

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.
To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Neil Stewart
Article Title: A PC parallel port button box provides millisecond response
time accuracy under Linux
Year of publication: 2006
Link to published version: http://brm.psychonomic-
journals.org/content/38/1/170.abstract
Publisher statement: None

http://go.warwick.ac.uk/wrap

 B134 A PC Parallel 1

Running Head: LINUX BUTTON BOX

A PC Parallel Port Button Box Provides Millisecond Response Time Accuracy Under Linux

Neil Stewart

University of Warwick, England

Stewart, N. (2006). A PC parallel port button box provides millisecond response time

accuracy under Linux. Behavior Research Methods, 38, 170-173.

Neil Stewart

Department of Psychology

University of Warwick

Coventry

CV4 7AL

England

+44 24 7657 3127

neil.stewart@warwick.ac.uk

 B134 A PC Parallel 2

Abstract

For psychologists it is sometimes necessary to measure people's reaction times to the nearest

millisecond. This article describes how to use the PC parallel port to receive signals from a

button box to achieve millisecond response time accuracy. The workings of the parallel port,

the corresponding port addresses, and a simple Linux program to control the port are

described. A test of the speed and reliability of button box signal detection is reported. If the

reader is moderately familiar with Linux, then this article should provide sufficient instruction

for them to build and test their own parallel port button box. This article also describes how

the parallel port could be used to control external apparatus.

 B134 A PC Parallel 3

A PC Parallel Port Button Box Provides Millisecond Response Time Accuracy Under Linux

In many psychology experiments, a stimulus is presented and the latency of a

participant's response is recorded. There are two key pieces of information that are required to

determine a participant's reaction time: the time that the stimulus was presented and the time

that the participant responded. I describe how to present stimuli with millisecond accuracy

under Linux in Stewart (2004). This article is concerned with recording the time that a

response is made to the nearest millisecond.1

Keyboards and mice are often not suitable for recording responses with millisecond

accuracy for two reasons. First, these devices introduce a variable delay when responding to a

button press. Segalowitz and Graes (1990) report that normal keyboard are scanned only

every 10 ms, though some USB keyboards reportedly have a 1 ms scan period. Plant,

Hammond, and Whitehouse (2003) tested eight mice (including serial, PS/2, and USB mice), a

keyboard, and a serial port button box from Psychology Software Tools. They used a signal

generator to simulate a button press and recorded the response latency of the device using an

oscilloscope. Out of all of the devices tested, the range of the response latency data was less

than 1 ms for only one of the mice, with some devices exhibiting a range as high as 30 ms.

Plant et al. also highlight the fact that some mice that appear to be identical and share a model

number have quite different response time characteristics because they in fact have different

internal chips and microcodes. The second reason is that the physical layout of the keyboard

keys or mouse buttons is not always appropriate for collecting responses, especially if there

are more than two alternatives.

In this article, I describe how to build and test a simple button box that can be

connected to the parallel port and used to register response times with millisecond accuracy.

Although I concentrate on the input function of the parallel port, the methods and source code

presented here could also be used for output functions, such as controlling a feed-hopper or

advancing a slide projector (see Sorokin, 2002).

 B134 A PC Parallel 4

The PC Parallel Port

Nearly all modern PCs have a parallel port, which was originally designed to

communicate with a printer. If your PC is not equipped with a parallel port (some modern PCs

ship without them), then you can purchase a parallel port PCI expansion card quite cheaply.

Indeed, it is a good idea to do this to avoid damaging a port that is integrated into the (much

more expensive) main motherboard. The port is normally a 25-pin DB socket. Table 1 shows

the assignment of signal names to pin numbers. Some of the pins receive inputs to the PC and

can be used to detect the states of buttons. Other pins can be set as outputs.

Modern parallel ports come in a number of types: the original, standard, output-only

parallel port; the extended, bidirectional parallel port; the extended capabilities parallel port

(ECP); and the enhanced parallel port (EPP). In this article, I shall assume an original parallel

port, though I will describe a solution for the bidirectional parallel port at the end of the

article. Many ECPs and EPPs can be made to emulate standard and bidirectional ports.2

Axelson (1997) provides a complete description of the parallel port.

The Port Addresses

The port registers are bytes of memory that set and reflect the status of the voltages on

the pins of the parallel port. Standard and bidirectional parallel ports have three one-byte port

addresses (the data port, the status port, and the control port). They are arranged sequentially

in the computer's memory. Table 2 shows the assignment of the bits of each port to signal

names. Some of the bits use inverted logic (i.e., 0 = high and 1 = low) to prevent unconnected

printers from initializing and spooling and unconnected PCs from trying to send data.

