
http://wrap.warwick.ac.uk/

Original citation:
Matias, Y., Rajpoot, Nasir M. (Nasir Mahmood) and Sahinalp, S. (2008) Implementation
and experimental evaluation of flexible parsing for dynamic dictionary based data
compression. In: 2nd Workshop on Algorithm Engineering (WAE 1998), Saarbrucken,
Germany, 20-22 Aug 2008

Permanent WRAP url:
http://wrap.warwick.ac.uk/61046

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61046
mailto:publications@warwick.ac.uk

1
Proceedings WAE’98, Saarbrücken, Germany, August 20-22, 1998

Ed. Kurt Mehlhorn, pp. 1-3

Implementation and Experimental Evaluation of Flexible Parsing

for Dynamic Dictionary Based Data Compression

(extended abstract)

Yossi Matias 1

Department of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel,

and Bell Labs, Murray Hill, NJ, USA

e-mail: matias@math.tau.ac.il

Nasir Rajpoot 2

Department of Computer Science, University of Warwick, Coventry, CV4-7AL, UK

e-mail: nasir@dcs.warwick.ac.uk

Süleyman Cenk S.ahinalp 3

Department of Computer Science, University of Warwick, Coventry, CV4-7AL, UK,

and Center for BioInformatics, University of Pennsylvania, Philadelphia, PA, USA

e-mail: cenk@dcs.warwick.ac.uk

We report on the implementation and performance evaluation of greedy parsing with lookaheads for dy-

namic dictionary compression. Specifically, we consider the greedy parsing with a single step lookahead which

we call Flexible Parsing (FP) as an alternative to the commonly used greedy parsing (with no-lookaheads)

scheme. Greedy parsing is the basis of most popular compression programs including unix compress and

gzip, however it does not necessarily achieve optimality with regard to the dictionary construction scheme in

use. Flexible parsing, however, is optimal, i.e., partitions any given input to the smallest number of phrases

possible, for dictionary construction schemes which satisfy the prefix property throughout their execution.

There is an on-line linear time and space implementation of the FP scheme via the trie-reverse-trie pair data

structure [MS98]. In this paper, we introduce a more practical, randomized data structure to implement

FP scheme whose expected theoretical performance matches the worst case performance of the trie-reverse-

trie-pair. We then report on the compression ratios achieved by two FP based compression programs we

implemented. We test our programs against compress and gzip on various types of data on some of which

we obtain up to 35% improvement.

1. Introduction

The size of data related to a wide range of applications is growing rapidly. Grand challenges such as the

human genome project involve very-large distributed databases of text documents, whose effective storage

and communication requires a major research and development effort. From DNA and protein sequences to

medical images (in which any loss of information content can not be tolerated) vital data sources that will

1partly supported by Alon Fellowship
2supported by Quaid-e-Azam scholarship from the Government of Pakistan
3partly supported by NATO research grant CRG-972175 and ESPRIT LTR Project no. 20244 - ALCOM IT

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 2

shape the information infrastructure of the next century require simple and efficient tools for lossless data

compression.

A (lossless) compression algorithm C reads input string T and computes an output string, T ′, whose

representation is smaller than that of T , such that a corresponding decompression algorithm C← can take T ′

as input and reconstruct T . The most common compression algorithms used in practice are the dictionary

schemes (a.k.a. parsing schemes [BCW90], or textual substitution schemes [Sto88]). Such algorithms are

based on maintaining a dictionary of strings that are called phrases, and replacing substrings of an input

text with pointers to identical phrases in the dictionary. The task of partitioning the text into phrases is

called parsing and the pointers replacing the phrases are called codewords.

A dictionary can be constructed in static or dynamic fashion. In static schemes, the whole dictionary is

constructed before the input is compressed. Most practical compression algorithms, however, use dynamic

schemes, introduced by Ziv and Lempel [ZL77, ZL78], in which the dictionary is initially empty and is

constructed incrementally: as the input is read, some of its substrings are chosen as dictionary phrases

themselves. The dictionary constructed by most dynamic schemes (e.g., [ZL77, ZL78, Wel84, Yok92]) satisfy

the prefix property for any input string: in any execution step of the algorithm, for any given phrase in the

dictionary, all its prefixes are also phrases in the dictionary.

In this paper we focus only on the the two most popular dictionary based compression methods: LZ78 [ZL78],

its LZW variant [Wel84], and LZ77 [ZL77]. A few interesting facts about LZ78 and LZ77:

• The LZW scheme is the basis for unix compress program, gif image compression format, and is

used in the most popular fax and modem standards (V42bis). LZ77 algorithm is the basis for all zip

variants.

