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Ida Pu and Alan Gibbons *

Department of Computer Science, University of Warwick, UK

Abstract

We describe a particularly simple and practical algorithm for economic storage
of arrays without recourse to the intricacies of perfect hash functions. This is done
while retaining constant access time. The algorithm performs usefully over a range
of values of x/n where the notional input array contains n entries with x non-zero
elements. For z < n/k and one particular setting of the array parameter, we show
that the average storage required is about n(k + 30)/10k, where n is the number of
locations of the notional input array. For sparse arrays this drops to about n/10.

1 Introduction

In many programming applications involving sparse matrices, there is the potential for
space economy in matricial storage. For example, we could store just the non-empty (or
non-zero) elements along with their original matricial indices. It would then be a trivial
matter to find (that is, access) any matricial element. given its indices, in logarithmic
sequential time using standard binary search. The penalty to be paid for the space-
economy of such an algorithm is the loss of constant access-time. In this paper we
describe a particularly simple and practical algorithm to achieve space-economy and
at the same time retain constant access-time. Moreover, our deterministic sequential
algorithm does not have recourse to the intricacies of perfect hash functions [1]. Apart
from [1], we have been unable to find any reference to the problem addressed by this
paper. The algorithm treats the input as though it was a one-dimensional array. Trivial
changes would readily yield an algorithm for matrices of arbitrary dimensions.

In section 2 we describe our simple algorithm. In section 3 we obtain an exact expression
for the average storage requirements of the algorithm and we quantify this for a particular
value of an algorithmic parameter. The final section is a summary of our results and
conclusions.

*fax: +44 1203 525714, e-mail: amg@dcs.warwick.ac.uk. Partially supported by the EC ALCOM-IT
programme contract number 20244



2 The algorithm

Imagine that n input items occupy the locations of a notional array INPUT[1 .. n]
and that there are z non-zero elements. Our algorithm constructs a compressed array,
COMP, and an auxiliary array, AUX[1..t,1..2]. The arrays COMP and AUX occupy
available storage space whereas the elements of INPUT are merely sequentially scanned
by the input device. The elements of COMP include the non-zero elements of INPUT
and the elements of AUX allow any element of INPUT to be deduced in constant time.
The array INPUT is imagined to be divided from the left into equal sized segments of
length s with (if s is not a divisor of n) a final smaller segment of length n — s|n/s].
We define the t in terms of s, t = [n/s]. In general any such segment of INPUT will
contain a number of leading and trailing zeros (or empty elements). We delete these and
construct COMP by concatenating the truncated segments. Figure 1 shows an example
for n = 21 and s = 4. Here the array COMP has length 6.
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Figure 1: The construction of COMP

In general we might expect the length of COMP to be much less than the length of
INPUT especially, for example, when t is close to z. In this case many untruncated
segments will, on average, contain only empty elements or exactly one significant element.
In both cases segment truncation does not force the storage of non-significant elements
of INPUT in COMP.

The potential for space-economy to be had from storing COMP rather than INPUT can
be achieved while retaining constant access-time as we now see. Given j we are required
to deduce INPUT[j] from COMP by making use of the array AUX which we now define.
For 1 <i<t, AUX[i, 1] is the address of the first element of the ith truncated segment
in the array COMP (if the truncated segment is empty, then it is the address of where
such an element would have appeared) and AUX[i. 2] is the number of leading zeros in
the 7th untruncated segment. If the segment contains only zeros, then they are counted
as leading zeros. Figure 2 shows AUX for the example of figure 1.

The algorithm FindINPUT[;j] described below returns the value of the jth element in
the imagined array INPUT given the arrays COMP and AUX.

In Algorithm FindINPUT[j], & is the number of the segment from the left containing
INPUT[j], and d is the address of INPUT[j] in the uncompressed array relative to



Figure 2: The matrix AUX for our example

beginning of the segment containing INPUT[j]. Note AUX[h + 1,1] — AUX[R, 1] is the
length of the truncated segment and the length of the AUX array is m + 1 in this
implementation, where m is the number of segments.

For each segment of length s, d, the offset of the the distance from INPUT[j] to the
beginning of the the uncompressed segment containing INPUTj], can only be in three
areas, i.e. 0 < d < nhz, where nhz is the number of the leading zeros, ot nhz < d < nhz+
nt where nt is the the length of the truncated segment or nhz + nt < d < s. The number
of leading zeros in the segment is stored in AUX[h,2] and the length of the truncated
segment is actually the difference between the address of COMP for the first non-zero
element of the segment and of the following segment, i.e. AUX[h+1,1] - AUX[A, 1]. All
this is illustrated in figure 3.
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Figure 3:

The algorithm may be implemented in different ways. We assume a block structured
style in which arrays may be dynamically declared. The implementation would be more
elegantly expressed in a language which allowed for dynamic extension of arrays. Within
our self-imposed style, we need to read in the data twice, although this can be avoided
by an alternative style.