Normally the first parallel port (lp1) has a base address of BASEPORT = 0x378. (The

prefix 0x denotes hexadecimal numbers.) If there are any additional parallel ports, they

normally have BASEPORT addresses of 0x278 and 0x3bc. Some BIOSs allow the user to

select which BASEPORT their parallel port uses. By accessing the addresses BASEPORT,

BASEPORT + 1, and BASEPORT + 2 in software, one can set and read the state of the

 B134 A PC Parallel 5

parallel port.

When a bit of either the control or data ports is set (1), the corresponding output pin is

set to a high voltage of more than 2.4 V. When the bit is unset (0), the corresponding output

pin in the parallel port is set to a low voltage of less than 0.4 V. The pins remain latched in this

pattern until the bit is next altered. Bits in the status port reflect the voltage applied to the

status pins, and can be used for input purposes. Bits will be set if the voltage is above 2.4 V.

Testing Control of the Parallel Port

To test the functioning of the parallel port, I made a lead to connect the parallel ports

of two PCs together. I wired the first five data pins on one machine to the five status pins on

the other (i.e., 2 to 15, 3 to 13, 4 to 12, 5 to 10, 6 to 11) and vice versa (15 to 2, 13 to 3, 12

to 4, 10 to 5, 11 to 6). I also connected a ground pin (18 to 18). I then wrote a simple C

program (test.c)3 for Linux4 to write a five bit number to the data pins and read a five bit

number from the status pins. The program first requests access to the port registers using the

ioperm system call.

ioperm(BASEPORT, 3, 1));

requests access to the first three bytes from the address BASEPORT. Failure to do this will

result in a segmentation fault at run time. At the end of the program, access is relinquished

with

ioperm(BASEPORT, 3, 0));

Next, a 5 bit number is sent to the output pins using the outb call.

outb(send, BASEPORT);

sends the byte send to the port at address BASEPORT. Because only pins 2 - 6 are connected

(i.e., Data0 - Data4), only the first 5 bits of the byte send are actually transmitted. Finally, the

5 connected status pins are read using the call inb.

printf("Received %d\n", (inb(BASEPORT + 1) >> 3) ^ 0x10);

The signal must be bit shifted left (>> 3) to delete the three lowest order bits from the status

 B134 A PC Parallel 6

port (which are not connected) and then XORed with 0x10 to uninvert the busy bit signal

which is inverted in the parallel port hardware. If the ports on the two machines are

functioning as expected, then running ./test X on one machine should make a subsequent

running of ./test Y on the other machine report a value of X.

Testing the Latency of the Parallel Port

To test the latency of the parallel port, I sent 100,000 signals from one machine to the

other, and back again. By this method, the time from a signal appearing on the parallel port to

its registration in software can be established. The connecting cable was that used in the above

test. Machine A (running send_receive.c) was set to send a signal and then wait for it to be

returned before sending the next signal. Machine B (running bounce.c) was set to bounce the

signal by waiting for it and then immediately sending it back again. Thus, Machine A would

send a signal to Machine B (by calling outb) and record the time (using gettimeofday).

Machine B would detect the signal by repeatedly sampling its status port.

while (((inb(BASEPORT + 1) >> 3) ^ 0x10) != sig);

The while loop causes the machine to busy wait. In general, this is bad programming practice

as this completely monopolizes the system. However, as long as the PC is not being used for

another task, this is perfectly acceptable.5 When the signal sig is detected, it is immediately

sent back to Machine A via Machine B's data port by calling outb. Machine A detects the

signal by busy waiting, and then immediately records the time. Machine A would then send a

different signal to Machine B, beginning the next round trip. A different signal was used to

prevent the return signal from Machine B on the previous round trip being mistaken for the

return signal for the current round trip. The times were stored in memory and dumped to a

text file when the program finished. The latency of a round trip was calculated by subtracting

the first recorded time from the second recorded time.

Before presenting the results of this test, a few comments about the Linux operating

system are in order. The Linux operating system, like many modern systems, is a multiuser

 B134 A PC Parallel 7

multitasking operating system. In order to ensure accurate timing, three things are necessary.

First, there must be an accurate timer. Second, one must be able to prevent the program

collecting the reaction times from being interrupted by other programs. Third, one must make

sure that the program is not "swapped out" of main memory into swap memory on the hard

disk. Finney (2001) has shown that all of these requirements can be met by Linux. The source

code examples accompanying this article include simple code that sets these circumstances.

