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Abstract

This report describes two seemingly distinct areas of work, wavelet analy-
sis and fractal image compression. A review of these two areas is presented, a
new algorithm outlined, and some results presented. Finally, some speculations
concerning the future direction of this research is included.
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1 Introduction

The work in this paper can be divided into two main areas. The first is fractal
image coding and the second is wavelet analysis. The concept that unifies these two
otherwise disparate areas is invariance. Both fractal coding techniques and wavelet
analysis exploit scale invariance. Fractal coding exploits similarities between an image
and a spatially averaged copy, while wavelets demonstrate the scale invariance of edges
in an image. We shall now cover the background of both of these areas of research.

2 Fractal Block Coding

Fractal block coding is based on the ground breaking work of Barnsley [1] [2] [3]
and was developed to a usable state by Jacquin[l1]. The basic concept underlying
this technique is that for each image, there exists a block-wise transform upon the
image that will leave the image unchanged. The roots of fractal block coding lie in
the mathematical world of metric spaces and, in particular, the Contraction Mapping
Theorem.

2.1 The Contraction Mapping Theorem

Definition 2.1 (Contraction Mapping) Let (X,d) be a complete metric space.
That is let X be a vector space over some field F and d be a metric upon X. Then,
a transformation T, T : X — X s said to be a contraction mapping iff

dseR,0<s<1 st dT(2),T(y)) <s-dlx,y)Va,ye X. (1)
Here, s is known as the contractivity factor of the transformation T .

Theorem 2.1 (Contraction Mapping Theorem) For a contractive transforma-
tion T on a complete metric space X, there exists a unique fized point 2* € X such
that «* = T'(x*). The unique fized point is then

¥ = lim Ti(:zjo) ,r0 € X

11— 00

Fractal coding of an image, x, is based upon finding a transformation 7' such that
d(x,x*) is minimised. However, in practice, 2* is not known and we instead seek to
minimise the measure d(x, T(x)). This sub-optimal choice is justified by the Collage
Theorem (Theorem 2.2).

2.2 Iterated Function Systems and The Collage Theorem

The term iterated function system was first used by Barnsley and Demko[2]. We
define an iterated function system (IFS) thus.

1



Definition 2.2 (Iterated Function System) Aniterated function system consists
of a complete metric space (X, d) together with a finite set of contraction mappings
{w,}, w, : X — X with contractivity factors s,, n = 1,2,..., N. The notation for
this IFS is {X;w,, n =1,2,..., N} and its contractivity factor is s = max{s,, n =
1,2,...N}.

Then, according to Barnsley’s IFS Theorem[3], the transformation W : H(X) —
H(X), defined by

W(B) = G wn(B),YB € H(X)

1s a contraction mapping with contractivity factor s. In particular, W has a unique
fixed point, A € H(X), given by A = lim,, ... W"(B). Here, H(X) is the Haus-
dorft space of X, that is the set of all compact, non-empty subsets of X. To make
H(X) into metric space, we must then define the Hausdorff metric as h(A,B) =
max{d(A, B),d(B, A)} where d(A, B) = max{d(x,B) : = € A}. We now have the

machinery to state the Collage Theorem proper.

Theorem 2.2 (The Collage Theorem) Let (X, d) be a complete metric space and
let B € H(X) and € > 0. Choose an IFS {X;wy,...wn} with contractivity factor
0 < s <1 such that

N
(B U i) <
n=0
where h(d) is the Hausdorff metric. Then,

€
h(B,A) < .
(7)—1_8

For our purposes, the Collage theorem states that if we wish to find an IFS with
an attractor that is close to (in the Hausdorff sense) a given image, 7, we may instead
find a set of contractive transformations on compact subsets of Z such that the union
of the set of transformations applied to Z is Hausdorft-close to Z. This is how standard
fractal block coders work. That actual algorithm shall be covered next.

2.3 Conventional Fractal Block Coding

Take an arbitrary image 7 and partition it into non-overlapping blocks, {D;} of size
d x d. These blocks will be known as domain blocks , following the notation' of
Barnsley[3]. We then spatially average the image by 2 in both the horizontal and
vertical directions, extracting all, possibly overlapping, blocks of size d x d producing

!Barnsley’s notation is slightly confusing since it refers to the inverse transform.



