
http://wrap.warwick.ac.uk/

Original citation:
Meehan, G. P. (1997) Fuzzy functional programming. University of Warwick. Department
of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-322

Permanent WRAP url:
http://wrap.warwick.ac.uk/61010

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61010
mailto:publications@warwick.ac.uk

Fuzzy Functional ProgrammingGary MeehanDepartment of Computer ScienceUniversity of WarwickE-mail: garym@dcs.warwick.ac.ukMay 1, 1997AbstractThis report aims to motivate the implementationof fuzzy logic in functional programmingin a variety of areas. It includes reasoning using fuzzy logic and fuzzy subsets, and fuzzyexpert systems. We show that a functional environment is a natural setting for fuzzy logic,yielding fuzzy programs that are compact, neat, readable and easily adaptable.1 IntroductionFuzzy logic [21] is a form of multi-valued logic which �nds many applications in expert systems[20], neural nets [4], formal reasoning [14], decision making [14], database enquiries [14] andmany other areas. The use of fuzzy logic in such applications not only makes their solutionssimpler and more readable but also more e�cient and accurate [11, 20].Fuzzy logic has been applied to many languages | both in extending standard languagessuch as Prolog [13], Fortran [6], APL [14] and Java [7], and in custom-designed languages suchas Fuzzy CLIPS [5], FIL [2, 17], and FLINT [12]. However, no one (to the author's knowledge)has combined fuzziness with a functional language. This report aims to explore the the use offuzzy logic in functional languages, inspired by the fundamental equivalence of fuzzy subsetsand functions (see Section 2).By using various examples, and describing how they could be written in a functional notationwe will show that:� Using fuzzy logic in a functional context is not ine�cient.� The introduction of fuzzy logic to functional programming preserves the standard advan-tages of functional programming: readability, compactness and adaptability [1].� A functional notation introduces greater exibility. The user is not constrained to oneparticular fuzzy value set (normally [0; 1]) and a handful of standard membership func-tions.The functional notation we shall use in this paper is based on Haskell [18].Section 2 provides a brief overview of fuzzy logic subsets and systems. Sections 3, 4 and5 explore the use of a functional language to implement solutions of problems in fuzzy logic,subsets and systems respectively. Section 6 contains some concluding remarks. Appendix Aprovides the original source as well as their functional forms for the three sample fuzzy expertsystems used in this report and Appendix B describes some standard fuzzy subsets.2 A Brief Overview of Fuzzy Logic, Subsets and SystemsFor a more detailed examination of fuzzy logic and fuzzy subsets see[9]. A description of fuzzysystems may be found in [8] or [11]. 1

2.1 Fuzzy LogicIn standard (boolean) logic all well-formed expressions evaluate to one of two values in the setB: T or F. In fuzzy logic, we replace the two-valued set by a many-valued set. Typically we use[0; 1] where 0 represents absolute falseness, 1 absolute truth and the values in between representdegrees of truthness. This is not the only value set, there are others such as fNo, Maybe, Yesgfor example.Given a value set, M , we have the connectives ^M , _M and :M . These connectives areanalogous to the boolean connectives ^, _ and :.There are various ways in which we can de�ne connectives over M . If M = [0; 1] then wehave: a ^M b = min(a; b)a _M b = max(a; b):Ma = 1� a (1)Or, alternatively: a ^M b = a:ba _M b = a+ b� a:b:Ma = 1� a (2)When de�ning connectives we usually require (though it is not essential) that they obey thenormal laws of logic: associativity, commutativity, distributivity, de Morgan's laws and thedouble negative law1. For x; y; z 2M we have:x ^M (y ^M z) = (x ^M y) ^M zx _M (y _M z) = (x _M y) _M zx ^M y = y ^M xx _M y = y _M xx _M (y ^M z) = (x _M y) ^M (x _M z)x ^M (y _M z) = (x ^M y) _M (x ^M z):Mx _M :My = :M (x ^M y):Mx ^M :My = :M (x _M y):M (:Mx) = xWe may also have identities and annihilators for ^M and _M denoted trueM (absolute truthness)and falseM (absolute falsehood) such that for x 2M :trueM _M x = x _M trueM = trueMtrueM ^M x = x ^M trueM = xfalseM _M x = x _M falseM = xfalseM ^M x = x ^M falseM = falseM (3)The unit interval with connectives as de�ned in (1) and (2) satisfy all these laws (see [9] forproof) with true taking the value 1 and false taking the value 0.If the equations in (3) hold then we can de�ne an isomorphism � : ftrueM ; falseMg ! Bsuch that: �(trueM) = T�(falseM) = F1Idempotence is not required: for instance see eqs. (2).2

