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A Hybrid Fractal-Wavelet Transform ImageData Compression AlgorithmIan Levy, Roland WilsonDepartment of Computer Science,University of Warwick,CoventrySeptember 1, 1995AbstractThis report describes two seemingly distinct areas of work, wavelet analy-sis and fractal image compression. A review of these two areas is presented, anew algorithm outlined, and some results presented. Finally, some speculationsconcerning the future direction of this research is included.
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1 IntroductionThe work in this paper can be divided into two main areas. The �rst is fractalimage coding and the second is wavelet analysis. The concept that uni�es these twootherwise disparate areas is invariance. Both fractal coding techniques and waveletanalysis exploit scale invariance. Fractal coding exploits similarities between an imageand a spatially averaged copy, while wavelets demonstrate the scale invariance of edgesin an image. We shall now cover the background of both of these areas of research.2 Fractal Block CodingFractal block coding is based on the ground breaking work of Barnsley [1] [2] [3]and was developed to a usable state by Jacquin[11]. The basic concept underlyingthis technique is that for each image, there exists a block-wise transform upon theimage that will leave the image unchanged. The roots of fractal block coding lie inthe mathematical world of metric spaces and, in particular, the Contraction MappingTheorem.2.1 The Contraction Mapping TheoremDe�nition 2.1 (Contraction Mapping) Let (X; d) be a complete metric space.That is let X be a vector space over some �eld F and d be a metric upon X. Then,a transformation T , T : X ! X is said to be a contraction mapping i�9s 2 <; 0 � s < 1 s:t d(T (x); T (y))� s � d(x; y) 8x; y 2 X: (1)Here, s is known as the contractivity factor of the transformation T .Theorem 2.1 (Contraction Mapping Theorem) For a contractive transforma-tion T on a complete metric space X, there exists a unique �xed point x? 2 X suchthat x? = T (x?). The unique �xed point is thenx? = limi!1 T i(x0) ; x0 2 XFractal coding of an image, x, is based upon �nding a transformation T such thatd(x; x?) is minimised. However, in practice, x? is not known and we instead seek tominimise the measure d(x; T (x)). This sub-optimal choice is justi�ed by the CollageTheorem (Theorem 2.2).2.2 Iterated Function Systems and The Collage TheoremThe term iterated function system was �rst used by Barnsley and Demko[2]. Wede�ne an iterated function system (IFS) thus.1



De�nition 2.2 (Iterated Function System) An iterated function system consistsof a complete metric space (X; d) together with a �nite set of contraction mappingsfwng; wn : X ! X with contractivity factors sn; n = 1; 2; : : : ; N . The notation forthis IFS is fX;wn; n = 1; 2; : : : ; Ng and its contractivity factor is s = maxfsn; n =1; 2; : : : Ng.Then, according to Barnsley's IFS Theorem[3], the transformation W : H(X) !H(X), de�ned by W (B) = N[n=1wn(B);8B 2 H(X)is a contraction mapping with contractivity factor s. In particular, W has a unique�xed point, A 2 H(X), given by A = limn!1W n(B). Here, H(X) is the Haus-dor� space of X, that is the set of all compact, non-empty subsets of X. To makeH(X) into metric space, we must then de�ne the Hausdor� metric as h(A;B) =maxfd(A;B); d(B;A)g where d(A;B) = maxfd(x;B) : x 2 Ag. We now have themachinery to state the Collage Theorem proper.Theorem 2.2 (The Collage Theorem) Let (X; d) be a complete metric space andlet B 2 H(X) and � � 0. Choose an IFS fX;w0; : : :wNg with contractivity factor0 � s < 1 such that h B; N[n=0wn(B)! � �;where h(d) is the Hausdor� metric. Then,h(B;A) � �1 � s:For our purposes, the Collage theorem states that if we wish to �nd an IFS withan attractor that is close to (in the Hausdor� sense) a given image, I, we may instead�nd a set of contractive transformations on compact subsets of I such that the unionof the set of transformations applied to I is Hausdor�-close to I. This is how standardfractal block coders work. That actual algorithm shall be covered next.2.3 Conventional Fractal Block CodingTake an arbitrary image I and partition it into non-overlapping blocks, fDjg of sized � d. These blocks will be known as domain blocks , following the notation1 ofBarnsley[3]. We then spatially average the image by 2 in both the horizontal andvertical directions, extracting all, possibly overlapping, blocks of size d� d producing1Barnsley's notation is slightly confusing since it refers to the inverse transform.2



