � and the dispersion ratio � of the spectrum arecalculated from the inertia matrix.If � is above a given upper threshold, it is decided that the region does notcontain one linear feature. It might contain either no, or more than one feature.The algorithm proceeds to the next level to process all four child regions.3. Otherwise, the location estimation ~� is calculated and from this, the correlationmeasure 
.If 
 is below a given lower threshold, it is decided that the model and parametersdo not accurately represent the spectrum. The algorithm proceeds to the nextlevel to process all four child regions.4. Otherwise, the scale consistency test is performed.If there is an inconsistency with one or more of the children, it is decided that theregion has to be split up to accommodate the found feature in the child region.The algorithm proceeds to the next level to process the four child regions.5. Otherwise, the region is classi�ed as containing one linear feature. The quad-tree is truncated at this node, which thus becomes a leaf node. All calculatedparameters are stored for use in the reconstruction step.If the recursion reaches a given end level le, then an alternative action is taken:If the spectrum parameters at this last level indicate that there is a linear featurepresent, then it will be accepted without a scale consistency check, since there are nochild regions. If, however, no linear feature is present at this last level, then this regionis marked as empty and the recursion is stopped. Wherever there are no features inthe image, the quad-tree will be fully extended to the level le, and all regions will beclassi�ed as empty. These parts of the tree are pruned back as far as possible, byjoining four empty leaf regions into one bigger, empty leaf at one level up the tree.The threshold used in the algorithm all have to be set before starting the algorithm.The thresholds can be set di�erently at di�erent scales.5.3 ResultsApplying the hierachical feature extraction scheme to the missa077 image in �gure 8yields the result shown in �gure 10. The shoulder outline is mostly represented inlarge level 3 and 4 features, as is most of the clear neck and collar. The facial featuresare almost all represented in small level 5 and 6 features. There are several placeswhere the image is not represented optimally. For instance a part of the right collar26



Figure 10: Multiscale linear features in missa077 image (overlay).
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boundary is represented in small level 5 and 6 features although it is a larger scalefeature that was found on level 4. This is caused by the fact that the boundary atthat point is less sharp, which at the smaller scales causes several parallel features tobe found. During the scale consistency check, the larger feature is discarded becauseof these parallel features in the child regions. In general this will happen for less sharplarge scale features. A possible solution could be to switch to the second describedscale consistency check based on the spectrum correlation.6 Feature linkingThe hierarchical feature extraction algorithm yields a division of the image into blocksthat all contain at most one linear feature. Most of these features will be part of aboundary of an object in the image, but almost none of them will represent the wholeobject boundary by itself. The features are extracted as single linear features becausethat is the easiest way to extract them, but when the features are used to help thevideo coding, it is desired that a feature represents a complete boundary in the image,rather then a single linear piece of boundary. Therefore the features need to be linkedtogether to form the more complex boundaries of objects. This needs to be done insuch a way that all the single features belonging to one boundary are linked andfeatures belonging to di�erent object boundaries are not linked.The basic way to check whether two found linear features should be linked togetheris again based on a spectrum correlation. Given two features that represent two partsof the same object boundary, they should have the same edge pro�le and thereforesimilar spectra. By adapting the spectrum of one block for the di�erence in positionand orientation of the features in the blocks, an approximation of the spectrum ofthe other block can be synthesised. Correlating this synthesised spectrum with theactual spectrum of the block gives a measure of similarity between the spectra of theblocks. If this measure indicates that the spectra are similar it can be concluded thatthe blocks represent the same object boundary and the features can be linked.Before this spectrum correlation test is done, the two features are �rst subjected toa co-linearity test. This test, based purely on the location and orientation parametersof the features, ensures that the features are reasonably well aligned, as might beexpected from two parts of the same object boundary. The co-linearity test is onlyused to stop obviously incompatible features being linked and, once passed, does notin
uence the �nal decision based on the spectrum correlation.Apart from linking two found linear features there are two more types of linkingprocesses. First there is `gap �lling'. Two features can be linked even though theblocks that they are in do not border each other. In this case, there is a gap betweenthe linked features, which one would expect the object boundary that the featuresrepresent to go through. An attempt can be made to �ll these gaps by examining the28



