THE UNIVERSITY OF

WARWICK

Original citation:

Uzun, U. (1998) Towards distributed object design. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-338

Permanent WRAP url:
http://wrap.warwick.ac.uk/61051

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61051
mailto:publications@warwick.ac.uk

TOWARDSDISTRIBUTED OBJECT DESIGN

By

Umit UZUN

N 1 A 3 PP 2
2. MOTIVATION ON THE CASE STUDY ...uiiiiiiiii ettt e aeeee e et e e e e aan s 2
3. OO DESIGN OF AN IR SYSTEM ...uiiiiiiiii et e eeeee e e e e e e et e e e e e annman 3
3L REQUIREMENTS ... iiiiii ittt ettt st e e e e ettt e e e e e s rmeee sttt e e e e e e antba e e e e e s ssmaeessstaeeaeeeenseees 3
3.2 CON ST RAINT S ettt e e e sttt erert e e e e e e e bbb e e e e e e e st b et anete e e e e s nnbbeeeeeeaannesd 4
TG N[2 17N I] TSP EPR P 4

3 A DESIGN DIAGRAMS ...ttt ettt eea e e e e e s bt e e e e s s snbbeenntaneeeeesanesd 4
341 USE CASE DIAGRAM. ...ttt ettt sttt sttt st ese et e st st s eeseebeseenesbeseenenteneas 4

3. 4.2 CLASS DIAGRAM ..ottt sttt sttt st et se st et see st s beseeseebeseeneebeseeneebeneas 5

3. 4.3 SEQUENCE DIAGRAMS........ootitiieterieeste ettt sttt st sa et se st see st seenesbeseenenneneas 6
3.4.4 COLLABRATION DIAGRAMS........ccotitiietisietetesieee et stesaesestesaesestesaesestesaeseetesaesessesaesansesens 8

4. ELEMENTSOF OBJECT ORIENTED DESIGNcccoiiiiiiiiiii e eeene e 11
5.DISTRIBUTED OBJECT COMMUNICATIONciiiiiiiiiiiie e eemmeanaes 14
6. DISTRIBUTED OBJECT DESIGN ...couuiiiiiiiiie e eeeee et e et e e e e e e e e eanan s 15
6.1 PROBLEMS ARISING IN DESIGN OF DISTRIBUTED OBJECT COMPUTING.uuiieeeeeeeieeeieieieinmmmeeeeees 16
6.1.1 What to distribute? (GranUIarity)........ccoceeereereierese et enea 16
6.1.2 Where to put? (AHTOCALION)ccueieieisesie ettt se e et e e e e e e sresresnennens 17
6.1.3 Physical / Virtual NEtWOrK SChEIMA?ccuvieeiceses et enea 17
6.1.4 How to cluster objects? (CIUSLENING) ...ccuvevereereeriereirieseesteseeeeeeseesesresteseeeseeeeseeeeseessessessens 18
6.1.5 Exploiting and specifying parall€liSM.ccceieiiiieirsireece e 18
6.1.6 How to evaluate the quality of the design in terms of distribution?cccccceevevievenenenens 19
6.1.7 Refinement of the design according to distribution iSSUES.cocooeiiiereierieeiee e 19

6.2 EXTRA ELEMENTS TO BE REPRESENTED IN A DISTRIBUTED OBJECT DESIGNuuuuieieeeeeieeeeeeeinnnnnas 19
6.3 PROPOSED SOLUTIONS. ...cttttttut e eeeaaateeeteaeeeaeaaaeeessstataaa s e s aeaasaaa e aseaaaateeeesssssssmmmeesssessnnnnns 20
6.3. 1 What tO AISLITDULE? ...ttt s e e e e re e b e et e enbeentesneeas 20
6.3.2 Where to put? (AHTOCALION)couieeieeieie et st e e e e e b saeenea 21
6.3.3 Physical / Virtual NEtWOrk SCEMA?oc.eieee e e 21
6.3.4 How to cluster objects? (CIUSLENING) ...ccuvevereeeereereerestrsteseeeeeeseesesresteseeeseeseeseeseeseessessessens 22
6.3.5 Exploiting and specifying parall€liSM.cccceieiirieie s 23
6.3.6 How to evaluate the quality of the design in terms of distribution?cccccceevevievvcevenene 24
6.3.7 Refinement of the design according to distribution ISSUES.cccevevveereseeceesese e 26

7. CONCLUSIONcittiiiie ettt reees ettt e e e e ettt e e e e s smnee s et tbeeeeeesatbbaeeaeesamaassassbseeeeessnssaseeeeena 26
8. REFERENGCES.......ooeiiiiii ittt ettt e e rmee e st e e e e s sttt e e e e e e s smeeesastbaeeeeesasbaeeaeeenae 27

1. ABSTRACT

Today's object-oriented (OO) software development methoddogies use anumber of
graphical notations in analysis and design stages. There is an increasing reseach interest in
incorporating distribution issues into these development methods. Allocation of objects and
tasks, object replication and migration, remote interactions, multiple threads of control as well
as network topologies are important issues in distributed dbject systems. In this report, ways
to add dstribution related issues to the objed-oriented design methods (especially UML-
based methods) are discussed.