Ordinal Isometry1 Identity2 Flip along mid-X axis3 Flip along mid-Y axis4 Flip along major diagonalTable 1: Base isometry set used in conventional fractal block codersthe pool of range blocks, fRig. The goal of fractal block coders is then to �nd theoptimal parameter set fa; b; c; ig for each block Dj in the approximationD̂j = a � �c(Ri) + bsuch that the error d(Dj ; D̂j) is minimised. It is usual for d to be the metric derivedfrom the L2 norm, kDj � D̂jk2. Here, �c is an isometry generated from the set shownin Table 1. Since these four basic isometries generate the dihedral group , we maycombine these to form any of the eight possible symmetries of the block.The fractal block code for the image then consists of the parameter set fa; b; c; igfor each domain block Dj in the domain pool fDjg. The parameter sets are entropycoded to provide compression. We note now that the parameter set fa; b; c; ig isrestricted since the �nal transform Tj must be a contraction mapping under themetric d. We note from Jacquin[11] that the isometries all have L2-contractivity of1 and the contrast scale by a has L2-contractivity of a2. Hence, to ensure that thetransform for each block is a contraction mapping, we must restrict the value of asuch that 0 � a < 1. Then, by the Collage Theorem (2.2), the union of these blocktransforms is itself a contraction mapping.2.4 Reconstructing an Image from a fractal block codeWe note that since T = [iTi is a contraction mapping, by the Contraction MappingTheorem, it has a unique �xed point. Since each component transform was chosento minimise the error between the reconstruction and a block in the original image,the �xed point of the union of these transforms is 'close' to the original image. Thedecoding may be started from any initial image ( since 8x 2 X;T n(x) ! x� asn ! 1). However, it is usual to start with a uniform grey image. Reconstructionproceeds by applying each component map to the initial image to generate the nextimage in the reconstruction sequence. We then spatially average this reconstructedimage and apply the component maps again. This iterative procedure is repeated untilthere is little di�erence between consecutive images in the reconstruction sequence,or until some error condition has been satis�ed.3



2.5 Advances in Fractal codingFractal coding is an asymmetrical process; that is, coding takes much longer thandecoding. Much research has revolved around speeding up the coding in some way.Jacquin[11] himself suggests classifying the range blocks into three distinct classes:shade blocks, midrange blocks and edge blocks. The coder then only checks rangeblocks in the same class as the current domain block when searching for the optimaltransform. Details of the classi�cation algorithm used by Jacquin can be found in[20].Jacobs, Fisher and Boss [10] classify blocks into 72 di�erent classes and also applya quadtree partitioning scheme. The quadtree scheme works by using larger blocks(32 � 32 in their paper) and splitting the block into four smaller blocks should anerror condition not be satis�ed. This quadtree decomposition is repeated until theerror condition is satis�ed or a minimum block size is reached. This has obviousadvantages if parts of the image contain large regions of relatively constant greyscale.The same authors [9] proved that not all the wi in the IFS fX;w0; : : : ; wng need tobe contractive. In this report, they de�ne a mapW : F ! F as eventually contractiveif, for some n 2 Z+ ,W n is contractive. They then prove that the fractal decoder willconverge if T = [iTi is only eventually contractive. Here, we note that the iteratedtransform Tm is the composition of transform unions of the formwi1 � wi2 � : : : � wim:Since the contractivities of each union wij multiply to give the overall contractivity ofthe iterated transform, the composition may be contractive if it contains su�cientlycontractive wij . Intuitively, it is simple to see that if the union consists of slightlyexpansive transforms and highly contractive ones, then the union will eventuallybe contractive. The provision for eventually contractive maps allows the coder toachieve better results. Since there is now no longer a bound on the contractivity ofthe component transform , the dynamic range of range blocks may now be increasedto be similar to that of the domain block.Most speed ups have, in some way, reduced the size of the pool that the coder mustsearch for each domain block. Reducing the size of the search pool, however, can havean adverse e�ect on reconstructed image quality since the range block pool is not asrich. Saupe [21] uses the theory of multi-dimensional keys to perform an approximatenearest-neighbour search. Since this search can be completed in O(logN) time, therange pool need not be depleted to achieve a speed up. Saupe's basic idea is that of a(d�1)�dimensional projection on <d where d � 2. He de�nes a subspace, X � <d asX = <dnfre : r 2 <g where e = 1pd(1; : : : ; 1) 2 <d. De�ning a normalised projectionoperator � : X ! X and a function D : X �X ! [0;p2] by�(x) = x� < x; e > ekx� < x; e > ek4



