
http://wrap.warwick.ac.uk/

Original citation:
Cryan, M., Goldberg, Leslie Ann and Phillips, C. A. (1997) Approximation algorithms for
the fixed-topology phylogenetic number problem. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-327

Permanent WRAP url:
http://wrap.warwick.ac.uk/61015

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61015
mailto:publications@warwick.ac.uk

Research R.port 327

Approximation Algorithms for the
Fixed-Topology Phylogenetic Number Problem

Mary Cryan, Leslie Ann Goldberg and Cynthia
A. Phillips

RR327

In the L-phylogeny problem, one wishes to construct an evolutionary tree for a set of specie_s

represented by characters, in which each state of each character induces no more than L
connected components. We consider the fixed-topology version of this -p,roblem.for
fixed-topologies of arbitrary degree. This version of the problem is known to be NP-complete
when Lis at least 3, even for degree-3 trees in which no state labels more than L+1 leaves (and

therefore there is a trivial L + 1 phylogeny). We give a2-approximation algorithm for all L for
arbitrary input topologies and we give an optimal approximation algorithm that constructs a

4-phylogeny wheri a 3-phylogeny exlsts. Dynamic programming techniques, which are typically
us^eA in fixed-topolo^gy- probiems, cannot be applied to L-phylogeny problems. Our
2-approximation ilgorlitrm is the first application of linear programmin-g to.approximation
atgbiithms for phyl,ogeny problems. We extend our results to a related problem in which
characters are polymorphic.

Department of Computer Science

University of Warwick
Coventry CV47AL
United Kingdom

June 1997

APPROXIMATION ALGORITHMS FOR THE FIXED-TOPOLOGY
PHYLOGENETIC NUMBER PROBLEM-

MARY CRYANT, LESLIE ANN GOLDBERG I, AND CYNTHIA A. PHILLIPS3

Abstract. In tite l-phylogeny probleln, one rvishes to construct an cvolutiort;Lr1'trcc fut a st:t

of spccics represented by characters, in rvhich each state of each character incluces Iro rnore than I
co..ectcd components. We colsider the fixed-topology version of this problem for fixed-topologir:s o1'

arbitrary clegree. This version of the problern is known to be ,A/P-complete for I) 3 even for clegrt:tl-3

trcesilg,hichnostatelabelsmorethanl+lleaves(andthereforethcreisatriviall+lphvlogenv)
We give a 2-approximation algorithm for all I > 3 for arbitrary input topologies and we gile atr

optimal approximation algoritirm that constructs a 4-phvlogeny when a 3-phylogeny exists Dynarnic

1r.ograrnrtti.rg tcchniques, which are typically used in fixed-topology problems, cannot bt: irppliecl trr

l-plylogeny problems. Our 2-approximation algorithm is the first application of linear prograrnnLirLg

to approximation algorithrns for phylogeny problems. Wc extend our results to a related problem rtr

rvhich characters are polymorphic.

. Research Report CS-RR-327, Department of Computer Science, University of Warrvick, Coven-

try CV4 7AL, United Kingdom.
t maryc@dcs.sarwick.ac.uk. Department of Computer Science, University of Warwick, Coven-

try CV4 ZAL, United Kingdom. This work was partly supported by ESPRIT LTR Project no. 20244

ALCOM-IT.
1 1es1ie@dcs . warwick. ac . uk . Department of Computer Science, University of Warwick, Coven-

try CV4 ZAL, United Kingdom. Part of this work took place during a visit to Sandia National

Laboratories which was supported by University of Warwick Research and Teaching Innovations

Grant 0g51CSA and by the U.S. Department of Energy under contract DE-AC04-76AL85000. Part

of this work was supported by ESPRIT LTR Project r'o. 20244 - ALCOM-IT'
$ caphill@cs.sandia.gov. Sandia National Laboratories, Albuquerque, NM. This work was pcr-

formed under U.S. Department of Energy contract number DBAC04-94AL85000.

d
T

FICi. 1. An' exarnple of a 2-phylogeny. States h and. f in the f.rst clnracter and state t in tlt,r:

second, charo,cter are each in two contporrents.

1. Introduction. The evolutionary biologist collects information on extarrt sl)ccies
(and fossil eviderrce) and atternpl,s to infer the evolutionary history of a set of spccies.
Most rnathematical nodels of this process assume divergent evolution, meanirrg that
once two species diverge, they never sharc genetic material again. Thcrefore, evo-
Iutiorr is modelled as a tree (phylogeny), with extant species as leaves arrd (exrarrr,
extinct, or hypothesized) ancestors as internal nodes. Species havc been rrrodelled irr
scveral ways, depending upon the nature of available information and the mecharrisru
for gathcring that information. Based upon these representations, differirrg measurcs
of evolutionary distance and ob jcctive function arc used to evaluate thc goodness of il
proposed cvolutionary tree.

Itr this paper we assume ihat irrput data is character-bascd. Let ,5 be an input sct
of n spccies. A characterc is afunctiorr from the species set Sto aset R" of states. The
set of species in figurc t has two characters. The first character represents skin covering
arid has three states: h for hair, s for scales, and / for fcathers. The second character
represents size, where t (tiny) rneans at most one foot long, m (medium) means one to
three fcet long and I (large) means greater than three feet long. If we are given a set of
ciraracterscl,...,c6forS,eachspeciesisavectorfromR",X...yRcxandanysuch
vector can represent a hypothesized ancestor. For example, arr anaconda (the largcst
known species of snake) would be represented on these simple characters as (s, /) and
a hummingbird would bu ("f,f). Characters can be used to model biomolecular data,
such as a column in a multiple sequence alignment, but in this paper, we think of
characters as morphological properties such as coloration or the ability to fly.

Character-based phylogenies are typically evaluated by some parsimony-lilce mea-
sure, meaning that the total evolutionary change is somehow minimized. In this paper,
we consider the (.-phylogeny metric introduced in [9]. Given a phylogenetic tree, a char-
acter g and a state j € R"r, let $i bethe number of connected components in ct-r(j)
(the subtree induced by the species with state 7 in character z). A phylogeny is an
l-phylogeny if each state of each character induces no more than / connected com-
ponents. That is, maxc;,j€R.r(.oi < (. Ttre (.-phglogeny problem is to determine if an
input consisting of a species set

^9
and a set of characters crt . . . t c; has an l-phylogeny.

The phylogenet'ic number problem is to determine the minimum I such that the input
has an /-phylogeny.

The classic parsimony problem is to find a tree that minimizes the total number

o{' evolutionary changes: Lc",16p..Lj. The cornpatibility problem is to maxitrrizc

tlrc nunrber of characters that are perfect, meaning that all states of that character'

induce only one connected component. Thus the compatibility problern is to maxirrriztr

l{c,: [,r: 1 for all j e n",il. A l-phylogeny is called a perfect phylogeny. All tlrlccr

problerns (l-phylogeny for (.) 1, parsimony) compatibility) are,A/?-complete [1, 9,4,

5, 6, 8, 14]. Papers [4, 5, B] prove that different restrictions of the classic parsimony

prciblem are IIP-completel. Parsimony, l-phylogeny, and compatibility all allow states

gf a character to evolve multiple times. However, both parsirnony and cornpatibility
allow some characters to evolve many times. The l-phylogeny metric requircs balanced

evolution, in that no one character can pay for most of the evolutionary changes.