We have implemented a cae study in the aea of Information Retrieval to concretize
the isaues. The implementation d the cae study is dore in Java [6] programming language,
the source ®de of the programsislocated at http://ftp.dcs.warwick.ac uk/~umit/IR.

2. MOTIVATION ON THE CASE STUDY

Information retrieval systems are used to retrieve documents from a large number of
document collections satisfying gven criteria (queries). As an example, there is an
information retrieval system under the search fadlity of a university library, where the types
of documents are bodks, journals, theses, etc. Another example is the search engines on the

Internet where the types of documents are web pages, articles in newsgroups, etc.

As the number of documents in the lledion increases the process of executing the
query and retrieving documents takes more time. The number of users making a query at the
same time is also ancther issue; the performance of such a system decreases if more queries
are being executed simultaneously. There have been various efforts to improve quality and
performance of information retrieval. Using hardware with higher performance or using
paralel computers is an effort in the hardware direction, so new hardware architectures are
proposed for that purpose. Ancther issueisthe use of different algorithmsin the retrieval task:
in the literature, there are quite alot of algorithms devel oped to improve the search.

Distributed abject computing may provide different solutions. Designing an
information retrieval system using OO tedchniques, and implementing the system over a set of
computers conrected through a network may overcome this high performance @mputing
neal through using the resources already available and eliminating the neal for new high
performance hardware.

Implementing distributed dbject applications is now beoming easier using
tedhnologies like RMI [1] (Remote Method Invocaion), CORBA [3] (Common Object
Request Broker Architecture) or DCOM [2] (Distributed Comporent Object Model),
however, there is not much research work on designing distributed dbject systems. The paoint
of defining distribution concerns in the development methoddogies is dill unclea. In fad,
the design of such an information retrieval system is going to be used to uncover those issues
related to the design of distributed dbject applications.

The system is going to be designed in two stages. First, an dbject oriented design will
be produced ignoring the underlying distribution platform and assuming the system will be
running on ore centra madine. Next, a design including distribution aspects will be
produced. The reason for doing so is to identify the differences between OO and distributed
OO designs.

3. OO DESIGN OF AN IR SYSTEM

3.1 REQUIREMENTS

* Thesystemis amulti-user information retrieval system, which is used to retrieve relevant
documents to specific criteria from a llection of documents. The query will i nvolve
some seach terms.

» The coallection will include different type of documents, such as books, journas, online
documentsin dfferent formats, etc.

e The system shoud alow introducing new types of documents as well, or the design
shoudd be easily extendible to include new types of documents in the collection.
(Optional)

» Ead type of document has its own properties; for example, a book has title, author and
terms, etc., whereas an online document might have title, locdion, terms, etc., and an
article may have title, author, abstract, journal, volume, etc.

» After the user inputs the query to the system, the system will retrieve alist of relevant
documents.

e Users will be dassified in terms of their rights, some users will be ale to
add/del ete/update documents in the @llection, some users not. Some documents will be
marked as private and only users who have rights to acessthem will be ale to retrieve
them as aresult to their queries (different accessor operation policies might be defined).

3.2 CONSTRAINTS

e The number of documents and the number of users are expeded to be huge. Therefore,
one computer will not be sufficient considering the resporse time (performance) and
space requirements, so there will be an underlying distributed computing platform. (a
network of computers using TCP/IP as the network protocol)

* The system would be le to utilize different types of computer hardware and qerating
systems, such as Unix and Windows 95/NT.

3.3 NOTATION

UML [4] (Unified Modeling Language) notation is used in the design dagrams. The
Unified Modding Language (UML) is a language for specifying, visualizing, constructing,
and daumenting software systems, as well as for business modeling and other non-software
systems. Extended information about UML notationislocated in "UML v1.1 Notation Guide'

on http://www.rational.com/uml.

