
http://wrap.warwick.ac.uk/

Original citation:
Pu, I. and Gibbons, A. M. (1996) Matricial space-economy with constant access-time.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-303

Permanent WRAP url:
http://wrap.warwick.ac.uk/60987

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60987
mailto:publications@warwick.ac.uk

Research R.port 303

Matricial Space-Economy with Constant
Access-Time

Ida Pu. Alan Gibbons

RR3O3

We describe a particularly simple and practical algorithm for economic storag.e of arrays without
recourse to the intricaciei of perfect hash functions. This is done while retaining constant access

time. The algorithm performs usefully over a range of values of x/n where the notional input
array contairis n entiies with x non-zero elements. For x less than or equal to n/k and one

particular setting of the array parameter, we show that the average storage required is about

n (t< +ZO)tl0ft . For sparse arrays this becomes n /lO.

Department of Computer Science

University of Warwick
Coventry CV4lAL
United Kingdom

March 1996

Matricial Space-Economy with
Constant Access-Time

(DRAFT)

Ida Pu and Alan Gibbons .

Departrrrent of Computer Science, Universitl' of Warwick, flI{

Abstract

We clescribe a particularly simple and practical algorithm for econonic storage

of arrays rvithout recourse to the intricacies of perfect hasli functions. This is done

rvhile retaililg colst,ant access time. The algorithm performs usefuliy over a range

of values of rf n *,here the notional input array coutaius n entries rvith e lloll-zero

elerrelts. For r (nf k and one particular setting of the arral'parametcr. rve sitorv

that the a.verage storage required is about, n(fr + 30)/10[, where n is tire nutrlber of

locations of the notional input array. For sparse arra)'s this drops to about n/10.

1 Introduction

In maly programming applica,tions involving sparse matrices, there is the poterrtial for

space econony in matricial storage. For exa,mple, we could store just the non-erupty (or

non-zero) elernents along with their original rnatricial indices. It rvould then be a tlivial
matter to find (that is, access) any matricia,i element. given its indices, in logarithmic

sequentia,l time using standarcl binary search. The penalty to be paid for tlte space-

economy of such an algorithm is the loss of constant access-time. In this paper we

describe a particularlv simple ancl practical algorithrn to achieve space-economl' aud

at the same time retain constant access-time. Moreover) our deterrninistic sequential

algorithm cloes not have recourse to the intricacies of perfect hash frrnctions If]. Apart

from [1], we have been unable to find any reference to the problem addressed bv this

pup"r. The algorithm treats the input as though it rvas a one-dimensional al'raY. Trivial

changes wolld readily vield an algorithm for rna,trices of arbitrar.v dimensiols.

In sectiol 2 we clescribe our sirnple algorithm. In section 3 we obtairt an exa,ct exptession

for the average storage requirernents of the algorithm and rve qua,ntify this lbl a pa,r'ticuiar

value of a1 algorithmic para,meter. The final section is a sunlmaly t,f ottr results a,ncl

conclusions.

cs.warwick.ac.uk.Partiallysrrpportedt;vtheEC-]ALCoN{-I,f
progralnnre contract number 20244

2 The algorithm

Imagine that n input items occupy the loca,tions of a notional arrav INPUTI1 '. ?]]

a1d that there are L noll-zero elernents. Our algorithm constructs a cornplesseil all'a\'.

COMP. ancl an auxiliary array, AUX[1..f,1..2]. The arrays CON'{P and AUX occupv

a,vailable stora,ge space rvhereas the elements of INPUT are merely sequentially sc.anned

by the input device. The elements of COMP include the non-zero elements of INPIIT

and the elements of AUX allorv any element of INPLiT to be deduced in colstant time.

The array INPUT is imagined to be divided fron the left into equal sized segmerrts of

lelgth s with (if s is not a divisor of rz) a final smaller segment of length n - -sln/-sl.

We define the t in terms of s, f : lnls]. In general any such segment of INPUT will

contain a nlmber of leading and trailing zeros (or empty elernents). We delete these auri

colstruct COMP by concatenating the truncated segrnents. Figure 1 shorvs an example

for n = 21 and s : 4. Here the array COMP has iength 6'

rNPUTI1..21]

0 l0l 0 2 0 0 0 41010 0 0 2 0 010 0 6 0 0 0

segments of length 4

6T-'.r-.[f FFFr.lFFl [,-t;FF.lFFftF-1tr

Figure 1: The constructiori of COMP

In geleral rve might expect the length of CONIP to be nruch less than the lcngth of

II{PUT especia,Ily, for example, when I is close to r'. In this case manY untrtrncatecl

segnelts wil1, on average) contain only empty elernents or exactly one signif.ca,nt elernent.