Thus, l-phylogeny is a better measure than parsimony or cornpatibility in biological

sitrrations in which all characters are believed to evolve slowly.

In this paper we consider the fi,red-topology variant of the l-phylogeny probletn'

where in addition to the species set and characters, we are also given a tree T in which

internal nodes are unlabelled, each leaf is labelled with a species .s € ,9 and each species

s € ,S is the label of exactly one leaf of ?. The fired-topology (.-phylogenE problem is the

problem of determining labels for the internal nodes so that the resulting phylogeny

is an /-phylogeny, or determining that such a labelling does not exist. In figure 1, the

hypothesized ancestor (", -) labels one node. This example is a 2-phylogeny.

Fixed-topology algorithms can be used as filters. Current phylogeny-producilrg

software can generate thousands of trees wliich are (approximately) equally good under

some metric such as maximum Iikelihood or parsimony. We can think of these outputs

as proposed topologies. One way to differentiate these hypotheses is to see whicli

topologies also have low phylogenctic number. For example, the original trees catl

be generated by biomolecular sequence data, and they can therr be filtered using

morphological data with slowly-evolving traits.
It will be convenient to allow a node to remain urrlabelled in one or Inore characters

in a fixed topology. In this casc, the node disagrees with all of its rreighbors on all

unlabelled characters. We can easily extend such a labelling to one in which every

node is labelled without increasing (.;i for any i or j: for any character 7, for eaclt

connected component of nodes which are not labelled, choose any neighbouring node

u which is labelled i, and label the entire component with the state ir. This does not

introduce any extra component forio, nor does it break components of any other state

that weren't already broken.
In the fixed-topology setting, optimal trees for the parsimony and compatibility

metrics can be found in polynomial time [7]. The fixed-topology l-phylogeny problem

can be solved in polynomial time for (. I 2, but is ,A/P-complete for I) 3 even

for degree-3 trees in which no state labels more than I + 1 leaves (and therefore

there is a trivial I + 1 phylogeny) [9]. Fitch's algorithm for parsimony uses dynamic
programming. Dynamic programming also gives good algorithms in some cases for

finding phylogenies when characters are polymorphic [2].
Jiang, Lawler, and Wang [11] consider the fixed-topology tree-alignment problem,

where species are represented as biomolecular sequences, the cost of an edge in the tree

is the edit distance between the labels at its endpoints, and the goal is to minimize

the sum of the costs over all edges. They give a 2-approximation for bounded-degree

uW*.hu*[l7] describes and corrects a minor error in the reduction used by Day in [4] to show

the ,A/P-completeness of the problem for Wagner characters.

input topologics and extend this to obtain a polyrronrial-time approximation schenre
(PTAS). In Lernma 3 of [11], they prove that the best lifted tree (in which t]re labcl
of each internal node is equal to the labcl of one of its children) is within a factor of
2 of the best tree with arbitrary labels. The proof only uses the triangle inequality
(it docs not use any other facts about the cost measure).. Therefore, the result holds
fbr scveral other cost measures, including /-phylogeny, parsimony, and the rninimurn-
load cost rleasure for phylogenies with polymorphic characters which was introduced
in [2]. It also holds for the variant of /-phylogerry in which l; is specified for each
character q. This variant was introduced in [9]. We refer to it as the generalized
(.-phylogeny problem. In fact, Lernma 3 of [11] holds for the fixed-topology problern
with arbitrary input topologies, though the authors do not state this fact since they
do not use it. Despite the applicability of Lemma 3, the algorithmic method of Jiarrg,
Lawler and Wang does not seem to be useful in developing approximation algorithrns
for the fixed-topology /-phylogeny problem (or for related problems). Jiang et al. usc

dynamic programrning to find the minimunr-cost lifted tree. Dynamic programming
is not efficient for the more global metric of l-phylogeny. The dynamic programrniug
proceeds by computing an optimal labelling for a subtree for each possible labelling
of the root of the subtree. For metrics where cost is summed over edges (such as

parsimony or tree alignment), one only needs to find the lowest-cost labelling for a
giverr root label. For the l-phylogeny problem, the cost of a tree depends upon hciw

many times each state is broken for a given character. One cannot tell a priori whicir
state will be the limiting one. Therefore, instead of maintaining a single optirnal tree
for each root label, we must maintain all trees whose cost (represented as a vector
of components for each state) is undominated. This number can be exponential in r',
thc numbcr of states, even for bounded-degree input trees. This is a common theme
in combinatorial optirnization: the more global nature of minimax makes it harder io
cornpute than summation objectives, but also urore useful.

Gusfield and Wang [15] take the approach of [11] a step further by proving that
the best uniform lifted tree (ULT) is within a factor of 2 of the best arbitrarily-labelled
tree. In a uniform lifted tree on each level, all internal nodes are labeled by the same
child(e.g. allnodesatlevelonetakethelabelof theirleftmostchild). Thisproof also
extends to the /-phylogeny metric. If the input tree is a complete binary tree, then
there are only n ULTs, and exhaustive search is efficient, giving an algorithm which is

faster than ours and has an equivalent performance bound. However, when the input
tree isn't complete (even if it is binary), Gusfield and Wang use dynamic programming
to find the minimum-cost ULT, and so their method fails when it is applied to the
l-phylogeny problem. Wang, Jiang, and Gusfield recently improved the efficiency of
their PTAS for tree alignment [16], but still use dynamic programming.

We give a simple 2-approximation for the fixed-topology /-phylogeny problem that
works for arbitrary input topologies. It is based on rounding the linear-programming
relaxation of an integer programming formulation for the fixed-topology l-phylogeny
problem. To our knowledge, this is the first application of linear-programming tech-
nology to phylogeny problems.

As we described earlier, l-phylogeny is most appropriate for slowly-evolving char-
acters. It is most restrictive (and hence most different from parsimony) when I is

small. Therefore, we look more closely at the first NP-hard case: (.:3. For this casb,

we give an algorithm based upon the structure of a 3-phylogeny that will constructia
4-phylogeny if the input instance has a 3-phylogeny.

3

'Iire rcrnainder of our paper is organized as follows: in section 2, we give tlic 2-

approximation algoriihm for the /-phvlogeny problern. In section 3 we give the optimal

approxirnation algorithn for inputs with 3-phylogenies. In section 4, wc extcnd thc

lilcar-prograrnmirrg-based techniques to develop atr approximation algoritlrrn for the

problern of finding parsimonious low-load labellings for phylogenies with polymorphic

r:lraracters.

2. A, 2-approximation algorithm for the fixed-topology phylogenetic
number problem. The interaction between ch.aracters in phylogeny problems af-

fects the choice of the topology, but it does not affect the labelling of the internal

nodes once the topology is chosen. Thus, for this problem, we can cotlsider each

clrarrrcl,er separately.