and D(x; z) = min(d(�(x); �(z)); d(��(x); �(z)))gives an expression for the least squares errorE(x; z) =< z; �(z) >2 g(D(x; z))where g(D) = D2(1 � D2=4). This theorem states that the least squares error,E(x; z) is proportional to g(D) which is a simple function of the Euclidean distancebetween �(x) and �(z) ( or ��(x) and �(z) since �(x) is unique up to sign). Wealso note that g is monotonically increasing on the interval [0;p2]. Saupe then statesthat the minimisation of the least squares errors E(xi; z) i = 1; : : : ; N is equivalentto the minimisation of the D(xi; z). Thus, we may replace the least squares errorminimisation by the nearest neighbour search for �(z) 2 <d in the set of 2N vectors��(xi) 2 <d. Since we are now in a Euclidean space, we may apply any of the nearestneighbour search algorithms that run in expected logarithmic time, for example kd-trees [7]. Saupe does, however, note that an 8 � 8 block results in 64 dimensions forthe multi-dimensional keys. He therefore suggests downsampling the blocks to, say,4� 4 which reduces storage requirements to just 16 dimensions.Other speed up methods have revolved around performing little or no searchingfor the range blocks. Monro et al [17] [16] [14] [15] , have developed and patented atechnique known as the Bath Fractal Transform 2 (BFT). The BFT works by limitingthe search of the range blocks and also using higher order functions on the blocks.Mathematically, ifW = fX;wk; k = 1; : : : ; Ng is an IFS with attractor A, they de�nea fractal function f on A as f(wk(x; y)) = �k(x; y; f(x; y)) where the maps �k haveparameters �(k)i ; k = 1; : : : ; N; i = 1; : : :M . Then, M is the order of the IFS and Nis the number of free parameters of the BFT. The function f is found by minimisingd(g; ĝ) for some suitable metric d over block k whereĝ(x) = �k(w�1k (x); g(w�1k (x))):Solving @d(g; ĝ)@�(k)i = 0 8i; kgives us the BFT. They de�ne various searching options for the BFT, de�ned beforedownsampling has occurred; that is, they assume that domain blocks are d� d whilerange blocks are 2d � 2d. A level zero search chooses the range block in the sameposition as the domain block. A level one search would include the four range blocksthat intersect the domain block. A level two search would also include all range blocksthat intersect those in level one and so on. The complexity options they use, however,make the BFT unique. As it stands, such a limited search would severely degrade2They are at Bath University, England. 5



reconstructed image quality. Allowing higher order terms in the BFT reduces theerror while keeping encoding times low. At its most basic level ( level zero), the BFTdegrades to Jacquin's method[11]. That is, the maps �k have the form�k(x; y; f) = sk � f + tk:A level three complexity gives the maps the form�k(x; y; f) = a(k)3 x3 + a(k)2 x2 + a(k)1 x+ b(k)3 y3 + b(k)2 y2 + b(k)1 y + skf + tk:Note that there are no cross product terms ( for example xy or x2y ) so that cal-culation is kept relatively simple. They have recently [18] developed a proprietaryreconstruction algorithm, the Accurate Fractal Rendering Algorithm (AFRA) ,whichremains unpublished at this time, speci�cally designed for use with the BFT.Barthel and Voy�e [4] have modi�ed the luminance transform to act in the frequencydomain. They propose the following high-order luminance transform.�(g) = IDCT  N�1[u=0 N�1[v=0 a(u; v) �G(u; v) + b(u; v)! ; G(u; v) = DCT (g)where DCT denotes the Discrete Cosine Transform and IDCT denotes the inversediscrete cosine transform, N is the size of the blocks and g is the range block itself.If we denote the DCT of the domain block f by F (u; v), we can approximate thespectrum of the domain block F (u; v) by scaling of the spectrum of G(u; v). Theyconjecture that most blocks can be su�ciently well approximated by a low ordertransform, hence negating the risk of a bit-explosion due to the excessive number ofparameters to be coded. Further to this, they propose modifying the luminance trans-form so that it operates on a frequency domain partition. The luminance transformwould then be expressed as�k(g) = IDCT  N�1[u=0 N�1[v=0 ( a0 �G(u; v) + b if u = 0; v = 0a(u; v) �G(u; v) otherwise !where a(u; v) = ai if (u; v) 2 Ri i = 1; : : : ;K. This permits their modi�ed frequencydomain luminance transformation to be used in the block splitting procedure theyuse later. This is similar to quadtree partitioning, but if the top level block doesnot satisfy the error condition, they only recode the sub-blocks which do not satisfythe error condition. In this way, they can achieve similar reconstruction results toquadtree partitioning but with fewer transform coe�cients.Gharavi-Alkhansari and Huang [8] use a combination of fractal coding and basisblock projection. For each domain block, they generate three pools of range blocksthus 6