In both cases segtnent truncation does not force the storage of non-significant eletnents

of INPUT in COMP.
The poteltial for space-economy to be had from storing COMP rather thal INPIIT can

be achieve<l rvhile retailing constant access-time as we ltow see. Given J we a,re recFrired

to deduce INPUTUI from COMP by making use of the array AUX which we now defiue.

For 1 (i < f , AUXId, 1] is the address of the first elernent of the ith truncated segrnent

in the arrav COMP (if the truncated segrnent is enrpt\'. tiren it is tire atltlress of rvhele

suclr a1 elernent utonld have appeared) ancl ALlX[r.2] is the nurnber of leacling zeros in

the ith ult1lncatecl segment. If the segment coltains onlv zeros) then thet'are <or-rntetl

a,s ieacling zeros. Figure 2 shows AUX for the example of figure 1.

The algorithm FincIINPUT[7] clescribecl belorv returns thc value of the jth eltrrnerLt in

the ima,gined array INPUT given the all'avs COIvIP and AUX'
In AlgoritlLm FiDilINpUT[-l], h is the nurnbcr of the segrnent frorrr the left <:ontaining

INpUTU]. alcl / is the acld.ress of INPLITIj] in the uncompressetl arrav relo,ti,ttr: tr't

truncated seg

--r-T----l
I ro | 0 I 2

|

COMP

0a

10 0 2 A 2 6

A 5 o 7

3 A 0 I

Figure 2: The matrix AIIX for our example

beginning of the segm,ent conta'ining INPUTU]. Note AUXIh +
length of the truncated segment and the length of the AUX
irnplementation, where rn is the number of segments.

For each segment of length s, d, the offset of the the distance from INPTITI7] to the

beginning of the the uncompressed segment containing INPUTU], can olly be in three

areas, i.e. 0 S rI 1 nltz, rvhere nhz is the number of the leading zeroslor nhz < d < nhzl
nl where nt is the the length of the truncctted segm,ent or nhz * n,t I d (-t. The nurnber

of leaclilg zeros in th.e segment is stored in AUX[h,2] and the length of the tnrncated

segment is actually the difference between the address of COMP for the first non-zero

element of the segment and of tire following segment, i.e. AUX[h + 1, 1] - AUXIh, 1]. A11

this is illustrated in fieure 3.

I

I

d<AUXth.2l r length of truncated seg. t 1: no. of
- ; AUXIh+1,11-AUX[h, l] 'trailing

zerosri
I

d<AUXlh,2l+AUXth+ 1 ,1 l-AUXth, I I I

-=__l

Figure 3:

The algorithm rnay be implemented in different wa.vs. We asstrme a block stnrctured

style in which arrays ma,y be dynamically declared. The implementation rvould be more

elegantly expressed in a langirage which allowed for d1'lamic extension of arrays. Within

our self-imposed style. rve need to read in the data trvice, although this can lle a,voided

by an a,lternative style.
Algorithm Construct reads in the data sequence and returns the compressed arrav

COMP a,ncl auxiiiar'\, ar'r'a,y AUX. rvherc' AUX[1..nr + 1, 1] contains tire a,rldresses iu

COMP of tire first non-zero elernent of ea,ch segment and AUX[1 ..m,2) stores the nrrrn-

ber of leacling zeros in eaclL segrnent. AUX[nr f 1,1] stores tire next acldre'ss to the Iast

address of COMP.
Lile 2 i1p1ts the length of the input sequences and the length of the segurents Line

3 compltss thc number of segments. Line 4 clynarnically declares the a,lrxiliarv array

AUX.
The algolithm Construct deals rvith the data seqrreuce by seplnents. In each seg-

nelt (lines 6 - 21), it stores the address of the first non-zero eleruclt irt a segulent

1,11 - AUXIh,1] is the
array is nz * 1 in this

in AUX[1.. m | 1,1] (Line 8), In line 9 - 2I k counts the leading zeros and / counts the

trailing zeros. The length of the truncated segtnent is q (Line 19) and p is the a,tldress

in COMP for the fi.rst non-zero element of the next segrnent (Line 20).