Ordinal | Isometry

1 Identity

2 Flip along mid-X axis

3 Flip along mid-Y axis

4 Flip along major diagonal

Table 1: Base isometry set used in conventional fractal block coders

the pool of range blocks, {R;}. The goal of fractal block coders is then to find the
optimal parameter set {a,b,c,i} for each block D; in the approximation

D]‘ =da- LC(R,') —I-b

such that the error d(Dj, ﬁ]) is minimised. It is usual for d to be the metric derived
from the L, norm, ||D; — ﬁjHZ. Here, ¢ is an isometry generated from the set shown
in Table 1. Since these four basic isometries generate the dihedral group , we may
combine these to form any of the eight possible symmetries of the block.

The fractal block code for the image then consists of the parameter set {a,b,c,}
for each domain block D, in the domain pool {D;}. The parameter sets are entropy
coded to provide compression. We note now that the parameter set {a,b, ¢ i} is
restricted since the final transform 7; must be a contraction mapping under the
metric d. We note from Jacquin[l1] that the isometries all have Lj-contractivity of
1 and the contrast scale by a has L,-contractivity of a?. Hence, to ensure that the
transform for each block is a contraction mapping, we must restrict the value of «
such that 0 < a < 1. Then, by the Collage Theorem (2.2), the union of these block
transforms 1s itself a contraction mapping.

2.4 Reconstructing an Image from a fractal block code

We note that since T' = U, 7} is a contraction mapping, by the Contraction Mapping
Theorem, it has a unique fixed point. Since each component transform was chosen
to minimise the error between the reconstruction and a block in the original image,
the fixed point of the union of these transforms is 'close’ to the original image. The
decoding may be started from any initial image ( since Vo € X, T"(z) — 2" as
n — o0). However, it is usual to start with a uniform grey image. Reconstruction
proceeds by applying each component map to the initial image to generate the next
image in the reconstruction sequence. We then spatially average this reconstructed
image and apply the component maps again. This iterative procedure is repeated until
there is little difference between consecutive images in the reconstruction sequence,
or until some error condition has been satisfied.



2.5 Advances in Fractal coding

Fractal coding is an asymmetrical process; that is, coding takes much longer than
decoding. Much research has revolved around speeding up the coding in some way.
Jacquin[11] himself suggests classifying the range blocks into three distinct classes:
shade blocks, midrange blocks and edge blocks. The coder then only checks range
blocks in the same class as the current domain block when searching for the optimal
transform. Details of the classification algorithm used by Jacquin can be found in
[20].

Jacobs, Fisher and Boss [10] classify blocks into 72 different classes and also apply
a quadtree partitioning scheme. The quadtree scheme works by using larger blocks
(32 x 32 in their paper) and splitting the block into four smaller blocks should an
error condition not be satisfied. This quadtree decomposition is repeated until the
error condition is satisfied or a minimum block size is reached. This has obvious
advantages if parts of the image contain large regions of relatively constant greyscale.

The same authors [9] proved that not all the w; in the IFS {X;wy,...,w,} need to
be contractive. In this report, they define a map W : F — F' as eventually contractive
if, for some n € Z* ;W™ is contractive. They then prove that the fractal decoder will
converge if T' = U,;T; is only eventually contractive. Here, we note that the iterated
transform 7™ is the composition of transform unions of the form

Wi OWy, O . 0W,, .

Since the contractivities of each union w;; multiply to give the overall contractivity of
the iterated transtorm, the composition may be contractive if it contains sufficiently
contractive w;;. Intuitively, it is simple to see that if the union consists of slightly
expansive transforms and highly contractive ones, then the union will eventually
be contractive. The provision for eventually contractive maps allows the coder to
achieve better results. Since there is now no longer a bound on the contractivity of
the component transform , the dynamic range of range blocks may now be increased
to be similar to that of the domain block.

Most speed ups have, in some way, reduced the size of the pool that the coder must
search for each domain block. Reducing the size of the search pool, however, can have
an adverse effect on reconstructed image quality since the range block pool is not as
rich. Saupe [21] uses the theory of multi-dimensional keys to perform an approximate
nearest-neighbour search. Since this search can be completed in O(logN) time, the
range pool need not be depleted to achieve a speed up. Saupe’s basic idea is that of a
(d —1)—dimensional projection on R¢ where d > 2. He defines a subspace, X C R¢ as
X = RN\{re:r € R} where ¢ = ﬁ(l, ..., 1) € R4, Defining a normalised projection
operator ¢ : X — X and a function D : X x X — [0,./2] by

r— < T,e>¢€
|le— < x,e > €|

o) =
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and
D(z,z) = min(d(é(z), ¢(2)), d(—(z). ¢(2)))

gives an expression for the least squares error
B(r,2) =< =, 6(2) > g(D(z, )