Both algorithms: (1) are asymptotically optimal in the information theoretic sense, (2) are efficient,

with O(1) processing time per input character, (3) require a single pass over the input, and (4) can be

applied on-line.

• LZ78 (and the LZW) can be implemented by the use of simple trie data structure with space complexity

proportional to the number of codewords in the output. In contrast, a linear time implementation of

the LZ77 builds a more complex suffix tree in an on-line fashion, whose space complexity is proportional

to the size of the input text [RPE81].

• It is recently shown that LZ78 (as well as LZW) approaches the asymptotic optimality faster than

LZ77: the average number of bits output by LZ78 or LZW, for the first n characters of an input string

created by an i.i.d. source is only O(1/ log n) more than its entropy [JS95, LS95]. A similar result for

more general, unifilar, sources has been obtained by Savari [Sav97] - for the average case. For the LZ77

algorithm, this redundancy is as much as O(log log n/ log n) [Wyn95]. Also, for low entropy strings,

the worst case compression ratio obtained by the LZ78 algorithm is better (by a factor of 8/3) than

that of the LZ77 algorithm [KM97].

• The practical performances of these algorithms vary however depending on the application. For ex-

ample the LZ77 algorithm may perform better for English text, and the LZ78 algorithm may perform

better for binary data, or DNA sequences. 4

4A simple counting argument shows that there cannot exist a single dictionary construction scheme that is superior to other

schemes for all inputs. If a compression algorithm performs well for one set of input strings, it is likely that it will not perform

well for others. The advantage of one dictionary construction scheme over another can only apply with regard to restricted

classes of input texts. Indeed, numerous schemes have been proposed in the scientific literature and implemented in software

products, and it is expected that many more will be considered in the future.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 3

Almost all dynamic dictionary based algorithms in the literature including the Lempel-Ziv methods

([ZL77, ZL78, Wel84, MW85, Yok92]) use greedy parsing, which takes the uncompressed suffix of the input

and parses its longest prefix, which is a phrase in the dictionary. The next substring to be parsed starts

where the currently parsed substring ends. Greedy parsing is fast and can usually be applied on-line, and

is hence very suitable for communications applications. However, greedy parsing can be far from optimal

for dynamic dictionary construction schemes [MS98]: for the LZW dictionary method, there are strings T

which can be (optimally) parsed to some m phrases, for which the greedy parsing obtains Ω(m3/2) phrases.

For static dictionaries -as well as for the off-line version of the dynamic dictionary compression problem-,

there are a number of linear time algorithms that achieve optimal parsing of an input string, provided that

the dictionary satisfies the prefix property throughout the execution of the algorithm (see, for example, [?]).

More recently, in [MS98], it was shown that it is possible to implement the one-step lookahead greedy parsing

(or shortly flexible parsing -FP) for the on-line, dynamic problem, in amortized O(1) per character. This

implementation uses space proportional to the number of output codewords. It is demonstrated that FP is

optimal for dictionaries satisfying the prefix property in every execution step of the algorithm: it partitions

any input string to minimum number of phrases possible while constructing the same dictionary. (For

instance, the algorithm using the LZW dictionary together with flexible parsing inserts to the dictionary

the exact same phrases as would the original LZW algorithm with greedy parsing.) The implementation

is based on a rather simple data structure, the trie-reverse-trie-pair, which has similar properties with the

simple trie data structure used for greedy parsing. It is hence expected that FP would improve over greedy

parsing without being penalized for speed or space.

In this study, we report an experimental evaluation of FP in the context of LZW dictionary construction

scheme. We implement compression programs based on FP (the implementations are available on the

WWW [Sou]), and study to what extent the theoretical expectations hold on “random” or “real-life” data.

In particular, we consider the following questions:

1. Is it possible to obtain a new dictionary construction scheme based on FP? If yes, how would it

perform in comparison to FP with LZW dictionary construction or the LZW algorithm itself - both

asymptotically and in practice? (Note that the general optimality property of FP does not apply once

the dictionary construction is changed.)

2. The trie-reverse-trie-pair is a pointer based data structure whose performance is likely to suffer from

pointer jumps in a multi-layer memory hierarchy. Are there alternative data structures to obtain more

efficient implementations of FP - in particular can we employ hashing to support dictionary lookups

without all the pointer jumps?

3. What are the sizes of random data on which the better average case asymptotic properties of the LZ78

over LZ77 start to show up?

4. Does the worst case optimality of FP translate into improvement over greedy parsing on the average

case?

5. Do better asymptotic properties of LZW in comparison to LZ-77 and FP in comparison to LZW show

up in any practical domain of importance? Specifically how well does FP perform on DNA/protein

sequences and medical images?