Line 25 dynamicaliy decla,res the array COMP. Lines 26 - 37 read the data, at the second

time. T[is elters the tluncated segments into COMP. That programme bod-v in rvhich

the input is to be manipulated is imagined to be contained betrveen Lines 37 - 38. This

is within the block in rvhich the required arrays have scope.

Algorithrn l'indlN PUT[j]
Input: 7

Output: INPUTU]
I begin
2 h= [t.l,d=U-i) rnods
3 itd < Atrx(h,2) or d > AUX(A,2)+ AUX(A + 1,1)- AUX(h,1)
4 then INPUTUI : 0

5 else INPUTUI : COMPIAUX(A,1)+ d - AUx(l]' 2)l

6 end

Algorithm Corrstruct
Input: input data sequellce

Output: array.CON'IP ancl AUX
1 begin
2 read n, s

3 ,, : [3'l
4 array AUX[1..(rn + 1), 1..2]

5 p* 1

6 fori:ltorndo
7 tregin
8 AUXIi.1] -P,k-/-0
9 forj=ltosdo
10 begin
11 isHead] .- true
12 read input(i.e.INPUT'[(; - 1)s + -rJ)

13 if (input=0and isHead?) thenk-fr+1
14 else isHead} - false

15 if (input= 0 and -isHead7) then/ - /+ I

16 elsei-0
Il eno
18 AUXIi.2] - r'

19 Q--s-(k+/)
20 p-f)+q
2l end
22 AUX[rrr + 1. l] - ?r

23 end
24 begin
25 array C:ONIP[1..p- 1]

26 p * 1. restart read
27 for zl : 1 to rtt do

28 begin
29 for j = I to AtlX[i,2] do read inPut

30 for 7 - 1 to Atlx[i + 1, 1] - AtlX[f, 1] do

31 begin
32 read inPut
33 COMPhrl - inPut
34 p*PIl
35 end
36 for j = 1to s-Atlxli,2]-AUXId+ 1,1]+ AI-lX[t,1] doread input
37 end
38 ."

L.."*t"-tt"
body employiug calls FindINPUTU]

39 end

3 Expected Space EconomY

In sectiol 3.1 we obtail a1 exact algebraic expressioir for the expected length ofthe alray

COMP. Thel i1 sectiol 3.2, for a particular choice of the variable s. we derive a siurple

expression for this average which nevertheless provides a close approximation. Tiris is

confirnecl by a conparison itetween plots of the exact and approximate expressions. The

particular choice of .s = n f r is shorvn to provide a,n algorithm rvith good space ec:ollolrly

for sparse rnatrices.

3.1 The average length of the array COMP

We prove three Lernnas rvhich ultimately provide an exa,ct expression for the average

length of the array CO\,{P. Given a one-dimensiona,l ari'a.\'segment of iength s containiug

k non-zero elemelts, bv A(,s,k) we denote tlte auero,ge length of the reducecl scgment

obta,ined by removing those segment locatious containing leading anci trailing zeros. The

f,rst Lemrna derives an expression for A(-s, A).

Lemma1- For 1(ft(-q.

r(s.r, t:"(=) * ('+)
\A.+ 1/ \A'+ 1/

proof clearly A(-s.A)(i):,SUni(-s,k) rvhere,Surn(.s.4) is tire sumof

rc.clu<:ecl segrnents of all possible distributions of the nol-zero elements over

segrneut. Norv

s-A
Srini(.., k) = t(A'+ i)(s - (k + t) + 1)(ufl;')

i=0

the

the

lengths o1

unreihrcecl

(1)

because a, reduced segment of length (fr + i) can reside at (-s - (k + t) f 1) positrons rn

tlre segment a1d in anv one position there may A. (kt1;2) segnelts of this length. We

simplifv this expression by first taking the surn variable i completelv into the binomial

coefficients as follows:

(A + i)(,s - (a + t) + 1)(ufl;'): s(k + x)(k[:r'z) - (a + iXA + t - lXot-:;')

bnt (fr + txk + t - 1)(u[:;'):k(k - rxuf')

ancl (A +l([:;2) : (a+t- 1Xu[5')+(r[:;'): (A - lxufll')+(kl:;')