where ¢(D) = D?*(1 — D?/4). This theorem states that the least squares error,
E(x,z) is proportional to g(D) which is a simple function of the Euclidean distance
between ¢(x) and ¢(z) ( or —¢(x) and ¢(z) since ¢(x) is unique up to sign). We
also note that ¢ is monotonically increasing on the interval [0, 1/2]. Saupe then states
that the minimisation of the least squares errors E(x;,z) ¢ = 1,..., N is equivalent
to the minimisation of the D(a;,z). Thus, we may replace the least squares error
minimisation by the nearest neighbour search for ¢(z) € R¢ in the set of 2N vectors
+¢(z;) € RY. Since we are now in a Euclidean space, we may apply any of the nearest
neighbour search algorithms that run in expected logarithmic time, for example kd-
trees [7]. Saupe does, however, note that an 8 x 8 block results in 64 dimensions for
the multi-dimensional keys. He therefore suggests downsampling the blocks to, say,
4 x 4 which reduces storage requirements to just 16 dimensions.

Other speed up methods have revolved around performing little or no searching
for the range blocks. Monro et al [17] [16] [14] [15] , have developed and patented a
technique known as the Bath Fractal Transform? (BFT). The BFT works by limiting
the search of the range blocks and also using higher order functions on the blocks.
Mathematically, if W = {X;wg, k = 1,..., N} is an IFS with attractor A, they define
a fractal function f on A as f(wi(x,y)) = vk(x,y, f(x,y)) where the maps v have
parameters ozgk),k =1,...,N,e =1,... M. Then, M is the order of the IFS and N
is the number of free parameters of the BFT. The function f is found by minimising
d(g, g) for some suitable metric d over block k where

Solving

gives us the BFT. They define various searching options for the BFT, defined before
downsampling has occurred; that is, they assume that domain blocks are d x d while
range blocks are 2d x 2d. A level zero search chooses the range block in the same
position as the domain block. A level one search would include the four range blocks
that intersect the domain block. A level two search would also include all range blocks
that intersect those in level one and so on. The complexity options they use, however,
make the BFT unique. As it stands, such a limited search would severely degrade

2They are at Bath University, England.



reconstructed image quality. Allowing higher order terms in the BFT reduces the
error while keeping encoding times low. At its most basic level ( level zero), the BFT
degrades to Jacquin’s method[11]. That is, the maps vy have the form

Vk(xvyvf):*sk'f—l_tk'

A level three complexity gives the maps the form
vi(z,y. f) = e + aa? + oMz + 0y + 00y + 6y + sif +

Note that there are no cross product terms ( for example zy or z%y ) so that cal-
culation is kept relatively simple. They have recently [18] developed a proprietary
reconstruction algorithm, the Accurate Fractal Rendering Algorithm (AFRA) ;which
remains unpublished at this time, specifically designed for use with the BFT.

Barthel and Voyé [4] have modified the luminance transform to act in the frequency
domain. They propose the following high-order luminance transform.

—1N-1
AMg) =IDCT ( U U a (u,v) + b(u,v)) , G(u,v) = DCT(g)
u=0 v=0
where DCT denotes the Discrete Cosine Transform and IDCT denotes the inverse
discrete cosine transform, N is the size of the blocks and ¢ is the range block itself.
If we denote the DCT of the domain block f by F(u,v), we can approximate the
spectrum of the domain block F(u,v) by scaling of the spectrum of G(u,v). They
conjecture that most blocks can be sufficiently well approximated by a low order
transform, hence negating the risk of a bit-explosion due to the excessive number of
parameters to be coded. Further to this, they propose modifying the luminance trans-
form so that it operates on a frequency domain partition. The luminance transform
would then be expressed as

Ak(g) —IDCT(UUU{ (u,v)+b ifu:(.)vv:())

u=0 v=0 )- G(u,v) otherwise

where a(u,v) = a; if (u,v) € R; ¢ =1,..., K. This permits their modified frequency
domain luminance transformation to be used in the block splitting procedure they
use later. This is similar to quadtree partitioning, but if the top level block does
not satisfy the error condition, they only recode the sub-blocks which do not satisfy
the error condition. In this way, they can achieve similar reconstruction results to
quadtree partitioning but with fewer transform coefficients.

Gharavi-Alkhansari and Huang [8] use a combination of fractal coding and basis
block projection. For each domain block, they generate three pools of range blocks
thus



1 Higher Scale Adaptive Basis Blocks
This pool is the standard range block pool from a normal fractal coder. That
is, spatially averaged copies of the domain blocks, augmented by rotated
and reflected versions.