from which it follows that: �(a ^M b) = �(a) ^ �(b)�(a _M b) = �(a) _ �(b)�(:Ma) = :�(a)where a; b 2 ftrueM ; falseMg. The proof follows by enumerating all possible choices for a andb. For ^M we have:�(trueM ^M trueM) = �(trueM) = T = T ^ T = �(trueM) ^ �(trueM)�(trueM ^M falseM) = �(falseM) = F = T ^ F = �(trueM) ^ �(falseM)�(falseM ^M trueM) = �(falseM) = F = F ^ T = �(falseM) ^ �(trueM)�(falseM ^M falseM) = �(falseM) = F = F ^ F = �(falseM) ^ �(falseM)For _M we have:�(trueM _M trueM) = �(trueM) = T = T _ T = �(trueM) _ �(trueM)�(trueM _M falseM) = �(trueM) = T = T _ F = �(trueM) _ �(falseM)�(falseM _M trueM) = �(trueM) = T = F _ T = �(falseM) _ �(trueM)�(falseM _M falseM) = �(falseM) = F = F _ F = �(falseM) _ �(falseM)And �nally for :M we have:�(:M trueM) = �(falseM) = F = :T = :�(trueM)�(:M falseM) = �(trueM) = T = :F = :�(falseM)This shows that we can regard fuzzy logic as an extension of boolean logic. We will drop thesubscripts from the connectives and the identities and rely on the context that they are used into dictate the correct usage.2.2 Fuzzy SubsetsConsider a subset Y of a set X . For every x 2 X either x 2 Y or x =2 Y . So we can de�ne acharacteristic (membership) function �Y : X ! f0; 1g such that:�Y (x) = 1; if x 2 Y= 0; otherwiseIn a fuzzy subset2 Z of X , instead of each element of X being either in Z or not in it, it isalways in Z `to some degree', that degree being dictated by some fuzzy value set, M say. Thisvalue is calculated by evaluating the characteristic function �Z(x) : X ! M for each x 2 X .Thus a fuzzy subset, Z is a set of pairs which is a subset of X �M de�ned as:Z = f(x; �Z(x)) j x 2 XgNote that a fuzzy subset and its characteristic function have the same de�nition if we take theset-theoretic de�nition of a function (a set of domain-range pairs). This is an equivalence whichwe shall exploit later.Suppose we have the value set [0; 1]. If, for some x 2 X , �Z(x) = 0 then x is de�nitely notin Z. Conversely, if �Z(x) = 1 then x de�nitely is in Z. If �Z(x) = 0:1 then we can say that xis in Z `a bit', and if �Z(x) = 0:9 we can say that x is in Z `a lot'.2Technically, there is no such thing as a fuzzy set, only a fuzzy subset, since before we can start de�ning fuzzysets we need some underlying set of possible members, but we shall usually abuse notation and refer to fuzzysets. 3

1.2 1.4 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

F
u

zz
in

es
s

Height (metres)

0.33

0.66

0

1

tall

Figure 1: The fuzzy subset tallThus fuzzy subsets allow us to represent linguistic statements such as `John is tall a lot'by de�ning a fuzzy subset tall on the set of heights, and for each height assigning a fuzzyvalue. Fuzzy subsets can be shown graphically by plotting their membership function, forexample Figure 1 shows a possible membership function of tall. From this we can deduce that�tall (1:5) = 0, i. e. somebody of 1.5 metres is `not at all' tall, �tall (1:6) = 0:33, i. e. somebodyof 1.6 metres is tall `a bit', and so on.Fuzzy subsets can be combined using the standard operatives such as union. These arede�ned in the standard way, using the connectives of the underlying fuzzy value set. If we havefuzzy subsets A and B of a set X then we de�ne union, intersection and complement by meansof their membership functions for x 2 X , viz :�A[B(x) = �A(x) _ �B(x)�A\B(x) = �A(x) ^ �B(x)�Ac(x) = :�A(x)2.3 Fuzzy (Expert) SystemsExpert systems are used to model real-world systems in many areas of expertise [16]. ExpertSystems consists of sets of rules together with an inference engine which is used to manage theserules. Rules have an antecedent (an expression in boolean logic) and a consequence, usuallyassignments to variables and/or manipulation of a facts database.For instance, suppose we have a shower with two taps, hot and cold, which are used tocontrol the temperature (in �C) and ow (in l/s) of the water [5]. The aim is to get both thetemperature and the ow in an acceptable range.This job can be done by an expert system. Given that the taps take values in the range[0; 1] we might have rules such as the following:(defrule cold_weak(outTemp < 36)(outFlow < 12) 4

0

1

-0.2 -0.1 0 0.1 0.2
0

1

15 35 55 75

ho
t

ok

1

0
0 10 20 30

st
ro

ng

flow (l/s)temperature (C)

N
B

okN
S

N
M

Z P
S

P
M

P
B

lo
w

co
ld

change in valve settingFigure 2: Fuzzy subsets of change, temperature and ow in a shower=>(assert (change_vh 0.15))(assert (change_vc 0)))The notation is based on CLIPS [15]. Note that there is an implicit and between the two partsof the consequence.This rule states that when the temperature of the water is below 36�C and the ow is below12 l/s we increase the hot valve by 0.15 and leave the cold valve alone. The reliance on booleanlogic means that rules either �re (i. e. perform the actions of their consequence) or they don't�re. The order in which the rules �re is non-deterministic, though ordering can be speci�ed bythe programmer.If we use fuzzy logic instead, we can have rules which �re to some degree, dictated by thenow fuzzy value of the antecedent. We replace the inequalities in the antecedent (e. g. outTemp< 36) by fuzzy membership tests (e. g. outTemp cold). The assignment of a single value to avariable in the consequence is replaced by the assignment of a fuzzy subset to a variable. Thesesubsets can be seen graphically in Figure 2. This subset will be linearly weighted by the value ofits antecedent. For instance, if the antecedent has value a and the consequence is a fuzzy subsetwith membership function �, then the weighted consequence will have membership function �0where �0(x) = a:�(x).Fuzzy expert systems can combine the consequences of their rules. Suppose we have tworules: (defrule cold_low(outTemp cold)(outFlow low)=>(assert (change_vh PM))(assert (change_vc Z)))(defrule OK_low(outTemp OK)(outFlow low)=>(assert (change_vh PS))(assert (change_vc PS)))where PB = Positive Big, PM = Positive Medium, PS = Positive Small, Z = Zero, NS = NegativeSmall, NB = Negative Medium and PB = Negative Big. The full rule base can be seen inAppendix A.3.Both the fuzzy subsets PM and PS are associated with change vh, and similarly for change vc.To resolve this conict, we combine the consequences (which are weighted fuzzy subsets) into a5