i Higher Scale Adaptive Basis BlocksThis pool is the standard range block pool from a normal fractal coder. Thatis, spatially averaged copies of the domain blocks, augmented by rotatedand re
ected versions.ii Same Scale Adaptive Basis BlocksThis pool is generated by selecting regions of the image which are the samesize as the domain blocks. These blocks, however, must be selected causally,that is they may only be selected from parts on the image which havealready been encoded. This pool may also be augmented by rotations andre
ections.iii Fixed Basis BlocksThis is a �xed pool of basis blocks that are known a priori to both theencoder and decoder. They need not be orthogonal or even complete.The purpose of the �xed basis blocks is to allow the encoder to accurately encode adomain block that is totally dissimilar from any range block in the image. However,the lack of the orthogonality condition on the basis blocks appears to make the optimalsolution for the coe�cients of the basis blocks a di�cult task. The authors o�er twosub-optimal methods of calculating basis block coe�cients. The �rst is to select thebasis block most strongly correlated with the domain block. Then, orthogonalise thedomain block with respect to the basis block. Repeat until an error condition issatis�ed or all basis blocks have been used. The second, more general method, is todo the same as the �rst method, but also orthogonalise all other basis blocks withrespect to the most correlated. They also note that standard fractal block coding,block transform coding and vector quantisation are all special cases of their proposedalgorithm.3 The Wavelet TransformThe Fourier Transform method is a well known tool for signal analysis. The FourierTransform expresses any square integrable ( in the Lebesgue sense) 2� periodic func-tion on L2([0; 2�]) as the projection of it onto the orthonormal basis!n(x) = e{nx; n = : : : ;�1; 0; 1; : : : :However, noting that if !(x) = e{x then !n = !(nx). Hence, the orthonormal basisf!ng is actually the set of integer dilates of the single function !. We note that!(x) = e{x = cos x+ { sinx:The remarkable fact about the Fourier Transform is that this is the only functionrequired to generate all 2� periodic square integrable functions.7



We now turn our attention to the more useful space L2(<). Functions in L2(<)satisfy the following condition Z 1�1 jf(x)j2dx <1:Since every function in L2(<) must decay to zero at �1, the Fourier basis functions!n, which are sinusoids, are not in L2(<). A synonym for sinusoids is waves and ifwe require waves that generate L2(<), they must decay very quickly to zero (for allpractical purposes). Hence, we need small waves or wavelets to generate L2(<). Asin the Fourier Transform case, we would like the wavelets to be generated by onefunction. However, if the wavelets must decay to zero, we must translate the functiondilates along < by integral shifts. If we choose a mother wavelet  2 L2(<) of unitlength, then all the translated dilates j;k(x) = 2j=2 (2jx� k) ; j; k 2 Zalso have unit length.De�nition 3.1 (Wavelet) A function  2 L2(<) is called a wavelet if the familyf j;kg de�ned by  j;k(x) = 2j=2 (2jx� k) ; j; k 2 Zis an orthonormal basis of L2(<). That is<  j;k;  l;m >= �j;l�k;m ; j; k; l;m 2 Zwhere �j;k = ( 1 if j = k0 otherwiseThen, every f 2 L2(<) can be written asf(x) = 1Xj;k=�1 cj;k j;k(x): (2)The series representation of f in (2) is called the wavelet series of f and is analogousto the Fourier series of a function. Similarly, we may de�ne the integral wavelettransform [5], which is analogous to the continuous Fourier Transform as(W f)(b; a) = jaj�1=2 Z 1�1 f(x)  x� ba !dx; f 2 L2(<):It is worth noting at this point a subtle, yet important di�erence between theWavelet Transform and the Fourier Transform. Fourier basis functions are only lo-calised in frequency, not in time. Small coe�cient errors in the Fourier transform willproduce changes everywhere in the time domain. Wavelets, however, are localisedboth in frequency(scale) by dilations and in time by translations.8