Let c : s -+ {1,...,r} be a character and let ? be a tree with rooi q and leaves

labelled by character states 1,...,I. For each statc i, let Ti be the subtree of T
consisting of all the leaves labelled z and the minimum set of edges connecting these

leaves. Let L(7.) be the set of leaves of ?r, and let rti, the root of ?r, be the node

of ?. closest to the root of ?. The important nodes of T; are the leaf nodes and the

nodes of degree greater than 2. An i,-path p of T, is a sequence of edges of fr that

connects two important nodes of 7r, but does not pass through any other important
nodes. The two important nodes are referred to as the endpoints of p, and the other

nocles along the i-path are said to be onp (an i-path need not have any nodes on it).
Although the edges of the trec ? are undirected, we will sometimes use thc notation

(u -+ u) for an edge or i-path with endpoints u and tr, to indicate that u is nearer to

tlre root of ? than ur (u is the hi,gher enclpoint and tl is tbe lower endpoint); otherwise

wc will write edges and i-paths as ('r.',tr). If the lower endpoint tr., is labelled i and thc:

label of the upper cndpoint ?r or some node on the i-path p : (u -+ ur) is not ti' thert

wc say that p breaks state i. If an i-path goes through the (degree-2) root of ?,, then

bolh endpoints are considered lower endpoints'

Given a tree ? with each node labeled from the set {1,...,r}, we need a way to

count the number of components induced by the nodes labeled z. Since the tree is

rooted, we can assign each connected component a root, namely the node closest to

the root of ?. We then count the number of roots for components labelled i. A node is

the root of its component if its label differs from that of its parent. The root q, which

has no parent, is also the root of its component. Therefore we have the following:

OesBnvarloN 2.1. LetT be a tree with its leaues and'internal nodes labelled by

elements of {1,...,r}. For each i, let T; be defined as aboue, and let q be the root

of tree T. Then the number of connected components induced by the nodes labelled i
isl{e: (u -+u): c(u) li', c(tn): z}l +Yi, whereY:I if qislabelledi, and0

otherwise.

We now define an integer linear program (ILP) which solves the fixed-topology

l-phylogeny problem. The linear-programming relaxation of this ILP is the key to

our 2-approximation algorithm. The integer linear program Z uses the variablQs Xy,;,

for each state i e {1,. ..,r}, and each node u in the tree 7, the variables Xo1 for

each state i, and each i-path p of Ti and the variables costp,u,i for each state i, i-
path p in ?, and each lower endpoint u of path p. Recall that each path has one

lower endpoint except when there is an i-path through a degree-2 root, in which case

both endpoints are lower endpoints. These variables have the following interpretation:

Y/ rr) ,z

vArt.i

cO,stp,u,i

sub.ject to

(1)

(2)

(3)

(4)

(5)

(6)

1 if node u is labelled i
0 otherwise

1 if all nodes on p are labelled i
0 otherwise

1 if lower endpoint u of p is the root'of a conrponent of state ?

0 otherwise

ILP I is defined as follows:

Xu,t' :
Xu,t :

r
\-x,,, <
L
c-1

vv
1ln a lltt.

P tl

Y

CoStps;,i

minimize I

1 for each leaf u € Ti, i :1,...,r
0 if uqTi, i:I,...,r

1 Vu €T

i:1,...,rrVp€Ti,Yuep
'i : I,. .. ,r, Vp € fl, endpoint u € p

i : I,... ,r, Yp € fr,lower endpoint u € p

'i:1,...,7(7)t cr)stp,u,i * Xrt;,i
P,U

(B) Xr.,, Xp,i,costp,u j e {0, 1}

Constraint (8) assures that the cost (costp,r,;), i-path (Xo,t), and vcrtex (X,,;)
variables serve as indicator variables in accordance with their interpretation. Con-
straint (1) labels the leaves in accordance with the input. Constraint (2) prohibits
labellirrg a node u with a state i when u is not in fr (the number of components la-
belled i could not possibly be reduced by this labelling). Constraint (3) ensures that
each internal node will have no more than one label. Constraints (4) and (5) ensure
that for each tree ?], nodes on paths are taken all-or-none; if any node on an i-path p
(including endpoints) is lost to a state i, then it does no good to have any of the other
nodes on the path (though it may be beneficial to maintain one or both endpoints).
Constraint (6) computes the path costs (counts roots) and constraint (7) ensures that
each state has no more than / connected components. This is an implementation of
Observation 2.1. Since there is no f-path in fr with rti as its lower endpoint, we

must explicitly check the root of each tree fr, just as we checked the global root in
Observation 2.1.

Integer program Z solves the fixed-topology l-phylogeny problem. We will now
show that the optimal value of / given by Z is a lower bound on the phylogenetic
number of tree ? with the given leaf labelling.

PnoposlrtoN 2.2. If there erists an {.-phylogeny for tree T with a giuen leaf
labelling, then there is a feasible solution for the integer linear program for this ualue

of (.
Proof. Suppose there exists an /-phylogeny on the tree ? with leaves and inter-

nal nodes labelled from {1, ...,r). Consider one particular l-phylogeny, and assume

without loss of generality that all node labels are useful for connectivity (i.e. changing

5

the label of node u from i to something else will increase the nrrrnber of corrrponcnts

labellcrl i). This may require some nodes to be unlabelled. We obtain a feasible so-

lution to Z as follows. Set variable X,,.i. to 1 if node u is labelled i irr this phylogeny

and 0 otherwise. Set Xp,, to 1 if both endpoints and all internal nodes of i-path p ale

Iabelled i and 0 otherwisc. Sct cosfp,r,, : 1 if lower endpoint tr of p is labelled i and

tlre z-path is not, and set costp,u,i: 0 otherwise. We noW show this assignment is a

solution to Z.
Tlre Xr,;, xp,i1 and costp,u,i variables are binary by construction, thus satisfvi[g

Colstraint (B) BV construction, Constraint (1) will be satisfied by our assignmcnt.

Constraint (2) will also be satisfied, because it is never useful to label nodes outsidc

?, with i, and we have assumed all the labels on nodes are useful for connectivity.

Constraint (3) is also satisficd because each node of the phylogeny will be labelled

witS at most one state. Constraints (4) and (5) are satisfied because the condition

that all labelled nodes are necessary for connectivity ensures that a node on an i-

path will only be labelled i if all the nodes and endpoints of the i-path are labelled i'
Constraint (6) is satisfied by construction.

To show that constraint (7) is satisfied, consider the connected components fbr i;

by our assumption, these all lie in fr. Let 'Y: {e: (u -} w): c(u) I i, c(w):'i'1'
By Observation 2.1 we have fil + Xql (/, where q is the root of ?. To calctrlatc

(Dr,rcostr,u,t) * X,t;,t, note that costo,u,i: I if and only if Xr',i: 1 for the lower

endpoint ur and Xp,i:0 and otherwise cosfp,tu,, is 0' By our definitions above, Xy,1 :0
and X,,,; : I if and only if the edge (ts,ut) e ? from'tu's parent (on the z,-path p or its

upper endpoint) into ur has c(u) li, andc(u): z. Furthermore, this is the only edge

on the i-path with this property (the cost of each other edge is 0) unless path p passes

through a degree-2 root and both its endpoints have breaks. In the latter case tltere is

a second endpoint tu' such tltat costr"u,,i: I. Since the i-paths part ion 7r, cach i-path

p and lower endpoint u with costp,u,i: 1 contains one element of 7 which is unique to

that i-path and lower endpoint. Thus (!o,, costp,,,;) < lryl < (.. If rh is the nodc q,

then X,1r,i: Xq,i and (!0,, costp,,,t) I XrL,i S hl+ Xqi S l. Othcrwise, if rf; is not

the global root g, by our assumption that only useful nodes of 7 are labelled with i,

the ancestor node ai of rti is not labelled i. Then,if Xr1n,i: 1 the edge e : (ai --+ rt6)

contributes 1 to l7l, and therefore (Ip,, costp,,,,) * X,t;,i < lryl + Xq,'i I (. Hencc

constraints (7) are satisfied and we have a solution for the integer program Z' I
Integer linear programming in,A/P-hard in general [3, 10, 12]' so we cannot solvc

it directly in polynomial time. (In fact, doing so would solve the fixed-topology l-
phylogeny problem, which we know to be,A/P-hard for /) 3 from [9].) However' wc

can solve the linear-programming relaxation L of T, which consists of all the constraints

of Z except that Constraint (8) is replaced by the constraint 0 I X,,i,Xp,i,cost'p,u,i 1l
(8'). Note that the right-hand side of constraint (6) could be negative, but the relaxed

version of the constraint (8) is still sufficient to prevent the path cost variables from

being negative.
TnpoRpr,,l 2.3. If there is a solution for the linear progranr L for a fired topology

T with leaues labelled, wi,th states from {1,...,r}, then we can assign states to the

,internal nodes of T such that no state i € {1, . . . ,r} has rnore than 2[components.