Combining 2, 3 and 4 rvith l:
s-l s-A s-A

- A.(l..- rt rlrl't (5)'"\," ^t Zr.i I

r=0

(2)

(3)

(4)

sunz(s, k) : s(A - 1) t(nl:l') +, f(utl;'
I

i=0 i=o

\\ie use the stanclard results:

a

\-rlt:
?-,"'

To sirnplifv 5. rve note trsing 6:

s-A

(?i11) and (:) = o, if b < n (6)

lr r.ittl) :
/r\ N- |
r=O
s-A
\-r^'i':2) =/J' N-z

i=0

s- I

| {n1,)
J=A- I

(i-l) a'cl

s-l
-\-r,"/-t-rft/J,R-t / \N/

j=o
s-k
\-r('i,r:r.i+1 r
/r\ k / \A'+1 /

r=O

(7)

(8)Similarlv:

From 7, 8 anci 5:

strnr(.s,k) = s(" - 1)(i) +.,(;-i) - k(k _ 1Xi+i) : (i)!+#
"+) + f +) rvhich is rvirat was to be provecl. Notice that the proofThrrs --l(s.A'):.. (t*,; \^t,,/

is o1ly valicl for s S k { 2 because equation 1 was rvritten down ol tiris basis. Horvever,

rve notir:t: that the formula gives A(s, k) = 1 rvhich happens to bc valid' If k : 0 thcri

clearly A(.s.k):0, rvhereas the formula, gives (-s). Compensa,tion urust tirerefore be

macle for this fact in later clerivatiols of forrnulas. n

The forltula of the previous Lcruma has been numericallY cirecked for a lumber of cascs.

Rrr exarnple. it is easl' to chec.k from first principles tirat A(5, 3) : 'l rvhich is rvhat the

forrnula also gives.

\\ie nrirv ernplor. lesult of Lelrlna 1to fild an exact expressitxr for,-lur:(n.r,-s) rvhich

clernotes t,\e rnterage,lelgth that the array CONIP rvould attain given that INPUT[1..ri],

lr anrl s a,r'() as dcfi.ne<i in the previous set:tion.

Lemma 2 If s is a diuisor of n, then

Aue(n.r.s): I f (,'+2)_ra+)' " L\' -.r*r/

uthere il = flf=Or(1_ ;=): (""")l(:)

Proof Clearly Aue,(n, r:. -s)(l) : Sum(n, r, -")

lengths over reduced segments over all possible

over the array INPUT[1..n]. We first show that

srr,r(rr. r..s)f nt : '"'f^"',;X:--;)(t'+':r t#) + s(";")

A =t,

where Sum(n,r,-s) is the sum of the

distributions of the rlon-zero elements

+,' (" +
rr - s -.rVl2

- ll.]'+r /J

m in(r, s)

'l
s- u srrfl-sr rr I

Stnn(n, r, s) : : L (i X:l-i)A(.-, A') (9)
o a=l

If -s is a d.ivisor of n then there are exactly n/s segmcnts. We colsider horv the c lloll-

zero elements are partitioned these segments. Cousider the contribution to.9trriz(rz,r,-s)

from all distributions rvhich place &; nou-zero elements in the ith segment' 1 (i < ?
\Arriting rn, : 2, this contribution is given by:

(r', Xu",)'''(*"-)(A(-', /'1) + A(s, A'z) * '' 'f A(s, ft',,)) (10)

because. for each f.xed internal arrangement of ki non-zero elernents in the tith segnent

all possible ilterna,l arrangemerrts of k; non-zero elernents in al1 the 7th segrnents (i t' j)
occ1r. We obtain ecpation 9 by summing expressiou 10 over all possible pa,rtitions aurl

using the identity:

(a",)(o',) (a';): ('r;)
htbz+"'*bi

0 1 bi (min(r, s), 1

Norv slbstituting for A(s. &) from Lemma 1, and taking accorrnt of the fact (noted at tire

encl of the proof of Lemma 1) that the expression for A(s,0) needs to be corripelsatetl

for. we obtain:

-b
<i<j

rnin(e', s)

= (-.+2)('])_ z(,+ 1) t (;X:l--;)# +.,(",") (11)
t'=0

But ,s, 1 1 rstl r
trt-=-tt.rr,'"'l'+1 s*I ^''

(12)

and
rnin(r, s)

\- r i+l rr"-f r -/_ \ A.+1 /t r-L t -
ft=0

So SrLtn(n,t,s)fm

)+1
("j'xr"iii-,)- ("t')(:;i): (.:+l)- (:;i)

(.s + 2)("1) +'(";") - 2((:111) - (:;i))

now
rnllr n{1,tt
\r*t/ .r+1,r,

and so we finally obta,in

S'urn(n,rr, s)/(nr(l)) : ((" + 2) - 21+) * (.- *

frorn which the result follon's immediately.