The requirements of timing, interruption, and memory were also met by the old MS

DOS operating system (Myors, 1999a). Though Myors (1999b) found that the MS Windows

3.1, 95, and NT4.0 operating systems do not meet these requirements, this conclusion may be

premature. When the experimental program is promoted to the real-time priority class to

prevent interruption, success in testing a millisecond accuracy timer in MS Windows 95, 98,

and 2000 has been obtained by MacInnes and Taylor (2001). Millisecond accuracy in

registering a response using the parallel port in MS Windows 95 and 98 is reported by

Chambers and Brown (2003). Plant et al. (2003) measured the error in the response time

reported by the E-prime software running on MS Windows 98. They found that, although

there was a constant error of the order of tens of milliseconds, the variability in this error was

as low as 2 ms for some serial and PS/2 mice. Their key finding was that the variability

depended on the particular hardware used, rather than on the operating system. For a

complete MS Windows tachistoscope solution requiring additional hardware, see McKinney,

MacCormac, and Welsh-Bohmer (1999). Plant, Hammond, and Turner (2004)'s commercial

apparatus for testing timing accuracy in experimental set ups is controlled via the parallel port.

The testing program runs under the real-time scheduling priority in MS Windows NT, 2000,

or XP and provides sub-millisecond accuracy. The DMDX application (Forster & Forster,

2003) for Windows 95, 98, 98SE, ME, XP, and 2000 is also reported to obtain close to

millisecond accuracy for measuring response times. The source code for these commercial

programs has not been made available by the authors.

 B134 A PC Parallel 8

The results of the current test are as follows. Using two dual processor6 AMD 1.53

GHz machines with parallel ports built in to the Tyan Thunder K7 motherboards produced

times (to the nearest �s) between 3 and 20 �s for a single round trip. Of the 100,000 signals

sent, 32.43% of the round-trip latencies were 3 �s and 67.17% of latencies were 4 �s. The

remaining 0.40% of latencies were between 5 �s and 20 �s. As each latency is the time to

send a signal from one machine, receive it on the other, send a signal from the other, and then

receive it back on the original machine again, the time from a button press to software

detection will be, at most, half of this (not including the physical characteristics of the

buttons). That is, the latency from the close of the button contacts to software detection of the

press where the time can be logged is about 2 �s. (The system calls gettimeofday, inb, and

outb take only a few �s.) In conclusion, a Linux system and parallel port button box will allow

response times to be measured with more than millisecond accuracy, and almost microsecond

accuracy.

A Button Box for the Standard Parallel Port

An exceedingly simple button box can be constructed by taking advantage of the fact

that open (i.e., unconnected) pins are read as logic 1, and grounded input pins are read as

logic 0. Thus, if a push-to-make button is connected from an input pin to a ground pin, then

pressing the button changes the logic from 1 to 0. Up to five buttons may be connected using

the five status pins and five ground pins (i.e., between pins 10 and 18, 11 and 19, 12 and 20,

13 and 21, and 15 and 22).

Some switches can produce a "bounce" and open and close the connection many times

when they are pressed. Thus, a single button press may register many times. This problem can

be overcome by using a different kind of switch (e.g., a mercury tipped switch), or by

introducing into the software a refractory period after the detection of a first contact during

which subsequent contacts are ignored.

A Button Box for the Bidirectional Parallel Port

 B134 A PC Parallel 9

There are two reasons why it might be necessary to use a bidirectional parallel port.

First, more than five buttons might be required. On a bidirectional parallel port, if bit 5 of the

control port is set, then the data port (pins 2-9) can be used for input instead of output,

allowing the use of a further eight buttons. Second, some standard parallel ports do not follow

the convention that unconnected input pins should be read as logic 1. In this case it is

necessary to somehow set the input pin high when the switch is open, as the pin will not

default to this state. This can be done by using one (or more) of the data port pins for input as

follows: (a) unset bit 5 of the control port to set the data port to output mode, (b) set the

required data port pins to high, (c) set bit 5 of the control port to set the data port pins to

input mode. When a data port pin is grounded by closing a switch, its logic will change to 0

from 1. There is an advantage to having a parallel port that behaves in this way: switch

"bounce" will not be registered, as the first close of the contacts will ground the pin, and it will

remain grounded for subsequent opening and closing, until the pin is set high again in the

software.

Conclusion

In conclusion, a PC Linux system with a parallel port button box is easily capable of

measuring the time of a response with millisecond accuracy.

 B134 A PC Parallel 10

References

Axelson, J. (1997). Parallel port complete: Programming, interfacing & using the PC's

parallel printer port. Madison, WI: Lakeview Research.

Chambers, C. D., & Brown, M. (2003). Timing accuracy under Microsoft Windows revealed

through external chronometry. Behavior, Research Methods, Instruments, &

Computers, 35, 96-108.

Finney, S. A. (2001). Real-time data collection in Linux: A case study. Behavior Research

Methods, Instruments, and Computers, 33, 167-173.

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond

accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116-124.

MacInnes, W. J., & Taylor, T. L. (2001). Millisecond timing on PCs and Macs. Behavior

Research Methods, Instruments, & Computers, 33, 174-178.

