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Abstract

Although negation-free languages are widely used in logic and com-

puter science, relatively little is known about their expressive power.

To address this issue we consider a kind of non-symmetric bisimu-

Iations called directed simulations, and use these to analyze the ex-

pressive power and model theory of negation-free modal and temporal

languages. We first use them to obtain preservation, safety and de-

finability results for a simple negation-free modal language. We then

obtain analogous results for stronger negation-free languages. Finally,
we extend our methods to deal with languages with non-boolean nega-

tion.

1 Introduction
In many areas of computer science one finds logical formalisms that lack

some or all of the standard boolean connectives 'and" 'or' and 'not.' In
particular, negation-free logics are widely used in areas as diverse as seman-

tics of programming and knowledge representation. In some applications

boolean negation is unnatural [21]. Pxcluding boolean negation may im-

prove the complexity of the satisfiability problem [7], and it may restore

monotonicity of the semantic interpretation function [19].
Despite their wide applicability negation-free languages haven't been

studied as extensively as languages with full boolean expressivity. We want

to fill this gap by studying the expressive power of negation-free modal lan-

guages. Recently, these have attracted considerable attention, both at an

applied and at a theoretical level; cf. [8, 11, 14]. Now, for modal languages

with a full boolean repertoire bisim,ulations have proved to be an important

tool in understanding their expressive power (cf. [9, 4, I, 17,15])' In this

paper we develop analogous tools for negation-free modal languages. we a



kind of non-symmetric simulations called directed simulations between tran-
sition systems that allow us to study the expressive power and develop the
model theory of negation-free languages. As far as we know, this is the first
paper to do so in a systematic way.

Our point of the departure is a simple negation-free modal language
with boolean conjunction and disjunction, and O and !; for this language
we introduce directed simulations, and use these to arrive at results on ex-
pressiveness and definability. We then extend our ideas and techniques so
as to cope with other negation-free description languages, including termi-
nological logics, negation-free fragments of Since/Until logic, and feature
logics. After that we adapt our methods to cope with languages containing
non-boolean negation. We conclude with a summary and suggestions for
further work.

2 Definitions

Negation-free O, o-formulas are built up from propositional variables p, q,
. . . , and the constants T and I, using boolean conjunction A and disjunction
V, and the unary modal operators O (diamond) and I (box). We use .Ce,3
to denote this language, and Ll,o to denote .Co,o with boolean negation.

A transition system (or model) for,Ca,a is a triple M : (W,R,V),
where W is a non-empty set of states, l? is a binary relation onW, and V
is a ualuation on M, that is: a function assigning a subset of tr4l to every
proposition letter. We sometimes write lMl to denote the domain of M.

The sati,sfaction relat'ion is defined in the familiar way for the atomic
case and for the boolean connectives A and V; observe that we can always
interpret boolean negation on our models, even when it is not present in
our language, For the modal connectives we put M,, ? Od itr there exists
u." such that Rwwt and M,w' ts Q; and M,u ? trO iff for all tr' such that
Ruu', Mr.' I d.

The (negati,on-free) modal theory of a state tu is the set nf-tp(w) : {Q e
Lo,o I u ts 0\. If we want to emphasize the transition system M in which
tr lives, we write nf-tpyQa).

Modal logic is just one of many possible description languages for specify-
ing and constraining transition systems. We will encounter several languages
in this paper, and we relate them all to first-order logic. To be precise, let
Ll be the first-order language with unary predicate symbols corresponding
to the proposition letters in .Co,n, and with one binary relation symbol R.
,C1 is called the correspondence language for ,Co,a. h(") denotes the set of
all 41-formulas having one free variable r.

To view transition systems as ,C1-structures in the usual first-order sense,

we use V (p) to interpret the unary predicate symbol P that corresponds to
p. The standard translation takes modal formulas @ to equivalent formulas
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of Lr. It maps proposition letters p onto unary predicate symbols

Pr, rt commutes with the booleans, and the modal cases are

Sr"Qil:1y(Rry ASra@)) and ^9?"(!d):Yv(Rrs -+ Sry(il).

For all transition systems M and states u.r we have M,. F 0 ifr M 
=ST"(Q)[ru), where the latter denotes first-order satisfaction of ST"(Q) under

the assignment of tr to the free variable r of Sf "@).A modal formula / is

said to correspond to a first-order formula a(r) if I ST "(il ++ a(r).

3 Simulations for Lo,n

In this section we adapt the notion of bisimulation to the setting of negation-

free modal formulas. The resulting notion of directed simulations is then
used to analyze the expressive power of negation-free formulas in three dif-
ferent ways: in terms of preservation, safety, and definability.

Definition 3.1 (Directed Modal Simulations) Let Z be a non-empty
binary relation between two transition systems M and N, that is, Z e
lMl " lNl. Then Z is called a directed (modal) simulation between M and

N if it satisfies the following clauses:

l. If uZu andp is a proposition letter such that M,- ? p, then N,u I p.

2. If uZu and Ruu'. then there exists u' in M such that Ruw' and w'Zu'
(back).

3. If uZu and Rtaut, then there exists u' in N such that Ruut arrd w'Zu'
(forth).

We write Z : M )N (Z : M,w tN,u) to indicate that Z is a directed
simulation between M and N (that links tr-r to u).

A (strong) bisimulati,on is a directed simulation for which clause 1 above

is an equivalence: if uZu then M,w lp iffN,u Fp. W" write Z : M ? N
to indicate that Z is a bisimulation between M and N.

The back-and-forth conditions in clauses 2 and 3 of the definition of directed
simulation allow us to transfer true tox and diamond formulas from one

transition system to another. Unlike the atomic clause in ordinary bisimu-
lations, our atomic clause 1 does not display this back-and-forth behavior.

As Theorem 3.5 below shows, this is exactly what is needed to characterize

negation-free modal formulas.
Hennessy and Milner [9, Section 2.2] introduce a notion of simulation

where even more of the back-and-forth conditions from ordinary bisimula-
tions are missing: it lacks clause 3 of Definition 3.1. In the conclusion of
the paper we point how our results carry over to that setting. As far as we

know, Definition 3.1 is new.



$3.1. Preservation. our first perspective on the expressive power of
negation-free modal formulas is in terms of preservation.

Proposition 3.2 For all negation-free modal formulas Q, and all transi,tion
systems M and N, and all states u € lMl and u € lNl, if there erists a
directed sirnulat'ion Z : M,ru lN, u, then M,. ? $ impli,es N,u ? d.

Proof. Use induction on formulas in fo,r. The back and forth clauses in
Definition 3.1 were introduced especially to deal with the two modal cases.

Here's a proof for the D case (the O case is similar). Assume w + aO,
Z : M,tr.r I N, u, and Ruut. By clause 2 of Definition 3.1 there exists tll
such that Rww' and Z ; M,w' ) N,ut. As Rututt, we get u, 

= 
O, and as

Z : ut ) ut, we get ut I /. Since u' was arbitrary, it follows that u 
= 

DO,
as required. -l

Thus, the existence of a directed simulation between M,w and N,u
guarantees that nf-tp1a(r) g nf-tpp1(u). Clearly, if in addition, there is a
directed simulation going in the opposite direction, from N, u to M,to, then
nf-tpy(w) : nf-tpx(u). The obvious question, then, is: does M, u; ) N,u
and N, u ) M,tl; imply that M,w t) N,u7 The answer is negative, and
the following example shows that directed similarity in two directions is, in
general, weaker than strong bisimilarity.