3.4 DESIGN DIAGRAMS

Looking at the requirements above the most important use cases are: addition and
deletion d documents and searching the document collection. The basic objects to be
involved in such a system are: User, (Administrator), Document, Term, Document Coll ection,
Seach Engine and Query. The following diagrams explain the static structure of this g/stem

(relationship among ohjects) and the interaction among objects to make the system work.
3.4.1 USE CASE DIAGRAM

X -

MakeQuery

User 1..n

N

D

elete DocumeN

O /Authorization

T—

Add Document

Administrator

Figure 1 - Use Case Diagram

3.4.2 CLASS DIAGRAM

User

¢name : string
&password : string
&AuthorityCode : int

*ChangePassword (oldpass : string, newpass : string)
0“*

IR INTERFACE

&AvailableDoclds : Vector of long
&l atestDocld : long

“*MakeSearch (text : string) : Document Collection

*Create User (name : string, pass : string) : User

*DeleteUser (name : string)

*AddDocument (id : long, fn : string) : Document

*FindDocument (id : long) : Document

*DeleteDocument (id : long)

*ViewDocument (d : Document)

*ViewDocumentCollection (dc : DocumentCollection)

g AuthorityCheck (uid : int, operation : string, d : document) : Boolean
*RegisterSearchEngineCore (sec : SearchEngineCore)

g*FindAvaliableSecToAdd () : Search Engine Core

o

Document Viewer

*View Document(d:Document)
*viewDocumentCollection(dc:DocumentCollection)

1

0.*
Search Engine Core
&NumOfDocuments : long = 0

*AddDocument (id : long, fn : string)
*DeleteDocument (id : long)
*FindDocument (id : long) : Document
*RunQuery (q : Query) : Document Collection
*GetNumOfDocuments () : long

docs
terms

TermCollection

&size : Long =0

*AddTerm (t : Term)

*DeleteTerm (id : int)
*AddDocumentTerms (d : Document)
*DeleteDocumentTerms (d : Document)

*FindTerm (id : long) : Term
*GetSize () : long
*GetAt (i : long) : Term

*SearchTerm (t : Term) : Document Collection

0“*
Term

&id : long
&value : string

*GetValue () : string

*Setvalue (val : string)
*AddToDocVector (d : Document)
*DeleteFromDocVector (id : long)
*GetDocVector () : Document Collecti?n

1 DocumentCollection
&size : long = 0

*AddDocument (d : Document)
*DeleteDocument (id : long)
*FindDocument (id : long) : Document
*GetSize () : long

*GetAt (i : long) : Document

1

1 mList ocumentList

0“1(
Document

#id : long

¢type : string

&CreateTermList ()
*GetTermList () : TermCollection
*SearchTerm (t : Term) : Boolean
*Summarize () : string ‘

Query
&Text : string ="

*Create (text : string
&CreateTermList ()

Figure 2 - ClassDiagram

3.4.3 SEQUENCE DIAGRAMS

aUser : User | anlRinterface : IR | |aSEcore : Search g Query : TermCollection . Term
| INTERFACE Engine Core

1: MakeSearch (string) |
% |

\ 2: q::Creéte (string)

H \
3: Cr

v

[}
Q

\ \

| |

\ \

| |

te Term List ()

4: RunQuery (q) ;
\ \

| |

\ \

\ |

m gl

S

5: tList=Get Term List (‘)

=Y

_

\ 7‘: GetDocVector ()

]

%6 *(t:tList[l]..tList[nl) SearchTerm (t
\
|
\
|

Figure 3 - Sequence Diagram for MakeQuery

anRinterface : | aSEcore : SearclaDocumentCollection |doc : Document : Term : Term
IR INTERFACE Engine Core |: DocumentCollection Collection
1: AddDocument (long, string) | |

\

2: AddDocument (long, sfring) \ \
H - |

4: AddDocument (Documént) /ﬁg
\

5: AddDocumenﬂerms (doc)

aUser : User

3: doc:=Creat? (long, string)

|
|
|
|
|
|
\
6: tList::Ge%TermList 0 /u

|
i |]
|
|
|
|
|

\
|
\
|
\ T
‘ ‘ 7: *(for t=tList[1]..tList[n]) AddToDocVector
\ \
| |
\ \
\ \

Figure 4 - Sequence Diagram for Add Document

aUser : User

anRinterface : | aSEcore : Search . Term aDocumentCollection . Term
IRINTERFACE

Engine Core Collection \: DocumentCollection

doc : Document

1: DeleteDocument (long)

I

2: DeleteDocument (Ioﬁg)

U 3: FindPocument (long)

P

| 4: doc:=FindDocument (long)

|
|
|
|
|
|
| U
|
|
|

5: DeleteDocumentTerms (doc)

U

| 6: tList:GetTermList (

)

8: DeleteDocument (long)
L1

——

Figure 5 - Sequence Diagram for Delete Document

7: *(t=tList[1]..tList[n]) DeleteFromDocVector (long)
Ol ‘ :

