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In this paper we propose a multiresolution Markov Random Field (MMRF) model for
segmenting textured images. The Multiresolution Fourier Transform (MFT) is used to provide a
set of spatially localised texture descriptors, which are based on a two-component model of
texture, in which one component is a deformation, representing the structural or deterministic
elements and the other is a stochastic one. Stochastic relaxation labelling is adopted to maximise
the likelihood and assign the class label with highest probability to the block (site) being visited.
Class information is propagated from low spatial resolution to high spatial resolution, via
appropriate modifications to the interaction energies defining the field, to minimise class-position
uncertainty. Experiments on the segmentation of natural textures are used to show the potential of

the method.
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Abstract

In this paper we propose a multiresolution Markov Random Field (MMRE)
model for segmenting textured images. The Multiresolution Fourier Transform
(MFT) is used to provide a set of spatially localised texture descriptors, which
are based on a two-component model of texture, in which one component is a
deformation, representing the structural or deterministic elements and the other
is a stochastic one. Stochastic relaxation labelling is adopted to maximise the
likelihood and assign the class label with highest probability to the block (site)
being visited. Class information is propagated from low spatial resolution to
high spatial resolution, via appropriate modifications to the interaction energies
defining the field, to minimise class-position uncertainty. Experiments on the
segmentation of natural textures are used to show the potential of the method.
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1 Introduction

Most attempts to segment or classify textures are based on either statistical or struc-
tural descriptions [5]. Statistical approaches such as co-occurrence matrices and auto-
regressive models represent texture by statistics extracted from local inage measure-
ments. Generally, they are good for textures with random spatial arrangements.
Structural approaches consider a textured image as composed of repeating texture



clements like a tiled wall. Among the statistical approaches, Markov Random Fields
(MRF’s) have gained much attention in recent yvears [1] [2] [3] [7] [8] [9] [10]. Bouman
and Shapiro used sequential maximum a posteriori (MAP) estimation in conjunction
with a multi-scale random field (MSRF) [1] , whicli is a sequence of random fields at
different scales. Geman et al. [3] used the Kolmogorov-Smirnov non-parametric nmea-
sure of difference between the distributions of spatial features extracted from pairs
of blocks of pixel gray levels, with MAP estimation of the boundary. Panjwani et al.
[9] adopted an MRF model to characterise textured colour images in terms of spatial
interaction within and between colour planes. Structural methods. by contrast, have
received scant attention in recent years, largely because of their relative inflexibility.

In this paper, we describe an attempt to marry the generality and power of mul-
tiresolution MRF methods with a description which combines a structural element
based on deformable templates [11] and a statistical element. The overall frame-
work is one of MAP classification on a multigrid, using simulated annealing. The
descriptors used for classification are based on a two-component model of texture: a
‘deterministic’ component based on the affine deformation of a patch of texture and
a ‘statistical’ component based on the local Fourier energy spectrum. By combining
these approaches. with the multiresolution Fourier transform (MFT) as the analyvsis
tool, we obtain a computationally efficient yvet general approach to the scgmentation
of arbitrary textured ficlds. After a brief outline of the theory, we preseut results
showing the effectiveness of the method in segmenting natural textures.

2  Multiresolution Markov Random Fields

The feature of a Markov Random Field which malkes it attractive in applications is
that the state of a given site depends explicitly only on interactions with its neigh-
bours [4]. We model an image as a sequence of MRF’s, conforming to a quadtree
structure, with a nominal top level I having 2! x 2! sites and a number of levels
k,l < k < N, each of which has four times more sites than its immediate ancestor.
The neighbourhood structure we impose consists of five pixels: the 4-neighbours on
the same level and the father on the level above:
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where |.| denotes the floor of a real number. Each site on level k represents a square
region of nominal size 27V 7% x 2N -k pixels, from which texture measurements are taken.
(In fact, windows with a 50% overlap are used to ensure that the measurements vary
smoothly across the image) . The interaction energies defining the MRF at level & 1
the tree are based on pairwise interactions:
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where A, ;1,1 < A < Lis the (class) label at (i. . &) and the sum over m allows tor 1/
texture descriptors to be used. The pairwise interactions U are functions of suitably
defined differences between the measurements X, at the two sites and the labels at
the two. Sampling is then based on the corresponding Gibbs distribution

LA

P(A) x ¢ T (3)

where the position indices have been suppressed and T is the scale parameter, or

temperature, which is varied using the annealing schedule [4]

Ci

Tili) = log(1 + 1)

(4)
where C} is a constant and ! is the iteration number.

Although this appears as a simple adaptation of the conventional sampling proce-
dure for MRF’s, one significant difference is the causal processing across scale implied
by the inclusion of the father in the neighbourhood. In effect, the configuration at
level k acts to condition the sampler at level & + 1. giving the multiresolution algo-

rithm:
1. Initialisc at top level (1) with a random labelling of sites (7, . 1).
2. For level k > 1,k < N

(a) Copy intitial labels from fathers on level & — 1.

(b) Sample at every site on level & using measurements X, ;& in annealing sched-
ule given in (4) until there is no change over I iterations over the whole
image at that scale.

3 Texture Measures Based on a Two-component

Model

While the above algorithm provides a general framework for segmentation, its effec-
tiveness depends critically on the texture descriptors used. We have four local mea-
surements, which are based on the ‘deterministic+stochastic’ decomposition, which
is a generalisation of the Wold decomposition of signals. The four components are:

1. Differences between the average gray level in the blocks. In effect, this uses
the local ‘d.c.” component in the MFT, which is computed using a gray level

pyramid.