Algorithm Construct reads in the data sequence and returns the compressed array
COMP and auxiliary array AUX, where AUX[1..m + 1,1] contains the addresses in
COMP of the first non-zero element of each segment and AUX[1..m, 2] stores the num-
ber of leading zeros in each segment. AUX[m + 1,1] stores the next address to the last
address of COMP.

Line 2 inputs the length of the input sequences and the length of the segments Line
3 computes the number of segments. Line 4 dynamically declares the auxiliary array
AUX.

The algorithm Construct deals with the data sequence by segments. In cach seg-
ment (lines 6 — 21), it stores the address of the first non-zero element in a segment



in AUX[1..m + 1,1] (Line 8), In line 9 — 21 k counts the leading zeros and [ counts the
trailing zeros. The length of the truncated segment is ¢ (Line 19) and p is the address
in COMP for the first non-zero element of the next segment (Line 20).

Line 25 dynamically declares the array COMP. Lines 26 — 37 read the data at the second
time. This enters the truncated segments into COMP. That programme body in which
the input is to be manipulated is imagined to be contained between Lines 37 — 38. This
is within the block in which the required arrays have scope.

Algorithm FindINPUT[j]

Input: j

Output: INPUT[j]

1 begin

2 h:[%],d:(j—l)mods

3 ifd < AUX(h.2) or d > AUX(h,2) + AUX(h + 1,1) — AUX(h, 1)
4 then INPUT[j] =0

5 else INPUT[j] = COMP[AUX(h, 1) +d — AUX (%, 2))]

6 end

Algorithm Construct
Input: input data sequence
Output: array COMP and AUX

1 begin

2 readn, s

3 m= Pﬂ

4 array AUX[l..(m + 1),1..2]
5 p—1

6 fori=1tomdo

7 begin

8 AUX[i, 1]} —p, k=10

Nel

for j = 1to s do

10 begin

11 isHeadl) — true

12 read input(i.e INPUT[(i — 1)s + j])

13 if (input = 0 and isHead0) then k — k + 1
14 else isHead) — false

15 if (input = 0 and —isHead0) then [ = [+ 1
16 else | — 0

17 end

18 AUX[, 2] — &

19 g—s—(k+1)

20 p—p+tyq

21 end

22 AUX[m+1,1] —p

23 end

24 begin

25 array COMP[l..p — 1]
26 p— 1, restart read
27 for i = 1 tom do



28 begin
29 for j = 1 to AUX[7, 2] do read input
30 for j = 1 to AUX[i + 1,1] — AUX[i, 1] do

31 begin

32 read input

33 COMP[p] — input

34 p—p+1

35 end

36 for j = 1 to s — AUX[7,2] — AUX[i + 1, 1]+ AUX[i, 1] do read input
37 end

38 -

Proglamme body employing calls FindINPUT]j]

39 end

3 Expected Space Economy

In section 3.1 we obtain an exact algebraic expression for the expected length of the array
COMP. Then in section 3.2, for a particular choice of the variable s, we derive a simple
expression for this average which nevertheless provides a close approximation. This is
confirmed by a comparison between plots of the exact and approximate expressions. The
particular choice of s = n/x is shown to provide an algorithm with good space economy
for sparse matrices.

3.1 The average length of the array COMP

We prove three Lemmas which ultimately provide an exact expression for the average
length of the array COMP. Given a one-dimensional array segment of length s containing,
J non-zero elements, by A(s, k) we denote the average length of the reduced scgment
obtained by removing those segment locations containing leading and trailing zeros. The
first Lemma derives an expression for A(s, k).

o= (50)+ (25)

Proof Clearly A(s,k)(}) = Sum(s, k) where Sum(s,k) is the sum of the lengths of

Lemmal Forl<k<s,

reduced segments of all possible distributions of the non-zero elements over the unreduced
segment. Now

s—k oo
Sum(s, k’ Z (k+0)(s—(k+2)+ )(kgi-_zz) (1)
=0



because a reduced segment of length (k + ¢) can reside at (s — (k +¢) + 1) positions in

+12

the segment and in any one position there may be ("¢ ) segments of this length. We

simplify this expression by first taking the sum variable ¢ completely into the binomial
coefficients as follows:

(k4 D)(s— (k+ 1)+ DESY) = sk + DD = e+ ik +i - DR (2)
but e+ D)k +i - DY) = k(- 1) (3)
and (k+0)(5570) = (k+i- DD+ () = k-nMOH+ R @)