Exarnple 3.3 Consider the models M1 and M2 as in Figure 1. That is,
Mt : ({o,oo,ar)a2})Rt,Vt) and M2 : ({b, h,bz},Rz,Vz), where R1 is

{(o,on) | 0 <, ( n} and Rz: {(b,bt),(b,b2)}; the valuations V1 andV2
are defined by Vt@) : {oo,ot,az}, Vr(q) : {oo,ot), and [(") : {or};
Vz(p) : {h,bz}, Vz(q) : V2(r) : {b1}

Figure 1: Two directed simulations.

Define Zo e lMtl " lMzl and Zy e lMzl x lMr I bv

Zs : {(o,b), (oo, br), (or,br),(oz,bz)}
21 : {(b, o), (br , ar ), (bz, az), (bz, ao)}.

"\



Then Zs is a directed simulation between Mr and M2 that links a to b, and

Zl is a directed simulation that links b to a. However, there is no ordinary
bisimulation linking a to b - there is no state in M2 to which o0 can be

linked in a bisimulation.

To formulate a converse to Proposition 3.2 we define a transition system

M to be image-fini,te if for every state u.r e lMl the set of its successors

{u e lMl I Rwu} is finite.

Proposition 3.4 Let M and N be image-finite models wi,th w e lMl, u €

lNl. Then the following are equ'iualent:

1. nf-tpy(ut) Q nf-tpy(u)

2. M.u ) N.u.

A first-order formula a(r) in L1 rs preserued under directed simulations
if for all transition systems M, N, all states u e lMl and u € lNl and

all directed simulations Z : M,u ) N,u we have that M F o[.] implies

N ! a[u].

Theorem 3.5 (Preservation Theorem) Let a(r) be an L1(r)-formula.
Then a is equ'iualent to the standard translation of a (negation-free) modal

formula i,ff it is preserued under di,rected simulations.

Proof. Tlie proof uses some basic first-order model theory; we refer the

reader to Hodges [10] for background material. The right-to-left implication
is immediate from Proposition 3.2. For the other direction, assume that a(r)
is preserved under directed simulations. By a simple compactness argument
it suffices to show that the negation-free consequences of a imply a:

(1) NF-Mod-Cons(a) :: {Sr"(il | al Sr"(/) and Q e Le,a} | a'

To prove (1), assume that M I NF-Mod-Cons(a)lwl; we have to show that
M I altu). Consider the following set of .Cj,o-formulas:

-tp(w) t: {-6 | Q € Lo,o and M,- V d}.

That is: -tp(ta) consists of negations of negation-free modal formulas that
are refuted at r.

Claim L. The set {a}U {STr?il | -d E -tp(ta)} is satisfiable'

Proof. Assume that it is not. Then there exist formulas -dr, .'-, -Q, €
-tp(tu) such that

a | -(ST,(-dr) A ... A ST t(-0")),



d 
= 

srr(h ) v .. .v sr"(0;.
By definition, dr, ..., Q, are negation-free, so M,u I h V... V Qn, and
hence M,- ? Si for some i with 0 < i < n. But then -d ( -tp(w) - a
contradiction. This proves Claim 1. -l

Let N, u be such that N F o[r] and -A/, u ? -d for every formula -d €
-tp(u).
Claim 2. nf-tpyr@) ! nfapy(w).

Proof. Suppose S e nf-tp*(u), but M,- V Q. Then -/ 6 -/p(tr), and
hence N,, F -Q, by the definition of N, u - a contradiction. This proves
Claim 2. -l

Now, to 'lift' a from N, u to M,ur we make a detour via two other
transition systems as follows. Take r,,'-saturated elementary extensions M*,,u.r
and N*, u of M,u and N, o, respectively. And define a relation Z C lN.l x
lM.l by putting

uZt ifr nf-tpw.@) Q nf-tpu.(t).

Note first that Z is non-empty: by Claim 2 we have nf-tpy(u) e nf-tp1,a(w),
and so nf-tpp-@) C nf-tp1r1.(tr.'), as M*,u and N*,,u are elementary exten-
sions of M,w and N,u, respectively.

Next, clause 1 of Definition 3.1 is trivially fulfilled. To see that clause 2

is satisfied, suppose that uZt and Rttt; we need to find a u'such that Ruul
and utZtt. P:ut

-nf-tp(t') : {Q e Lo,o I N*,t' V O}

We will show that any finite subset of -nf-tp(tt) is refutable in an /?-successor
of u. Let Qt, ..., Qn € -nf-tp(t'). Then N*, t * a(ftv... v Qn),so, as uZt,
M*,u f o(4, V ... V /"). This implies that for some u' € lM. I both Ruu'
and z' V hV ...V Qn hold. Now, by c.r-saturation of M*, allof -nf-tp(t')
can be refuted at an -R-successor ut of u. For this LL' we have Ruut and
nf-tp(u') c nf-tp(tt), that is: u'Zt', as required.

For clause 3 we argue as follows. Suppose that uZt and Ruut. We
need to find a f/ such that Rttt and u'Zt'1 we achieve this by showing that
every finite subset of nf-tp(ut) is satisfiable in a successor of f. Let dr, . . . ,

Q" e nf-tp(u'). Then u ? O(drA...AQn), and hence t F O(drA. . .A/"). So

there exists at'tn N* with N*,t'= y'1A...AQ'-and Rttt. By t.r-saturation
all of nf-tp(u') can be satisfied in a successor f/ of t. For this f' we have -Rftl
and nf-tp(ut) c nf-tp(t'), that is: utZtt, as required.

Putting things together, we find that N F o[r] implies N- F c[u] by
elementary extension. As Z : N*, u I M* ,u it follows that M* I a[tu], and
hence M I a[w) by elementary submodel, we're done. -l



Example 3.6 Let a(r) be a first-order that is preserved under strong bisim-

ulations. Then c(r) is equivalent to a modal formula $ in Llp that may

include boolean negation. By testing whether a(r) is preserved under di-

rected simulations we can find out whether / is in fact equivalent to a

negation-free modal formula.
An easy example is the first-order formula a(r) : )A (RrA n -Pg). This

formula is the first-order translation of O-P, and it is certainly preserved

under strong bisimulation - but here's an example showing that it is not

preserved under directed simulations: take Mr : ({ot,az},{(a1,a2},V1),
and M2: ({br, bz},{(h,bz),Vz), where V1 and V2 are such that all a1, b1,

b2 verify all proposition letters, and such that all proposition letter but p
are true in a2. Clearly, there exists a directed simulation linking a1 and b1,

btft M1F o[or], whereas M2 ft afb1l.

By Theorem 3.5 directed simulations uniquely identify a certain fragment

of first-order logic, namely the 'negation-free modal fragment.' By identify-
ing and comparing fragments of first-order logic that correspond to modal

languages in this manner, we have a method for comparing the expressive

power of (negation-free) modal languages.