Proof. The 2[. phylogeny for the character c: S -+ {1,.. . , r} on 7 is constructed

by assigning states to the nodes of each ftee Ti based on the Xr,; values. For each

state i € {1,...,r}, consider each internal node u of Ti. A node u is labelled i if and

only if Xr,t) If2, and there is a paih 1))'trrt11)21.'.,uk,u* through treeT; to a leaf

6

u* of '1, where X-i,i) Il2 for all j : 1,..., k. If Xr,i > ll2, but therc is po suclr

l)irtlr, thell trode u is i,solated, and by our procedure remains unlabelled. A node t, also
remains unlabelled if Xr,, < Il2 for all states .i.

To show that thc labelling is a 2l-phylogerry, wc show that each component of
state i adds at least lf2 to the sum (fo,, costp,u,i) * xru,i. From observation 2.1,
tlrc rrrrrnber of connected components for the state i is l{c : (,u -+ w) : c(u) I
t, c(w): i)l+d, wherc Y; is 1 if 17 has state i (and therefor€ Q : r't;) and 0 otherwise.
Corrstraints (5) and (4) ensure that if the edge e : (u -+ tr) has .(r) I i and c(w) : i
tlren either rr; is the root of Tr, or ?r-l must be an endpoint nodc with X.,t) lf2, and
tlrat, either Xu,t 1ll2 orT-, is isolated. However, since tr is labelled i, tr must not
lre isolated, and thereforc r; would not be isolated if Xu,i was greater than Il2. So
Xr,rllf2,andXr,r!ll2for thei-pathpwithlowerendpoint,u.'. Thereforeweneed
orr.iy calculate the numbcr of lower cndpoints u; from i-paths p such that Xe,t < l12,
X,o,i) 1f 2, ar'd tu is not isolated.

Suppose tl is a lower endpoint of i-path p. Since Tl is not isolated and the node
abovc tu is not labelled i, there is a sequence pr: (w -+ uy), pz: (u1 + uz),...,pJ :
(ui-1 -+ ui) of i-paths of ?, such that Xp,t > Il2 for every p e {pr,...,p7} and
Xrj) lf 2 for every ? € {rr, ...,uj}, and ,u, is a leaf of ?r. Calculating costp,w,i *
(.ostp1,u1,;*...*costo,,ui,r:(X-,t-Xo)t(Xur,o-Xor,t)+...+(Xq,,-Xr,):
-X0,, * (X-,t - Xor,,) -l (Xur,t * Xrr) +... + (X,1_r,o - Xr,,) * Xoi,.i., we know by
r:onstraints (5) that X.,* Xprj>. 0, Xrr,t* Xpz,i > 0, ..., Xuj_r,r- Xp,,i > 0. So
costp,u,i* costrr,ur,z *... I costrt,,t:i,l) Xo,,t - Xp,t - 1- Xp1> l12.

Note that for any two breaks that appear at lower endpoints tr and ru/ of i-paths
p and p/ respectively, the i-labelled paths to leaves are disjoint (because they are in
separate contponents ofz). Therefore cach break ofi at a lower cndpoint to contributes
:rt least 112 to the sum (Do,,costp,,,;). If rti is labelled i (and hcnce the root of a
comporrerrt of f), then X.1,,i) If 2 (corresponding to an edge (u -+ rt;) in ? or to the
caseYi:1). So2x ((Io,,costp,u,i)tX,trl) > l{": (u -+w):c(u) li, c(w):
4l+Yt, and therefore2(.) l{e: (o -+ ra): "(r) * i, c(w):i.}l+Y.

Thcorem 2.3 is tight as shown by the following example: let the input topology be
a star graph with 2r leaves: r leaves labelled 'i and r labelled 7. The LP solution has
tlrerootlabelledhalf f andhalfj,sothat (.:(r+1)12 byconstraint6. Theoptimal
solution has / : r, arbitrarily close to twice the LP bound. In this example, however,
it is the LP bound which is loose, and therefore our analysis of the approximation
quality of the algorithm may not be tight.

Recall that we have considered each character separately in our 2-approximation
algorithm. Thus, our work applies to the generalized /-phylogeny problem (and not
just to the ordinary l-phylogeny problem). In particular, we have the following theo-
rem.

Tsponplt 2.4. There is a 2-approrimation algorithm for the generalized (.-

phylogeny problem.

3. 4-phylogeny algorithm. In this section we give an algorithm which takes
a fixed-topology phylogeny instance with arbitrary topology and, as long as it has a
3-phylogeny, finds a 4-phylogeny for the instance.

We use the following definitions, in addition to those that we used for the 2-
approximation. We will maintain a forest f; for every state i, which corresponds to

7

the set, of nodes that state i is contending for. A branch point of }7; is a node in F,

witlr clegrec 3. We say that a node u € F, is claimed by state i if it is not in F, for

any j li.
The algorithm gcneralizes the fixed-topology 2-phylogcny algorithm of [9]. It

consists of a f orced phase ald then an approrirnation plr,ase. The forced phase prodttctls

a partial labelling (resolution of labels on some subset of the nodes) which can still bir

extendecl to a 3-phylogeny; it makes no labelling decisions that are not forced if onr:

is to have a 3-phylogeny. The approximation phase removes all remaining contentiorr

for labels, but it can break some states into four pieces. Because finding a fixed-

topology 3-phylogeny is,A/P-complete [9], this is an optimal approxirnation algorithm

for phvlogeny instances with 3-phylogenies.

3.1. The Forced Phase of the Algorithrn. Initially, for every state ri wc will
have f : ?1. During the forced phase of the algorithm, nodes will be removed frotn

the forests fl. The invariant during the forced phase of the algoritlrrn is that there

is a 3-phylogeny in which every node u is assigned a state j such that u € {. Thc

forced phase applies the following rules in any order until none can be applied. If any

forest -Q is broken into more than three components by the application of these rules,

then the instance has no 3-phylogeny and the algorithm terminates.

1. For any i-path (r,.), let s be the set containing o and u' and the nodes on

the i-path. If S contains two or nore branch points of { (for i I j) t'hen

every node on the i-path is removed from ,Fr. Note that in the updated copy

of F; (after the rule is applied), u and Tr will have lower degree than in the

original fl. Furthermore, if u has degree 2 in the updated -F; then the i-path
containing it will consist of nodes from two different i-paths in the original F,.

Similarly, i-paths can be merged as a result of the following rules.

2. If Fi has C(fi) connected components and 4 contains a node tr of degree at

least 5 - c(F) then in every forest { with i + i, u and all nodes on 7-paths
adjacent to u are removed from { (i.e., i claims node u).