single consequence, using a combinator such as union or sum. The sum of two fuzzy subsets Aand B (which we shall write as A +B) has the membership function de�ned by:�A+B(x) = �A(x) + �B(x)The sum method is regarded as the best [11].A single value, rather than a fuzzy subset, is normally required. This value is obtained bydefuzzifying the fuzzy subset by taking the subset's centroid or returning one of the elementsof the subset with the maximal fuzzy value3.One of the most important thing about fuzzy systems is that they work without an under-lying mathematical model: the rules are constructed using empirical data. This means we canmodel complex, non-linear systems using only a few fuzzy rules. Indeed, many systems thatcannot be modelled in standard expert systems may easily be modelled in fuzzy systems. It hasbeen shown that any system may be modelled using fuzzy rules [11, 20], though naturally themore complex the system, and the greater the accuracy needed, the more rules may be needed.We have well-de�ned methods of constructing these fuzzy rules [3, 10].3 Fuzzy Logic via Functional ProgrammingThe notion of translating fuzzy logic into a functional context presents no major problems. Allwe have is a new type and some functions which manipulate that type. The de�nition of thesefunctions is a straightforward translation from their corresponding mathematical ones.3.1 Overloading and Multiple Fuzzy Value SetsWe choose to overload the operator and function names that were de�ned previously only onthe booleans, so that they work over fuzzy values as well. This can be facilitated using Haskell'stype classes. 4.Our overloading of the boolean operators so that they work on fuzzy values as well asbooleans means that we aren't restricted to one fuzzy value set. For instance, if we have a typeclass such as the following:class Logic a wheretrue, false :: a(&&), (||) :: a -> a -> anot :: a -> aThe values true and false are constant functions which evaluate to absolute truth and absolutefalsehood. We can declare that Bool is an instance of this class:instance Logic Bool wheretrue = Truefalse = False...�lling in the rest of the de�nition as normal. We can also de�ne a fuzzy value set, based on theunit interval, viz :instance Logic Float wheretrue = 1.0false = 0.0x && y = min x yx || y = max x ynot x = 1.0 - x3Defuzzi�cation also relieves the technical worry that combining the consequences using sum may lead tovalues which are outside the legal range.4As the Hugs prelude predicts Armageddon if you alter its prelude, it is probably better to use the Haskell-likeGofer interpreter instead. 6

This is the logic that we shall presume for the rest of this report. For clarity, we de�ne the typesynonym type Unit = Float5 to stand for the unit interval.We aren't restricted to just these two instances. We can de�ne an instance which uses threevalues, say. For example:data Three = No | Maybe | Yesinstance Logic Three wheretrue = Yesfalse = NoNo && x = NoYes && x = x...3.2 Quanti�ed Model for Learning DisabilitiesEven fuzzy logic on its own is useful. As an example. consider the Quanti�ed Model for LearningDisabilities [6] which aims to predict whether a child has learning di�culties. A child is said tohave learning di�culties if:1. The child has a normal achievement potential AND2. Either:(a) The child has the behavior characteristics of learning di�culties. OR(b) The child has the component (i. e. sight, hearing, etc.) de�cits within age-relatedfunctionsAND3. The child has the trait of signi�cantly low achievement.Each of these criteria has an associated fuzzy value (in the unit interval). In the case of 2a, 2band 3, this value is the (fuzzy) disjunction of the results of a set of yes/no questions which havean associated weight (a fuzzy value) associated with them. For instance, one of the questionsof 2a is:`Di�culty working indicated in a teacher report.' 0.4If the answer to the question is `yes' then the weight (in the above case, 0.4) is used in theoverall disjunction; if the answer is `no' the value 0 is used.Criterion 1 is a little di�erent. The fuzzy value is calculated from the child's IQ (a naturalnumber below 200) and the percentiles (integers between 1 and 100) of the child's results in aquadruple of verbal tests.This can be translated into the following functional program. Note that this program relieson the order of the answers adhering to that speci�ed in [6].type Percentile = Inttype Answer = Bool-- returns the belief to which we believe a child has learning-- difficulties based on the child's IQ, the percentiles to which the-- child falls in in 4 verbal tests, and the answers to three lists of-- yes/no questions5Type synonyms aren't allowed in instance de�nitions in Haskell.7