We proceed with three corollaries to Theorem 3.5 and its proof. The first

of these concerns a 'dual' to preservation under directed simulations: a first-

order formula a(r) is said to be anti,-preserued under directed simulations

if for all transition systems M, N, all states u € lMl, u € lNl and all

directed simulations Z : M,w ) N,u' we have that N f a[u] implies

M I aful. Next, call a modal formula in ,C],3 negat,ion-rich if it is built
up from constants and negated atoms -p, using only V, A' O and tr'

corollary 3.7 Let a(r) be an L1(r)-formula. Then a is equ'iualent to the

stand,ard, translation of a negation-rich modal formula iff it is anti-preserued

under directed sirnulations.

Proof. Use Theorem 3.5 and the fact that the negation of a negation-free

formula is equivalent to a negation-rich formula. -l

The following corollary characterizes the relation 'nf-tp(u) I nf-tp(to)'

between states u, u in terms of directed simulations. We refer the reader to

Hodges [10] for the notion of an ultrapower'

Corollary 3.8 Let M and N be two transit'ion systems, and let w € lMl
and u € lNl. Then nf-tpy@) e nf-tp*r@) iff for some ultrapowers M*,u
of M,u, and N*,u of N,u, we haue that N*, u I M*,u.

Proof. The right-to-left implication is easy. For the converse' consider the

proof of Theorem 3.5 again. For the o-saturated elementary extensions

M*,u and N*,u of M,tl and N,u, respectively, we showed that N*,u J



M*,rD, starting from the assumption that nf-tp^r(r) c nf-tp1a(w). By a
result in first-order model theory, these or-saturated extensions may be ob-
tained as suitable ultrapowers of the original models M,tn and N,u; see

Chang and Keisler [6, Theorem 6.1.1] for details. -1

Corollary 3.9 A modal formula in Ll, is equ'iualent to a negation-free
modal formula iff it is preserued under directed sirnulat'ions.

Proof. The left-to-right implication is Proposition 3.2. For the right-to-
left implication, use Theorem 3.5 plus the fact that modal formulas are
equivalent to their first-order translations under ^9?r. -1

Example 3.L0 The formula O-p whose first-order translation was con-
sidered in Example 3.6 provides an example of a formula that is not pre-
served under directed simulations, and hence not equivalent to a negation-
free modal formula. The formula O(TV-p), on the other hand, is preserved
under directed simulations - and hence equivalent to a negation-free modal
formula, namely OT.

To conclude this subsection we present an alternative semantic charac-
terization of the (modal) formulas preserved under directed simulations in
terms of their monotonicity behavior. We call a modal formula Q upward
monotone in a proposition letter p if for all models M and states t.o we have
that if M,. | / and M/ is obtained from M be extending the interpreta-
tion of p (and leaving the rest unchanged), then M',u I /; the notion of
downuard monoton'ic'ifg is defined dually.

By [17] a modal formula is / is upward monotone in p iff p occurs only
positively in /, meaning that all occurrences of p should be in the scope of
an even number of negation signs. More generally, a modal formula is called
pos'itiue iff it can be built up from T and proposition letters, using only V,
A and O (see [17, Section 7] for the general picture). Although every pos-
itive formula is (equivalent to) a negation-free one, not every negation-free
formula is (equivalent to) a positive one: !I is an example. Therefore, the
semantic characterization of positive modal formulas in terms of preserva-
tion under surjective homomorphismp given in [17, Theorem 7.15] doesn't
apply to negation-free modal formulas. What we do have is the following
extension of Corollary 3.9.

Theorem 3.LL Let S be a modal formula. The following are equiualent:

1. Q is equiualent to a formula in whi,ch all proposi,tion letters occur only
positiuely.

2. $ is equiualent to a negation-free formula.

3. 6 is preseraed under directed, s'imulations.



/r. d is upward monotone i,n all its propos'ition letters.

Proof. The implication 1 + 2 is easy; the implication 2 + 3 is Proposi-

tion 3.2, and the implication 3 + 4 is immediate from the fact that if M'
is transition system obtained from a transition system M by extending the
interpretation of a proposition letter (and leaving the rest unaltered), then

the identity relation is a directed simulation from M to M'. Finally, the
implication 4 + I is [17, Theorem 7.15]. -l

$3.2. Safety. In this subsection we take a different perspective on the
expressive power of negation-free modal languages by considering the notion
of safety recently introduced by van Benthem [3].

Let a(r,g) denote a first-order formula with at most two free variables.

Then a(r, gr) is called safe for bisimulation if whenever Z : M g N with
uZu and M ? alww'), then there exists a 'u' such that w'Zu' and N p
aluu'1. The formula a(r,y) is best thought of as an operation on the binary
relations living inside the transition systems M and N, and the question for

safety can be understood as asking whether the back-and-forth-conditions
of Definition 3.1 hold for a whenever they hold for the relation symbols in
a. The definition of safety depends in an essential way on the symmetric
character of bisimulations: if the operation explessed by a is performed in
M, then it can be matched by an c step in N, and vice versa.

What is the appropriate notion of safety for directed simulations? Their
non-symmetric character causes a split in the notion of safety, depending on

whether the operation a is performed on the left-hand side or on the right-
hand side of a pair of directedly similar transition systems M and N. To

be precise, a first-order formula a(r,y) is left safe for directed simulations
if whenever Z: M _?N with wZu and M I a[utw'] then there exists a u'

such that u'Zu' and N I aluu'). A first-order formula a(r,y) is right safe

for directed simulations if whenever Z: M JN with uZu and N p c[ou']

then there exists a tl' such that wtZut arrd M I alruw'1.

For example, atomic tests P?, whose semantics are given by (r : y) nPr,
are left safe, but not right safe. On the other hand, tests on negated atoms
:p &r€ right safe, but not left safe. More generally, all negation-rich formulas

are right safe.

Recall that the composition R ; S of two relations R and S is given by

R; S : {(",A) | -z(Rrz n Szy)}. The dual operation of composition is

denoted by +, and defined by -R +,9: {(r,A) lVr(RrzV S"a)}. Then, we

have the following characterizations of left and right safety.

Theorem 3.12 (Safety) Let a(r,a) be a first-order formula in L1(r,y).

1. Then a(r,a) is teft safe for di,rected s'imulat'ions i,ff it can be defined

from the atomic relation R and tests on negation-free modal formulas
using only ; and U.



2. Further, a(r,y) i,s right safe for directed s'imulat'ions iff it can be de-

fi,ned from the negated atom,ic relat'ion R and tests on negation-rich
modal formulas using only - and n.

Our proofs of the above results are tailored after similar results in [3]; they
require a careful analysis of so-called continuous negation-free formulas,
which we have included in an appendix. Here are the relevant definition
and lemma.

Definition 3.13 A modal formula Q@) i" cont'inuous in p if the following
holds for every transition system (W, R,V):

for each family of subsets {Xt}a such that V(p) : UoXtt
(W,R,V),* ? @ iff, for some i, (W,R,V),- I /, where V@) :
Xi and V(q) : V(q) for q # p.

Example 3.14 The formula Dp is not continuous in p, but Op is. And in
fact the latter format typical for safety, as is shown by the following lemma.

Lemma 3.L5 A negation-free forrnula is cont'inuous in p iff it i,s equiualent
to a disjunction of formulas of the form gs AO(d, n...n O(Q"np)...),
where each of the formulas $i is negation-free and p-free in the sense that
they don't contain occurrences of p.