3. Supposc u is a branch point of ,4 but not a branchpoint of Fi, and suppose

two ,i-paths (u,rr) and (a, tu2) adjacent to u each contain a branch poirrt of {.
Then in evcry forest F7. with k + i, every branch point u,/ {u,u1,w2} of F;

and every node on every ,k-path adjacent to to is removcd from Fl (i.e., 4
claims all branchpoints except u, tr1, arrd w2).

Rule 1 is justified by observing that in any 3-phylogeny, each forest f gives up

at most two disjoint z-paths, or a single branchpoint with the i-paths adjacent to it.
In the setting in which rule 1 is applied, if .Q were to claim the path in question,

then -F, would lose two branchpoints and necessarily be in at least four components.

Therefore, in any 3-phylogeny for the input, fi cannot have that z-path. Note that
once any node on an 'i-path is lost to F.i, then -Q has no reason to claim any other
nodes on the i-path.

Rule 2 is justified by the following observations. If there is a node of degree at
least 4 in tree 4, then it must be labelled i in any 3-phylogeny (losing it will break
state i into at least 4 pieces). Once.F] has been forced to give up and-path, it cannot
give up another branchpoint. Finally, once fi has been forced into three pieces, then
it must claim all remaining nodes in ,Q.

Rule 3 is applied when we isolate a region where a break in ,Q must occur, but do

not yet know exactly where the break will occur. If two paths adjacent to a branchpoint

6

of F, contain branchpoints of 4, thetr by the previous argurnent for rule 1, ,fl cannot
keep both of tltose paths. Therefore, outside of the affected region (those two f-paths),
4 can act as though the forest has been cut into at least two pieces, and can claim
all branchpoints.

3.2. The Approximation Phase of the Algorithm. In the following, releas-
fng a degree-2 node u € F; removes all rrodes on its z-path from -F,. Releasing a
lrigher-degree node u € Fi removes u and all nodes on i-paths adjacent to o from fl.
The approximation phase consists of the following steps.

1. For each connected conrponent C of f;, if the root of C is unclairned then F,
releases the root of C. Also, if this root has degree 2,.fl releases any unclaimed
branch points at the ends of the f-path through this root.

2. If, after the forced phase, F, is in a single component with exactly one un-
claimed branch point, tl, then it releases u;.

3. If, after the forced phase, -Q is in a single component with exactly two urr-
claimed branch points, ?11 and ru2 wirich are the two endpoints of an i-path,
and the path from the root to ru2 passes through tu1, then fl releases u;2.

4. If, after the forced phase, fl is in a single component with exactly three un-
claimed branch points, 'Irr, u2 and tl3 where there is an i-path from u1 tg r-u2

and an z-path from u2 to tt3, then fl releases ?r2.

3.3. The Proof of Correctness. The proof of correctness of the algorithrn
requires the following observation) and follows from Lemma 3.2 and Lemma 3.7.

OssBRvarIoN 3.1 A Ft is in one cornponent and i,t releases two branchpo,ints w1

and u2 whi,ch share an t-path,, th,en tlr,e result'ing forest F; has ut most 4 components.
Proof. Suppose without loss of generality that branchpoint ur1 is removed first.

This leaves .F, in three pieces. Because ?r2 shares an z-path with tl1 , this operation
reduces the degree of w2 to two, so the two remaining z-paths adjacent to ru2 zrre

merged. Subsequently rernoving the i-path through tl2 adds only one rnore component.

Lprrarraa 3.2. At the end of the approtimat'ion phase, euery forest F; has at most /
connected components.

Proof. The forest Fi can be in at most three cornponents at the end of the forced
phase. if 4 is in three components at the end of the forced phase, then, by Rule 2 of
the forced phase, every remaining node in ,F) is claimed during the forced phase, so

nothing is removed from .F, during the approximation phase. If f; is in two components
after the forced phase, then, again by Rule 2, all branch points of ,F] are claimed during
the forced phase, so no branch points are removed from -S during the approximation
phase. Step 1 of the approximation phase, therefore, will remove at most one path
from each component (when the root has degree 2, since degree-3 roots are claimed)
and therefore breaks .Q into at most four components. In this case Steps 2-4 of the
approximation phase do not apply, and at most one of Steps 2-4can apply to each of
the remaining cases.

If 4 is in one component after the forced phase, and Steps 2-4 do not apply then
we have two cases. If the root is degree three, Step 1 results in at most 3 components.
If the root is degree two, then 4 could release the two branchpoints on either end of
this z-path, resulting in at most four components by Observation 3.1.

Suppose ,Q is in one component with exactly one unclaimed branchpoint after
the forced phase. If that branchpoint is released by Step 1, then -{ is in at most

3 r:ornponents after tliat step (only ihat branchpoint and its adjacent z-paths arc

removed from F,), and step 2 is rcclundant. otherwise, step l ortly ltas atl effcct

if the root has dcgree 2. In this case, Step 1 releases only the i-path tirrough thcr

root, since its cndpoints are claimcd,, resulting in two components, and the subsequeut

application of step 2 adds at most two more for a total of four.

Srrppose Step 3 can be applied to Ft. If wt is not an cndpoint of the z-path through

th" .ooiof ,F, (or the root itself) , then, as in the previous case, Step 1 results in at

most two components. Subsequently removing w2 by Step 3 results in at most two

more components for a total of four. If 'u1 is an endpoint of the z-path containing the

root of]7, (o, ihe root itself), then both ,t,l and w2 ate released (and nothing more).

Since they share an z-path, this results in at most four components by Observation 3 1'

Finally, suppose Step 4 can be applied to 4. If rrone of u)1,1-t)2 or ?r3 is tltc root or

is an endpoint of the z-path adjacent to the root, then Step 1 will resr.rlt in additional

.o-pon.nts only if the root has degrec two. Since both of the endpoints of this i-patir

arc claimed in this case) removing this z-path aud u2 (by Step 4) results in' at most

four components. Otherwise, the combined application of Steps 1 and 4 requires the

release of *r, and possibly one of ur1 and ur3 as well (but not both, sincc if tr2 is the

root, neither of the other branchpoints will be released)' By Observation 3'1 this will

result in at most four components. I
The following lemmas use this fact:

Facr 3.3. ([g]) fneintersection of two subtrees of atree is connet:ted und contazn's

tlr,t: root of at least one of the subtrees.

Lpurr,le 3.4. If F; and, Fi are each'in two components after th'e forced Tthase, then'

after the approrimation pltase, there is no node that is in F, and i'n F1

proof. This proof is similar to tlie correctness proof of the fixed-topology 2-

plrylogeny algorithm in [9]. Let C6 be a cornponent of Fi after thc forced p]rase' artd

lat cl be a component of Fj after the forced phase. Since F, and -17, arc both split in

two components during the forced phase, all branch points in C, and Ci are claimed

during the forced phase (by Rule 2), and their intersection is a path in the fixed

topology (i.e., all nodes are degree 2). Furthermore, the root of c6 or ci is in thc

intersection. Therefore, the contention is cleared in Step 1 of the approximation phasc

of the algorithm. !
Lnvrrr,rn 3.5. If Fi is in one component after the forced phase, and Fi is in two

components after the forced, phase, then there'is no node that is i'n Fi and' in Fi after

the approrirnation phase.