11 Same Scale Adaptive Basis Blocks
This pool is generated by selecting regions of the image which are the same
size as the domain blocks. These blocks, however, must be selected causally,
that is they may only be selected from parts on the image which have
already been encoded. This pool may also be augmented by rotations and
reflections.

11 Fized Basts Blocks
This is a fixed pool of basis blocks that are known a priori to both the
encoder and decoder. They need not be orthogonal or even complete.

The purpose of the fixed basis blocks is to allow the encoder to accurately encode a
domain block that is totally dissimilar from any range block in the image. However,
the lack of the orthogonality condition on the basis blocks appears to make the optimal
solution for the coefficients of the basis blocks a difficult task. The authors offer two
sub-optimal methods of calculating basis block coefficients. The first is to select the
basis block most strongly correlated with the domain block. Then, orthogonalise the
domain block with respect to the basis block. Repeat until an error condition is
satisfied or all basis blocks have been used. The second, more general method, is to
do the same as the first method, but also orthogonalise all other basis blocks with
respect to the most correlated. They also note that standard fractal block coding,
block transform coding and vector quantisation are all special cases of their proposed
algorithm.

3 The Wavelet Transform

The Fourier Transform method is a well known tool for signal analysis. The Fourier
Transform expresses any square integrable ( in the Lebesgue sense) 27 periodic func-
tion on L*([0,27]) as the projection of it onto the orthonormal basis

wp(x) =€ n=...,-1,0,1,....

However, noting that if w(z) = €'* then w,, = w(nx). Hence, the orthonormal basis
{wn} is actually the set of integer dilates of the single function w. We note that

w(x) =€’ = cosx + sinz.

The remarkable fact about the Fourier Transform is that this is the only function
required to generate all 27 periodic square integrable functions.
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We now turn our attention to the more useful space L?(R). Functions in L*(R)
satisfy the following condition

/_O:O |f(2)[2dx < oo

Since every function in L*(R) must decay to zero at oo, the Fourier basis functions
Wy, which are sinusoids, are not in L*(R). A synonym for sinusoids is waves and if
we require waves that generate L*(R), they must decay very quickly to zero (for all
practical purposes). Hence, we need small waves or wavelets to generate L*(R). As
in the Fourier Transform case, we would like the wavelets to be generated by one
function. However, if the wavelets must decay to zero, we must translate the function
dilates along R by integral shifts. If we choose a mother wavelet 1> € L*(R) of unit
length, then all the translated dilates

Via(e) =220 — k), j k€ Z
also have unit length.

Definition 3.1 (Wavelet) A function 1) € L*(R) is called a wavelet if the family

{;x} defined by | |
() = 21/4p(27 — k), j k€ Z

is an orthonormal basis of L*(R). That is

<Yy Vim >= 610km 5 Jok,lmEZ

5jk:{1 ifg =k

0 otherwise

where

Then, every f € L*(R) can be written as

[oe)

fle)y="3 cimbin(z). (2)

Jk=—00

The series representation of f in (2) is called the wavelet series of f and is analogous
to the Fourier series of a function. Similarly, we may define the integral wavelet
transform [5], which is analogous to the continuous Fourier Transform as

(Wef)(b,a) =l [~

— 0

fone (). e )

It 1s worth noting at this point a subtle, yet important difference between the
Wavelet Transform and the Fourier Transform. Fourier basis functions are only lo-
calised in frequency, not in time. Small coefficient errors in the Fourier transtorm will
produce changes everywhere in the time domain. Wavelets, however, are localised
both in frequency(scale) by dilations and in time by translations.

8



3.1 The Discrete Wavelet Transform

The continuous wavelet transform is a useful theoretical tool, but in image processing,
we deal with sampled images, 1.e discrete values. Here, we would require a simple
and fast method of calculating the wavelet coefficients of a signal. Wilson [24] defines
the 1-D discrete wavelet transform in terms of a pair of quadrature mirror filters
(QMF pairs). If {g,} is a sequence that is generated by sampling the mother wavelet
b, then ¢ will be a high pass filter. The mirror filter of this is {h,}, given by the
relation g, = (—1)"hi_,. We then define the discrete wavelet transform in terms of
successive filtering and dyadic downsampling.