3.1 The Discrete Wavelet TransformThe continuous wavelet transform is a useful theoretical tool, but in image processing,we deal with sampled images, i.e discrete values. Here, we would require a simpleand fast method of calculating the wavelet coe�cients of a signal. Wilson [24] de�nesthe 1-D discrete wavelet transform in terms of a pair of quadrature mirror �lters(QMF pairs). If fgng is a sequence that is generated by sampling the mother wavelet , then g will be a high pass �lter. The mirror �lter of this is fhng, given by therelation gm = (�1)mh1�m. We then de�ne the discrete wavelet transform in terms ofsuccessive �ltering and dyadic downsampling.cin = Pk hkci�1(2n� k)din = Pk gkci�1(2n� k)where c0(n) = f(n) is the original signal and the wavelet transform coe�cients consistof fding. For reconstruction, it is usual to zero pad the data with 2i � 1 zeros at leveli. If we de�ne a family of �lters fhing given byhik = ( hn if k = 2in0 otherwiseand let f i(n) be the zero padded data at level i, then the reconstruction from level ito level i� 1 is given by f i�1(n) =Xk hi�1�k f i(n� k):The path from the 1-dimensional transform to the 2 dimensional version is simple.We note that, with the correct �lters, the above de�nition of the discrete wavelettransform becomes separable in 2 dimensions. That is, we may perform the 1 dimen-sional wavelet transform on the rows, followed by the columns. Figure 1 and Figure 2illustrate the 2 dimensional discrete wavelet transform.In her landmark paper, Daubechies[6] develops a set of �lters for orthonormal,compactly supported wavelets of di�ering sizes. These particular wavelet bases areideal for block-wise image processing techniques since the orthonormality conditionassures easy calculation while the compact support reduces the boundary artifactsat block edges. Figure 3 shows the Daubechies 8 point �lter and Figure 4 shows theLena image decomposed to three levels using this �lter.It is worth noting here that since the wavelet transform is a bounded linear op-erator, it preserves the norm on its underlying space. Hence, for our purposes ofimage coding, we may assume that the L2 norm will be preserved across the wavelettransform. That is, kD1 � D2k2 = kW (D1) � W (D2)k2 where W is the wavelettransform. 9



Figure1:ForwardDiscreteWaveletTransformin2dimensions.
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Figure2:InverseDiscreteWaveletTransformin2dimensions.
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Figure 3: Daubechies 8 point wavelet �lter
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Figure 4: Three level Wavelet Decomposition of the Lena Image

3.2 Relation Between Iterated Function Systems and TheWavelet TransformAs discussed previously, iterated function systems rely of self similarity of compactsubsets of <2. In our case, these subsets support greyscale images. The wavelettransform is a tool for demonstrating the scale invariance of edges. Referring toFigure 4 , it is obvious that the sub-bands in successive wavelet levels are similar.It is, therefore, natural to move the iterated function system model to the waveletdomain. This exploits the scale invariance of edges to provide a form of approximateself-similarity required by the iterated function system model. Another advantageof the wavelet domain is that the mean of the coe�cients is scaled across levels, notshifted. The coe�cients are actually scaled by 1=p2 by each of the 1-dimensionalcomponent transforms. Hence, the coe�cients are scaled by 1=2 for every level in thewavelet decomposition. Thus, no mean shift parameter is required for the iteratedfunction system maps. Furthermore, there is an implicit scale factor of 2 in the blockscale parameter of each map. We may divide this implicit value out and re-multiplyat the decoder. This will compact the distribution of values and increase the scopefor entropy coding.Since the wavelet transform we are using is orthogonal, successive wavelet trans-forms are actually projections into orthogonal subspaces ( see [6] and [13] for a de-13



scription of the multiresolution analysis theory that embodies the orthogonal subspaceproperty ), we need not iterate the iterated function system maps at all. A singleapplication is su�cient and this greatly reduces decoding time.
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4 The New AlgorithmIn this section we shall present a novel algorithm which performs fractal coding inthe wavelet domain. This algorithm attempts to approximate a level of waveletcoe�cients from the level above. It combinesmany areas of signal processing includingwavelet transforms, fractal block coding, orientation estimates, standard block codingby basis blocks, quantisation and arithmetic coding. The speci�cs of each of theseareas that are relevant to this algorithm will be covered in this section.4.1 Algorithm BasicsTo begin, we decide on the level of wavelet coe�cients we wish to approximate. Thiswill be known as the domain level. We also decide on the level from which we shallapproximate which is usually the level above. This will be known as the range level.The image to be coded is decomposed by the wavelet transform to a given level, say l.Levels from l to the level below the range level are quantised using a linear quantiserfor the high pass coe�cients and a separate quantiser for the low pass coe�cientsat the highest level. An approximation to the range level is then generated via theinverse wavelet transform. We use the quantised approximation as the range level ofcoe�cients to reduce errors at the decoder. The coder then treats each of the sub-bands of the wavelet decomposition separately. Each of the HL,LH and HH bandsin the domain level are partitioned into non-overlapping domain blocks. Let fDHLi g,fDLHi g and fDHHi g be the domain blocks from each sub-band.For each domain block set fDHLi ;DLHi ;DHHi g we must �nd a corresponding rangeblock set fRHLi ; RLHi ; RHHi g which minimises the error kDHLi � D̂HLi k2 + kDLHi �D̂LHi k2 + kDHHi � D̂HHi k2 where D̂Xi = �i(�i � R̂Xi ) + bi. Here R̂i is Ri normalised,�i = <R̂i;Di><R̂i:R̂i> and bi is chosen to make the means of Ri and Di equal. We note thatsince there will be no iteration of the maps in the decoding process, the value of �i isunbounded, and, as stated in Section 3.2, there is no shift parameter necessary ( sobi = 08i). Given a domain block size d and and search radius r, we de�ne the searchregion as the subset of the image I given by ([x� rd; x + rd] � [y � rd; y + rd]) \ Iwhere I is each of the three sub-bands. We begin a spiral search from the centreof the search region as in Figure 6. By using a spiral search, we may reduce theaddressing problem to a single value. Figure 7 is a simpli�ed 
owchart of the coder.This method constrains the maps so that each range block is in the same relativeposition, but in di�erent sub-bands. The intuitive reasoning behind this is that if twoblocks are similar, then their horizontal, vertical and diagonal components must alsobe similar. 15