We address each one of these issues as follows:

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 4

1. We consider a data compression algorithm based on FP , which constructs the dictionary by inserting

it the concatenation of each of the substrings parsed with the character following them - as in the

case of LZW algorithm. We will refer this algorithm as the FP-based-alternative-dictionary-LZW

algorithm, or FPA. The dictionary built by FPA on any input still satisfies the prefix property in

every execution step of the algorithm. In our experiments we consider the implementation of FPA as

well as the implementation of the compression algorithm which builds the same dictionary as LZW,

but uses FP for output generation which we refer as LZW-FP. We compare the compression ratios

obtained by LZW-FP and FPA with that of unix compress and gzip.

2. We present an on-line data structure based on Karp-Rabin fingerprints [KR87], which implements both

LZW-FP and FPA in expected O(1) time per character, by using space proportional to the size of the

codewords in the output. We are still in the process of improving the efficiency of our implementations;

we leave to report our timing results to the full version of this paper. We note, however, that our

algorithms run about 3 − 5 times slower than compress which is the fastest among all algorithms,

both during compression and decompression. We also note that all the software, documentation, and

detailed experimental results available on the WWW [Sou]. The readers are encouraged to check

updates to the web site and try our software package.

3. We first demonstrate our tests on pseudorandom (non-uniform) i.i.d. bit strings with a number of bit

probabilities. We observe that the redundancy in the output of each of the four programs we consider

approach to the expected asymptotic behavior very fast - requiring less than 1KB for each of the

different distributions, and better asymptotic properties of LZW in comparison to LZ77 can be very

visible. For files of size > 1MB, compress can improve over gzip up to 20% in compression achieved.

A next step in our experiments will involve pseudo-random sources of limited markovian order.

4. We report on our experimens with several “real-life” data files as well; those include DNA/protein se-

quences, medical images, and files from the Calgary corpus and Canterbury corpus benchmark suites.

These results suggest that both LZW-FP and FPA are superior to LZW (unix compress) in compres-

sion attained, up to 20%. We also observe that both LZW-FP and FPA are superior to gzip for most

non-textual data and all types of data of size more than 1MB. For pseudo-random strings and DNA

sequences the improvement is up to 35%. On shorter text files, gzip is still the champion, which is

followed by FPA and LZW-FP.

2. The Compression Algorithms

In this section we describe how each of the algorithms of our consideration, i.e., (1) the LZ77 algorithm

(the basis for gzip), (2) the LZW variant (the basis for UNIX compress) of the LZ78 algorithm, (3) LZW-FP

algorithm and (4) FPA algorithm, work. Each of the algorithms fit in a general framework that we describe

below.

We denote a compression algorithm by C, and its corresponding decompression algorithm by C←. The

input to C is a string T , of n characters, chosen from a constant size alphabet Σ; in our experiments Σ is

either ascii or is {0, 1}. We denote by T [i], the ith character of T (1 ≤ i ≤ n), and by T [i : j] the substring

which begins at T [i] and ends at T [j]; notice that T = T [1 : n].

The compression algorithm C compresses the input by reading the input characters from left to right (i.e.

from T [1] to T [n]) and by partitioning it into substrings which are called blocks. Each block is replaced by

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 5

a corresponding label that we call a codeword. We denote the jth block by T [bj : bj+1 − 1], or shortly Tj ,

where b1 = 1. The output of C, hence, consists of codewords C[1], C[2], . . . , C[k] for some k, which are the

codewords of blocks T1, T2, . . . , Tk respectively.

The algorithm C maintains a dynamic set of substrings called the dictionary, D. Initially, D consists of

all one-character substrings possible. The codewords of such substrings are their characters themselves. As

the input T is read, C adds some of its substrings to D and assigns them unique codewords. We call such

substrings of T phrases of D. Each block Tj is identical to a phrase in D: hence C achieves compression by

replacing substrings of T with pointers to their earlier occurrences in T .

The decompression algorithm C← that corresponds to C, takes C[1 : k] as input and computes T [1 : n] by

replacing each C[j] by its corresponding block Tj . Because the codeword C[j] is a function of T [1 : bj − 1]

only, the decompression can be correctly performed in an inductive fashion.

Below, we provide detailed descriptions of each of the compression algorithms.

Description of the LZW Algorithm. The LZW algorithm reads the input characters from left to right

while inserting in D all substrings of the form T [bm : bm+1]. Hence the phrases of LZW are the substrings

obtained by concatenating the blocks of T with the next character following them, together with all possible

substrings of size one. The codeword of the phrase T [bm : bm+1] is the integer |Σ|+ m, where |Σ| is the size

of the alphabet Σ. Thus, the codewords of substrings do not change in LZW algorithm. LZW uses greedy

parsing as well: the mth block Tm is recursively defined as the longest substring which is in D just before C

reads T [bm+1 − 1]. Hence, no two phrases can be identical in the LZW algorithm.