=Y hid (20 — k)
di, = Y gec' ™ (20 — k)

where ¢®(n) = f(n) is the original signal and the wavelet transform coefficients consist
of {di}. For reconstruction, it is usual to zero pad the data with 2' — 1 zeros at level
i. If we define a family of filters {h%} given by

i h, ifk=2n
71 0 otherwise

and let f'(n) be the zero padded data at level 7, then the reconstruction from level
to level ¢ — 1 is given by

Fin) =3RS (n— k).
k

The path from the 1-dimensional transform to the 2 dimensional version is simple.
We note that, with the correct filters, the above definition of the discrete wavelet
transform becomes separable in 2 dimensions. That is, we may perform the 1 dimen-
sional wavelet transform on the rows, followed by the columns. Figure 1 and Figure 2
illustrate the 2 dimensional discrete wavelet transform.

In her landmark paper, Daubechies[6] develops a set of filters for orthonormal,
compactly supported wavelets of differing sizes. These particular wavelet bases are
ideal for block-wise image processing techniques since the orthonormality condition
assures easy calculation while the compact support reduces the boundary artifacts
at block edges. Figure 3 shows the Daubechies 8 point filter and Figure 4 shows the
Lena image decomposed to three levels using this filter.

It is worth noting here that since the wavelet transform is a bounded linear op-
erator, it preserves the norm on its underlying space. Hence, for our purposes of
image coding, we may assume that the L? norm will be preserved across the wavelet
transform. That is, [|[D; — Ds|lz = |[|[W(D1) — W(D3)||s where W is the wavelet

transform.
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Figure 4: Three level Wavelet Decomposition of the Lena Image

3.2 Relation Between Iterated Function Systems and The
Wavelet Transform

As discussed previously, iterated function systems rely of self similarity of compact
subsets of R?. In our case, these subsets support greyscale images. The wavelet
transform is a tool for demonstrating the scale invariance of edges. Referring to
Figure 4 | it is obvious that the sub-bands in successive wavelet levels are similar.
It is, therefore, natural to move the iterated function system model to the wavelet
domain. This exploits the scale invariance of edges to provide a form of approximate
self-similarity required by the iterated function system model. Another advantage
of the wavelet domain is that the mean of the coefficients is scaled across levels, not
shifted. The coeflicients are actually scaled by 1/,/2 by each of the 1-dimensional
component transforms. Hence, the coeflicients are scaled by 1/2 for every level in the
wavelet decomposition. Thus, no mean shift parameter is required for the iterated
function system maps. Furthermore, there is an implicit scale factor of 2 in the block
scale parameter of each map. We may divide this implicit value out and re-multiply
at the decoder. This will compact the distribution of values and increase the scope
for entropy coding.

Since the wavelet transform we are using is orthogonal, successive wavelet trans-
forms are actually projections into orthogonal subspaces ( see [6] and [13] for a de-

13



scription of the multiresolution analysis theory that embodies the orthogonal subspace
property ), we need not iterate the iterated function system maps at all. A single
application is sufficient and this greatly reduces decoding time.

14



4 The New Algorithm

In this section we shall present a novel algorithm which performs fractal coding in
the wavelet domain. This algorithm attempts to approximate a level of wavelet
coefficients from the level above. It combines many areas of signal processing including
wavelet transforms, fractal block coding, orientation estimates, standard block coding
by basis blocks, quantisation and arithmetic coding. The specifics of each of these
areas that are relevant to this algorithm will be covered in this section.

4.1 Algorithm Basics

To begin, we decide on the level of wavelet coefficients we wish to approximate. This
will be known as the domain level. We also decide on the level from which we shall
approximate which is usually the level above. This will be known as the range level.
The image to be coded is decomposed by the wavelet transform to a given level, say [.
Levels from [ to the level below the range level are quantised using a linear quantiser
for the high pass coefficients and a separate quantiser for the low pass coefficients
at the highest level. An approximation to the range level is then generated via the
inverse wavelet transform. We use the quantised approximation as the range level of
coefficients to reduce errors at the decoder. The coder then treats each of the sub-
bands of the wavelet decomposition separately. Each of the HL,LH and HH bands
in the domain level are partitioned into non-overlapping domain blocks. Let { DL},
{DF1} and {DPH} be the domain blocks from each sub-band.