Proof. First note that no branch point of Q is part of Q. (since { is in only 2

pieces, it gave up only degree-2 nodes in the forced phase, and subsequently claimed

.ll branch-points. None of these are in fi, since 4 was unbroken in the forced phase) .

Thus, the intersection of 4 and Q is a path in 4. W" conclude r,hat the intersectiort

of -F] and ,$ is a path in Fi and,contains at most one branch point of F; (otherwise, the

path would be removed frbm F, during the forced phase by Rule 1). If the intersection

contains the root of Fi, then the contention will be removed during Step 1 of the

approximation phase. btherwise, the intersection contains the root of 4. Thus, the

single branch point of 4 that is contained in the intersection of -Q and .Q is either

the root of -f; or it is an endpoint of the r-path containing the root of .fl. In either

case, the contention will be removed in Step 1 of the approximation phase. I
Lurarr,tL 3.6. If F; and, Fi are each in one con'rponent after the forced phase, then

there i,s no node that is in Ft and i,n Fi after the approrimation phase.

10

Proof' Wc will cortsider variotrs cases. Case (u, g,l) will reprcsent the situation i1
which the intcrser:tiorr of fl and { after thc forcecl phase contains cr branch poilts of
f and p branch points of Fi,1of which are sharecl. Recall that whcn a br;rnchpoilt
u of Fi is released, tr and all rrodes on z-paths adjacent to o are removecl from F|.
case (0,0,0): As in the proof of Lemma 3.4, the interscction of fl and { is a path
containing the root of one of f and 4, ro the contentiorr is cleared in Step 1 of the
approximation phase.

case (1,0,0): As in the proof of Lemma 3.5, the intersection of F, and { is a path
of F, containing one branch point of fl so the contention is cleared in Step 1 of the
approxirnation phase.
Case (1,1,7): Suppose without loss of generality that the root of f; is in thc ipter-
section of fl and { after the forced phase. Then tlie branch point of ,e is either the
root of F, or it is the endpoint of an i-path containing the root of f . In either case,
it is released by 4 during step 1 of the approximation phasc.
Case (2,0'0): This case cannot arise after the forced phase, because it requires two
branch points of fl on a single path of {, which is forbidden by Rule 1 of the forced
phase.

case (2,1,0): By Rulc 1, after the forced phase, the interscction of F, and F) has
tlre branchpoint of Fi (rr), between the two branchpoints for fl (ur1 and 'rr; u.
illustrated in Figure 2(a). Let w4be thc other endpoint of the j-path adjacent tt-r ur2
that contairs ?1.r1, and let ur5 be the other endpoint of the 7-path adjacent to ,p2 tirat
contains us. By Rule 3 0f the forced phase, all branch points of F, except w2,wa ancl
u5 &re claimed. If node ur2 is released by { during the approximation phase, tlerr
tlte contcntion is cleared. Otherwise, by Rules 2 and 4 of ihe approximation phase,
cxactly one of {.q,rs} is unclairncd after the forced phase. Suppose witholt ioss of
generality this is t-u4. Because tu2 is not releasea bV 4 in the approximation phase,
tlre root of F, is not w2 or on any j-path adjacent to it. Therefore the root of -fi is irr
the intersection. If the root of f is on the i-path between tu1 and tr.r3 then by Step i
of the approximation phase, 4 will release both u1 and ,u3, and the contention will bc
cleared. If the root of ,Q was on the other z-path adjacent to tr1 in the intersection, thel
?rr4 would be the closest to the root of F, among the three unreleased ,Q branchpoints,
and F, would have released ut2 by step 3 of the approximation phase. Finally, if the
root is on an z-path adjacent to u3 (but not u1), 4 will release tus by step 1 of the
approximation phase, clearing the i-path from u3 to u1 (not including trr). By step 3
of the approximation phase -{ will release ur4, clearing the j-path from tl2 to u4 (not
including u2). Therefore the contention is removed.
Case (2, 1, 1): This case cannot arise after the forced phase, becalse it requires two
branch points of -Q on a single path (including endpoints) of F1, which is forbidderr
by Rule 1 of the forced phase.
case (2,2,0): By Rule 1 of the forced phase, the branch points of ,fl and Fi are
interleaved and lie on a path, as illustrated in Figure 2(b). Label the four relevant
branch points 'tl)rtrD2trD3t'ur4 such that for ft e {1,2,g}, there is a path between ?o6 and
tr611 which does not pass through a\y ut / {.*,ur+r}. without loss of generality,
assume that ur1 is a branch point of Fi. Let u.r5 be the other endpoint of the 7-path
adjacent to ?r2 that contains ?.r.r1, &nd let u6 be the other end of the f-path ad;acent
to tu3 that contains -+. By repeated applications of Rule 3 of the forced phase, all
branch points of .Q and ,Q other than tlr1-tu6 are claimed.

If .Q does not claim tl5 in the forced phase and .f; does not claim tl6, then by
11

w/
-- --t r-Y

I

I

(c)

Ftc. 2. Cases from Lernma 10. Branch'po'ints

i-paths are solid lines. Branchpo'ints oJ forest Fi
dashed lines. Dashed and solid together represent

and (c) case (3,2,0).

w-
:)

J t----

Y
i

of forest Fi are represented by sol'id c'ircles' and

are represented as ernpty circles with j-paths as

shared. path.s. (a) case (2,1,0), (b) case (2,2'0),

Rule 4 of the approximation phase, tl3 is released by F; and ur2 is released by Pr, so

the contention is cleared-

so, suppose without Ioss of generality that tr6 is claimed by 4' consider the

location of the root of ,Q relative to tr.ri and w3. If the root of -4 is on the far side of

'u.r6 (down one of the i-paths not adjacent to tr'r3), or on the (t,,tu) i-path between

ua and trr6, then,u+ is on a j-path adjacent to the root of Fr. Therefore, by step 1

of the approximation phase, .{ will release tl4, clearing contention up to, but not

includin! u2, arrd by Step 3 of the approximation phase, .Ei will release u.r1' clearing

the remaining contention. A similar argument holds when the root is on the far side of

trr. If the root is on the (rt, ,s) i-path, then by step 1 of the approximation phase, -Q

releases both u1 and tu3, removing contention' Similarly, if the root is on the (wz,w+)

j-path, (included in Fr), then -Fr'releases both u'r2 and ur4'

case (3,2,0): By Rule 1 of the forced phase, the branch points of ,Q and Fi ate

interleaved and lie on a path as illustrated in Figure 2(c). Label the five relevant branch

points 'u)r,'r1)2,'t1)3t11)4,t.,5 sr.ch that for lc e {t,2,3'4}' there is a path between t06 and

tr.r;a1 which does not pass through any wt / {rux,ur*+r}' By repeated application of

Rule 3 of the forced phase, all branch points of -fi and ,Q other than tr1-ttr5 are claimed'

Node u.r3 is released by F, by Rule 4 of the approximation phase. contention remains

at trrl and u5. Consider where the global root is with respect to this intersection. If
the global root is located down one of the paths adjacent to tr.r1 (but not adjacent to

?r3), then the root of ,Q is on an j-path adjacent to ru2. ,Q releases wzby Step 1 of

12

thc approximation phase and ur.1 by Step 3 of the approximation phase, removing the
remaining contention. A similar argurnent holds if the root is down a z-path ad3acent
to u5 (other tharr (rs,tt,s)). If the global root is down a 7-path adjacent to tr2 (othcr
than (rr.r2,tu4)), then the root of F, is on an i-path adjacent to tu1 (or tirl itself),
arrd thercfore P'' will relcasc it by Step 1 of the approxirnation phase. As before. ti
will relcase ua by Step 3, rernovingl the rest of the contention. A sirnilar argurle't
Irolds wlre'the global root is dow'a 7-path adjace't to ?r4 (other than 1.r,iun11. nthe global root is on 7-path (wz,w+), or down the z-path adjacerrt to ur3 which does
rrot intersect this 7-path, then by step 1, -F, rereases both tl2 and. w4, removirrg all
contcntion.
Case (3,3,0): This case cannot arise. By Rule 1 of the forced phase, if it clid exist,
the branch points of ,S and { would be interleaved and lie on a path. But then, by
applying Rule 3 of the forced phase, we find that at least one of the relevant brarrch
poi'ts of f, and F, would have been claimed during the forced phase.
Case (a > I,13) 1,7) 0): This case cannot arise atter the forced phase, because it
requires two branch points of fl orr a single path of {, which is forbicldel by R'le 1
of the forced phase.