spectrum for evidence of the feature where it is expected.The other kind of linking is `extending' a feature. If a found feature has no foundneighbouring features at all, it can be that the actual boundary in the image continuesanyway, but is for some reason not detected in the extraction process. Assuming thatthe boundary continues in the neighbouring block roughly where the feature endedin this block, the spectrum of the neighbouring block can be checked for evidence ofa feature at that position.6.1 Linking algorithmAll features in an image are linked into more complex features in the following way:In a structured way the algorithm picks a starting region. If the region contains afeature then the two endpoints of that feature at the border of the non-overlappingpart of the block are calculated. First, one of the feature ends is going to be linked.A group of neighbouring features is considered and the one with the best �t is chosen.If a suitable link is found, it is checked if there is a gap and if so an attempt is madeto �ll it. Then the process is continued with the new feature that has been linked. Inthis way the object boundary that is represented by the features is followed. When atsome point no further feature can be linked, it will be tried to extend the feature intothe neighbouring block. If this succeeds, the linking process continues from this newfound feature. If the feature can not be extended then this end of the link comes toan end. Now the second feature end of the starting feature will be linked in the sameway. When this end comes to and end as well, a new starting feature that not yet hasbeen linked is chosen and a new object boundary is traced. When no unprocessedfeatures are left the linking process is done.The following procedure is used to �nd the best feature to link the start featureto: Three sets of candidate features are made, indicating an order of preference (See�gure 11). Candidate set 1 contains just the block that borders immediately to thefeature end. Candidate set 2 contains all other blocks that border to the side of theblock on which the feature ends, including those at the corner. Set 3 contains allblocks within an area of the size of the feature block on the side that the feature endsin, including corner blocks.First the block in set 1 is checked for a suitable link. If this block contains afeature and it passed the co-linearity test and the spectrum correlation test then thefeatures are linked. If they can not be linked, all features in set 2 are considered. Ifmore features pass the tests, the one with the best result in the spectrum correlationtest is chosen. If again no link is found, the features in set 3 are checked. Obviously,di�erent and more candidate sets can be used.Figure 12 shows a sketch of the co-linearity test. Consider two features withcentroid positions ~�1 and ~�2 respectively. The vector ~d pointing from ~�1 to ~�2 iscalculated. If the features are co-linear, the di�erences between the orientation of the29



1

2

2

2

3

3

3

33

xFigure 11: The candidate sets 1 to 3 for linking of feature end x.
d

δ

δ2

1Figure 12: Sketch of co-linearity test.features and this vector ~d, named �1 and �2, are both small. When the two featuresare both part of the same curved boundary, �1 and �2 will deviate from zero, butwithin limits. When a �i becomes too big, it can be concluded that the two featuresare not of the same boundary. This is tested by comparing cos(�1) and cos(�2) witha threshold value.As described in [7], the spectrum correlation between two regions �l;~�1 and �l;~�2is calculated as follows: From the spectrum x̂(l; ~�1; ~!) the linear phase is removed tocompensate for the position of the centroid ~�01 of the feature relative to the regioncentre, x̂0(~!) = x̂(l; ~�1; ~!) exp[+j(~�01 � ~!)]: (41)Then the spectrum is rotated over the di�erence in orientation, ��, of the two fea-30



tures, x̂00(~!) = x̂0(R��~!); (42)where R�� is the rotation matrix:R�� = " cos(��) � sin(��)sin(��) cos(��) # : (43)Finally, the linear phase corresponding to the feature centroid ~�02 is introduced tothe spectrum, ~x(l; ~�2; ~!) = x̂00(~!) exp[�j(~�02 � ~!)]: (44)This gives the approximation ~x(l; ~�2; ~!) of spectrum x̂(l; ~�2; ~!).In practice, the spectra are discrete rather then continuous, which presents a prob-lem when rotating the spectrum. If (k1; k2) is an integer frequency coordinate, then(l1l2)T = R��(k1; k2)T is usually not a integer coordinate. The value of the spec-trum at coordinate (l1; l2) is therefore not directly available and should be estimatedfrom neighbouring coe�cients. This is done by bilinear interpolation from the foursurrounding coe�cients. The bilinear interpolation should give reasonable results be-cause it is applied to a spectrum from which the phase component has been removed.Another practical aspect of the spectra is that they are �nite and square. When ro-tated, some coordinates will be mapped to coordinates outside the actual spectrum.These coordinates are set to zero.The estimation ~x(l; ~�2; k1; k2) of the discrete spectrum x̂(l; ~�2; k1; k2) is performedas described above. The correlation r between the synthesised and actual spectrumis now calculated by:r = Pk1;k2 ~x(l; ~�2; k1; k2)x̂�(l; ~�2; k1; k2)q(Pk1;k2 j~x(l; ~�2; k1; k2)j2)q(Pk1;k2 jx̂(l; ~�2; k1; k2)j2) ; (45)which gives a value between �1 and 1. A decision to link the two features is nowmade by comparing r with a given threshold.One aspect of the spectrum transformation that has not been mentioned yet isthat the width of the spectrum, i.e. the spread in the direction perpendicular to themain axis, depends on the length of the feature in the block. If the feature passesthrough a corner of the block it will be shorter, which results in a wider spectrum.This may cause the correlation value to drop when the feature crosses through themiddle of one block but through the corner of the other. A way to reduce this biasis to restrict the summations in (45) to a narrow band of coe�cients along the mainaxis of the spectrum, where both spectra can be assumed to have much energy.When linking two found features, the correlation measure is only applied to blockson the same level. When two features of di�erent scales need to be linked, this willbe done at the level of the smallest of the two blocks. In this case the bigger of thetwo regions is represented by its appropriate child region of the right size.31