A proof of the above lemma may be found in Appendix A below.

Proof of Theorern 3.12. We first prove part 1 of Theorem 3.12. To see that
the constructions mentioned are indeed left safe, argue as follows. It is clear
that the atomic relation and tests on negation-free formulas are left safe.
To see that composition is left safe, assume that Z : M,tu lN,u, and that
u51l S2wt , where the back-and-forth conditions of Definition 3.1 hold for 5r
and,52 in M. Then, there exists tll/ with uS1wtt52. As Z is assumed to be
a directed simulation for.91, there exists au" in N with uSyutt andu"Zu",
and, likewise, there exists a u' € ll/l with utts2ut and u'Zut. The latter is
the required ,Sr ; r92-successor in N. Showing that choice (U) is left safe is
left to the reader.

Now, to prove the more complex left-to-right half of part 1 of Theo-
rem 3.12, let a(r,g) be a first-order operation that is left safe, and choose a
n€?, proposition letter p. Our first observation is that ly (a(r, y) nST, (p)) it
preserved under directed simulations - this is immediate from the fact that
a(r,y) is left safe. As a corollary we have that, by our Preservation Theo-
rem 3.5, 19 (a(r,A) ASTy(p)) is equivalent to a negation-free modal formula
@. In addition, because of the special syntactic form of )y (a(r,y) n Sf r@)),
this formula / is continuous in p. Therefore, by Lemma 3.15 we may assume
that it is a disjunction of formulas of the form

6o A o(hn . .. n o(d" np). . .),

i0



where each of the formulas /; is negation-free and p-free. To complete the

proof we need one more observation, viz. that a(r , y) is definable as a union

of relations of the form

(2) (do?) ;R;(Qt?);"';R;(Q"?),

where, again, each of the formulas @; is negation-free. But this is exactly

the syntactic form specified in the theorem, and, hence, this proves part 1.

We now turn to part 2 of Theorem 3.12. Observe first that all the operations

listed in part 2 of the theorem are indeed right safe. For the converse) we

argue as follows. If a(r,y) is a right safe first-order formula, then -a(r, g)

is a left safe formula, hence, by part 1, it is equivalent to a union of formulas

of the form specified in (2). But then a(r,A) must be equivalent to an

intersection of formulas of the dual form

0/o7) : -J? + (rb{) + ... - -R + (r1,"?),

where each of tlne {; is a negation-rich formula. As this is the required

syntactic form, this proves part 2 of the theorem. -l

There is a natural follow-up to Theorem 3.12: what are the first-order
operations a(r,A) that are doubly safe for directed simulations, i.e., formulas

that are both left and right safe.

Theorem 8.LG Let a(r,y) be a formula i'n Lt(r,A)- Then a(r,y) is doubly

safe for directed simulat'ions i,ff it can be defined from the atomic relation R
and tests on negation-free modal formulas without occurrences of propos'it'ion

letters usi,ng only ; and U.

Proof. The right-to-left implication is easily verified. For the converse' as-

sume that a(r,y) is doubly safe. By Theorem 3.72 a(r,y) is equivalent to

a formula
B ,: V ((d;o?) ; R;... ; R; (Qnn?)),

i

where each $61, is negation-free; a(r,y)

7 ': n ftlio?) = -R;
J

is also equivalent to a formula

...= --R + ({67)),

where each {ix is negation-rich.
Let us write [T/p]d to denote the result of substituting T for all occur-

rences of all proposition letters in X. We will show that I a <+ lT lf1B, and

we will use the fact that formulas in which all (translations of) proposition

letters occur only positively (negatively) are upward (downward) monotone'

If M is any transition system, then we write M+ to denote the transition

11



system that is just like M except that it assigns lMl to every proposition
letter.

Observing that all proposition letters in B occur only positively in p,
and that all proposition letters in 7 occur only negatively in 7, we have, for
any transition system M,

Mfafwul + Mlp[wu]
+ M+ 

= 
gWrl

=> MFITlpl/[ru),
and

Mftafwu] =+ Mfty[wu)
+ M+ V t[-"]
+ M+ V 0[-u]
+ M f [rlF')p[r,].

This proves F o ++ ITlp'lB, and the latter is of the required form.

$3.3. Definability. In this subsection we offer a third and final perspec-
tive on the expressive power of negation-free modal languages by analyzing
which properties of transition systems are definable by a negation-free modal
formula. Our analysis is in terms of definable classes of transition systems,
and to smoothen the results and the presentation we will work with so-called
pointed transit'ion systemsl these are structures of the form (M,u.,), where
M is a transition system as defined in Section 2 and w e lMl is the disti,n-
guished state of (M,.). (M,.) p / will mean the same thing as M,rx F d.
Bisimulations between pointed transition systems are required to link the
distinguished states.

A class of pointed transition systems K is negation-free definabte by a
set of formulas if there exists a set of negation-free formulas A such that
K: {(M,") | (M,n) 

= 
0 for all 0 e A}. K is called negation-free definable

by a single formula if it is negation-free definable by means of a singleton
set.

If K is a class of pointed transition systems, we write K to denote the
class of pointed transition systems that are not in K. We say that K is
closed under ultraproducts (ultrapowers) if any ultraproduct (ultrapower)
of transitions systems in K is itself in K. Likewise, K is closed under directed
simulations if (M,u.') e K and Z : (M,w) J(N,u) implies (N,u) e K.

Theorem 3.17 (Definability) Let K be a class of pointed transition sys-
tems. Then

1. K i,s negati,on-free definable by a set of formulas iffK is closed under
directed simulations and ultraproducts, whileR is closed ultrapouers.
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2. K is negation-free definable by a single fo*4 i,ff K is closed under

directed s'imulations and ultraproducts, while K is closed under ultra-

products.

Proof. The left-to-right implications are left to the reader. For the right-

to-left implication of item 1, argue as follows. If K and K satisfy the stated

closure conditions, then both K and K are also closed under bisimulations,

and hence, by [t7, Theorem 6.3] they are definable by a set of modal formulas

4. Now, as K is closed under directed simulations, each formula in 4 must be

preserved under directed simulations, and hence equivalent to a negation-

free modal formula by Corollary 3.9. This shows that K is negation-free

definable.
Next, for the right-to-left implication of item 2 we use a similar argu-

ment. If K and K satisfy the stated closure conditions, then they are both
closed under bisimulations and ultraproducts. By [17, Theorem 6.3], again,

this implies that K is definable by a single modal formula d. At K is closed

under directed simulations, / must be preserved under directed simulations,

and hence it must be equivalent to a negation-free modal formula by Corol-

lary 3.9. -l

The characterization of definability given in Theorem 3.17 is hard to use

in practice as ultraproducts are rather abstract objects. The following gives

a more manageable Flaiss6-type characterization.
Let M,tl and N,u be pointed transition systems. We define dtrected

si,milarity up to n between M,u and N,u (n e N by requiring that there

exists a sequence of binary relations Zo, . . ., Zn C lMl " lNl such that

1.ZnC...q ZsandwZsu

2. for each i ( n, if uZit arrd u I P, then I I p

3. for i+7 < n the back-and-forth properties of Definition 3.1 are satisfied

relative to the indices:

(a) if uZ;afi and Rttt in N, then there exists u' e lMl such that
Ruut and u'Z;t'

(b) if uZ;1fi and Ruut in N, then there exists t' e l,n{l such that Rttl
and u'Z;t'.

we write M,u )n N,u to denote that there exists a a directed simulation
up to n.