learning_disability :: Int -> [Percentile] -> [Answer] -> [Answer] -> [Answer] -> Unitlearning_disability iq verbal_behavs behav_chars problems low_achievement =norm_achieve_potential iq verbal_behavs &&eval behav_chars [0.6, 0.4, 0.3, 0.4, 0.6, 0.4, 0.3, 0.7] ||eval problems [0.8, 0.8, 0.8, 0.7, 0.8, 0.8, 0.6, 0.4, 0.3, 0.4] &&eval low_achievement [0.6, 0.5, 0.6, 0.4, 0.5, 0.5, 0.6, 0.3, 0.3, 0.2,0.7, 0.5, 0.6, 0.6]-- Returns the result of the 1st criterion (normal achievement potential)-- based on the IQ and the percentiles to which the child falls in in 4-- verbal tests. The fuzzy values associated with the percentiles are-- obtained by finding their value on a sigmoidal curve.norm_achieve_potential :: Int -> [Percentile] -> Unitnorm_achieve_potential iq vbs_percs = adequate_intelligence && adequate_verbal_behaviourwhereadequate_intelligence| iq >= 80 = 0.8| 75 <= iq && iq <= 79 = 0.5| 50 <= iq && iq <= 74 = 0.1| otherwise = 0.0adequate_verbal_behaviour = or (map sigmoidal vbs_percs)wheresigmoidal p = 1 / (1 + exp (0.2 * (p - 25)))-- Evaluates the value of a criterion by taking the answers to its-- questions, using these to select either the appropriate weight of-- false (0) and taking their disjunctioneval [Answer] -> [Unit] -> Uniteval cs vs = or (zipWith select cs vs)whereselect :: Bool -> Unit -> Unitselect c fv| c = fv| otherwise = falseCuriously enough, although Horvath presents this as an exercise in fuzzy logic, some of theyes/no questions used make more sense if they were fuzzi�ed. If we consider our example fromabove concerning the teacher's report on whether or not the child has di�culty working, thenthe teacher is forced into a strait-jacket and has to either indicate a completely positive or acompletely negative response. It would seem to make more sense to let the teacher express thedegree to which s/he believes the child to have di�culty working. So, we replace the yes/noquestions by letting the teacher dictate to what degree they believe the question to be true. Forthose questions which are strictly yes/no questions, then the teacher can still use the constantfunctions true and false.This increased exibility actually makes the program simpler. Each boolean answer isreplaced by a fuzzy one, which we naturally use to weight (linearly) the value associated withthe answer | the values true and false lead to the same behavior as before.So, we need to make two changes. The type synonym Answer changes to:type Answer = UnitAnd the de�nition of evaluate changes to:evaluate [Answer] -> [Unit] -> Unitevaluate cs vs = or (zipWith (*) cs vs) 8

4 Fuzzy Subsets in a Functional ContextAs we have already seen in Section 2.1, fuzzy subsets and functions are fundamentally equivalent.So, if we have a type a which we want to fuzzify, and some type, f say, representing the fuzzyvalue set, then a fuzzy subset over a is simply a function of type a -> f, this function is also themembership function of the fuzzy subset. To make it clear we are dealing with a fuzzy subset,we can de�ne the type synonymtype FSet a f = a -> fIf we consider the tall example of Section 2.2, then we can de�ne this functionally as:type Height = Floattall :: FSet Height Unittall = lslope 1.5 1.8where lslope takes the value false (0) below 1.5, true (1) above 1.8 and increases linearlybetween the two. This is a standard fuzzy subset (see Appendix B) and can be de�ned by:lslope :: Float -> Float -> FSet Float Unitlslope a b = \x -> if x < a then falseelse if x > b then trueelse (x - a) / (b - a)So, to �nd out how `tall' we view a height of 1.65 we simply evaluate tall 1.65 and yield theanswer 0.5.4.1 Fuzzy Filters and Database EnquiriesExtraction of information from a database usually involves the use of boolean logic which canplace arti�cial constraints on the data. Suppose we had a list of companies and we wanted to�nd those with high sales [14]. Using a boolean query we would have to use some �gure at andabove which sales become high, e. g. $1,000,000. But then we have the situation that sales of$1,000,000 are considered high, but sales of $999,999.99 are not considered high.We could represent `high' as a fuzzy subset. For example:type Sales = Float -- thousands of poundshigh :: FSet Sales Unithigh = lslope 600 1150Of course, we need some way to exploit this. If we consider a database as a list of records, thena query is just a �lter, therefore if we rede�ne filter, viz :filter :: (a -> f) -> [a] -> [a]filter _ [] = []filter p (x:xs)| p x == false = filter p xs| otherwise = x:(filter p xs)Then to extract the companies with high sales to some (but not zero) degree, we simply have toapply the function filter (high . sales) to our database. The function sales extractsthe sales information from a company record and has type Company -> Sales (we ignore thede�nition of Company).The above only gives the companies who have some degree of high sales, it is desirable tosee how high they are, indicated by the fuzzy value obtained by applying high . sales tothe company. This can be accomplished by a variation of filter:9

filterv :: (a -> f) -> [a] -> [(a, f)]filterv _ [] = []filterv p (x:xs)| v == false = filterv p xs| otherwise = (x, v):(filterv p xs)where v = p xThis so far is a little simple. Things get more interesting when we pass more complicatedexpressions to the �lter. For example, we may also want to consider the pro�t margin of ourcompanies. If we want to �nd all those companies with an acceptable pro�t margin, we cande�ne the fuzzy subset:type Profit = Float -- Percentageacceptable :: FSet Profit Unitacceptable = lslope 12 18and thus we can �nd all those companies with high sales and acceptable pro�t by using thefuzzy predicate:high_performer :: Company -> Unithigh_performer co = high (sales co) && acceptable (profit co)with filter (here profit extracts the pro�t information from a company record).We aren't restricted to just excluding all those companies with a fuzzy value of false. Ifwe rewrite our function above as:high_performer :: Company -> Boolhigh_performer co = (high (sales co) && acceptable (profit co)) >= 0.5Then we only include all those companies which are high performers at and over a degree of 0.5(and, incidentally, revert back to a boolean predicate in our function6).5 Fuzzy Systems in a Functional EnvironmentThe implementation of a fuzzy expert system in a functional setting may seem at �rst to bea highly complex problem. An Expert System is large collection of rules with a sophisticatedinference engine which manages these rules; fuzzy expert systems have the added complexity ofconsequence combination and defuzzi�cation. In addition, the order in which the rules �re islargely non-deterministic. How can we hope to implement a largely non-deterministic problemin a deterministic functional language?We should take note of the following facts:� Expert systems are input-oriented, or data-driven7, that is the design of the system isbased on enumerating all the inputs and not only quanti�es its output (i. e. works outwhat its value(s) are) but quali�es it (i. e. works out to what these values belong).Functional programs are, conversely, output-oriented : they are designed around workingout values by evaluating functions. We always know what the values belong to, we arejust concerned with working them out (with regard to some input).6This suggests we do not need to rewrite filter as a fuzzy function, but simply convert the fuzzy predicateto a boolean, i.e. our fuzzy filter p can be written as the boolean filter p' where p' x = p x /= false, say.However, the rewrite leads to less cumbersome programs and so we prefer it.7Here we are considering forward-chaining expert systems. Backward-chaining systems are goal-oriented �a laProlog. 10