Figure 5: Distribution of path positions when block orientations are matched16



Figure 6: The spiral search path4.2 The Reconstruction processReconstruction proceeds much the same as for standard fractal coding. Note thatthe range level of wavelet coe�cients is transmitted to the decoder in some way. Themajor di�erence is that our method does not require iteration of the maps. The mapsare applied once. An inverse wavelet transform from the domain level reconstructsthe original image.4.3 Coe�cient EncodingThe parameter sets that describe the block-wise maps are linear quantised and en-coded using an order zero arithmetic coder. We set a rate value which determines howmany bins the quantiser uses and how many symbols the arithmetic coder can encode.Obviously, using less symbols increases compression but reduces image quality. Thereis a trade o� to be found between image quality and compressed size. Figure 8 showshow the linear quantiser we use works. It is the same quantiser used by the JPEGsystem [19].
17
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Figure 9: Initial Code Interval for Arithmetic Coder
0 0.2 0.4 0.8 1.0

h l 0e4.4 Arithmetic Entropy CodingThe goal of entropy coding is to reduce the number of bits required to encode a symbol,hence providing compression. Arithmetic coding, pioneered by Langdon [12] andpopularised by Witten, Neal and Cleary [25], is based on the statistical properties ofthe signal. For example, if we have a symbol with probability of 123=456 of occurring,the goal of the Arithmetic coder would be to code the symbol in � ln(123=456) bits.There are many types of arithmetic coder, both adaptive and non-adaptive. Thesimplest adaptive case is the order zero model. This model generates the cumulativeprobabilities of symbols on the input stream. Other models include higher ordermodels ( i.e. those that predict probabilities over more than 1 symbol) and other,more complicated models. Williams [23] provides a good overview of the subject.4.5 Operation of the Arithmetic CoderThe basic tenet of the arithmetic coder is that any sequence of symbols may beencoded in an arbitrary precision number. For the purpose of this example, let usassume we have the symbol space fe; h; l; og with probabilities f0:2; 0:2; 0:4; 0:2g. Weshall begin with the interval [0; 1], although any closed interval will su�ce. Weshall code the message hello using the arithmetic coder with a �xed probability asstated. Figure 9 shows how the coder would split the initial interval based on theseprobabilities.Now, the coder receives the �rst symbol of the message. The symbol is 'h', whichis assigned the code range [0:2; 0:4]. The code interval now becomes [0:2; 0:4]. Next,the coder receives the symbol 'e'. This is assigned the range [0; 0:2] in the initialinterval, so is assigned the range [0:2; 0:24]. Figure 10 demonstrates how the coderprogresses. The �nal code interval is [0:22752; 0:2288]. Any number in this intervalwill successfully represent the message. It is, however, usual to use the midpoint.Arithmetic coding is plagued with caveats, such as range resolution and under
ow.Williams [23] presents the problems and most of the common solutions.20