Case (3' 0 < I,l), This case cannot arise after the forced phase, because it requires
two branch points of f on a single path of {, which is forbidden by Rule 1 of tle
forced phase. I

LBntuta 3.7. After the approrirnation phase, euery nod,e is in at most one; for-
est F;.

Proof. The lemma follows from Lemmas 3.4, 3.5 and 3.6. n

4. Approximating Polymorphism. A polymorphic character (see [t3l) al-
lows more than one state per character per species. This type of character hu. ,#n,,g
application in linguis.tics [2_, 18]. If there are z'srares, a polymorphic c]raracter is a
function c : ,9 -+ (2It ,,j * A), where 2{1, ..., "} de'otes the power set (set of all
subsets) of {1, ..., r}. For a given set of species, the load, is the maximum number of
states for any character for any species.

Often the evolution of biological polymorphic characters from parent to child is
rnodelled by mutations, losses and duplications of states between species (see [13]). Arnutation changes one state into another; a loss drops a state from a polymorphic
character from parent to child; and a duplication replicates a state which subse-
quently mutates' We associate a cost with each mutation, duplication and loss be-
tween a pair of species. In the state-independent model, which we will consider, a loss
costs cl, a mutation costs c- and a duplication costs c4, regard.less of which states are
involved. Followingthejustificationin[2],weinsistcl lcrn{ca.Letsi,s2€.gand
assume s1 is the parent of s2. In the state-independent model, we first look at the
differences in cardinality of the parent and child sets. If the parent has fewer stares)
then we pay the appropriate duplication costs to account for the increased size of the
child. If the parent is bigger, then we pay the ross cost. Then we match up as many
elements as possible, and pay for the remaining changes as mutations. More specifi-
cally' as given in [2], we define x : c(sr) -c(sz), and y : c(s2)-c(sl). Then the cost
for the character c from sl to s2 is c- * lxl if lxl : lyl, and is c1+ilxl - lyl] + c,.,,lyl
if lxl > lYl and is c4 * tlyl - lxll + c,"* lxl if lyl > lxl.

As input we are given a fixed-topology ? which has a unique species from ,s
associated with each of its leaves, and label the leaf associated with s € ^g with

13

the set of states c(.s). The parsirnony problem is the problem of extcnding thc

functiorr c to the iltternal nodes of ? so that the sum of the costs over all edges

of T is minirnized. I1 the monomorp|ic casc (one state per character per species).

as discusscd earlier, this problcm can be solved in polynomial time [7], though the

problem of linding a rninimum cost labelling is NP-hard if the input does not inchrck:

a tupolugy [4, 5, 8, 17]. We will consider the load problem';'introducerl in [2]; calculatc

o trbetting of the internal nodes of a fixed topology ? with load at rnost I and cost'

at most p. This problem was shown to be NP-hard in [2], even when c; : 0 and the

topology ? is a binary trec. Note that the dynamic programming techniques presented

in Jiang, Lawler and Wang's [11] and Gusfield and Wang's [15] papers do not appear

to geneialize for the polymorphic load problem. An (4, p)-approximation algorithm

for the load problem computes a phylogeny with load at most a/ and cost at most Bc

provided there is a load-l cost-c phylogeny. Note that this is a pseudoapproximatiorr

algorithm, since the cost of the best a!-load phylogeny may be significantly lower thatr

the cost of the best l-load phylogeny. In this section of the paper, we consider the loarl

problem when c1 : 0 and the topology is arbitrary. we extend the results of section 2

to obtain, for any a) 1, an (a, aa)-upproximation algorithm for thc problem. (Note

that taking a:2 gives a (2,2)-approximation algorithm')

we first quote the following observation, which was first noted in [2]:

oesBRvarIoN4.I.Ifcl:0,thenifthereisalabellingforthetopologyTwhiclt
has load, (. and, cost p, then there is also a labelli'ng for T with load (' and cost p su'clt

that each internal node contains all the states in the subtree rooted at it or else has

l,oad (,.

Therefore to approximate the load we only need to consider the labellings where

each intcrnal node contains all the states in the subtree rooted at it or else has load /'

We begin by presenting an ILP which provides an exact soiution for the load problern'

We then use the solution to tirc linear-programming relaxation of this ILP to comprttc

an (a, aa)-approximation for the problem. The integer program P uses the variables

Xr,o, fi, each node u of the fixed-topology ? and each state i € {1, ... ,r}, cost vari-

ables cosf",; for each edge e € E(1:) and each state i € {1,...,r} and the total cost

variable cost. for each edge e. These variables have the following interpretation:

X,,,

cost",i :

cost" :

The ILP P is then defined as:

nilnrmrze p

I t if state i is in c(u)

i 0 otherwise

I t if i e c(r.') and, i / c(u), for s: (u + u)

I 0 otherwise

T,T:tcost",t

subject to

(e) x,,i

(10) Dx,,n

for each leaf u €V(T), Vi e c(u)

Vu eV(T)

t4

(1 1) cost",i

(l'2) costs,i

(13) ,s-cos[(
.l

Ye e E(T), 'i: 1,. .. ,'r'
Ve:(u -+u) e E(1:), i:t,...,?-

Ys: (u" -+ u) e E(f)

if i € c(u)
otherwise

if ie c(tr) -r(")
otherwise

Plc,,

{0,1}

Y
'-U'l

cost ",6
:

The integer prograur P solves the load problem. However, we require oniy that
it provides a lower bound on the best cost. We now show that when we solve p with
parameter (., tlte optimal value of p is a lower bound on the cost of the best Ioad-(.
solution to the fixed topology problem.

LpvuR 4.2. Let s be a species set, T be a fired topology and c: s -+ (z{t,...,r} - tl)
be a polymorph'ic character on S. If the i,nternal nodes u of T can be labelled wi,tlt
subsets of {1, . . ,r} to create a phylogeny for c with load (. and, cost p, then there zs a
.feasible solution for the linear program for this uahrrc of (. and p.