� Fuzzy expert systems are much shorter than standard ones and, as such, don't involvelong, complex chains of inferences. This has the e�ect that the non-determinism of fuzzyexpert systems is not as important as it is in standard ones8.Bearing these in mind we change the nature of fuzzy expert systems so that they are now meansof working out values, rather than of working out what happens when a particular event occurs.We choose to overload the Haskell conditional | even though this is a primitive in Haskelland so couldn't be overloaded in practice without a substantial rewrite of one's Haskell compileror interpreter.In a fuzzy context, the conditional evaluates the antecedent of each of its branch and weightsthe corresponding consequence accordingly. When this has been accomplished, all the conse-quences are combined using a fuzzy subset function such as union or sum. We keep defuzzi-�cation separate and explicit, here via the centroid function. We presume that there existsan overloaded if ... then ... else if which works in a similar manner. We shall notconsider the otherwise and else branches of the conditionals as they have no equivalent in thethe world of fuzzy expert systems.Our change in approach, from input-oriented to output-oriented, means that we no longerneed an inference engine to organise the �ring of rules, combine consequences and performdefuzzi�cation. These tasks are now taken care of by the evaluation mechanism of the particularcompiler/interpreter that we are using. This evaluation mechanism is typically graph reduction[1].5.1 A Fuzzy Shower ControllerConsider again the shower example (from [5]) which was described in Section 2.3. How wouldwe code a functional implementation? We evaluate the change to the hot- and cold-water tapsdirectly. For instance:change_valves :: (Temp, Flow) -> (Change, Change)change_valves (temp, flow) = (hot, cold)where(hot, cold) = (centroid (fst changes), centroid (snd changes))changes| cold temp && low flow = (pm, z)| cold temp && right flow = (pm, z)| cold temp && strong flow = (z, nb)| ok temp && low flow = (ps, ps)| ok temp && strong flow = (ns, ns)| hot temp && low flow = (z, pb)| hot temp && right flow = (nm, z)| hot temp && strong flow = (nb, z)Note that the fuzzy subset ok of ow has been renamed right to prevent name clashes. Thefull code can be seen in Section A.3.5.2 Conditional Branch CombinationWe can also make other minor gains. Consider the following:foo | a = consequence| b = consequence|...8Non-determinism is a dubious advantage of expert systems, anyway. Anyone who has programmed an expertsystem will no doubt be aware of the hacks involved in trying to stop the system �ring o� rules at inconvenienttimes. 11

The two separate branches are superuous and we would like to combine them. How exactlywe combine them depends on how the consequences are being combined. If we are using union,we write:foo | a || b = consequence| ...Whereas, if we were using sum combining, we would have to write:foo | a + b = consequence| ...For the rest of this report, we shall presume union combining and use ||.As an example of this, consider the washing machine example from Appendix A.2. Giventhe degree and type of dirtiness of a wash, we have to calculate the length of the wash.We have the original de�nition using the Aptronix Fuzzy Inference Language (FIL):if dirtiness_of_clothes is Large and type_of_dirt is Greasythen wash_time is VeryLong;if dirtiness_of_clothes is Medium and type_of_dirt is Greasythen wash_time is Long;if dirtiness_of_clothes is Small and type_of_dirt is Greasythen wash_time is Long;if dirtiness_of_clothes is Large and type_of_dirt is Mediumthen wash_time is Long;if dirtiness_of_clothes is Medium and type_of_dirt is Mediumthen wash_time is Medium;if dirtiness_of_clothes is Small and type_of_dirt is Mediumthen wash_time is Medium;if dirtiness_of_clothes is Large and type_of_dirt is NotGreasythen wash_time is Medium;if dirtiness_of_clothes is Medium and type_of_dirt is NotGreasythen wash_time is Short;if dirtiness_of_clothes is Small and type_of_dirt is NotGreasythen wash_time is VeryShortThe de�nitions of the various fuzzy subsets can be found in Appendix A.2. This can be writtenfunctionally as:wash_time :: Degree -> Degree -> WashTimewash_time greasiness dirtiness= minimum (maxima wt)wherewt | high greasiness && high dirtiness = very_long| high greasiness && (normal dirtiness || low dirtiness) = long| normal greasiness && high dirtiness = long| normal greasiness && (normal dirtiness || low dirtiness) = medium| low greasiness && high dirtiness = medium| low greasiness && normal dirtiness = short| low greasiness && low dirtiness = very_shortpresuming that the distributive laws hold for for && and ||. Although we still have repeatedconsequences (two of long and of medium) the antecedents leading to them have nothing incommon, and nothing is gained by combining them into a single branch.It should be pointed out that we cannot nest conditionals unless && and multiplication(which we use to do the weighting of the consequences) are equal9. This means that in general9This is true in the case of the booleans or on the unit range where && is de�ned as multiplication directly.12