Description of the LZW-FP Algorithm. The LZW-FP algorithm reads the input characters from

left to right while inserting in D all substrings of the form T [b′m : b′m+1], where b′m denotes the beginning

location of block m if the compression algorithm used were LZW. Hence for dictionary construction purposes

LZW-FP emulates LZW: for any input string LZW and LZW-FP build identical dictionaries. The output

generated by these two algorithms however are quite different. The codeword of the phrase T [b′m : b′m+1] is

the integer |Σ| + m, where |Σ| is the size of the alphabet Σ. LZW-FP uses flexible parsing: intuitively, the

mth block Tm is recursively defined as the substring which results in the longest advancement in iteration

m+1. More precisely, let the function f be defined on the characters of T such that f(i) = ` where T [i : `] is

the longest substring starting at T [i], which is in D just before C reads T [`]. Then, given bm, the integer bm+1

is recursively defined as the integer α for which f(α) is the maximum among all α such that T [bm : α − 1]

is in D just before C reads T [α − 1].

We demonstrate how the execution of the LZW and LZW-FP algorithms differ in the figure below.

Description of the FPA Algorithm. The FPA algorithm reads the input characters from left to right

while inserting in D all substrings of the form T [bm : f(bm) + 1], where the function f is as described in

LZW-FP algorithm. Hence for almost all input strings, FPA constructs an entirely different dictionary with

that of LZW-FP. The codeword of the phrase T [bm : f(bm) + 1] is the integer |Σ|+ m, where |Σ| is the size

of the alphabet Σ. FPA again uses flexible parsing: given bm, the integer bm+1 is recursively defined as the

integer α for which f(α) is the maximum among all α such that T [bm : α − 1] is in D.

Description of the LZ77 Algorithm. The LZ-77 algorithm reads the input characters from left to right

while inserting all its substrings in D. In other words, at the instance it reads T [i], all possible substrings of

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 6

0354210

baaabaabaabababa

a b a b a b a a b a a b a a a b

0 1 2 4 4

LZWFP parsing

LZWFP Output:

Input:

LZW Output:

Input:

LZW parsing

5 2

Figure 1: Comparsion of FP and greedy parsing when used together with the LZW dictionary construction method,

on the input string T = a, b, a, b, a, b, a, a, b, a, a, b, a, a, a, b.

the form T [j : `], j ≤ ` < i are in D, together with all substrings of size one. The codeword of the substring

T [j : `], is the 2-tuple, (i− j, `− j +1), where the first entry denotes the relative location of T [j : `], and the

second entry denotes its size. LZ77 uses greedy parsing: the mth block Tm = T [bm : bm+1 − 1] is recursively

defined as the longest substring which is in D just before C reads T [bm+1 − 1].

3. Data Structures and Implementations of Algorithms

In this section we describe both the trie-reverse-trie data structure, and the new fingerprints based data

structure for efficient on-line implementations of the LZW-FP , and FPA methods. The trie-reverse-trie pair

guarantees a worst case linear running time for both algorithms as described in [MS98]). The new data

structure based on fingerprints [KR87], is randomized, and guarantees expected linear running time for any

input.

The two main operations to be supported by these data structures are (1) insert a phrase to D (2)

search for a phrase, i.e., given a substring S, check whether it is in D and return a pointer. The standard

data structure used in many compression algorithms including LZW, the compressed trie T supports both

operations in time proportional to |S|. A compressed trie is a rooted tree with the following properties:

(1) each node with the exception of the root represents a dictionary phrase; (2) each edge is labeled with a

substring of characters; (3) the first characters of two sibling edges can not be identical; (4) the concatenation

of the substrings on a path of edges from the root to a given node is the dictionary phrase represented by

that node; (5) each node is labeled by the codeword corresponding to its phrase. Dictionaries with prefix

properties, such as the ones used in LZW and LZ78 algorithms, build a regular trie rather than a compressed

one. The only difference is that in a regular trie the substrings of all edges are one character long.

In our data structures, inserting a phrase S to D takes O(|S|) time as in the case of a trie. Similarly,

searching S takes O(|S|) time if no information about substring S is provided. However, once it is known

that S is in D, searching strings obtained by concatenating or deleting a character to/from both ends of S

takes only O(1) time. More precisely, our data structures support two operations extend and contract in

O(1) time. Given a phrase S in D, the operation extend(S, a) for a given character a, finds out whether the

concatenation of S and a is a phrase in D. Similarly, the operation contract(S), finds out whether the suffix

S[2 : |S|] is in D. Notice that such operations can be performed in a suffix tree, if the phrases in D are all

the suffixes of a given string as in the case of the LZ77 algorithm [RPE81]. For arbitrary dictionaries (such

as the ones built by LZW) our data structures are unique in supporting contract and extend operations in

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 7

O(1) time, and insertion operation in time linear with the size of the phrase, while using O(|D|) space, where

|D| is the number of phrases in D.