The formlla of Lemma 2 ha,s been indepenclently checked for a number of specific cases.

Note tlrat rve obta'in Aue(n,1, s) : r, Aue(n',r,2) : r alcl Aue-(n''2'nl2) : +F+4*I
rvhich are easily proved indepenclently.

Space permitting, we could lo.lv have combined the tn'o previous Lemmas to find au

expression for Aue(n,r..s) which is not subject to the restrictiou that -c be a divisor of

?1. This is reaclily clone by treating the array INPL T a,s consisting of tlr'o parts. the

lrrst of length slnl.s) anci the second of length n - -s[n/,s]. The first rnay then handled

tirro.gh Lenna 2 ancl second througir Lemma 1anc1 combiletl to give thc'desired result'

Horvever, the resllt is suffrciently similar to that of Lemma 2 for us to be content ivith

that in the space available. In any case Lemma 2 is sufficieut for the algorithmic analvsis

provicled. i1 section 3.2. For completeness tlie follorvirtg Lemma does provide a, botrncl

orr -{r'r (n..r'..'.1 witlL no lest,rictiorrs on the palanloters'

Lemma 3 For anlt r,s such that 0 S r'-s (n,

r(r, s

\-
/J

(13)

J-l
r , li-s , , rt ' T- 'sand (",")=(:1)ll(1 -- ,)

,ju r?-r

-n_Aue(n.r,.s)< l-l
,)

.[]''l + 1 \ /
+2)-::Lql||+"{'+:.r.+r / \

r "f?l-' 171'f?1 1.\ .r tt' f,'

J-l
// -.\ -.l n .a

,,l _)ll(1--l.r'+ I i- ll-l
I =t,

n

r\
l-5-jD\-- |.r+r /[(,,

s _
st-t-l

.'lrl -.s --l€ |s

uthere.r = fl,l=1(1 -

Proof \Ve observe that:

Aue(tt..i'. s) (Alr (.'lf l. ,-..t

If .s is a divisor of z, then erlua,tion holds. Otherrvisc ri'e rtote that for each arrangeruettt

of non-zero elernents ovcr INPUTll..n] il rvhich there aler at least trvo such elernents in

the final segmelt, there a,re alra,ngements over INPt-T11...[]l] for which all non-zt'ro

elernents in the first lll segurents are identically allangerl lxrt over the final segment

nay 5e arrangecl to prorluce larger reducecl segrnents. Norv sIt.l it divisiblt: bv c an(l so

w(, can apply Lemma 2 to Ave(-s[?l,r,-s) and thc theorem follows. n

3.2 Quantifying the storage requirements

Here rve show how setting s = nlr provides an algorithrn with effective space ecollorny.

For techlical clarity we shall assume the formula of Lemna 2 although it shorrld be

clear that the arguments used here would obtain essentially similar results if -s was not

restricted to be a divisor of n.

Note that whatever the values of n ancl z, if .s (2 the algorithm rvill give a length of .r

for the array COMP which is optimal. Tiris follorvs both frorn Lemrna, 2 and frorn the

observatiol that uo non-zeto elements of the input rvill be rvritten to CONIP for sut:h

small valles o{ -s. On the a,verage, the total storage required by the algorithm is, rvithiu

asmalL additive constant,given by Aue(n,r,..)*2i. The second termis what the array

AUX neecls and for -s = nf s is 2r. Of course, z provides a natural lorver borrnd for

storage recluired for the problem considered in this paper.