if a then (if b then c)is not equivalent toif a && b then c5.3 Code ReductionThere are further steps that we can employ to reduce the amount of code needed. Considerthe camera auto-focusing example in Appendix A.1 the original of which uses Aptronix's FIL.Here we have to automatically focus a camera, based on the distance to the object that we arefocusing on [2].Because the object(s) that are being photographed may not be at the centre of the image,we base the focusing calculations on three distances. These are the distances to the nearestobjects (the focal lengths) on the left, centre and right of the view �nder. The fuzzy systemworks out which one of these is the most plausible focal length.The input distances each have three fuzzy subsets associated with them | Far, Medium andNear. The de�nitions of these fuzzy subsets are naturally identical for each of the inputs. Sincefuzzy subsets aren't naturally tied to a variable, we can reuse the de�nitions. So, instead ofhavinginvar Left "meter" : 1 () 100 [Far (@10, 0, @40, 1, @100, 1),Medium (@1, 0, @10, 1, @40, 0),Near (@1, 1, @10, 0)];repeated for for the three inputs, we simply de�ne functions:type Distance = Float -- distance in metresfar, medium, near :: FSet Distancenear = rtri 1 10medium = atri 1 10 40far = ltrap 10 40 100which are applicable for any distance, not just a speci�c left, right or centre one. A similarreuse of code can be done with the output variables.There is more scope for redundancy removal in the system. The rules which assign the plau-sibilities yield identical functions for calculating the plausibilities for the left and right portionsof the view-screen. We replace these two functions with a general one. See Appendix A.1.6 ConclusionWe have explored the use of fuzzy logic in functional programming. The natural equivalencebetween fuzzy subsets and their membership functions motivates our idea to use a single functionto model them both.We have shown how a functional language can be extended so that it provides facilities forthe use of fuzzy logic and fuzzy subsets, achieved by overloading pre-existing operators andfunctions, and introducing new ones.We have also shown how, by a change in approach from input-oriented (data driven) tooutput-driven (evaluation), we can implement fuzzy expert systems in a functional language.This new approach led us to consider how we could make e�ciency gains by exploiting thevarious laws of fuzzy logic (associativity, distributivity, commutativity) to rewrite our functionsso that they become shorter and simpler.Work is currently being done on a practical implementation of the ideas presented in thisreport. The language of choice is Gofer rather than Haskell, as the former has the advantages of13

multiple-parameter type classes and a user-rewritable prelude which are necessary to facilitatethe heavy use of overloading that we require.A Sample Fuzzy SystemsA.1 Camera Auto-focusingThe original source uses Aptronix's FIL to calculate the plausibilities for each of the threepossible focal lengths.$ This information is provided by the$ Aptronix FuzzyNet$ http://www.aptronix.com/fuzzynet$ email fuzzynet@aptronix.com$ Aptronix may also be reached by phone$ at 408-261-1898 or$ FAX at 408-490-2729$$$ FILENAME: camera/af1.fil$ DATE: 29/07/1992$ UPDATE: 06/08/1992$ Three inputs, three outputs, decision making$ for Automatic Focusing System$ INPUT(S): Left(Distance), Center(Distance), Right(Distance)$ OUTPUT(S): Plau(sibility)_of_Left, Plau(sibility)_of_Center,$ Plau(sibility)_of_Right$ FIU HEADERfiu tvfi (min max) *8;$ DEFINITION OF INPUT VARIABLE(S)invar Left "meter" : 1 () 100 [Far (@10, 0, @40, 1, @100, 1),Medium (@1, 0, @10, 1, @40, 0),Near (@1, 1, @10, 0)];invar Center "meter" : 1 () 100 [Far (@10, 0, @40, 1, @100, 1),Medium (@1, 0, @10, 1, @40, 0),Near (@1, 1, @10, 0)];invar Right "meter" : 1 () 100 [Far (@10, 0, @40, 1, @100, 1),Medium (@1, 0, @10, 1, @40, 0),Near (@1, 1, @10, 0)];$ DEFINITION OF OUTPUT VARIABLE(S)outvar Plau_of_Left "degree" : 0 () 1 * (VeryHigh = 1.0,High = 0.8,Medium = 0.5,Low = 0.3); 14

outvar Plau_of_Center "degree" : 0 () 1 * (VeryHigh = 1.0,High = 0.8,Medium = 0.5,Low = 0.3);outvar Plau_of_Right "degree" : 0 () 1 * (VeryHigh = 1.0,High = 0.8,Medium = 0.5,Low = 0.3);$ RULESif Left is Near then Plau_of_Left is Medium;if Center is Near then Plau_of_Center is Medium;if Right is Near then Plau_of_Right is Medium;if Left is Near and Center is Near and Right is Near then Plau_of_Center is High;if Left is Near and Center is Near then Plau_of_Left is Low;if Right is Near and Center is Near then Plau_of_Right is Low;if Left is Medium then Plau_of_Left is High;if Center is Medium then Plau_of_Center is High;if Right is Medium then Plau_of_Right is High;if Left is Medium and Center is Medium and Right is Medium then Plau_of_Center is VeryHigh;if Left is Medium and Center is Medium then Plau_of_Left is Low;if Right is Medium and Center is Medium then Plau_of_Right is Low;if Left is Far then Plau_of_Left is Low;if Center is Far then Plau_of_Center is Low;if Right is Far then Plau_of_Right is Low;if Left is Far and Center is Far and Right is Far then Plau_of_Center is High;if Left is Medium and Center is Far then Plau_of_Center is Low;if Right is Medium and Center is Far then Plau_of_Center is LowendThe functional source, with many of the redundancies removed. Although not given in theoriginal source, we have included the �nal part of the speci�cation in our functional solutionwhich uses normal logic to determine the focal lengthtype Distance = Float -- [1, 100] distance in metrestype Plausibility = Float -- {0.3, 0.5, 0.8, 1.0}far, medium, near :: FSet Distancenear = rtri 1 10medium = atri 1 10 40far = ltrap 10 40 100low, average, high, very_high :: FSet Plausibilitylow = spike 0.3average = spike 0.5high = spike 0.8very_high = spike 1.0-- edge (e) is either from the left or rightedge_plausibility :: Distance -> Distance -> Plausibility15