For each domain block set {DHE DI DHHL we must find a corresponding range
block set {RHL REH RHHY which minimises the error ||DAL — DHL||2 4 | DEH —
DZLHHZ + [[DFHE — DlHHHZ where DlX = (- }?lX) +b;. Here R; is R; normalised,
<R, Di>

<Ri.Ri>
since there will be no iteration of the maps in the decoding process, the value of «; is

o; = and b; is chosen to make the means of R; and D; equal. We note that
unbounded, and, as stated in Section 3.2, there is no shift parameter necessary ( so
b; = 0V1). Given a domain block size d and and search radius r, we define the search
region as the subset of the image 7 given by ([v — rd,x +rd] X [y — rd,y + rd]) N T
where 7 is each of the three sub-bands. We begin a spiral search from the centre
of the search region as in Figure 6. By using a spiral search, we may reduce the
addressing problem to a single value. Figure 7 is a simplified flowchart of the coder.
This method constrains the maps so that each range block is in the same relative
position, but in different sub-bands. The intuitive reasoning behind this is that if two
blocks are similar, then their horizontal, vertical and diagonal components must also
be similar.
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Figure 5: Distribution of path positions when block orientations are matched

16



O
O
O

O
O

Figure 6: The spiral search path

4.2 The Reconstruction process

Reconstruction proceeds much the same as for standard fractal coding. Note that
the range level of wavelet coefficients is transmitted to the decoder in some way. The
major difference is that our method does not require iteration of the maps. The maps
are applied once. An inverse wavelet transform from the domain level reconstructs
the original image.

4.3 Coefficient Encoding

The parameter sets that describe the block-wise maps are linear quantised and en-
coded using an order zero arithmetic coder. We set a rate value which determines how
many bins the quantiser uses and how many symbols the arithmetic coder can encode.
Obviously, using less symbols increases compression but reduces image quality. There
is a trade off to be found between image quality and compressed size. Figure 8 shows
how the linear quantiser we use works. It is the same quantiser used by the JPEG
system [19].
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Figure 9: Initial Code Interval for Arithmetic Coder
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4.4 Arithmetic Entropy Coding

The goal of entropy coding is to reduce the number of bits required to encode a symbol,
hence providing compression. Arithmetic coding, pioneered by Langdon [12] and
popularised by Witten, Neal and Cleary [25], is based on the statistical properties of
the signal. For example, if we have a symbol with probability of 123/456 of occurring,
the goal of the Arithmetic coder would be to code the symbol in —1n(123/456) bits.
There are many types of arithmetic coder, both adaptive and non-adaptive. The
simplest adaptive case is the order zero model. This model generates the cumulative
probabilities of symbols on the input stream. Other models include higher order
models ( i.e. those that predict probabilities over more than 1 symbol) and other,
more complicated models. Williams [23] provides a good overview of the subject.

4.5 Operation of the Arithmetic Coder

The basic tenet of the arithmetic coder is that any sequence of symbols may be
encoded in an arbitrary precision number. For the purpose of this example, let us
assume we have the symbol space {e, h, [, 0} with probabilities {0.2,0.2,0.4,0.2}. We
shall begin with the interval [0, 1], although any closed interval will suffice. We
shall code the message hello using the arithmetic coder with a fixed probability as
stated. Figure 9 shows how the coder would split the initial interval based on these
probabilities.

Now, the coder receives the first symbol of the message. The symbol is ’h’, which
is assigned the code range [0.2,0.4]. The code interval now becomes [0.2,0.4]. Next,
the coder receives the symbol ’e’. This is assigned the range [0,0.2] in the initial
interval, so is assigned the range [0.2,0.24]. Figure 10 demonstrates how the coder
progresses. The final code interval is [0.22752,0.2288]. Any number in this interval
will successfully represent the message. It is, however, usual to use the midpoint.
Arithmetic coding is plagued with caveats, such as range resolution and underflow.
Williams [23] presents the problems and most of the common solutions.
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Figure 10: Progression of the Arithmetic Coder
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4.6 Extending the Algorithm

As it stands, the coder is still slow. To speed the coder up, we create an orientation
map for the range blocks, using the double angle formula. Assume that we have
the wavelet decomposition of the image at the range level, consisting of the bands
fro.from,for and frp. Then the orientation of the pixel at position (x,y) in the LL
band of the level below is approximated by

2% (fHL(flfv?J) + m%w) X (fLH(xv?J) + m%w)
() + BT (o) W)

These orientation estimates are then shifted to ensure they lie in the interval [0, 7/2]

(3)

O(z,y) = arctan

and quantised using a linear quantiser. This is possible since we shall apply rotational
isometries to the blocks. A block’s orientation is then simply defined as the average
of the orientation vectors of the pixels in it. Furthermore, by not counting the blocks
whose orientations defined by equation 3 do not match the quantised orientation of
the domain block, we may compact the distribution of values, thereby increasing the
scope for entropy coding. Figure 11 shows a block diagram of the modified coder.