Trie-reverse-trie-pair data structure. Our first data structure builds the trie, T , of phrases as described

above. In addition to T , it also constructs T r, the compressed trie of the reverses of all phrases inserted in

the T . Given a string S = s1, s2, . . . , sn, its reverse Sr is the string sn, sn−1, . . . , s2, s1. Therefore for each

node v in T , there is a corresponding node vr in T r which represents the reverse of the phrase represented

by v. As in the case of the T alone, the insertion of a phrase S to this data structure takes O(|S|) time.

Given a dictionary phrase S, and the node u which represents S in T , one can find out whether the substring

obtained by concatenating S with any character a in is D, by checking out if there is an edge from u with

corresponding character a; hence extend operation takes O(1) time. Similarly the contract operation takes

O(1) time by going from u to u′, the node representing reverse of S in T r, and checking if the parent of u′

represents S[2 : |S|]r.

Fingerprints based data structure. Our second data structure is based on building a hash table H

of size p, a suitably large prime number. Given a phrase S = S[1 : |S|], its location in H is computed

by the function h, where h(S) = (s[1]|Σ||S| + s[2]|Σ||S|−1 + . . . + s[|S|]) mod p, where s[i] denotes the

lexicographic order of S[i] in Σ [KR87]. Clearly, once the values of |Σ|k mod p are calculated for all k up to

the maximum phrase size, computation of h(S), takes O(|S|) time. By taking p sufficiently large, one can

decrease the probability of a collision on a hash value to some arbitrarily small ε value; thus the average

running time of an insertion would be O(|S|) as well. Given the hash value h(S) of a string, the hash value

of its extension by any character a can be calculated by h(Sa) = (h(S)|Σ| + lex(a)) mod p, where lex(a)

is the lexicographic order of a in Σ. Similarly, the hash value of its suffix S[2 : |S|] can be calculated by

h(S[2 : |S|]) = (h(S) − s[1]|Σ||S|) mod p. Both operations take O(1) time.

In order to verify if the hash table entry h(S) includes S in O(1) time we (1) give unique labels to each

of the phrases in D, and (2) in each phrase S in H , store the label of the suffix S[2 : |S|] and the label of the

prefix S[1 : |S| − 1]. The label of newly inserted phrase can be |D|, the size of the dictionary. This enables

both extend and contract operations to be performed in O(1) expected time: suppose the hash value of a

given string S is hS , and the label of S is `. To extend S with character a, we first compute from hS , the

hash value hSa of the string Sa. Among the phrases whose hash value is hSa, the one whose prefix label

matches the label of S gives the result of the extend operation. To contract S, we first compute the hash

value hS′ of the string S′ = S[2 : |S|]. Among the phrases whose hash value is hS′ , the one whose label

matches the suffix label of S gives the result of the extend operation. Therefore, both extend and contract

operations take expected O(1) time.

Inserting a phrase in this data structure can be performed as follows. An insert operation is done only

after an extend operation on some phrase S (which is in D) with some character a. Hence, when inserting

the phrase Sa in D its prefix label is already known: the label of S. Once it is decided that Sa is going to be

inserted, we can spend O(|S|+ 1) time to compute the suffix label of Sa. In case the suffix S[2 : |S|]a is not

a phrase in D, we temporarily insert an entry for S[2 : |S|]a in the hash table. This entry is then filled up

when S[2 : |S|] is actually inserted in D. Clearly, the insertion operation for a phrase R and all its prefixes

takes O(|R|) expected time.

A linear time implementation of LZW-FP. For any input T LZW-FP inserts to D the same phrases

with LZW. The running time for insertion in both LZW and LZW-FP (via the data structures described

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 8

above) are the same; hence the total time needed to insert all phrases in LZW-FP should be identical to

that of LZW, which is linear with the input size. Parsing with FP consists of a series of extend and contract

operations. We remind that: (1) the function f on characters of T is described as f(i) = ` where T [i : `] is

the longest substring starting at T [i], which is in D. (2) given bm, the integer bm+1 is inductively defined

as the integer α for which f(α) is the maximum among all α such that T [bm : α − 1] is in D. In order to

compute bm+1, we inductively assume that f(bm) is already computed. Clearly S = T [bm : f(bm)] is in D

and S′ = T [bm : f(bm) + 1] is not in D. We then contract S by i characters, until S ′ = T [bm + i : f(bm) + 1]

is in D. Then we proceed with extensions to compute f(bm + i). After subsequent contract and extends

we stop once bm + i > f(bm). The last value of i at which we started our final round of contracts is the

value bm+1. Notice that each character in T participates to exactly one extend and one contract operation,

each of which takes O(1) time via the data structures described above. Hence the total running time for the

algorithm is O(n).