Proof. Because of Observation 4.1, we can assume that in the load-/, cost-c phy-
logeny, for each internal node o inv(T), either c(u,) c c(u) for every child u, of u, sr
else lc(u)l : l. Therefore the cost of this phylogeny is D6-+u1en(r1k,,*lc(u)*.(")l) -p. Assign values to the Xr,; variable for each intcrnal node u'and to the cost",i variable
for each edge e : (tl -+ u) as follows:

)r
Io
J1
L0

This assignment satisfies constraints (15), (10), (11) and (12) of p. Constraint (9) is
automatically satisfied, and constraint (13) is definitional. Also, cm+coste: c^+lc(u)-
c(z)l for every e: (u -+ u) by definition of the cost",i, and therefore feerlr;cm x
costr: p, and constraint (1a) is satisfied. U

Once again, since integer linear programming is ,A/P-hard., we solve thc linear-
programming relaxation LP of P, which consists of all the constraints of P excent
tlrat constraint 15 is replaced with the constraint 0 { xr,6,costs,; < 1 (1b/).

TnsoRpN,I 4.3. Suppose there is a solution for the I'inear program LP. Then we
can ass'ign states to the internal nodes of input tree T such that the resulting plr,ylogerry

for c has load a(. and, cost no rnore tnr" (#t) n
Proof. We assign states to the internal nodes of the fixed topology from the

leaves upwards. For each internal node u € vQ) * L(T), consider the set R(a) :
U@+u,)ea(r)c(u'). if lfi(u)l I al, then define c(u) : p1r). If lr?(u)l > a/ then
choose the a[. states i, of R(u) which have the greatest Xr,; values. By definition, this
assignment of states to the internal nodes of ? has load at most ol.

To show that the cost of this assignment is no more tn*" (;a)p, note that
the cost on an edge e : (u --f u) e E(T) is c_ * l.(r) - c(u)1,'as lL@ _ c(z)j is
tlre number of mutations on e. Our assignment guarantees that if l"(")l < a(. then
c(u) : c(u), which implies cr" * lc(u) - c(u)l : 0, so we need only consider edges

15

wlrose upper endpoint has full loacl. suppose lc(U)l : ctl alld i e c(u) c(u). Then,

by construction of the phylogeny, there is a downwards path from tr to some leaf u''

*li.n has i € c(,u/) at cvery rrode alorrg the path, including u. Suppose this path is

e1 : (u -+'ur), ez: (ut --+ L)2), -.., ei - (ur-t -+ rl)' By the constraints of the linear

prograln) cost",i*cost"r,i*... *cost",i) (Xu,,-Xu,r)*(Xur,t-Xu,i)+'"-+(X','-Xr,--r,r):Xu,.i-Xu,i,andasttrisaleafandiec(w),tliisisl-Xu,r'Theu'since

I / i(rl, ancl the al states in c(u) were ctrosen to have the greatesl xu,i values' we

know'X,,; < (.1@(.+1). The worst case is achieved when there are al+ 1 positive X,,,

values all equal. They sum to at most I ftom constraint 10, and therefore the smallcst

one, which cannot be included in the set, has value at most (.1@(' + l). Therefore

costr,i*cost"r,;+...+ cost",,i > ((o - l)(.+l)l@l'+I)' Furthermore' thecosts

costr,i, cost"r,i, ...co,sts,,; willirot be allocated to any other mutation to i, because any

mutation occurring abo'ue u will 1ot have an unbroken path in i intersecting with any of

tlre edges e,€t,...,ej.So every mutation along anedge e : (u -+ u) e T with lc(u)l :
crl contributes at least ((a _ I)l+t)l@{.+ 1) to the sum DeeD(t)co.st.in or-rr linear

program. Hence plc,n) LeeE(r)cost") Lp=@->u)e1rrl lc(u) - c(u)l (@##)' t"

the cost De-(,,-+u\eE(T\crn * lc(u) -.(z)l < (ol@ - 1)) *p' I

16

REFtrRENCES

[i] H Bodlacrrder, M. Fellows, T. Warnow, "Two Strikes Against perfect phylogeny,,, proceed-
zngs of the 19th Internatzonal Congress on Automata, Languages and, Prograimtng (ICALp),
sprirrger-Verrag Lccture Notes i' computer Science, pp. izz-zaz (1g92).

[2] il'l Bonet, C Phillips, T.J. Warnow and S. Yooseph, Constructing lJvolutionary Tbees in tlc
Prcsence of Polymorphic Characters , Proceedings of the 28th Annual ACM Symposium on the
Theory oJ Computing (1996).

[3] I Borosh and L.B. teybig, Bounds on positive integral solutions of linear Diophantine equarrons,
Proceed,ings of the American Mathemat,ical Society, Vol b5 (1g76)

[4] W H'E' Day, Computationally difficult parsimony problems in phylogenetic systematics , JoyTnal
of The,oretical BiologE, Vol 103 (1993).

[5] W H tr Da.y, D.S. Johnson and D. Sankofi, Th" computational complexity of inferring phyloger'es
by parsirnony, Mathematical bi,osciences, Vol g1 (19g6).

[6] w'H E' Day and D. Sankoff, "Computational complexity of inferring phylogenies by compatibil-
ity" , SEstematic Zoology, yol 3b(2):224-229 (19g6).

[7] w Fitc]r, Towards defining the course of evolution: -inimum change for a specified tree topology,
Systematic Zoology, Vol 20 (1971).

[8] L.R. Foulds and R.L. Graham, "Thc Stciner Problem in Phyiogeny is Np-complete,,, Ad.uarces
'in Applied Mathernatics, Vol 3:43-49 (1982).

[9] L.A. Goldberg, P.w. Goldberg, c.A. phillips, E. sweedyk and r. warnow, ,,Minimizing phylo-
genetic number to find good evolutionary trees", Discrete Applied, Mathematics, tn uip.u.

[10] M.R. Garey and D.S. Johnson , Computers and. Intractabitity: A Gui,d.e to the Theoru i,f up-
completeness, W.H. Fleernan and Company (1g7g).

[11] T. Jiang, E.L. Lawler and L. Wang, "Aligning Sequences via an Evolutionary Ttee: Compiexrt.y
and Approximation"' Proceedings of the 26th Annual ACM Symposiurn on the Th)ory of
Computing (1994).

[12] R.M. Karp, "Reducibility among cornbinatorial problems", Cornplerity of Computer Cornputa-
tiorts, eds. R.tr. Miller and J.W. Thatcher, plenum press (1972).

fl3] M. Nei, Molecular Euolut'ionary genet'ics, Columbia University press, Nerv york (19g7).
[14] M A Stcel, "The complexity of reconstmcting trees frorn qualitative c]raracters and subtrees,,.

JournaL of Classif.catr.on, yol g:91-116 (1992).
[15] L. Wang and D. Gusfield, "Improved Approximation Algorithms for Tfee Alignnient,,, proce,erlirtgs

of the 7th Annual Symposium on Comb'inatorial Pattern Matching,220-233 (1996).
[16] L. Wang, T. Jiang, and D. Gusfield, "A more efficient approximation scheme for tree alisnment,'.

Proceedings of the F'irst Annual International Conference on Computational Moleculi Biology
(1ee7).

[17] T.H. Wareharn, "On the Computational Complexity of Inferring Evolutionary Ttees,', M.Sc.
thesis, Technical Report No. 9301, Department of Computer Science, Mernorial University of
Newfoundland, Canada, (1993).

[18] T Warnow, D. Ringe and A. Tayior, "A character based method for reconstructing evolutiola.ry
history for natural languages", Tech Report, Institute for Research in Cognitive"science, Uni-
versity of Pennsylvania, (1995), and Proceedings of the 7th Annual ACM/SIAM Sympostum
on Discrete Algorith.ms (1996).

L7