Recall that the degree d"s(d) of a modal formula / is the largest number

of nested modal operators occurring in it.

Theorem 3.L8 Assume that L>p is finite (i.e., conta'ins only fini,tely many

proposition letters), and letK be a class of pointed transit'ion systems. Then
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K is negation-free definable by a single forrnula i,ff, for sonle n € N, K is
closed under directed s,imulations up to n.

ProoJ. Clearly, if K is negation-free definable by a single formula of degree n,
then it is closed under directed simulations up to n. To prove the converse,
let (M,w) e K, and define 4\a,- to be the conjunction of all formulas in
nf-tp2aQu) of degree at most n - as we are working in afinite language, we
can assume that there are only finitely many non-equivalent negation-free
formulas of any given degree, hence we may assume Q?ur,.to be a (finitary)
formula in Lo,n.

Using the finite character of the language again, we find that there are
only finitely many non-equivalent formulas 6?t,. for (M,u.') e K. Let Qn
be their disjunction. Then @' defines K. For, assume that (N, u) | @"; we
need to show that (N, r) € K. First, from (N, a) ? O" it follows that for
some (M, tr) e K, (N, r) agrees with (M, u.') on all negation-free formulas
of degree at most n. Second, the latter fact implies that M,w)n N,u. To
see this, define relations 4e lMl x lNl for 1< i < n by puttinguZltitr
every negation-free modal formula of degree at most z that is true at u, is
also true at l. Then Zo, . . . , Zn is a directed simulation up to n that links
M,ru to N, u. As K is closed under directed simulations up to n, this implies
(N, r) € K, and we are done. -l

Example 3.19 The class of pointed models defined by the first-order for-
mula Pr is closed under directed simulations up to 0, and hence definable
by a modal formula of degree 0. The class of pointed models defined by
the first-order formula Vy (Rry -+ 3z (RA")) is not closed under directed
simulations up to 0 or 1 (and hence not definable by a modal formula of
degree less than 2), but it is closed under directed simulations up to 2, and
it is therefore definable by a modal formula of degree at most 2.

Extensions

The main idea that underlies our work in Section 3 is a very simple one:
replace the 'symmetric' atomic condition in the definition of a bisimulation
by a non-symmetric or directed one. Ih this section we apply the same strat-
egy to study further negation-free languages arising in terminological logic,
Since/Until logic, and feature logic. Our presentation will be somewhat im-
pressionistic, aimed at indicating the applicability of the main ideas rather
than giving full details.

$4.1-. Terminological Logics. Terminological logics are description log-
ics stemming from semantic networks and designed for representing struc-
tured concepts. The system KL-ONE is a well-known knowledge represen-
tation system based on terminological logics. In a terminological logic the
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structure of a concept (or set) is described using some or all of the booleans,

and various forms of quantification over the attributes of a concept (in terms

of binary relations). One of the main concerns in the area is the computa-

tional complexity of reasoning problems in terminological logics; although

this is closely related to matters of expressive power, until recently the latter
has never been studied in a systematic way (see Baader [2]). However, there

is a close connection between modal and terminological logics which can be

exploited to improve on this.

Constructor name Svntax Semantics Modal

concept name A A'CW p

top T w T
bottom I g I
conjunction CND CIADL Q A1P

disiunction (U) CDD C'U D' 0v 4)

negation (C) -Q W \C' -4)
univ. quantification YR.C {dr lvd2(d1,d2) e R'

-+ dz e Cr)
D6

exist. quantification (t)
=R.C {dr l1d2(d1,d2) e R'

Adz e Crl
oo

Table 1: Syntax and semantics of concept-forming constructors.

In their survey paper, Donini et al. [7] study several hierarchies of ter-

minological languages. By way of example, we consider the hierarchy of

FL--Iallguieges specified in Table 1. Here, we use A, B to denote atomic

concept names ('proposition letters'), and C, D to denote complex concepts

(,modal formulas'); and we use R to denote roles ('binary relations'). T"l
minological expressions are interpreted using on interpretation function (')/
on transition systems (W,R).

The various languages differ in the constructions they admit; f L- de-

notes the language with universal quantification, conjunction and unquali-

fied existential quantification 
=R.T. 

Superlanguages of FL- arc identified

by strings of the form f Ll€lvl)lcl-. we will assume that f L- contains -[

and I.
clearly, f Ltu- coincides with (a multi-modal version) of our negation-

free modal language.4e,3, and hence Theorerns 3.5,3.L2,3.17, and 3'18

all carry over without effort to f L)l,l-. Likervise, the analogous results

on expressivity for the standard modal language ,Cj,3 carry over to the

corresponding terminological language f L)UC-. (Further details on the

latter connection may be found in [20, 11].) Thus, two of the languages

in the f L- hierarchy have been equipped with model-theoretic tools for

analyzing their expressive power. The remaining terminological languages

in Table 1 call for further non-standard notions of (bi-)simulation; coming

15



up with such notions and using them to arrive at a model-theoretic analysis
of the remaining languages in Table 1 is part of our ongoing work.

$4.2. Since and Until. Our next example concerns directed simulations
for a negation-free fragment of Since/Until logic. To simplify matters we
restrict ourselves to the forward looking fragment of the language that only
contains the Until operator [/. Recall its truth definition on transition sys-
tems:

M,w I U(d,rlt) iff there exists u/ with M,w' I @ and

for all tn", if uRtn" Ru' then M,w" 
= 

,!.

Recently, a notion of bisimulations for since and until has been intro-
duced that allows for a complete development of the model theory of the
full Since/Until language (see [15]). Building on this, we define the following
simulations for the negation-free forward looking fragment Lu. A directed
U-simulation from M to N is a pair (Zo,Zr), where Zo QlMl x lNl and
Zr C lM2l " lN2l such that

1. uZsu and ur I p implies u ? p

2. if u:Zsu and Rwwt then there exists u' such that Ruut, w'26u, and
(ta,u')21(u,u')

3. if (tr,w')Zt(u,u') and uRu"Ru'then there exists tl" with wRu,,Rw,
ar'd u" Zgu".

The first of the above clauses is the same as before; the second records
transitions in simulating pairs of states, and the third clause makes sure that
if two pairs of states simulate each other, than they 'agree' on intermediate
states.

Remark 4.1- In the definition of directed simulation for 4e,g w€ had back-
and-forth clauses to be able to transfer true formulas involving the diamond
operator and its dual the box operator from one model to another. To sim-
plify matters, we have left out a dualJor the [/-operator from our negation-
free fragment of the Since/Until language. As a consequence we can make
do with clauses 2 and 3 abovel in the presence of a dual of [/, we would havc
to add clauses 2' and 3/ going in the opposite directions.

Here's an example of a directed simulation: consider the models Mt :
({o,oo,ar,a2})Rr,Vr) and M2: ({b, h,bz},Rz,Vz), where r?1 is {(a,a)} U

{(o,ot) | 0 <, ( n} and R2: {(b,b)} U {(b,br),(b,b2)}; the valuations I
and V2 are defined bV W(p): {ao, at,az}, Vr(q) : {oo,ot}, V1(r) : {a1},
and V1(s) : {a}; Vz(p) : {br,bz}, Vz(q) : V2(r) : {b1}, and b verifies all
proposition letters (see Figure 2). Define Zo e lMtl x lM2l by
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Figure 2: Directed (/-simulation.