2. Two measures associated with the deterministic compouent. based on an affine

deformation model

F&) = Fl ATHE = )+ ) (5)
where site s = (Lo k) 1s a 4-neighbour of site s = (/.. k). A is that 2 X 2 non-
singular linear co-ordinate transform and \ that translation which together give
the best fit in terms of total deformation energy between the two patches. These
are identified using the method described in [6]. which makes use of local Fourier
spectra caleulated at the appropriate scale using the MFT. The deformation

encrgy cousists of:

(a) The deformation term || A — I||? represents the amount of “warping’ required

to match the given patch using its neighbour.

(b) The error term ||,(€)]]? is the average residual error in the approximation.

3. A measure for the stochastic component. based on differences in the spectral
energyv densities estimated at each site via the MFT, |f({: o)]. This is similar
to many texture classification methods based on local spectra. Gabor filters or
autocovariance estimates.

Each of these measures is scaled by the corresponding (within-class or between-class)
sample variance and the four are added with appropriately chosen weights a,, to
give the final interaction energy. Only the gray level difference is used for the father
interaction. however. In order to obtain a MAP estimate, it is necessary to weight the
probabilities in (3) by priors based on the likelihood of a pair of neighbours belonging
to the same class. These probabilities are estimated directly from the data during
the sampling process, as are the within-class and between-class variances. At levels
I: > 1, the priors take into account the classification on the previous level, k —1: the
probability that a child has the same class as its father is given by

P(/\s: \f(s))zl—[)ds, (6)

where p < 11is a constant and d, is the shortest distance between site s and a site
having a different class. ie. it represents distance to the boundary. This amounts to
asswming that sites far from the boundary are likely to belong to the same region as
their fathers. By varying p. it is possible to accommodate the appearance of regions
too small to register at the largest scales. In the experiments reported below, p = 0.5.

4 Experiments

Two images, Image I and Image II, of size 256 x 256, each consisting of two textures,
were used to test the method (Figure 1 (a) and Figure 2 (a)). The algorithm started



Table 1: Constants Cy and ) used i experiment and iterations to segul ent 1mages

of Figurel(a) and 2(a)

image Image [ Image I1
level (k)| Cy | I, | iteration | C; | I, | it eration
3 S |3 424 S |3 806
4 6 1 30 6 | 1 38
5 4 1 47 4 1 o1
6 4 1 64 4 1 62

at level 3 (8 x S blocks) and stopped at level 6 (64 x 64 blocks). The segmentation
results at different scales are shown as Figure 1 (D) to (e) and Figure 2 (b) to (e). We
used different grey values to represent different classes. For example. in Figure 1(b).
three grey values are used to represent three classified regions. The white overlays on
the original images (Figure 1 (a) and Figure 2 (a)) are the boundaries estimated at
level 6. Table 1 summarises the two tests. showing the number of iterations per level
and the parameters T}, I controlling the annealing. Note that one iteration is a scan
across the whole image at the given level. so that a child level involves four times as
many updates as its father. However, many fewer iterations arc needed at the smaller
scales, whose labelling is constrained by that at the higher levels. Correspondingly.
the sampling process runs at lower temperatures at these scales.

The textures in Image I are somewhat more structured than those in Image I1.
Consequently, in the first image the energy of the deformation between blocks be-
longing to the same texture is small relative to that between textures, facilitating
scgmentation using the deformation component. Although the degree of randomness
of the two textures in the second image is higher than that in the first, the algorithm
still copes well. However, the total iteration count to convergence is higher at larger
scales, as can be seen from Table 1. Note that in this table, although it appears that
the bulk of the computation is performed at the higher resolutions (k larger), most of
the pixels at these resolutions assume stable states quickly: it is only in the boundary
region that changes occur over several iterations. Figure 1 shows clearly the bencfit
multiresolution approach. Due to the low position resolution, three regions emerge
along the boundary at the top level (see Figure 1(b)), although the classification of
the blocks away from the boundary is satisfactory. In effect, the boundary blocks are
treated as a separate class - not an unreasonable or unfamiliar problem, but none
the less undesirable. The degree of misclassification is reduced at level 4 and the the
boundary is further refined at lower levels.

ot



5 Conclusions

I this paper. we have presented a novel approach to texture segmentation combining
two important ideas: multiresolution MRF's to control the segmentation process and
a two-compouent texture model. in which a deformable template is used to model
the structural clement of the texture and the energy spectrum is used to capture
the stochastic element. In effect, this separation of the classification model from the
texture model creates a highly flexible and general segmentation tool. Moreover, the
effectiveness of the method has been shown with results from examples using natural
textures.

Nevertheless. much remains to be done before the method can show its full po-
tential. For example. no attempt has been made to model the boundary explicitly.
through a line process, although that is clearly feasible within the general NMRF
framework [4]. The choices of number of classes. L and the parameters Cy. [y are
currently made empirically. Moreover. we have only tested the method on a compar-
atively small sct of images. Work is currently in progress to address these 1ssues.
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(b) Segmentation at level 3 (16 times enlarged) (¢) Segmentation at level 4 (8 times enlarged)

(b) Segmentation at level 5 (4 times enlarged) (¢) Segmentation at level 6 (2 times enlarged)

Figure 1: Image I and the segmentation results at two different levels. Estimated

boundary shown in white in (a).



(b) Segmentation at level 3 (16 times enlarged) (c) Segmentation at level 4 (8 times cnlarged)

(b) Segmentation at level 5 (4 times enlarged) (e) Segmentation at level 6 (2 times enlarged)

Figure 2: Image II and the segmentation results at two different levels. Estimated

boundary shown in (a).