3.4.4 COLLABRATION DIAGRAMS

aUser : User

Search i 1: MakeSearch (string)

anlRinterface : IR INTERFACE

2 qi=Create (string) 3: Create Term List ()
- q:=Create (string s
=N

‘ ﬂ
4: RunQuery (q)
\ :

uer

5: tList=Get Term List ()
7

\
aSEcore : Search Engine Core J»

\
6: *(t=tList[1]..tLith[n]) SearchTerm (t)

: TermCollection

\
7: GetDocVector ()

- Term

Figure 6 - Collaboration Diagram for Make Query

aUser : User

\
1 AddDocur\r&ent (long, string)

anRinterface : IR INTERFACE

\
2: AddDocur\r&ent (long, string)

aSEcore : Search Engine Core

>

4: AddDocument (Document)

\
5: AddDocuwentTerms (doc)

: TermCollection

6: tList:=GetTermList ()
7

\
7: *(for t=tList[1]..tList[n]) A\\ﬁdToDocVector (Document)

F[

. Term

aDocumentCollection : DocumentCollection

3: doc:=Create (long, string)

doc : Document

Figure 7 - Collaboration Diagram for AddDocument

5: DeleteDocumentTerms (doc)

aUser : User

\
1 DeleteD\(;cument (long)

anlRinterface : IR INTERFACE

|
2: DeleteDocument (long)

3: FindDocyment (long)

[/

p

aSEcore : Search Engine Core

T

: TermCollection

4: doc:=FindDocument (long)
8: DeIeteDocumgnt (long)

aDocumentCollection : DocumentCollection

6: tList:GetTermList ()
—_—

doc : Document

- *(t=tList[1]..tList[n]) DeleteFromDocVector (long)

- Term

Figure 8 - Collaboration Diagram for Delete Document

10

4. ELEMENTS OF OBJECT ORIENTED DESIGN

Object oriented methodol ogies focus on determining the objects in a system, and their

relationships and interadion. Several graphical notations are used to express the static

structure and interaction of objects. The notation used in ou case study is based on ore of the
most versatile methodol ogies, which is UML (the Unified Modeling Language).

In order to incorporate distribution issues in OO methoddogies we shoud first look

at the elements of object oriented design and attributes of those dements. Then, we will

identify the new elements needed in the design for distributed systems. In the foll owing parts

elements and properties of thase e ements, which are most commonin all OO methoddogies,

are shown. These fundamental elements of object orientation are discussed heavily in the

literature hence detailed descriptions will not be included here. The following information

will be useful to form abasis for distributed object design el ements and poperties.

Tablel- STATIC STRUCTURE ELEMENTS

ELEMENT PROPERTIES Short Description
CLASS(OBJECT)
Name The name of the class
Attributes Callection of attributes belonging to the class
Operations Call ection of operations belonging to the class
ATTRIBUTE
Name The name of the attribute
Type Type of the attribute
Initial Value Initial value of the attribute
AccessControl Public, private or protected accessto attribute
OPERATION
(METHOD)
Name The name of the method
Return Type Spedfies the return type for the method
Parameters Collection of parameters that is valid for the
method
AccessControl Public, private or protected accessto method
Preconditions Spedfies the predicates assumed by the
operation (entry behavior of an operation)
Postcondtions Spedfies the predicates that are satisfied by the
operation (exit behavior of the operation)
Exceptions Identifies the set of exceptionsthat can be
raised by an operation
PARAMETER
Name The name of the parameter
Type Indicates the data type of the parameter
Call Semantic Call by Value or Call by Reference
InitValue Setstheinitial value of the parameter

ASSOCIATION

11

Name The name of the association
Roles Rolesincorporated in this association
ROLE
Name The name of thisrole
Class Spedfies a dassbelonging to the role
Asgciation Spedfies an association kelonging to the role
Cardinality Determines the cardinality of therole
AGGREGATION
(COMPOSITION)
Name The name of the Aggregation relationship
Client Class(this) | Theclient class of an aggregation
Supgier Class The supplier classof an aggregation

Client Cardinality

The cardinality of the dient class of an
aggregation

Suppier The cardinality of the supgier classof an
Cardinality aggregation

GENERALIZATION

(INHERITANCE)
Name The name of the Inheritance relationship
Client Class(this) | Theclient class of an Inheritance
Parent Class The parent classof an Inheritance