A linear time implementation of FPA. Parsing in FPA is done identical to LZW-FP and hence takes

O(n) time in total. The phrases inserted in D are of the form T [bm : f(bm) + 1]. Because in parsing step

m, the phrase T [bm : f(bm)] is already searched for, it takes only O(1) time per phrase to extend it via our

data structures. Hence the total running time for insertions is O(n) as well.

Linear time implementations of decompression algorithms for LZW-FP and FPA. The decom-

pression algorithms for both methods simply emulate their corresponding compression algorithms hence run

in O(n) time.

4. The Experiments

In this section we describe in detail the data sets we used, and discuss our test results testing how well

our theoretical expectations were supported.

4.1. The test programs

We used gzip, compress, LZW-FP and FPA programs for our experiments. The gzip and compress

programs are standard features of unix operating system. In our LZW-FP implementation we limited the

dictionary size to 216 phrases, and reset it when it was full as in the case of compress. We experimented

with two versions of FPA, one whose dictionary was limited to 216 phrases, and the other with 224 phrases.

4.2. The data sets

Our data sets come from three sources: (1) Data obtained via unix drand48() pseudorandom number

generator. (2) DNA and protein sequences provided by Center for BioInformatics, University of Pennsylvania

and CT and MR scans provided by the St. Thomas Hospital, UK [Sou]. (3) Text files from two data

compression benchmark suites: the new Canterbury corpus and the commonly used Calgary corpus [Sou].

The first data set was designed to test the theoretical convergence properties of the redundancy in the

output of the algorithms and measure the constants involved. The second data set was designed to measure

the performance of our algorithms for emerging bio-medical applications where no loss of information in

data can be tolerated. Finally the third data set was chosen to demonstrate whether our algorithms are

competitive with others in compressing text.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 9

Specifically, the first data set includes three binary files generated by the unix drand48() function.

The data distribution is i.i.d. with bit probabilities (1) 0.7 − 0.3, (2) 0.9 − 0.1, and (3) 0.97 − 0.03. The

second data set includes two sets of human DNA sequences from chromosome 23 (dna1, dna2), one MR

(magnetic resonance) image of human (female) breast in uncompressed pgm format in ASCII (mr.pgm), and

one CT (computerized tomography) scan of a fractured human hip ct.pgm in uncompressed pgm format in

ASCII [Sou]. The third set includes the complete Calgary corpus, which is the most popular benchmark

suite for lossless compression. It includes a bibliography file (bib), two complete books (book1, book2), two

binary files (geo, pic), source codes in c, lisp, pascal (progc, progl, progp), and the transcript of a login

session (trans). The third set also also includes all files of size > 1MB from the new Canterbury corpus: a

DNA sequence from E-coli bacteria (E.coli), the complete bible (bib.txt) , and (world192.txt).

4.3. Test results

In summary, we observed that FPA implementation with maximum dictionary size 224 performs the best

on all types of files with size > 1MB and shorter files with non-textual content. For shorter files consisting

text, gzip performs the best. Also the theoretical expectations for the convergence rate in the redundancy

of the output for i.i.d. data were consistent with the test results. We observed that the constants involved

in the convergence rate for FPA and LZW-FP were smaller than that of LZW, and gzip was worse than

all.

Our tests on the human DNA sequences with LZW-FP and FPA show similar improvements over com-

press and gzip - with a dictionary of maximum size 216, the improvement is about 1.5% and 5.7% respectively.

Some more impressive results were obtained by increasing the dictionary size to 224, which further improved

the compression ratio to 9%. The performance of LZW-FP and FPA on mr and ct scans differ quite a bit:

LZW-FP was about 4%− 6% better than compress and was comparable to gzip; FPA’s improvement was

about 15% and 7% respectively. As the image files were rather short, we didn’t observe any improvement

by using a larger dictionary. One interesting observation is that the percentage improvement achieved by

both FPA and LZW-FP increased consistently with increasing data size. This suggests that we can expect

them to perform better in compressing massive archives as needed in many biomedical applications such as

the human genome project.

Our tests on pseudorandom sequences were consistent our theoretical expectations: the asymptotic prop-

erties were observed even in strings of a few KB size. In general, all LZW based schemes performed better

than gzip, which is based on LZ77. Our plots show that the redundancy in the output is indeed propor-

tional to 1/ logn with the smallest constant achieved by FPA - in both cases, the constant is very close to

1.0; the constant for LZW-FP and LZW are about 1.5 and 2.0 respectively. This suggests that for on-line

entropy measurement, FPA may provide a more reliable alternative to LZ78/LZW or LZ77 (see [FNS+95]

for applications of LZW and LZ77 for entropy measurement in the context of DNA sequence analysis).