Combining 2, 3 and 4 with 1

s—k s—k s—k
Sum(s, k) = sk = 1) S (FT) 48 SHERH = kO - 1) 3T (5)
1=0 1=0 =0
We use the standard results:
y
SN = (4 and (5) =0.ifb<a (6)
r=0
To simplify 5, we note using 6:
s—k s s—1 ) s—1
ct1—1 s
ST = Y Gl =2 0k =) (7)
1=0 1=k-1 7=0
o s—k fi s—k )
Similarly: Z( Fo3y=(;Z)) and Z(kt’ )= (75)) (8)
=0 1=0

From 7, 8 and 5:

Sum(s, k) = s(s = 1)(;) +s(x71) = k(k = 1) fii):(;i)ﬁ%:

Thus A(s, k) = ( ;%) + (%) which is what was to be proved. Notice that the proof
is only valid for s < k < 2 because equation 1 was written down on this basis. However,
we notice that the formula gives A(s, k) = 1 which happens to be valid. If k =0 then
clearly A(s,k) = 0, whereas the formula gives (—s). Compensation must therefore be

made for tlns fact in later derivations of formulas. O

The formula of the previous Lemma has been numerically checked for a number of cases.
For example, it is easy to check from first principles that A(5, 3) = 4 which is what the
formula also gives.

We now employ result of Lemma 1 to find an exact expression for A ve(n,a,s) which
denotes the average length that the array COMP would attain given that INPUT[1..n],
2 and s are as defined in the previous section.



Lemma 2 If s is a divisor of n, then

, 1 e
aveln )= " (420 - 220 ) (s 2222
T

8 z+1

where a = fz_ol(l - )= (")

Proof Clearly Ave(n,z,s)(") = Sum(n,z,s) where Sum(n,z,s) is the sum of the

lengths over reduced segments over all possible distributions of the non-zero elements
over the array INPUT[L..n]. We first show that
n min(z,s)
Sum(n,z,s) = — Z (PGZOA(s, k) (9)

s k=1

If s is a divisor of n then there are exactly n/s segments. We consider how the @ non-
zero elements are partitioned these segments. Consider the contribution to Sum(n,z, s)
from all distributions which place k; non-zero elements in the ith segment, 1 < ¢ < 7.
Writing m = 2, this contribution is given by:

(’ ]jl )(152 ) o (kfn )(‘4(87 kl) + A(S, AZ) + -+ A(Sv km)) (10)
because, for each fixed internal arrangement of k; non-zero elements in the ith segment
all possible internal arrangements of k; non-zero elements in all the j th segments (¢ # 7)
occur. We obtain equation 9 by summing expression 10 over all possible partitions and
using the identity:

3 IS () = ()
bi+by+---+b;=0
0 <b; <min(z,s),1<1<)

Now substituting for A(s, k) from Lemma 1, and taking account of the fact (noted at the
end of the proof of Lemma 1) that the expression for A(s, 0) needs to be compensated
for, we obtain:

‘ min(z,s) el
Sum(n,z,s)/m = 2 (=) ((.s 192) - 2]; - 1> 48"
/ min(x,s) ‘ 1
= (542D -2s+1) > (WGIR)— +s("7) (1)
k=0 k + 1
But L1 1,
(%) (i) (12)

F+1  s+1

|



min(z,s min(z,s)+1
( )(Zill)(zii) = Z) ey - CEOGR) = G - GED) (3)
k=0 j=1
So Sum(n,,s)/m = (s +2)(2) +s("7") = 2051 = (1)
How -1
iD= e (= M- =)
and so we finally obtain
Summ,:v,s)/(m(z»:(<s+2>—2"“>+<s+212”‘—‘”>I_1<1— a_—
r+1 r+1 o n—1
from which the result follows immediately. O

The formula of Lemma 2 has been independently checked for a number of specific cases.
Note that we obtain Ave(n,1,s) = 1, Ave(n,x,2) = v and Ave(n,2,n/2) = "—”1%9{—4—(51_—1)
which are easily proved independently.

Space permitting, we could now have combined the two previous Lemmas to find an
expression for Ave(n,z,s) which is not subject to the restriction that s be a divisor of
n. This is readily done by treating the array INPUT as consisting of two parts, the
first of length s|n/s] and the second of length n — s|n/s]. The first may then handled
through Lemma 2 and second through Lemma 1 and combined to give the desired result.
However, the result is sufficiently similar to that of Lemma 2 for us to be content with
that in the space available. In any case Lemma 2 is sufficient for the algorithmic analysis
provided in section 3.2. For completeness the following Lemma does provide a bound
on Ave(n,z,s) with no restrictions on the parameters.