edge_plausibility e c = minimum (maxima lp)wherelp | near e = average| medium e = high| far e = low| near e && near c = low| medium e && medium c = lowcentre_plausibility :: Distance -> Distance -> Distance -> Plausibilitycentre_plausibility l c r = minimum (maxima cp)wherecp | near c = average| medium c = high| far c = low| near l && near c && near r = high| medium l && medium c && medium r = very_high| far l && far c && far r = high| (medium r || medium l) && far c = low-- not the most efficient w.r.t # comparisons, but it's understandablefocal_length :: Distance -> Distance -> Distance -> Distancefocal_length l c r| cp >= lp && cp >= rp = c| lp > cp && lp > rp = l| rp > cp && rp > lp = rwherelp = edge_plausibility l crp = edge_plausibility r ccp = centre_plausibility l r cA.2 Washing MachineFuzzy controller to determine the wash time of a load of clothes based on the dirtiness of theclothes and the type of dirt [17]. The two input parameters are split into three triangular fuzzysets; the output parameter is split into �ve crisp sets (or fuzzy subsets which are just spikes).Defuzzi�cation is done by the min-maxima method, as the output has to be set to one of thetimes indicated by the output sets.The original source uses Aptronix's FIL:$ This information is provided by the$ Aptronix FuzzyNet$ http://www.aptronix.com/fuzzynet$ email fuzzynet@aptronix.com$ Aptronix may also be reached by phone$ at 408-261-1898 or$ FAX at 408-490-2729$$$ FILENAME: washmach\wash1.fil$ DATE: July 23, 1992$ UPDATE: July 29, 1992$ AUTHOR: W. Zhang, Aptronix, Inc.$ REFERENCE: P94-98, BK(J), M.Nagamachi, 1991, KAIBUNDO$ CONTROLLER for Washing Machine: Two inputs, one output, open-loop control$ INPUT(S): dirtness_of_clothes, type_of_dirt$ OUTPUT(S): wash_time$ FIU HEADER 16

fiu tvfi (min max) *8;$ DEFINITION OF INPUT VARIABLE(S)invar dirtness_of_clothes "degree" : 0 () 100 [Large (@50, 0, @100, 1),Medium (@0, 0, @50, 1, @100, 0),Small (@0, 1, @50, 0)];invar type_of_dirt "degree" : 0 () 100 [Greasy (@50, 0, @100, 1),Medium (@0, 0, @50, 1, @100, 0),NotGreasy (@0, 1, @50, 0)];$ DEFINITION OF OUTPUT VARIABLE(S)outvar wash_time "minute" : 0 () 60 * (VeryLong = 60,Long = 40,Medium = 20,Short = 12,VeryShort = 8);$ RULESif dirtness_of_clothes is Large and type_of_dirt is Greasythen wash_time is VeryLong;if dirtness_of_clothes is Medium and type_of_dirt is Greasythen wash_time is Long;if dirtness_of_clothes is Small and type_of_dirt is Greasythen wash_time is Long;if dirtness_of_clothes is Large and type_of_dirt is Mediumthen wash_time is Long;if dirtness_of_clothes is Medium and type_of_dirt is Mediumthen wash_time is Medium;if dirtness_of_clothes is Small and type_of_dirt is Mediumthen wash_time is Medium;if dirtness_of_clothes is Large and type_of_dirt is NotGreasythen wash_time is Medium;if dirtness_of_clothes is Medium and type_of_dirt is NotGreasythen wash_time is Short;if dirtness_of_clothes is Small and type_of_dirt is NotGreasythen wash_time is VeryShortendThe conversion to a functional notation allows us to remove a few redundancies. The de�nitionsof the fuzzy subsets of the degrees of dirtiness and greasiness in the original source are exactlythe same so we combine them into a single set of de�nitions. We also combine two sets of rulepairs into two single rules using the distributive laws.type Degree = Float -- [0, 100] percentagetype WashTime = Int -- {8, 12, 20, 40, 60} minuteslow, normal, high :: FSet Degree Unitlow = rtri 0 50normal = tri 0 100high = ltri 50 100 17

very_short, short, medium, long, very_long :: FSet WashTime Unitvery_short = spike 8short = spike 12medium = spike 20long = spike 40very_long = spike 60wash_time :: Degree -> Degree -> WashTimewash_time greasiness dirtiness= minimum (maxima wt)wherewt | high greasiness && high dirtiness = very_long| high greasiness && (normal dirtiness || low dirtiness) = long| normal greasiness && high dirtiness = long| normal greasiness && (normal dirtiness || low dirtiness) = medium| low greasiness && high dirtiness = medium| low greasiness && normal dirtiness = short| low greasiness && low dirtiness = very_shortA.3 Shower ControlThe full text of the original Fuzzy CLIPS program is unavailable. However, the rule base is asfollows:(defrule cold_low(outTemp cold)(outFlow low)=>(assert (change_vh PM))(assert (change_vc Z)))(defrule cold_OK(outTemp cold)(outFlow OK)=>(assert (change_vh PM))(assert (change_vc Z)))(defrule cold_strong(outTemp cold)(outFlow strong)=>(assert (change_vh Z))(assert (change_vc NB)))(defrule OK_low(outTemp OK)(outFlow low)=>(assert (change_vh PS))(assert (change_vc PS)))(defrule OK_strong(outTemp OK)(outFlow strong)=>(assert (change_vh NS))(assert (change_vc NS)))(defrule hot_low(outTemp hot)(outFlow low) 18