Zo : {(o,b), (oo, br), (or,b1), (a2,b2)}.

To define ZL C lMrl' , lMrl', define a pair of states (r, y) with Rry to be

minimal if there are no states in between r and y. Put

21 : {((o, o), (b, b))} U

{((.,.'),(r,r')) | Rlusto', R2uut and (tr, -'), (u,u') minimal}.

We leave it to the reader to check that (Zs, 21) is a directed U-simulation
between M1 and M2 that links o to b. It follows that every negation-free

Until-formula true in a is also true in b but the converse obviously fails.

It is precisely the fact that directed [/-simulations link points to points

and pairs of points to pairs of pairs of points that allows to prove analogs of
Theorems 3.5, 3.12, 3.17 and 3.18 for Lu by combining the techniques and

results in Section 3 with those in [15].

$4.3. Feature Logics. We conclude our list of extensions of the basic re-

sults in Section 3 with directed simulations for feature logics. Feature logics

are description languages for a special kind of data structures called feature
structures. These are related to the record structures of computer science

and the frames of artificial intelligence. In computational linguistics they

are labeled graphs carrying syntactic, semantic, morphological and phonetic

information, and the purpose of a linguistic theory is to describe admissi-

ble graphs of this kind that underlie text and speech. Feature structures
have also been used to characterize partially defined concrete data types in
programming languages.

Formally, Iet -L be a set of feature names) and A a set of sort names.

The pair (L,A) is called a feature signature. A feature system of signature
(L,A) is a tuple M : (D,{Rt}4,{D"}eea), where for each feature name I'

fi is a partial function on D, and for each sort name P, Dp is a subset of D.
(Feature systems are simply Iabeled transition systems of a special kind.)

Various logical systems have been proposed to constrain feature struc-
tures. Each takes a slightly different view of its models, but often they are

non-boolean fragments of modal logics. In this papel we consider a single

example of a feature logic; see Rounds [19] for a survey of feature languages.
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The logic we consider is called Kasper-Rounds logic. Assuming .L and
,4. as above, the atomic expressions of L(KR) are the following: proposition
letters p (p €,4), and so-called path equations 7T : p, for n, p € L*. Complex
formulas are built up using conjunction, disjunction and modalities (/) and
[/], for I e L.t The only novel aspect in the interpretation of L(KR) is the
interpretation of the path equations and of the indexed modal operators (/).
Path equations are meant to express that two sequences of transitions lead
to the same state; for convenience, we will assume that every finite sequence
of feature names 7r comes with its own transition relation -Rr..

c M,ut I n: p if there exists trl with (-,.') € R, n Rp. (It it exists,
this tr' will be unique.)

o M,ru 
= 

U)A if there exists tu with Rluut and M,rx' 
= 

Q. (Again, if
it exists, this tll will be unique.)

Our next aim is to state an analog of Theorem 3.5 for L(KR). First we fix
a first-order language L{R into which we translate Kasper-Rounds formulas.
L{R has binary relation symbols.RT for I e L, and unary predicate symbols
P for all sort names p e A. The novel clauses for the standard translation
ST, are the following:

ST"Qr : p) :1y (rRn, i "' I Rn.a A rRo, i "' i Rp^a),

where 7r : 7Tr...2r,., and p : pt...pm, and all the ni and p; are ,atomic'

feature names in tr; and ST,(Q)0:fy(Rtra A Sf y(0)), and similarly for
Itlo.

What kind of simulations are we to use to identify L(KR) as a fragment
of the first-order language CfR? Note that path equations iT: p are essen-
tially intersections of compositions of 'atomic' transition relations -r?1. Their
intersective character calls for a special kind of simulations in which we en-
sure that intersecting paths are preserved. The definition below achieves
this by relating states to states and pairs of states to pairs of states; it is
based on [5] and [13].

We write u -\ w'for the reflexive, transitive closure of l)1upR1. A
di,rected KR-si,mulation ftom M to l/ is a triple (Zo, Zt, 22) where Zs e
lMl"lNl, ZrglM2l x lN2l, ar'd 22 c lN,l"lM,l such that

I. uZsu and tu I p implies u I p

2. (u) (r, -')Zr(u,u') and Rlwutimplies R1uut.

(b) (r, u')22(tu,trl) and -Rluul implies RlutrLtt.

3. (a) if uZsu and Rlwwt then there exists u/ with (u,wt)21(u,r')
lOur syntax deviates from the one presented in e.g., [19], but the differences are

inessential.
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(b) if uZsu arrd Rput then there exists tr.'/ with (u,u')22(ra,w')

4. (.,-')Zr(u, u') implies wZgu and w'Zsu'; similarly for (u, u')Z2Qu,u')

5. (a) if (w,w')21(r,r') and to' -'-+ -rt i+ -', then there exists u" such

that (Tr.r, ,")Zt(r,u") and (t1", *')Zt(r",r')
(b) if (u,u')22(w,u') and u:+utt :-+ r.,', then there exists u-," such

that (u, u" ) Z2(ta,u."') and (utt, u' ) Z 1(-",.' )

Clause 1 is familiar. The back-and-forth conditions in clauses 2 and 3 ensure

that transitions are recorded in simulating pairs of states; together with
clause 5 they allow us to simulate intersecting paths in one transition system

with intersecting paths in the other. Finally clause 4 is a bookkeeping clause

that relates the behavior of (Zs, h, Zz) on pairs of states to its behavior on

single states.
With this notion of directed KR-simulation one can proceed to prove

analogs of Theorems 3.5, 3.12, 3.17 and 3.18 for L(KR) by combining the
techniques and results of Section 3 and [13]. The details would take us to
far astray from the main points of the present paper to be included here;

instead, we refer the reader to [16].

5 Non-Classical Negation

Although in many application areas boolean negation is unwanted, some

form of negation is often called for. This motivates the introduction of
non-classical negations. The first example that comes to mind is probably

intuiti,onistic negation In this section we show how our directed simulations
have to be amended for the results of Section 3 to carry over to intuitionistic
logic.

Recall that a transition system M : (W, <, V) is called an intu'itionist'ic
model if < is a partial order, and I/ is a valuation that assigns (-closed

subsets ofW to proposition letters.
We assume that the language of intuitionistic logic has I, A, V, and +.

Conjunction and disjunction are interpreted in the boolean manner, while -L

is false at all states, and u.r ? Q + t[ lffor all u', ru 1 wt and u' p / implies

-'tsrh.As usual, negation is introduced as an abbreviation for / + I.
Let M, N be two intuitionistic models. A directed intui,ti,onistic bisirn-

ulation is a pair (Zo, Zt) with 26 e lMl x lNl and h c lNl x lMl such

that

1. (a) if utZsu and - ? p, then u I p

(b) if uZlw and u ? p, then u.r I P

2. (a) if uZ6u and u ( u', then there exists rl'such that ru l wt, wtZgul

and utZrw'
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(b) if uZlw and u) 1,u)',then there exists u/ such that u I ut, ut Zlul
and w'Zgut

We use Z : M t?; N to denote that Z is a directed intuitionistic bisimula-
tions between M and N.