Figure 10: Progression of the Arithmetic Coder
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4.6 Extending the AlgorithmAs it stands, the coder is still slow. To speed the coder up, we create an orientationmap for the range blocks, using the double angle formula. Assume that we havethe wavelet decomposition of the image at the range level, consisting of the bandsfLL,fLH,fHL and fHH . Then the orientation of the pixel at position (x; y) in the LLband of the level below is approximated byO(x; y) = arctan0B@2� �fHL(x; y) + fHH(x;y)2 �� �fLH(x; y) + fHH(x;y)2 ��fHL(x; y) + fHH(x;y)2 �2 � �fLH(x; y) + fHH(x;y)2 �2 1CA : (3)These orientation estimates are then shifted to ensure they lie in the interval [0; �=2]and quantised using a linear quantiser. This is possible since we shall apply rotationalisometries to the blocks. A block's orientation is then simply de�ned as the averageof the orientation vectors of the pixels in it. Furthermore, by not counting the blockswhose orientations de�ned by equation 3 do not match the quantised orientation ofthe domain block, we may compact the distribution of values, thereby increasing thescope for entropy coding. Figure 11 shows a block diagram of the modi�ed coder.Figure 5 and Figure 13 show the e�ect of not counting blocks whose orientationsdo not match.As it stands, the coder attempts to extrapolate a block in the range level to a blockin the domain level in each sub-band. However, if there is not a good match betweenwavelet levels, the overall reconstruction error will increase dramatically for eachbad block. To overcome this, we perform block projection after the fractal coding toeliminate errors, in the same vein as Huang and Gharavi-Alkhansari [8]. Our method,however, is more simple. The basis we use is �xed and calculated over an assortmentof images in the following manner. For each test image the di�erence between thedomain block and its fractally generated approximation is stored for each band. Whenwe have all error blocks, we symmetrise them using all the symmetries that the fractalcoder may use. We now treat each d�d block as a d2 dimensional vector. In our testcases, using a 4�4 block size results in a 16 dimensional vector. We then calculate thecovariance matrix of all the symmetrised errors. This results is a d2� d2 dimensionalmatrix. Taking the eigenvectors of this covariance matrix and folding the vectors backto d � d blocks gives an orthonormal basis of vectors, spanning the (�lter speci�c)wavelet domain of L2(<). The eigenvectors of the covariance matrix are guaranteedto be real since the matrix is real and symmetric. The covariance matrix is symmetricsince all the error vectors used in its calculation were symmetric ( since they weresymmetrised). Since the basis is composed solely of eigenvectors, it is orthonormal.Since the basis is orthonormal, we need not worry about cross correlations betweenvectors. We may now project the errors from coded blocks in each sub-band ontothis orthonormal basis of d2 blocks to eliminate the error. This obviously introducesanother step into the reconstruction process. Once the a�ne maps have been applied22
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Figure 13: Distribution of path positions when block orientations are not matched25



for a block, we then correct the error by adding in the basis blocks with appropriatescale factors. A block diagram of the modi�ed decoder is shown in �gure 12.
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5 ResultsIn this section we shall provide some results of application of the new algorithm tostandard test images. Comparisons with other compression systems will also be made.For comparison purposes, all test images are 512�512 pixels with 8 bit greyscale. Thewavelet �lter used in all tests is the Daubechies 8 point �lter described in Section 3.1.As per most of the image processing literature, we shall use the peak signal to noiseratio (PSNR) to evaluate and compare our results. Unless otherwise stated, theorientation quantiser is set to 8 bins, the base wavelet level (n in the coder diagram)is set to 5 and the domain block size is 4� 4.5.1 ResultsTable 2 shows the results of using the coder ( with �rst range coe�cient coder ) witha rate value of 512 and varying the wavelet quantiser rate. Basis projection is notenabled and the coder does no searching for the best range block. That is, it simplycopies the one in the same relative position from the level above. Table 3 shows thecoder using the same parameters but with basis projection enabled. Figure 14 showsthese results graphically.