Table2 - INTERACTION STRUCTURE ELEMENTS

MESSAGE
Name The name of the message
Sender The sender objed of the message
Recaver(s) The receiver object (s) of the message
Receaver Method | The method d the receiver objed that responds
to the message
INTERACTION
Name The name of the Interaction sequence
Messages The ordered colledion of messages take place
in the interaction sequence
STATE
Name Name of the state
Transitions Coallection of possbletransitions to ather states
Nested States Coll ection of statesincluded in the state
EVENT
Name Name of the event
Transitions Coll ection of transitionsto trigger
TRANSITION
Name Name of the transition
Source State The state which transition will occur from
Destination State | The state which transition will occur to
Destination Thetransitions that will be triggered as
Transitions destination (useful in forking)
Guard Conditions | The conditions should be satisfied to trigger the

transition

12

In the dass diagram, Figure-2, we can seethe static structure elements of a typical
object-oriented design in a graphical notation, the following table includes examples from the
class diagram.

Table3- EXAMPLESOF STATIC STRUCTURE ELEMENTS

CLASS(OBJECT)
Name Document
Attributes Id
Operations Type
ATTRIBUTE
Name Text (in Class Query)
Type String
Initial Value
AccessControl Private
OPERATION
(METHOD)
Name FindDocument (in Class DocumentCollection)
Return Type Document
Parameters Id
AccessControl Public
Preconditions N/A
Postcondtions N/A
Exceptions N/A
PARAMETER
Name Id
Type Long
Call Semantic Call by Reference (Default)
InitValue N/A

In the Sequence diagram, Figure-3, we can seethe interaction structure elements of
an OO design in a graphical notation. Foll owing table includes examples from the sequence

diagram.
Table4 - EXAMPLESOF INTERACTION STRUCTURE ELEMENTS

MESSAGE

Name MakeSeach(String)

Sender aUser

Receaver(s) anlRinterface

Recaver Method | MakeSeach(string)
INTERACTION

Name MakeQuery

Messages l-anlRinterface MakeSeach

2-Query.Crede
3-Query.CreaeTermList

113

4-aSemre.RunQuery

5-Query.GetTermList
6-TermColledion.SeachTerm (* =repeded)
7-GetDocVedor

5. DISTRIBUTED OBJECT COMMUNICATION

Distributed systems require that computations running in different address paces,
potentially on dff erent hosts, be able to communicae. The primary goal of Distributed Object
Computing is to provide solutions to allow communication between adbjects on dfferent
computing environments (usualy conrected through a network). Objeds may reside on
different types of architectures and might be implemented in different programming
languages.

For a basic communicaion medianism, there are sockets which can be seen as a
communicaion channel between two networked computer (server and client), which are
flexible and sufficient for general communication. However, sockets require the client and
server to engage in applications-level protocols to encode and decode messages for exchange,
andthe design o such protocolsis difficult and can be error-prone.

An dternative to sockets is Remote Procedure Call (RPC), which abstracts the
communication interfaceto the level of a procedure all. Instead of working directly with
sockets, the programmer cdls remote procedures as if they were local, when in fact the
arguments of the call are padkaged upand sent to the remote target of the call. RPC systems
encode arguments and return values. RPC, however, is not very suitable for distributed object
systems, where communicaion between program-level objects residing in different address
spaces is needed. In order to match the semantics of object invocation, distributed object
systems require remote method calls (invocations). In such systems, a local surrogate (stub)
object manages the invocation onaremote object.

The biggest effort to support the DOC ideais CORBA (Common Object Request
Broker Architedure). After Java assumed a dominant role in Internet based programming,
DOC becane more important to the general users of OO techniques. Now all OO
programming language tod providers are putting some level of remote object communicaion
mechanism into their products. For example, Sun provides RMI for Java, Microsoft provides
DCOM for Windows based programming, and the OM G (Objed Management Group) defines
CORBA for that purpose.

Amongst these CORBA is the most robust and provides the most complete solutions
to the problems of DOC. Although RMI is only for Java, since the Java Virtual Machine

(JVM) can run on heterogeneous platforms, it provides machine independence but not

14

language independence. Microsoft's DCOM is providing solutions to a certain level under
Windows platforms.

6. DISTRIBUTED OBJECT DESIGN

Object Oriented design methodologies are known to be a good way to develop
applications. [5] As the communicaion technology improved, modern applications brought
new neals in terms of making better use of new networking environments. New Object
Oriented programming languages (Java) have aisen providing networking capabilities as
language @nstructs. New specifications (CORBA) have been developed to implement
distributed object computing, utilizing communicaion of remote objects living on dfferent
hosts. Consequently, most of the vendors in software industry have some sort of stake in
Distributed Object Computing (DOC) nowadays. In DOC, the implementation level
technologies are preceding design level methodologies, as happened for objed orientation
development itself.