The intuition behind the above definition is the following. As we have
seen in Section 3, in the absence of negation we can make do with directed
simulations, and as is known from the literature, in the presence of full
boolean negation we need bisimulations with full back-and-forth clauses. In
intuitionistic logic, we are somewhere in between. The intuitionistic impli-
cation introduces negative occurrences (formulas occurring on its left-hand
side). To account for this we need to increase the interaction between sim-
ulating. We do this by having two relations going in opposite directions.

Observe that directed intuitionistic bisimulations are not as strong as
strong bisimulations (as this would be appropriate for boolean negation
only). However, if (20,21) is a directed intuitionistic bisimulation between
M and N, then Zs n 21" is a strong bisimulation between M and N.

Proposition 5.1 Intui,ti,onistic formulas are preserued under directed intu-
itionistic bisimulations: i,f (Zo, Zr) : M 9; N, uZsu and w I Q, then u 

= 
Q

(and likewise, if uZyu and a f S, then u) ? il.
Proof. Use induction on intuitionistic formulas. The atomic case is clear,
and so are the inductive cases for A and V. The case for implication shows
why directed intuitionistic bisimulations are defined the way they are: as-
sume that w e lMl, u e lNl, uZsu and u F O + t!; weneed to show
u 

= 
Q + r/. Take any u' such that u I ut in l/, and assume u' 

= 
d. We

need to show u' p r/. Now, by clause 2 (a) of the above definition, there
exists a tr.r/ with (i) , < u.'/, (ii) u'Z1w' and (iii) us'Zsu'. Use (i) to conclude
that (iv) if u' | / then ,' I ,,lt; use (ii) and u' I / and the induction
hypothesis to conclude that trl I /. Then, by (iv), *' l rb and, by (iii) and
the induction hypothesis again, ,' 

= 
,1.,- and we're done. -l

Using the notion of directed intuitionistic bisimulation, one can establish
counterparts of Theorems 3.5, 3.72,3.77 and 3.18. To prove a pfeservation
result along the lines of Theorem 3.5, we need to define a translation of
intuitionistic formulas in to first-order formulas. The intuitionistic standard
translation IST"(.) takes intuitionistic formulas to ,C1-formulas as follows:
IST 

"(p) 
: Pr; IST, commutes with A and V; and

IST"(4 + r!) :Yy (Rry -+ (ISrs(0) -+ Mo(r!))).

Theorem 5.2 (Preservation Theorem) Let a(r) be an L1(r)-formula.
Then a(r) is equiualent (on intuition'istic models) to the translat'ion of an
intuitionistic formula iff it is preserued under directed intuitioni,stic bisimu-
Iations.
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Proof. The left-to-right implication is Proposition 5.1. The converse is

proved along the lines of Theorem 3.5. There are a few things to take

into account:

o we need infinitely many axioms to express the (-closedness of the

interpretation of proposition letters (unary predicates)

o we need axioms to express that intuitionistic models are partial orders.

As these axioms are all first-order axioms, we can use the techniques of
Theorem 3.5 as before. Hence, we only sketch the main steps here.

By a compactness argument it suffices to show that show that c is itself
a consequence of the set of its intuitionistic consequences

Int-Cons(a(r)) :: {ISf "@) | 
a I IST"(il,d intuitionistic}.

So, consider a model M I Int-Cons(a(r))[wl; we have to show that 1VI !
a[u.']. We achieve this by showing that there exists a model (N,u) for

{o}u i,tp(w)3-itpQn),

where itplu) is the set of (translations of) intuitionistic formulas satisfied by

tr, and -dtp(w) is the set of boolean negations of (translations of) intuitionis-
tic formulas false at ur. Using this, we move to two tl-saturated elementary

extensions of M,u' and N, u and show that there must be a directed in-

tuitionistic bisimulation relating u.r and o between those two models. The

Iatter allows us to conclude that M I afw| -l

Corollary 5.3 A modal formula in Lip 'is equiualent to an, i,ntuitioni,stic

formula i,ff it is preserued under directed intuitionistic bi'simulati'ons.

Example 5.4 The modal formulas lOp and EO-P are preserved under

directed intuitionistic bisimulations (between intuitionistic models), and, so,

on intuitionistic models they are equivalent to intuitionistic formulas. We

leave it to the reader to show that, more generally, every modal formula

which contains negation only in the scope of modal operators is preserved

under directed intuitionistic bisimulations, and therefore equivalent to an

intuitionistic formura.

Our next goal is to state and prove a safety theorem for intuitionistic
logic along the lines of Theorem 3.12. We call a first-order formula a(r,y) in
Lt(r,A) safe for directed intuitionisti'c bisimulotions if whenever (Zs,Z) :

M 9t N with wZsu and M I afruw'], then there exists a u' wrthwtZsut
and M I afuu'l; and vice versa.

21



Theorem 5.5 Let a(r,A) be a first-order formula in L1(r,y). Then a(r,a)
is safe for directed, intuitionisti,c bisimulat,ions iff i,t can be defined from
the the atomic relat,ion Rrg and tests on atomic formula p, using only
compos'ition 1, choice U and the counter-domain operat'ion - defined by

-,9 :: {(",y) l, : y A -12 Srz}.

Proof. As an example we first show that composition ; is indeed safe for
directed intuitionistic bisimulations. So, suppose that (Zo,Zt) : M,w )i
ly',u, with uZsu andwSl;S2ut. We have to show that there exists u'with
u51;S2ut andw'Zsu'. First, there exists awtt withuSlwttS2ut. fuomuZsu
and Sluustl we get a u'l with Slzu and w" Zsu". Together with 

^92u.r/',u.r/ 
this

implies that there exists u/ with tntZsut and S2uttu' - which is what we
need.

To show that any operation that is safe for directed intuitionistic bisim-
ulations can be defined as described, requires a small trick. First, recall the
Gridel translation g that takes intuitionistic formulas to equivalent modal
formulas:

e(-t) : r
g(p) : Jp

s@ Arr) : g@) n s?/)
s@v {) : g@) v g(,1')

g@ =+ ,l') : a(g(il -+ s0!)).

Now, assume that a(r,y) is safe for directed intuitionistic bisimulations.
Then 39 a(rg) is preserved under such bisimulations, and, hence, by Theo-
rem 5.2 it is equivalent to am intuitionistic formula /.

Observe that S is equivalent (in intuitionistic logic) to d A (f + p),
where p is a new proposition letter. And the latter, in turn, is equivalent
to its Godel translation g(d A D(I -+ lp). Observe that this formula is
continuous in p; hence by [3, Chapter 5] it is equivalent to a disjunction of
formulas of the form

Qo 
^ 

o(hn ...  o(Q" np)...),

where each of the @;'s is a p-free modal formula (compare Lemma 3.15).
Following the proof of the Safety Theorem in [3], one can then deduce that
a(r,A) must be equivalent to the union of formulas of the form

@o?) ; R;' .' ; R; (Q"?).