27



Wavelet Rate Value MSE PSNR Bits per Pixel8 18.47 35.47 0.8516 20.98 34.91 0.6532 27.30 33.77 0.5364 45.32 31.57 0.36128 87.45 28.71 0.25256 164.43 25.97 0.19Table 2: Results for initial fractal block coding in the wavelet domain. Level 2 toLevel 1, domain block size 4, no search, basis projection not enabled.Wavelet Rate Value MSE PSNR Bits per Pixel8 11.49 37.53 0.9316 14.06 36.65 0.7332 20.64 34.98 0.5764 38.37 32.29 0.43128 80.22 29.09 0.34256 157.08 26.17 0.27Table 3: Results for initial fractal block coding in the wavelet domain. Level 2 toLevel 1, domain block size 4, no search, basis projection enabled.Table 4 the e�ects of enabling a 4 block radius search and �gure 15 shows the ratedistortion curve.Table 5 shows the e�ect of the coe�cient rate value on a system where the waveletquantisation rate is held constant ( at 32 in this case), no search and the basisprojection enabled. Figure 17 shows the rate/distortion curve for the basic coderwith no basis projection, with and without searching enabled. Table 6 shows theresults of straight wavelet coding and Figure 16 shows a rate/distortion curve forthis. Figure 18 and Figure 19 show the e�ects of varying the wavelet coe�cientquantiser and the rate value with basis projection enabled.Wavelet Rate Value MSE Coe�cient Size Bits per Pixel8 14.17 36.62 1.0116 17.41 35.72 0.8032 24.37 34.26 0.6364 43.07 31.79 0.49128 86.50 28.76 0.38Table 4: Results for initial fractal block coding in the wavelet domain. Level 2 toLevel 1, domain block size 4, 4-block radius search, basis projection not enabled.28
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Rate Value MSE PSNR Bits per Pixel8 10.83 37.78 4.2832 11.07 37.69 2.7064 11.79 37.42 1.96128 13.82 36.72 1.26256 16.96 35.84 0.78512 20.64 34.98 0.571024 24.07 34.32 0.482048 26.68 33.87 0.44Table 5: Results for initial fractal block coding in the wavelet domain. Level 2 toLevel 1, domain block size 4, no search, basis projection enabled.
Wavelet Rate Value MSE PSNR Bits per Pixel8 5.53 40.70 1.6916 11.33 37.59 0.9232 21.76 34.75 0.5064 43.71 31.72 0.26128 88.95 28.64 0.13256 171.63 25.78 0.06512 309.01 23.23 0.031024 526.80 20.91 0.02Table 6: Results for straight wavelet quantisation coding30
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Figure 20: Fractal-Wavelet reconstruction at 0.35 bpp, PSNR 31.935.2 Test Image resultsIn this section, we present some reconstructed images at various bit rates and comparewith other compression schemes.Figure 20 shows the reconstructed image of Lena, 512x512 pixels, using basisprojection and no search. Figure 21 shows the reconstructed image generated byquantising the range coe�cients alone, at a similar error rate. For comparison, Fig-ure 22 shows the current industry standard at approximately the same bit rate as thefractal-wavelet coder.5.3 Modi�ed ResultsThe �nal test for the novel coder is to change the domain block size. We provideresults for 4,8 and 16 pixel square blocks at the same rate value. Table 7 shows theresults of varying the domain block size. Note that no basis projection can occurcurrently for block sizes above 4.The images in Figures 24 and 23 show the reconstructions from the 8 point and16 point block sizes. For comparison, �gure 25 shows the JPEG reconstruction atroughly the same bit rate. It is apparent that the JPEG system produces more visibleartifacts. The novel coder provides a gain of nearly 1dB over the JPEG coder.33



Figure 21: Wavelet only reconstruction at 0.26 bpp, PSNR 31.72

Figure 22: JPEG coded reconstruction at 0.33 bpp, PSNR 33.8334



Domain Block Size MSE PSNR Bits per Pixel4 45.32 31.57 0.368 46.11 31.49 0.2516 46.40 31.47 0.21Table 7: Results for varying the domain block size. In each case, the rate value is512 and the wavelet quantiser is set to 64. There is no searching or basis projectionenabled.

Figure 23: Reconstruction using a block size of 16 pixels, 0.21bpp PSNR 31.4735



Figure 24: Reconstruction using a block size of 8 pixels, 0.25 bpp, PSNR 31.49

Figure 25: JPEG Reconstruction at 0.22 bpp, PSNR 30.7136



6 Discussion,Conclusions and Further Work6.1 Discussion of ResultsThe �nal coder presented in this paper, along with its modi�ed range coder, outper-forms the current industry standard, JPEG. It provides nearly 1dB gain over JPEGat 0.21 bits per pixel. It does not, however, compete as well with other wavelet basedcoders, such as Shapiro's embedded zerotree algorithm [22]. This method of imagecoding does, however, show promise.6.2 SummaryIn this paper, we have reviewed the state of block-wise fractal image coding andpresented a brief overview of wavelet analysis as it applies to this paper. We thenpresented a novel image coding technique that combines properties of both fractalcoders and the wavelet transform, coining the name Fractal-Wavelet coding. Sometest results on a standard image are then presented.6.3 Further Research DirectionThe most apparent place for further experimentation is the basis projection system. Amore intelligent method of selecting basis vector coe�cients and a way of propagatingbasis vector coe�cients through levels, possibly based on eigenvalues, would alsobe bene�cial. Further research could also yield the e�ect of using di�erent motherwavelets ( ie QMF �lter pairs ), including non-separable transforms, and includingan adaptive block size system, possibly quadtree partitioning. The arithmetic coderstatistical model could also be extended to be of a higher order. As an extension tothis system, coding image sequences could be considered. The wavelet coe�cientscould be used exploit inter-frame redundancy as well as intra-frame redundancy. Thebasic method here would be that the reconstruction of the previous frame would actas the range coe�cients for the current frame.
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