6.2 Gap �llingA gap between the ends of two linked features can span one or more blocks. It islogical to assume that the object boundary that the two features belong to does notcease to exist in the gap, but rather that it has been missed in the feature extractionprocess. Filling in the gap by looking for these missed features is done using thespectrum correlation method.For each block in the gap, the expected position of the centroid and expectedorientation are found by simply assuming a straight line between the ends of the twolinked features. Using these estimated feature parameters, a spectrum correlationcan be calculated with one of the two linked features, in exactly the same way asdone when linking two existing features. Of the two available spectra, the one that isclosest in scale to the gap block is used. Again the result of the correlation is checkedagainst a threshold value. This value is usually set lower than the value used fornormal linking, because of the strong evidence that there should be a feature there.6.3 Feature extendingWhen a feature end cannot be linked, two cases can be distinguished: 1) The objectboundary in the image has come to an end. 2) The object boundary has not cometo an end, but the next bit of it has not been detected. Quite often, the second caseapplies. To �nd as much of the object boundaries as possible, it can be attemptedto extend this feature, the end-feature, into the region into which it crossed, theextend-region.To do this, a set of possible positions and orientations in which the end-feature canbe continued is compiled. The basic position and orientation are those by which theextend-feature will be in a straight line from the end-feature. The other combinationsof the set are variations in position and orientation around the basic ones, as shownin �gure 13. For all the combinations in the set, the spectrum correlation with theend-feature is calculated in the by now conventional manner. If the maximum foundcorrelation is higher than the set threshold then the feature with the correspondingparameters is assigned to the extend-block. The linking process now continues fromthis feature.The range of orientations over which the extended feature should be looked forcan be quite large. Two features on a curved object boundary can easily have a 45degree di�erence in orientation, which makes the search interval at least 90 degrees.Choosing the step-size to cover this interval with, is a trade-o� between performanceand computational load of the algorithm. It is also necessary to look at the behaviourof the correlation function of two spectra when there is an error in the estimation ofthe orientation of the feature. Figure 14 shows the value of the correlation functionapplied to the spectrum of a single line and the rotated version of that same image.It can be seen that the correlation has already dropped to 70% of the optimal value32



when the features are 5 degrees out of line. This drop-o� is a bit less drastic whenit concerns an edge or less sharp feature, but it can be concluded that using steps ofmore then 5 degrees might cause features to be missed.This spectrum correlation method can be used as long as the extend-block is ofthe same size or smaller than the end-block. If it is smaller, then the appropriatechild region of the end-block is used for the correlation. If however the extend-blockis larger than the end-block, the same method cannot be applied. Taking a childregion of the extend-block to do the correlation with the end-block is not a goodsolution because then a feature would be assigned to the whole extend-region basedon examining only a part of the region while having no knowledge of the rest of it.A way out of this problem is to derive a reduced size spectrum from the full sizespectrum of the extend-block, as done in [7]. The reduced size spectrum should onlyhave those frequency coe�cients that a spectrum of the smaller block size has. Withthe de�nition of the MFT used in this work, reducing the spectrum by half the size isvery easy, because the bigger spectrum has coe�cients at all the frequency coordinatesthat the smaller size spectrum has. Reducing the size of the spectrum is therefore justa question of sub-sampling the spectrum by a factor 2. This smaller spectrum, thatstill represents the whole bigger region, can now be used for calculating a spectrumcorrelation. Extending into regions more than twice the size of the end-region is notdone in this work.6.4 ResultsThe feature linking process is applied to the set of features found by the hierarchicalfeature detection process. In �gure 15 the result for the features in �gure 10 fromthe image in �g 8 is shown. The little circles indicate end points of links. It couldnot be explicitly indicated which features connect to which, but it can hopefully inmost cases be derived from the end points. To clean the image up at bit, all singleunlinked features are removed from the image, although this doesn't make muchdi�erence, since most features are linked to others.It can be seen that the linking algorithm works reasonably well. Especially thelarger features like the shoulders, the neck and collar and the wrinkles in the cardiganare well linked up. In the facial features, the linking is less clear but again largerfeatures like the eyebrows and the outer contours of the mouth are properly linked.In several places, like in the wrinkles in the cardigan, gaps can be seen to be �lledup by the linking process.There are problems in the places where the boundaries in the image are less sharp,especially in shaded areas where there are no real boundaries. In these places featuresare sometimes found and linked, but it is not clear what they actually represent.Another problem is that there are places where found features seem perfectly toconnect to each other, but are not linked by the linking process. For instance, the33