Our results on text strings varied depending on the type and size of the file compressed. For short

files with long repetitions, gzip is still the champion. However, for all text files of size > 1MB, the large

dictionary implementation of FPA scheme outperforms gzip by 4.7% − 8.5%, similar to the tests for DNA

sequences.

References

[BCW90] T. Bell, T. Cleary, and I. Witten. Text Compression. Academic Press, 1990.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 10

File Size gzip compress LZW-FP FPA FP-24 FPA-24

(KB) (KB) (KB) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%)

bib 109 34 45 -26.01 5.04 -19.69 9.80 -26.01 5.04 -19.69 9.80

book1 751 313376 332056 -3.81 2.03 -2.48 3.29 2.45 7.94 3.94 9.34

book2 597 206683 250759 -16.61 3.89 -12.32 7.42 -11.10 8.43 -7.47 11.42

geo 100 67 76 -11.90 1.46 -11.66 1.67 -11.90 1.46 -11.66 1.67

pic 501 55 61 -6.64 3.25 -5.31 4.47 -6.64 3.26 -5.31 4.47

progc 39 13 19 -37.25 4.85 -33.40 7.52 -37.23 4.86 -33.40 7.52

progl 70 16 26 -56.83 5.99 -49.29 10.51 -56.82 6.00 -49.29 10.51

progp 48 11 19 -59.70 6.54 -53.75 10.02 -59.69 6.54 -53.75 10.02

trans 91 18 37 -87.12 7.12 -73.96 13.65 -87.11 7.13 -73.96 13.65

Table 1: Compression evaluation using files in the Calgary corpus

The original file size (with some prefixes), compressed file size by gzip and compress, and the improvement

(%) made by LZW-FP, FPA, FP-24, and FPA-24 over gzip and compress

File Size gzip compress LZW-FP FPA FP-24 FPA-24

(KB) (KB) (KB) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%)

E.coli 4530 1341245 1255647 6.91 0.56 6.43 0.05 8.84 2.63 8.48 2.24

bible.txt 3953 1191063 1401885 -12.87 4.11 -7.79 8.42 0.13 15.15 4.68 19.01

world192.txt 2415 724595 987035 -31.70 3.32 -20.36 11.64 -2.38 24.84 6.54 31.39

Table 2: Compression evaluation using files in the Canterbury corpus (Large Set)

The original file size (with some prefixes), compressed file size by gzip and compress, and the improvement

(%) made by LZW-FP, FPA, FP-24, and FPA-24 over gzip and compress

[FNS+95] M. Farach, M. Noordeweir, S. Savari, L. Shepp, A. J. Wyner, and J. Ziv. The entropy of DNA: Al-

gorithms and measurements based on memory and rapid convergence. In ACM-SIAM Symposium

on Discrete Algorithms, 1995.

[JS95] P. Jacquet and W. Szpankowski. Asymptotic behavior of the Lempel-Ziv parsing scheme and

digital search trees. Theoretical Computer Science, (144):161–197, 1995.

[KM97] S. R. Kosaraju and G. Manzini. Some entropic bounds for Lempel-Ziv algorithms. In Sequences,

1997.

[KR87] R. Karp and M. O. Rabin. Efficient randomized pattern matching algorithms. IBM Journal of

Research and Development, 31(2):249–260, 1987.

[LS95] G. Louchard and W. Szpankowski. Average profile and limiting distribution for a phrase size

in the Lempel-Ziv parsing algorithm. IEEE Transactions on Information Theory, 41(2):478–488,

March 1995.

[MS98] Y. Matias and S. C. Sahinalp. On optimality of parsing in dynamic dictionary based data com-

pression. Unpublished Manuscript, 1998.

[MW85] V.S. Miller and M.N. Wegman. Variations on a theme by Lempel and Ziv. Combinatorial Algo-

rithms on Words, pages 131–140, 1985.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 11

File Size gzip compress LZW-FP FPA FP-24 FPA-24

(KB) (KB) (KB) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%)

dna1 3096 1001439 960249 5.59 1.54 5.75 1.70 8.73 4.82 8.91 5.00

dna2 2877 866080 832173 4.64 0.75 4.33 0.43 6.09 2.26 5.89 2.05

mr.pgm 260 26 29 -7.23 3.60 6.38 15.84 -7.22 3.61 6.38 15.84

ct.pgm 1039 110 110 4.10 3.61 14.56 14.12 4.10 3.61 14.56 14.12

Table 3: Compression evaluation using experimental biological and medical data

The original file size (with some prefixes), compressed file size by gzip and compress, and the improvement

(%) made by LZW-FP, FPA, and FPA-24 over gzip and compress

4

5

6

7

8

9

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.5, P(1)=0.5

gzip
compress

LZW-FP
FPA

FPA-24

Figure 2: The compression ratios attained by all five programs on random i.i.d. data with bit probabilities P (0) =

P (1) = .5.