McKinney, C. J., MacCorman, E. R., & Welsh-Bohmer, K. A. (1999). Hardware and software

for tachistoscopy: How to make accurate measurements on any PC utilizing the

Microsoft Windows operating system. Behavior Research Methods, Instruments, &

Computers, 31, 129-136.

Myors, B. (1999b). Timing accuracy of PC programs running under DOS and Windows.

Behavior Research Methods, Instruments, & Computers, 31, 322-328.

Myors, B. (1999a). The PC tachistoscope has 240 pages. Behavior Research Methods,

Instruments, & Computers, 31, 329-333.

Plant, R. P., Hammond, N., & Turner, G. (2004). Self-validating presentation and response

timing in cognitive paradigms: How and why. Behavior, Research Methods,

Instruments, & Computers, 36, 291-303.

Plant, R. P., Hammond, N., & Whitehouse, T. (2003). How choice of mouse may affect

response timing in psychological studies. Behavior, Research Methods, Instruments, &

Computers, 35, 276-284.

 B134 A PC Parallel 11

Segalowitz, S. J., & Graves, R. E. (1990). Suitability of the IBM XT, AT, and PS/2 keyboard,

mouse, and game port as response devices in reaction time paradigms. Behavior,

Research Methods, Instruments, & Computers, 22, 283-289.

Sorokin, A. V. (2002). Instrument-to-PC interfacing using an enhanced parallel port.

Instruments and Experimental Techniques, 45, 516-520.

Stewart, N. (2004). Millisecond accuracy video display using OpenGL under Linux.

Manuscript submitted for publication.

Ulrich, R., & Giray, M. (1989). Time resolution of clocks: Effects on reaction time

measurement-Good news for bad clocks. British Journal of Mathematical and

Statistical Psychology, 42, 1-12.

 B134 A PC Parallel 12

Author Note

Neil Stewart, Department of Psychology University of Warwick.

I would like to thank Martin Aldred and Dave Sleight for their help constructing leads

and button boxes and Matthew Roberts and James Adelman for many Linux discussions.

Correspondence concerning this article should be addressed to Neil Stewart,

Department of Psychology, University of Warwick, Coventry, CV4 7AL, UK. E-mail:

neil.stewart@warwick.ac.uk.

 B134 A PC Parallel 13

Footnotes

1It is often not necessary to measure response times with millisecond accuracy (Ulrich

& Giray, 1989).

2An ECP port can be made to implement a standard parallel port by setting bits 5, 6,

and 7 of BASEPORT+0x402h to 0, 0, and 0 respectively. If the bits are set to 1, 0, and 0 a

bidirectional port will be emulated. Alternatively, the emulation can often be set at boot time in

the BIOS set up. See Axelson's parallel port web pages (http://www.lvr.com/parport.htm) for

more details.

3All of the source code is available from the author's home page

(http://www.warwick.ac.uk/staff/Neil.Stewart/), together with a simple library of example

control functions.

4Axelson's parallel port web pages (http://www.lvr.com/parport.htm) describe how to

access the parallel port under MS Windows operating systems for a variety of languages.

5This busy wait method is used here to provide a proof of concept. In a real

application, it is of course possible to complete other tasks in this loop, and even to give

control back to the kernel for OS tasks to be performed. Providing that the time of each

parallel-port poll is recorded, then the time of the first occasion on which a button press was

detected can be compared to the time of the last occasion on which a button press was not

detected, to provide, with certainty, the interval of time during which the button must have

been pressed. I have found in typical applications that the maximum error is normally only a

few microseconds.

6Single processor machines are perfectly adequate though: The testing programs are

not multithreaded.

 B134 A PC Parallel 14

Table 1

Pin Names for a 25 Pin Parallel Port

Pin Number Name Direction from PC

1 Strobe Output

2 Data 0 Output

3 Data 1 Output

4 Data 2 Output

5 Data 3 Output

6 Data 4 Output

7 Data 5 Output

8 Data 6 Output

9 Data 7 Output

10 ACK Input

11 Busy Input

12 Paper Empty Input

13 Select Input

14 Auto Feed Output

15 Error Input

16 Initialize Printer Output

17 Select Input Output

18-25 Ground

 B134 A PC Parallel 15

Table 2

The Port Addresses

Bit Data Port

(BASEPORT+0)

Status Port

(BASEPORT+1)

Control Port

(BASEPORT+2)
0 Data 0 Reserved Strobe*

1 Data 1 Reserved Auto Feed*

2 Data 2 IRQ Status Initialize Printer*

3 Data 3 Error Select Input

4 Data 4 Select IRQ Enable

5 Data 5 Paper Empty Direction

6 Data 6 ACK Reserved

7 Data 7 Busy* Reserved

Note. * marks inverted logic (i.e., 0 = high and 1 = low).

	ADP96.tmp
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