Figure 5 and Figure 13 show the effect of not counting blocks whose orientations
do not match.

As it stands, the coder attempts to extrapolate a block in the range level to a block
in the domain level in each sub-band. However, if there is not a good match between
wavelet levels, the overall reconstruction error will increase dramatically for each
bad block. To overcome this, we perform block projection after the fractal coding to
eliminate errors, in the same vein as Huang and Gharavi-Alkhansari [8]. Our method,
however, is more simple. The basis we use is fixed and calculated over an assortment
of images in the following manner. For each test image the difference between the
domain block and its fractally generated approximation is stored for each band. When
we have all error blocks, we symmetrise them using all the symmetries that the fractal
coder may use. We now treat each d x d block as a d? dimensional vector. In our test
cases, using a 4 x4 block size results in a 16 dimensional vector. We then calculate the
covariance matrix of all the symmetrised errors. This results is a d* x d? dimensional
matrix. Taking the eigenvectors of this covariance matrix and folding the vectors back
to d x d blocks gives an orthonormal basis of vectors, spanning the (filter specific)
wavelet domain of L?(R). The eigenvectors of the covariance matrix are guaranteed
to be real since the matrix is real and symmetric. The covariance matrix is symmetric
since all the error vectors used in its calculation were symmetric ( since they were
symmetrised). Since the basis is composed solely of eigenvectors, it is orthonormal.
Since the basis is orthonormal, we need not worry about cross correlations between
vectors. We may now project the errors from coded blocks in each sub-band onto
this orthonormal basis of d* blocks to eliminate the error. This obviously introduces
another step into the reconstruction process. Once the affine maps have been applied
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Figure 13: Distribution of path positions when block orientations are not matched
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for a block, we then correct the error by adding in the basis blocks with appropriate
scale factors. A block diagram of the modified decoder is shown in figure 12.
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5 Results

In this section we shall provide some results of application of the new algorithm to
standard test images. Comparisons with other compression systems will also be made.
For comparison purposes, all test images are 512 x 512 pixels with 8 bit greyscale. The
wavelet filter used in all tests is the Daubechies 8 point filter described in Section 3.1.
As per most of the image processing literature, we shall use the peak signal to noise
ratio (PSNR) to evaluate and compare our results. Unless otherwise stated, the
orientation quantiser is set to 8 bins, the base wavelet level (n in the coder diagram)
is set to 5 and the domain block size is 4 x 4.

5.1 Results

Table 2 shows the results of using the coder ( with first range coefficient coder ) with
a rate value of 512 and varying the wavelet quantiser rate. Basis projection is not
enabled and the coder does no searching for the best range block. That is, it simply
copies the one in the same relative position from the level above. Table 3 shows the
coder using the same parameters but with basis projection enabled. Figure 14 shows
these results graphically.
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Wavelet Rate Value | MSE | PSNR | Bits per Puizel
8 18.47 | 35.47 | 0.85
16 20.98 |34.91 | 0.65
32 27.30 | 33.77 | 0.53
64 45.32 | 31.57 | 0.36
128 87.45 | 28.71 | 0.25
256 164.43 | 25.97 | 0.19

Table 2: Results for initial fractal block coding in the wavelet domain. Level 2 to
Level 1, domain block size 4, no search, basis projection not enabled.

Wavelet Rate Value | MSE | PSNR | Bits per Puizel
8 11.49 | 37.53 | 0.93
16 14.06 | 36.65 | 0.73
32 20.64 | 34.98 | 0.57
64 38.37 13229 | 0.43
128 80.22 |29.09 | 0.34
256 157.08 | 26.17 | 0.27

Table 3: Results for initial fractal block coding in the wavelet domain. Level 2 to
Level 1, domain block size 4, no search, basis projection enabled.

Table 4 the effects of enabling a 4 block radius search and figure 15 shows the rate
distortion curve.

Table 5 shows the effect of the coefficient rate value on a system where the wavelet
quantisation rate is held constant ( at 32 in this case), no search and the basis
projection enabled. Figure 17 shows the rate/distortion curve for the basic coder
with no basis projection, with and without searching enabled. Table 6 shows the
results of straight wavelet coding and Figure 16 shows a rate/distortion curve for
this. Figure 18 and Figure 19 show the effects of varying the wavelet coetfficient
quantiser and the rate value with basis projection enabled.