Lemma 3 For any z,s such that 0 < z,s < n,

where o = H::—()l(l — ﬁﬂj) = (Sf%j_s )/(Sff] )-

Proof We observe that:
Ave(n,z,s) < A've(s[ﬁw.l,s)
S

If s is a divisor of n, then equation holds. Otherwise we note that for each arrangement
of non-zero elements over INPUT[1..n] in which there are at least two such elements in
the final segment, there are arrangements over INPUT[1..s[%]] for which all non-zero

elements in the first [2] segments are identically arranged but over the final segment

may be arranged to produce larger reduced segments. Now s[2] is divisible by s and so

we can apply Lemma 2 to Ave(s[”],,s) and the theorem follows. g



3.2 Quantifying the storage requirements

Here we show how setting s = n/z provides an algorithm with effective space economy.
For technical clarity we shall assume the formula of Lemma 2 although it should be
clear that the arguments used here would obtain essentially similar results if s was not
restricted to be a divisor of n.

Note that whatever the values of n and x, if s < 2 the algorithm will give a length of @
for the array COMP which is optimal. This follows both from Lemma 2 and from the
observation that no non-zero elements of the input will be written to COMP for such
small values of s. On the average, the total storage required by the algorithm is, within
a small additive constant, given by Ave(n,z,s)+2%. The second term is what the array
AUX needs and for s = n/s is 2z. Of course, @ provides a natural lower bound for
storage required for the problem considered in this paper.

Rewriting the formula of Lemma 2 and replacing s with n /@, we obtain:

2zn 3z —1 222
—(1—-a) n - (14)
z+1 z+1 z+1 :

Ave(n,z,s) =

We need an upper bound on a to get an upper bound for Ave(n,z,s). Here a =
T, (1 - /Ty < (1— 1ye < e If > 35 then, within 1%, a is closely approximated

n—1

by e~!. For such values of @ we further take 3;‘;11 ~ 3, 3—127 ~ 2z and IZ—+’1 ~ 2. It then
follows that:
Ave(n,z,s)~2n — (1 — e ")(3n — 22) = 0.1037n + 1.2642¢ (15)

where we have taken e = 2.71828.

Taking s = n/z, the above analysis shows that we have an algorithm which uses (taking
the requirements of Ave(n,z,n/s) and AUX together)) about {5 + 32 space. This is
confirmed by Figures 4 and 5. Figure 4 plots Ave(n,z,n/s)/n against x for various
values of n using the ezact expression for Ave(n,z, n/s) given by Lemma 2. Figure 5
provides the same plots using the formula of equation 15 for Ave(n,x,n/s). The simi-
larity between these figures is remarkable, particularly for low values of z. This provides
additional confidence for our claim that we have described, for sparse matrices (where
n > x), an algorithm which on average uses about 10% of the space requirement of the
input data.

4 Summary and concluding remarks

We have described a particularly simple and practical algorithm for economic storage of
arrays without recourse to the intricacies of perfect hash functions. This was done at
the express intention of retaining constant access time. The algorithm performs usefully
over a range of values of x/n. For x < n/k, the average storage required is about
n(k + 30)/10k, where n is the number of locations of the notional input array. For
sparse arrays this drops to about n/10.
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Figure 4: Plots obtained using the exact expression for Ave(nx,n/x)

We obtained an exact expression for the average storage requirements of the algorithm
and we quantified this for a particular value of the parameter s, namely when s = n/x.
It is not at all clear that this particular choice provides the best performance for the
algorithm although this choice is certainly useful. Further investigations are necessary
in this regard. We would also like to know what the distribution of the length of COMP
over 2 looks like. Whether or not it is sharply peaked around the average value is not
known.

Although economic, the average storage space required by the algorithm is seemingly a
fraction of n. It would be preferable if this was replaced by a constant multiple of «
which provides a natural lower bound. It is unclear whether an algorithm as simple and
as practical as ours can achieve this. It certainly seems unlikely within the approach
taken in this paper. This is because there are distributions of the non-zero elements
which force a dependence of the length of COMP on n even if additional strategies are
allowed. One such strategy might employ the sliding of the imposed grid along the
notional array INPUT so as to minimise the length of COMP for any particular input.
This strategy cannot avoid the dependence of the length of COMP on n because, for
example, the non-zero elements may be uniformly distributed at separating distances
of s/2. For s = n/x, this guarantees that cach nnreduced segment occupied by two
elements contributes n/22 elements to COMP. Other choices of s might avoid this.
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Figure 5: Plots obtained using the approximate expression for Ave(n,x,n/x)
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