We may define a distributed dbject oriented application as an objed-oriented
application where its objeds are located in different hosts. Although this difference might not

seam gred, it requires many changes to dstribute an OO application.

If we take the aove case study as an example, the implementation d the system as a
distributed application is nat very difficult usng RMI, CORBA, or other distributed object
communicdion datforms. However, the design characteristics of such a distributed object
system is not easily expressed in any of the aurrent software development methodologies.
Moreover, it is very difficult to predict the performance or error-prone parts of the system
without having a good cesign prior to the implementation.

In this part of the document, neassry elements in distributed dbject design in

addition to the dements of OO design will be discussed demonstrating problems that emerged

from onthe cae study.

15

6.1 Problems arising in design of distributed object computing.

6.1.1 What to distribute? (Granularity)

The unit of distribution may depend onthe application damain, problem size, pcssible
paralelism (concurrency) potential in the system, physicd constraints on resource allocation,
etc. Coarser grain distributions will reduce the communication cost but deaease the level of
distribution. On the other hand, finer grain distributions will i ncrease the ommunication cost
since even more messages will need to be sent across network, which is costly. The following

guestions related to our case study will make this problem clearer.

Shall we distribute the documents, terms, the whole seach engine, collection type

objectsin the system or any object as snall as an Integer?

Actudly, al of these caes are possible. Intuitively (seeng a search engine as a
worker in the system) we can say the best is to assign a different search engine to a different
host (increasing the number of co-workers) , where ea search engine is resporsible for its
own dacuments. In this case a ceitral controller interface may control and/or query those
distributed seach engines. This is the basic supervisor/worker model of distributed

computing.

Anather option may be to dstribute all the documents over the hosts and create many
seach engines, which are acessing the documents that they need. In this way, they could
send broadcast messages to all documents hence increasing the cncurrency. The same idea
may be gplied to any collections: distributing the items in a collection and aacessing them

concurrently.

One can think of different levels of granularity in distribution. The problem is which
one is suitable or better with respect to certain criteria (the response time to a query in our
case). Would it be possible to decide this without knowing the adual physical network
charaderistics? Would someone decide differently, if there were only a small number of hosts
conrected with a high-speed network or a large number of hosts with varying speed of

connrections?

1R

We therefore need a way of specifying distribution units in our system and a way of
evaluating the quality of this choice None of the objed oriented design methoddogies
suppatsthistype of feature & thistime.

6.1.2 Where to put? (Allocation)

Asauming we have identified the oljects to be distributed, the question naw is how to
alocate objects to physical hosts. From our case study again shall we randomly distribute the
objects over the network or would it be better in terms of performanceif we alocate themin a
predefined structure? Intuitively again we may argue that to put more objects onto more
powerful hosts and pu highly interading objects onto closer (in terms of network speed)
hosts would increase the performance Is this true? If so, hav are we going to prove that this

is better than another way of al ocation?

Anather issue in alocation may come from the constraints in physica situations. For
example, an object or the objects of a certain classmay require acertain resource that is only
avail able on a certain hast, therefore this object shoud aways reside on the host or hosts for
which thisresourceis avail able. An object that printsto a printer may be this kind of an object
where a printer may only be avail able only on some hosts

We @n aso consider the migration d objects in this sedion. Would the objects be
able to move or would the reallocation of an dbject (migration) be possible in our system? If
S0, how is this going to be modeled in the design? The same agument applies to replication
of objects. For reliability reasons, we may consider replicating objects.

Therefore, to handle the dlocation problem we need a mechanism to specify and

evaluate the al ocation d objectsin the objed oriented design methodd ogies.

6.1.3 Physical / Virtual Network Schema?

As we have dready mentioned, in order to answer some of the critical questions
coming from distribution the physical network that a system will work on is also important.
Therefore, we need to spedfy network characteristics in the design of the system, which
shoud be integrated into the methodology used to specify the software structure of the
system. Most of the methodologies leare this problem to the implementation level, claiming

that the hardware to use wouldn't be aconsideration in the design level.

17

However, in distributed object systems we believe that thisis nat true. We claim that
the network characteristics play a significant role in important parameters (e.g. performance,
reliability, cost etc.) of a distributed doject system, hence the network to be used shoud be
clearly speafied and utilized in adistributed dbject design.

If welook at our case study again, without knowing or proposing a network structure
we cawnot say anything abou performance or reliability of our design. For example, we
would like to be ale to say: with N hosts having a network with speed S and D documents
the cost of a query operation would be C. Moreover, this information would be very useful in
the case of a decision to upgrade. This way one could decide on the feasibility of adding a

new host to the system or upgrading one or more of the hosts in the system.