Rewritine the formula of Lemma 2 and replacing -s rvith nf :t, we obtain:

2t:n (1J)Aue(n, r, s) - r+1

\Are neecl al] upper bound on a to get a'u upper bound for Aue(n,r.-s). Here ct :

fli=ot(I- y) < (f -])'' l-e-1. If r) 35 then,'ivithin I%,a is closely approximated

by r-t. For such va,lues of r; rve further take H = 3. .# = 2r ancl 2* * 2. It then

follorvs that:

Aue(n,e,.s) = 2n - (1- e-';(3rz - 2:t) :0.1037rt * 1'.2642r (15)

where rve have taken e : 2.71828.

Taking -r: nlr, the above alalysis shorvs that rve have an algorithm rvhich uses (takirrg

the recluirerlelts of Arte(n,r,nf s) and AUX together)) about ,s! + 3,,' space' This is

confirmed by Figures 4 and 5. Figure 4 plots A'ue (rr, t,nf s)f n aga'inst :r for various

values of n using th.e eract expression for Aoe(n,r,n,f s) given bv Leurma 2. Figure 5

provides the sa,me plots using the formula of ecluation 15 for Aae(n,:t,nf s). The simi

larity betrveen these figures is rernarkable, particularly for low values of r. This provides

additional confidence for our claim that we have described, for sparse rna,trices (rvherc

n) r), an aigorithm rvhich ot1 avera,ge uses a,bout I0% of the space recluire'ment of the

input data,.

4 Summary and concluding remarks

\\re have describeil a particularll,' sirnple a,ud practical algorithrn for t:conouric storage of

arrays without recourse to the intricacies of perfect hash frrnctions. This rvas rlone at

the express intcntiol of retaining constant a,ccess time. The algoritlLm performs usef\lll1'

ovef a ralrge of values of t:f rt. For r I nf k:, tht: average storagtl rerpired is about

n(A'* 30)/10i:, rvhere n, is tire tiumbcl of locations of the uotional inPut trrrav. For

sl)a1sp irl'Lavs rhis dt'ops ro alrorrt rr/10'

-(1 -"'(H"-#)

E Mathematica Graphics: out[7] ffi U

Ave(n.x,n/x)/n

Figure 4: Plots obtained using the exact explession for Ave(D,x,n/x)

\\re obtailecl an exact expl'ession for tlie avelage stol'age requirements of the algoritiLrn

ancl rve c1ua1tificc1 this fol a particular value of the parameter s, rtamel-v rvhen .s : rt l.L -

It is 1ot at all clear that this particular choice provicles the best performa'nce fol the

algorithm although this choice is certainll' uscful. Fultirer investiga,tions ale l)ecessal\'

in this regard.. \Ve rvould also like to know rvhat the clistribution of the lelgth of CON'IP

over c looks like. Whether or not it is sharplv peaked around thc average value is not

known.
Although economic, the average storage space requirecl by the algorithm is seeruiuglv a

fractiol of n. It wo1]cl be preferable if this was replaced by a constant uruitiplc of rr

which provides a natural lower bound. It is unclear rvhether an algorithrn as simple and

as practical as ours can achieve this. It certainly seeuls unlikely within the a'pproach

taken in this paper. This is because there are distributions of the non-zero elelnents

rvhich force a clependence of the length of COMP olt n even if additional stlategies ale

allowed. One srich strategy might employ the sliding of the imposed grid along the

notional arrav INPUT so as to minimise the length of COX{P for any particular input.

Tiris strategy cannot avoirl the dependencc of the length of CO\{P on n becausr'. ft'rr

exalnple, the 1ol-zero elerrrents rnay be uniforrnlv tlistributed at separating distarlces

<tf .sf2. For s: rr/r, this guarantees that ca,ch rrulecluccd segruent occupie<l llv tu'o

elements contribltes rr/22 elcrnents to COIVIP. Other choices of s rnight avoid tlis.

10

ffi Mathematica Graphics: out[13] ffi g

Ave(n.x.n/x)/n

I.2l n=

1

0.8

0.5

o.4

o.2

Figure 5: Plots obtained using the apploximate expression for Ave(n)x,n/x)

5 Acknowledgements

\A,'e thalk S. \{uthukrishna,n whose conversation (perhaps unrvittingly) initiated the

encluiries of this paper.

References

[1] Fredman and Komlos and Szemered, "storing a Sparse Table with O(1) \\rorst Case

Access Time" , Proc. 23th IEEE Syntposiuln on Foundations of Conzputer Scr'ence

(FOCS),1983. 165-169.

l1