[RPE81] M. Rodeh, V. Pratt, and S. Even. Linear algorithm for data compression via string matching.

Journal of the ACM, 28(1):16–24, January 1981.

[Sav97] S. Savari. Redundancy of the Lempel-Ziv incremental parsing rule. In IEEE Data Compression

Conference, 1997.

[Sou] http://www.dcs.warwick.ac.uk/people/research/Nasir.Rajpoot/work/fp/index.html.

[Sto88] J. A. Storer. Data Compression: Methods and Theory. Computer Science Press, 1988.

[Wel84] T.A. Welch. A technique for high-performance data compression. IEEE Computer, pages 8–19,

January 1984.

[Wyn95] A. J. Wyner. String Matching Theorems and Applications to Data Compression and Statistics.

Ph.D. dissertation, Stanford University, Stanford, CA, 1995.

[Yok92] H. Yokoo. Improved variations relating the Ziv-Lempel and welch-type algorithms for sequential

data compression. IEEE Transactions on Information Theory, 38(1):73–81, January 1992.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 12

File Size gzip compress LZW-FP FPA FP-24 FPA-24

(KB) (B) (B) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%)

P(0)=0.7 1 205 208 4.88 6.25 4.88 6.25 4.88 6.25 4.88 6.25

P(1)=0.3 10 1606 1524 7.41 2.43 9.40 4.53 7.41 2.43 9.40 4.53

100 15713 13481 15.60 1.62 17.89 4.29 15.61 1.64 17.89 4.29

1024 160206 131692 18.49 0.84 20.49 3.28 18.47 1.14 20.69 3.52

2048 320186 263659 18.53 1.07 20.46 3.41 19.44 2.17 21.20 4.31

P(0)=0.9 1 129 134 3.10 6.72 9.30 12.69 3.10 6.72 9.30 12.69

P(1)=0.1 10 1034 923 14.89 4.66 16.92 6.93 14.89 4.66 16.92 6.93

100 9740 7750 22.73 2.89 25.86 6.83 22.74 2.90 25.86 6.83

1024 100080 74147 27.55 2.21 30.44 6.11 27.55 2.22 30.44 6.11

2048 199732 146630 28.10 2.07 30.95 5.95 28.43 2.50 31.20 6.28

P(0)=0.97 1 93 99 6.45 12.12 6.45 12.12 6.45 12.12 6.45 12.12

P(1)=0.03 10 530 518 7.74 5.60 11.51 9.46 7.74 5.60 11.51 9.46

100 4623 3754 22.39 4.42 28.03 11.37 22.41 4.45 28.03 11.37

1024 45829 33292 29.83 3.40 34.64 10.02 29.83 3.41 34.64 10.02

2048 91410 64813 31.30 3.10 35.79 9.44 31.30 3.11 35.79 9.44

Table 4: Compression evaluation using independent identically distributed random files containing only zeros and

ones with different probability distributions

The original file size (with some prefixes), compressed file size by gzip and compress, and the improvement

(%) made by LZW-FP, FPA, FP-24, and FPA-24 over gzip and compress; random data generated by

drand48().

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions

on Information Theory, IT-23(3):337–343, May 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, IT-24(5):530–536, September 1978.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 13

6

8

10

12

14

16

18

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1

gzip
compress

LZW-FP
FPA

FPA-24

Figure 3: The compression ratios attained by all five programs on random i.i.d. data with bit probabilities P (0) = .9

and P (1) = .1.

2

4

6

8

10

12

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.5, P(1)=0.5 (H=1)

gzip
compress

LZW-FP
FPA

FPA-24

Figure 4: The 1/redundancy of all five programs on random i.i.d. data where redundancy is described as (actual

compression ratio)-(bit-entropy). The bit probabilities are P (0) = P (1) = .5.

Implementation and Experimental Evaluation of Flexible Parsing for Dynamic Dictionary Compression 14

5

10

15

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1 (H=0.469)

gzip
compress

LZW-FP
FPA

FPA-24

Figure 5: The 1/redundancy of all five programs on random i.i.d. data where redundancy is described as (actual

compression ratio)-(bit-entropy). The bit probabilities are P (0) = .9 and P (1) = .1.