6.1.4 How to cluster objects? (Clustering)

Clustering of highly interading objects is an important issue. If we can analyze the
message interactions between the objects to identify the highly interacting objects, and group
them together it would grealy reduce the network traffic, hence increase the performance of
the system.

UML and other design methoddogies support collaboration (object interaction)
diagrams, however the focusis only on the sequence of messages among objects. The objeds
are used as members of a crtain class, therefore, collaboration diagrams are not enough to
expressexact interaction among objects. Another important issue is the multiplicity of objects
and frequency of messages involved in an interaction, and thisis aso missing in the design.

Differentiation d concurrent and sequential messages would also be useful.

Thisis aso related to the alocation problem, because once agoodway of clustering
objectsisfound, the dl ocaion d these clusters to different hosts would be useful. In our case
study we dont know if we shall put the documents and it’ s terms onto the same host or put the

documents on one host and it's terms onto another one.

6.1.5 Exploiting and specifying parallelism.

One important use of distribution is making objects on dfferent hosts exeaite

concurrently. Therefore, we need to identify possible interadions that can take place & the

18

same time. For example in the case of multiple queries, while one search engine is searching
in a document another search engine may seach in ancther document. Alternatively, in the
case of single query, while one search engine is sarching for a keyword ancther search
engine may seach for another keyword.

We therefore neal to specify clearly which interactions are going to take place

concurrently.

6.1.6 How to evaluate the quality of the design in terms of distribution?

Oncethe design of a system reaches a certain level one can begin worrying about the
quality of the design in terms its expeded performance on a distributed system. If thereis any
battleneds in the system, it is preferable to identify them in the design stage. If there were
aternative ways of designing a part of the system, isit be possible to determine the better one

inarational or mathematical way?

6.1.7 Refinement of the design according to distribution issues.

Aswe can see distributing an object-oriented system brings a whole lot of problems
with its advantages, so the question of changing the design according to the distribution
parameters is becoming inescapable. That change may cover addition of new objects (like
proxies) or compasition of some objects to alarger object to avoid high network interaction or
deaompasition of an object into smaller objeds to increase parallelism.

However, without having necessary parameters about the design in terms of
distribution, the revision of the design may become meaningless because the reason kehind
the change to the design would not be apparent.

We will discuss possible solutions to these problemsin later sections.

6.2 Extra elements to be represented in a distributed object design

In addition to the dements listed above for the objed oriented design, the following
information should be represented a the design stage. So that evaluation o the design
bemmes possible and some of the ambiguities, which may cause a failure in the

implementation of the system, may be resolved.

1Q

Node, Host
- Average memory avail able
- Average |oad
Communicaion Link
- Spedd
- Average bandwidth avail able (or number of simple messages per time unit)
Remotely accessible object
-Location (specific node?)
-Services provided (interface)
-Modhility (allow to move?)
Message (method)
-Size (parameters and return val ue)
-Computationtime
-Structure of message sequence in that message (including concurrency &
syncronization)
-Number of target objects (1 or collection?)
-Frequency of this message to be sent

6.3 Proposed solutions

Firstly, the &ove elements should be included in the design. Some of those elements
have dready been introduced bu others dould adso be included in a useful manner.
Asaiming we can have the above information from the design o the system, we ca then

begin answering the &ove questions.

6.3.1 What to distribute?

Introducing a notion of remote object will alow the designer to chocose the level of
granularity, i.e. once aclassis defined to be remotely acassble, the objects of this classcan
be acessible from other hosts in the system. This way any class (basic or complex) may be
marked as remotely acassible. Allocation d objectsis another problem and will be explained
later.

An example from the case study: if we want to make the Document objects remotely
acaesgble then in the definition of the class we shall mark Document as a RA (Remotely

Accessible) class

20

6.3.2 Where to put? (Allocation)

Once we decide which classes are going to be remote then we can think of alocation
of objects of this class In ather words, we shall dedde the creation location of the objects in
thefirst place The dhoicesare:

Minimum distribution: Force creation d all of the objedsin acertain host.

Maximum distribution: Forcethe aedion of objectsin different hosts.

Optimum distribution: Force aeation d objeds onalightly loaded host.

On the creator host: Create the object in the same host that creates that objed.

Continuing the same example of documents, we may want to create every document
on a spedfic hodt, or distribute them all over the hosts, or kegp them on the same hast where

the search engine wreislocated that creates documents.

6.3.3 Physical / Virtual Network Schema?

As we discussed earlier, the description of the network is a necessity. We @n use a

descriptive language and/or graphical representation d the network.