Using equivalences such as (d A',b)? H (O? ; rlt?), FQ)Z <+ -(Q?), and

QQ)? <+ --(rq;@?)), the tests can be pushed inside, so as to produce a
formula of the required form. -1



As a corollary to the above result and van Benthem's original safety

theorem, we have that a first-order formula is safe for directed intuition-
istic bisimulations iff it is safe for ordinary bisimulations. There is room

for alternative approaches to intuitionistic safety: instead of characterizing

the safe first-order definable operations, one can try to characterize the safe

intuiti,onisti,catly definable operations. We conjecture that, in contrast with
the classical case, the set of intuitionistic formulas that are safe for intuition-
istic directed bisimulations does nof coincide with the set of intuitionistic
formulas that are safe for ordinary bisimulations.

To conclude this section we turn to definability'

Theorem 5.6 Let K be a class of poi,nted intuitionistic models- Then

1. K is definable by a set of intuitioni,sti,c formulas iffK i,s closed under

d,irected, intui,tionistic bisimulations and, ultraprod,ucts, whileR i,s closed

ultrapowers.

2. K i,s definable by a single intui,tionistic formula i,ff K is closed under

d,irected intuitioni,stic bisimulations and, ultraprod,ucts, whileR is closed

under ultraproducts.

Proof. Similar to the proof of Theorem 3.17, using corollary 5.3. see also

Rodenburg [18] for related results. -1

We leave it to the reader to introduce the notion of a di'rected intuition-
istic bisimulation up to n, and to formulate an intuitionistic analogue of
Theorem 3.18.

6 Conclusion

In this paper we have introduced the notion of a directed simulation to ana-

lyze the expressive powel of a number of negation-free description languages

for transition systems. Our results concerned preservation, safety and de-

finability aspects of negation-free modal logic and some extensions, and we

established similar results for intuitionistic logic. Moreover, our results can

also be applied to full modal languages with boolean negation. For exam-

ple, if a first-order formula is preserved under strong bisimulations, but not

under directed simulations, then we know that its modal equivalent must

contain negation in an essential way.

To conclude we mention some possibilities for building on the work re-

ported here. The paper is part of a general enterprise that aims to give

model-theoretic characterizations of logic-based description formalisms. A
lot of work remains to be done, even on arbitrary sub-boolean fragments of
first-order logic. More concretely, as mentioned in Section 4 there are several

hierarchies of terminological languages waiting to be analyzed using the tools
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of this paper, A second example concerns the study of expressiveness of fea-
ture logics touched upon in $3.2; this theme is developed in a separate paper

[16]. Third, one can build on recent work on general fragments of first-order
logic, including finite-variable fragments (see [1]), and develop the theory of
their negation-free fragments. And a fourth line concerns negation-free sub-
structural logics; there is a close relation there between notions of directed
simulation and generative capacities of various formal languages (see [14]),
and we plan to report on this in a future paper.

A Characterizing Continuity
This appendix is devoted to a proof of the following result from $3.2.

Lemma 3.15 ,4 negation-free formula is continuous 'in p i,ff i,t is equiualent
to a disjunction of formulas of the form

(3) do 
^ 

o(Qtn ... n a(d" np)...),

where each of the formulas $i i,s negation-free and p-free in the sense that
they don't contain occurrences of p.

We need two technical lemmas.

Lemma A.l Euery transition system M,w is bisimilar to an intransitiue
tree-like trans'ition system M',w whose root,is w.

Proof. See, for example, [17, Proposition 4.5]. -1

To state the second technical lemma we need some notation. Fix a
proposition letter p. We write J- to denote the existence of a directed
simulation for the language without the proposition letter p (exactly which
proposition letter is meant will be clear in the applications of the lemma).

Lemma A.2 Assume Z: M,uo -|- N,uy, where M, N are intransitiue
tree-li,lce transition sgstems wi,th usR'.'Rwn (in M), uoR...Ru" (in N)
and u6Zu; (l < i ln). Then there are ertensions (M+,ta) of (M,u) and
(l/+, r) of (N,u) (i.e., lM+l ) lMl and ll/+l r lNl) such that

(M,r) Z : )- (N, r)

cll"
(M*,.) Zt : )- (N*,r).

where Z' is a bijectiue functi,on such that w;Z'ui ft < i < n).

Proof. See [3, Chapter 5] or [17, Sections 4 and 7] for similar results. -1
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Proof of Lernma 3.15. We only prove the hard direction. Assume that @ is

continuous in p. Define

A = V {Ib I r/ is of the form (3) and ,b ? A}.

We will show that d I A; then, by compactness / is equivalent to a finite
disjunction of formulas of the form specified in (3)' and this proves the
lemma.

So, assume that M,.ol6;*" need to show M,ro F 4. That is, it
suffices to find a formula r/ of the form specified in (3) such that M,-o t ,b

and t! | Q. Here we go. By Lemma A.1 we may assume that M is an

intransitive, tree-like transition system with root a-r6. As / is continuous in
p, we may also assume that V(p) is just a singleton 4.r,,:

-oj+q]+ .4u:nlp.

Consider the following negation-free description of the above path leading

up to tt-rrr:

A : {ST,ok!)lrbe nf-tp-(Tr;) and 0<i,Sn}
u {Rriri11 | 0 < i I n - I) u {Pr"},

where we use the superscript - in nf-tp- to indicate that the formulas
considered are p free. The remainder of the proof is devoted to a proof that
O 

= 
ST,o({), and this wiII do to prove the lemma. For if @ F ST".(Q),

then, for some finite part @s C @ we have @s I ST"o(d), by compactness.

This is a disjunct in 4, and, hence, in every model / implies a finite part of
4; and so / implies in 4.

To show that @ | STro(d) *e proceed as follows. Take a transition
system N with N ! @[u6ut...u,]; we need to show that l/ I Sf(@)[46]'
Then
(4) nf-tp- (.0) c nf-tp-(us).

We may assume that N is an intransitive tree with root u. Take cu-saturated

elementary extensions MI ,Ino and NI, ug of M,tl6 and N,u0, respectively.

MI ,uso and Nt, ?r0 may again be assuned to be intransitive trees with roots

ur6 and u0, respectively.
From (4) we obtain a directed simulation Z such that Z : Mt,wi )

Nt,uo (0 <, < n) as in the proof of Theorem 3.5. By Lemma A.2 we can

move to bisimilar extensions MI* and Nt* of MI and Nt, respectively, and

find a functional directed simulation Zt linking ui to u4 (for 1 S i < n):

(MI,-o) Z:)- (Nt,ro)

"ll"
(MI*,us) Zt : )- (Nt*,u6).



We will amend the transition systems Mt* and Nt* as follows. We shrink
tlre interpretation of the proposition letter p so that it only holds at wi and
u;. This allows us to extend Zt to a full directed simulation Ztt for the whole
language:

(Mt,ro) Z:)- (Nt,ro)

,'lI lo
(MI*,.0) ZI : )- (Nt., ro)

shrink y(e)l 
lnxpand 

v(r)

1MI**,ws) Z" : ) (Nt**, u6).

By the following chain of steps, we can lift / from M,uo to N,u6:

M,wo ? O + Ml,-o F d, by elementary extension

+ MI*,.0 F 4
+ Mt**,ro I 4 by downward monotonicity

+ Nt**,ro F d bv directed similarity

+ l/t*,ro F d bV upward monotonicity

+ wt,ro I Q

+ N, ro F @ by elementary extension.

This proves the lemma. -l
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