Wavelet Rate Value | MSE | Coefficient Size | Bits per Puizel
8 14.17 | 36.62 1.01
16 17.41 | 35.72 0.80
32 24.37 | 34.26 0.63
64 43.07 | 31.79 0.49
128 86.50 | 28.76 0.38

Table 4: Results for initial fractal block coding in the wavelet domain. Level 2 to
Level 1, domain block size 4, 4-block radius search, basis projection not enabled.
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Rate Value | MSE | PSNR | Bits per Pizel
8 10.83 | 37.78 | 4.28
32 11.07 | 37.69 | 2.70
64 11.79 | 37.42 | 1.96
128 13.82 | 36.72 | 1.26
256 16.96 | 35.84 | 0.78
512 20.64 | 34.98 | 0.57
1024 24.07 | 34.32 | 0.48
2048 26.68 | 33.87 | 0.44

Table 5: Results for initial fractal block coding in the wavelet domain. Level 2 to
Level 1, domain block size 4, no search, basis projection enabled.

Wavelet Rate Value | MSE | PSNR | Bits per Puizel
8 5.53 40.70 | 1.69
16 11.33 | 37.59 | 0.92
32 21.76 | 34.75 | 0.50
64 43.71 | 31.72 | 0.26
128 88.95 | 28.64 | 0.13
256 171.63 | 25.78 | 0.06
512 309.01 | 23.23 | 0.03
1024 526.80 | 20.91 | 0.02

Table 6: Results for straight wavelet quantisation coding
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Figure 20: Fractal-Wavelet reconstruction at 0.35 bpp, PSNR 31.93

5.2 Test Image results

In this section, we present some reconstructed images at various bit rates and compare
with other compression schemes.

Figure 20 shows the reconstructed image of Lena, 512x512 pixels, using basis
projection and no search. Figure 21 shows the reconstructed image generated by
quantising the range coefficients alone, at a similar error rate. For comparison, Fig-
ure 22 shows the current industry standard at approximately the same bit rate as the
fractal-wavelet coder.

5.3 Modified Results

The final test for the novel coder is to change the domain block size. We provide
results for 4,8 and 16 pixel square blocks at the same rate value. Table 7 shows the
results of varying the domain block size. Note that no basis projection can occur
currently for block sizes above 4.

The images in Figures 24 and 23 show the reconstructions from the 8 point and
16 point block sizes. For comparison, figure 25 shows the JPEG reconstruction at
roughly the same bit rate. It is apparent that the JPEG system produces more visible
artifacts. The novel coder provides a gain of nearly 1dB over the JPEG coder.
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Figure 22: JPEG coded reconstruction at 0.33 bpp, PSNR 33.83
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Domain Block Size | MSE | PSNR | Bits per Pizel
4 45.32 | 31.57 | 0.36
8 46.11 | 31.49 | 0.25
16 46.40 | 31.47 | 0.21

Table 7: Results for varying the domain block size. In each case, the rate value is
512 and the wavelet quantiser is set to 64. There is no searching or basis projection

enabled.

Figure 23: Reconstruction using a block size of 16 pixels, 0.21bpp PSNR 31.47
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Figure 24: Reconstruction using a block size of 8 pixels, 0.25 bpp, PSNR 31.49

Figure 25: JPEG Reconstruction at 0.22 bpp, PSNR 30.71
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6 Discussion,Conclusions and Further Work

6.1 Discussion of Results

The final coder presented in this paper, along with its modified range coder, outper-
forms the current industry standard, JPEG. It provides nearly 1dB gain over JPEG
at 0.21 bits per pixel. It does not, however, compete as well with other wavelet based
coders, such as Shapiro’s embedded zerotree algorithm [22]. This method of image
coding does, however, show promise.

6.2 Summary

In this paper, we have reviewed the state of block-wise fractal image coding and
presented a brief overview of wavelet analysis as it applies to this paper. We then
presented a novel image coding technique that combines properties of both fractal
coders and the wavelet transform, coining the name Fractal-Wavelet coding. Some
test results on a standard image are then presented.

6.3 Further Research Direction

The most apparent place for further experimentation is the basis projection system. A
more intelligent method of selecting basis vector coefficients and a way of propagating
basis vector coefficients through levels, possibly based on eigenvalues, would also
be beneficial. Further research could also yield the effect of using different mother
wavelets ( ie QMF filter pairs ), including non-separable transforms, and including
an adaptive block size system, possibly quadtree partitioning. The arithmetic coder
statistical model could also be extended to be of a higher order. As an extension to
this system, coding image sequences could be considered. The wavelet coefficients
could be used exploit inter-frame redundancy as well as intra-frame redundancy. The
basic method here would be that the reconstruction of the previous frame would act
as the range coefficients for the current frame.
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