lower part of the left side of the neck is not connected to the upper part of theneck, but to the left ear. This is probably caused by the fact that the ear-featuretried to link to the lower-neck-feature and succeeded because, although not part ofthe same boundary, they have the same pro�le. The lower-neck-feature is then nolonger available to be linked to the upper-neck-feature which it should be linked to.A possible solution to this would be to allow more links to one feature end, thusresulting in some kind of branched graph of connected features instead of a singleordered row. By some post-processing step this graph must then be reduced to arepresentation that is useful for the coding application. This would also solve theproblem that the boundary following method can be `led astray' by linking to a smalldead-end feature instead of following the boundary.Also apparent are multiple parallel features around boundaries that are less sharp.A post processing step should be used to remove these.In �gure 16 the feature extraction results for four frames of the Miss Americasequence are shown. The frames are two frames apart to increase the motion betweenthem. It can be seen that the larger features can be identi�ed in each frame and canbe seen moving in a reasonably stable way.However, it can also be seen that the hierarchical division in the frames variesquite a bit. This would indicate that the scale selection process is quite sensitive toslight variations in the image and to the position of features relative to the blockboundaries. This would again indicate that experimenting with a di�erent scaleconsistency measure might improve results. Another problem that can be seen fromthe results is that features indicating less sharp boundaries, like the wrinkles in thecardigan, seem to vary in position more then the actual image does at those places.This can possibly cause problems when these features are used for correction of themotion estimation.6.4.1 Comparing resultsIn order to see if the feature detection algorithm misses any features that are de-tectable, the results are compared with the result of a simple edge detection algorithmwhich uses a 3 � 3 Sobel edge detection mask [11]. Figure 17 shows both the resultof the Sobel edge detection(a) and the feature detection(c) algorithm applied to themissa077 image. It can be seen that some very low intensity object boundaries, inparticular almost all of the outline of the hair, are not found by the feature detection,but do show up in the edge detection. Although the hair boundary is very faint, itmight none the less be important in the video coding, because it is visible to a humanviewer and errors in it can therefore be disturbing.The reason why the hair boundary is not found is, as has been mentioned earlier,the noise that is present in the image. This noise can also clearly be seen in theSobel edge image, but the actual hair boundary is still prominent. To show that the34



boundary can be separated from the noise, a simple multiresolution edge detectionprocess was applied. In this process, the same Sobel edge detection was applied toa Gaussian �ltered and subsampled version of the image (i.e. one level up in theGaussian pyramid). The multiresolution result was then obtained by setting valuesin the original edge image to zero, if the corresponding value in the subsampled edgeimage failed to exceed a given threshold. The result, shown in �gure 17 (b), clearlyshows the hair boundary.The conclusion that can be drawn is that the feature detection process missescertain low intensity boundaries that can actually be found. Ways of improving theseresults are being looked at.7 Conclusions and future workA novel image sequence coding scheme has been proposed, which makes use of a�nemotion parameters and extracted linear features. It has been pointed out that theMultiresolution Fourier Transform provides a suitable basis for a consistent frame-work in which the di�erent aspects of the scheme can be dealt with. The focus of thereport has been on the extraction of single linear features and the linking of theminto complex features representing object boundaries, all within the multiresolutionframework. A model for the spectrum of an image containing a linear feature andalgorithms to estimate the model parameters from the image have been presented.Furthermore a method for linking the single features into relevant boundary repre-sentations has been given.All described algorithms are implemented and results are shown. It was foundthat the resulting features were quite reasonable, but not yet ideal for the codingtask. Several problems indicated that it might be worth to trying improve the scaleselection process. The linking algorithm gave reasonable results, but can also beimproved upon. By allowing feature-ends to be linked to more than one other feature,longer features can probably be found. The graph like structure that results fromthat should be processed to �nd the optimal feature links. Also a problem are smallgarbage features and parallel double features that represent the same boundary. Theseproblems should be taken care of in a `cleaning up' post processing step.Looking beyond the stage of feature extraction, the question of how exactly to usethese features in the coding scheme will be the next step in the project. This willinvolve several di�erent aspects:� Identifying corresponding features in consecutive frames, that represent the sameobject boundary.� Combining the a�ne motion estimates and the features to improve on both themotion estimation and the feature linking.35



� Incorporate low-pass information to arrive at a division of the image into thementioned planar patches.
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Figure 13: Possible extended feature positions.
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Figure 14: Correlation value of di�erently oriented spectra.37



Figure 15: Linked features of image missa07738



missa077 missa079

missa081 missa083Figure 16: Linked features of images missa077, 079, 081 and 083.39



(a) (b)

(c)Figure 17: (a) Result of Sobel edge detection. (b) Result of simple multiresolutionSobel edge detection. (c) Result of feature detection (after linking process).40
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