=>(assert (change_vh Z))(assert (change_vc PB)))(defrule hot_OK(outTemp hot)(outFlow OK)=>(assert (change_vh NM))(assert (change_vc Z)))(defrule hot_strong(outTemp hot)(outFlow strong)=>(assert (change_vh NB))(assert (change_vc Z))The functional source is as follows. Note that the fuzzy subsets involved do not come from theoriginal source but were developed by trial and error.-- new typestype Temp = Floattype Flow = Floattype Change = Float-- fuzzy subset definitionscold, ok, hot :: FSet Temp Unitcold = rtri 15.0 36.0ok = tri 32.0 40.0hot = ltri 36.0 75.0low, right, strong :: FSet Flow Unitlow = rtri 0.0 12.0right = tri 9.0 15.0strong = ltri 12.0 25.0nb, nm, ns, z, ps, pm, pb :: FSet Change Unitnb = rtri (-0.2) (-0.05)nm = tri (-0.1) (-0.025)ns = tri (-0.05) 0.0z = tri (-0.025) 0.025ps = tri 0.0 0.05pm = tri 0.025 0.1pb = ltri 0.05 0.2-- calculate the change in the hot- and cold-water taps needed-- given a temperature and flowchange_valves :: (Temp, Flow) -> (Change, Change)change_valves (temp, flow) = (hot, cold)where(hot, cold) = (centroid (fst changes), centroid (snd changes))changes| cold temp && low flow = (pm, z)| cold temp && right flow = (pm, z)| cold temp && strong flow = (z, nb)| ok temp && low flow = (ps, ps)| ok temp && strong flow = (ns, ns)| hot temp && low flow = (z, pb)| hot temp && right flow = (nm, z)| hot temp && strong flow = (nb, z)19

B Standard Fuzzy Subsets DistributionsThe standard fuzzy subset de�nitions for a base set of real numbers and a unit interval fuzzyvalue set are given in Figure 3. Not that all bar lslope and rslope are variants of trap| e. g.ltri a b = trap a b b b | and are given purely for the sake of convenience and readability.
0

1

ba

tri a b

0

1

a b c

rtrap a b c

0

1

a b c

ltrap a b c

0

1

a

rtri a b

b

0

1

a b

ltri a b

0

1

a b c d

trap a b c d

0

1

ba

lslope a b

0

1

a

spike a

0

1

ba

rslope a b

0

1

a b c

atri a b c

Figure 3: Standard Fuzzy Subset DistributionsReferences[1] Richard Bird and Philip Wadler. An Introduction to Functional Programming. PrenticeHall, 1988.[2] Aptronix FuzzyNet. Focusing System. WWW: http://www.aptronix.com/fuzzynet /ap-plnote/focusing.htm[3] Julia A. Dickerson and Bart Kosko. Fuzzy Function Approximation with Ellipsoid Rules.IEEE Transactions on Systems, Man and Cybernetics, Vol. 26, No. 4, pp 542{560, August1996.[4] Patrik Eklund and Frank Kwalonn. Neural Fuzzy Logic Programming. IEEE Transactionson Neural Networks, Vol. 3, No. 5, pp 815{818, September 1992.[5] NRC-CNC Institute for Information Technology. Fuzzy CLIPS. WWW:http://ai.iit.nrc.ca/fuzzy/fuzzy.html.[6] J. M. Horvath. A Fuzzy Set Model of Learning Disability. Fuzzy Sets in Psychology, NorthHolland, pp 345{381, 1988.[7] Aptronix Ltd. Fuzzy Java. WWW: http://www.aptronix.com/fuzzynet/applnote/java.htm[8] Mark Kantrowitz, Erik Horstkotte, and Cli� Joslyn. FAQ: Fuzzy Logic and Fuzzy ExpertSystems.WWW: http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/fuzzy/part1/faq.html.[9] Arnold Kaufmann. Introduction to the Theory of Fuzzy Subsets, Volume 1. Academic Press,1975.[10] L�aszl�o T. K�oczy and Kaoru Hirotu. Size Reduction by Interpolation in Fuzzy Rule Bases.IEEE Transactions on Systems, Man and Cybernetics, Vol. 27, No. 1, pp 14{25, 1997.[11] Bart Kosko. Fuzzy Thinking. Flamingo, 1994.[12] Logic Programming Associates Ltd. FLINT Toolkit. WWW:http://www.lpa.co.uk/n.html 20

[13] T. P. Martin, J.F. Baldwin and B.W. Pilsworth. The Implementation of FProlog | AFuzzy Prolog Interpreter. Fuzzy Sets and Systems, Vol 23, pp 119-129, 1987.[14] C. V. Negoita. Expert Systems and Fuzzy Systems. The Benjamin/Cummings PublishingCompany, 1985.[15] Gary Riley. CLIPS: A Tool for Building Expert Systems. WWW:http://www.jsc.nasa.gov/ clips/CLIPS.html[16] Stuart Russell and Peter Norvig. Arti�cial Intelligence | A Modern Approach. PrenticeHall, 1995.[17] Aptronix FuzzyNet. Focusing System. WWW: http://www.aptronix.com/fuzzynet/ ap-plnote/wash.htm[18] Simon Thompson. Haskell: The Craft of Functional Programming. Addison Wesley, 1996.[19] R. Tong and P. Bonisonne. A Linguistic Approach to Decision Making with Fuzzy Sets.IEEE Transactions on Systems, Man and Cybernetics, SMC-10, pp 716{723, 1980.[20] Li-Win Wang. Adaptive Fuzzy Systems and Control | Design and Stability Analysis. Pren-tice Hall, 1994.[21] L. A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and DecisionProcesses. IEEE Transactions on Systems, Man and Cybernetics, Vol. 3, pp 28{44, 1973.

21