Suppcse we have 4 hasts in the system named varsity, gem, sun, mypc, we can
roughly describe the network as follows:

Host:
Name: Gem
CPU: Sparc something
Memory: dont know
Average load: 50%
Conneded to: Ethernet Segment
Connedion speed: 100Mbps

Host:
Name: Sun
CPU: Sparc something
Memory: dont know
Average load: 20%
Conneded to: Ethernet Segment
Connedion speed: 10Mbps

Host:
Name: Varsity
CPU: Ultra170
Memory: 32M
Average load: 60%
Conneded to: Ethernet Segment

21

Connedion speed: 10Mbps
Host:

Name: MyPC

CPU: Pentium 200

Memory: 32M

Average load: 20%

Conneded to: DialupNet

Connedion speed: 33.6 Kbps

Network

Name: Ethernet Segment

Average bandwidth: 1IMbps
Network

Name: Dialup Net

Average bandwidth: 33.6 Kbps
Connedion

End1: Ethernet Segment

End2: Dialup Net

Average Bandwidth: 5SMbps

Note that host descriptions implicitly define mnnedions as well.

6.3.4 How to cluster objects? (Clustering)

In order to be ale to dothis we neead to know a lot about the message interactions
between adbjects. We may use apseudo-code like language to define the message interactions
only. This information can be obtained from collaboration dagrams as well. For the query

operation, this code may be something like:

Operation
Name: MakeSeach(str:String)
Target Objed: anlRInterfacelR_INTERFACE
Input: String str Size 255
Interading objeds: g:Query(1);
tlist: TermColl edion(1),
aSemre:SeachEngineCore(1),
dli st:DocumentColl ection(1)
Message Sequencing :
0:=q.Creae(str) . dlist:=aSeare.Runquery(q)
Result: dlist
RunTime: 10 units. (excluding messages $nt to ather objeds)

Operation

Name: RunQuery(qg:Query)

Target Objed: anlRInterfacelR_INTERFACE

Input: Query g, Size evaluated,

Interading objeds: g:Query(1),
tlist: TermColl edion(1),
t:Term(Many Avg:5)
dli st:DocumentColl ection(1)
resultdlist:DocumentColl ection(1)
d:Document

Message Sequencing :

22

tlist:=g.GetTermList() .
foreahtintlist
dlist:=t.GetDocVedor()
foreah dindlist
resultdlist. AddDocument(d);
endfor
endfor
Result: resultdlist
RunTime : O (Excluding messages $nd to ather objeds)

Once we get the message interaction among objects, we may discover ways to find
out which dbjects in the system are communicaing more than ahers © that we can group
them together. On the other hand, we have to relate this information to the all ocation of
objects gnce sending a message to an object on the same host and sending a message located

on another host is different.

How to dothe clustering is gill a question kut we believe dustering methods used in
other areas of computing research (e.g. Information Retrieval) may be gplied to here.

6.3.5 Exploiting and specifying parallelism.

This can be clealy specified in the message interaction scripts by introducing parallel
adivation of messages. For example, "||' notation can be used to specify two messages are
going to be send at the same time and "par for" kind d notation can be used to spedfy paralle
exeaution of loops. Thus for example

foreadtintlist
dlist:=t.GetDocVedor()
foreatdindlist
resultdlist. AddDocument(d);
endfor
endfor

can be expressed as aparale sending of messages as:

par for eah tintlist
dlist:=t.GetDocVedaor()
foreah dindlist
resultdlist. AddDocument(d);
endfor
endparfor

This sort of specification rot only helps us identifying possible parallel sending of
messages but aso helps us determining possible problems in paraldism. In the &ove
example dlist and resultdlist objects are being updated in a parallel exeaution which puts the
system in a aitical section therefore extra care must be taken in this case. A separate dlist
object shoud be assigned for each t, and the update of resultdlist should be guarded.

22

6.3.6 How to evaluate the quality of the design in terms of distribution?

Aswe now have enowgh information about object locaion and dyject interadions we
can calculate a cost function for each system-wide operation and object under certain
configuration. Example aost functions that can be useful in our case study would be.

TimeCost of MakeSearch gperation when Documents are randomly allocated to
hosts.

TimeCost of MakeSearch gperation when SearchEngineCores are randamly all ocated
to hasts and Documents are al ocated with their SearchEngineCores.

From the @ove two costs if one is significantly smaller than the other one than we
would make arational decision on aur design of distribution and be more sure that we are
going in the right diredion to implementation. Other criteria may also be important such as
memory and CPU usage of different hosts under a certain input. In order to be able to evaluate
these aosts we should integrate the logical design and physical design characteristics of the
system. There are two ways of evaluating the design, by cdculation a by simulation.

By Calculation :

We need to extract required values from the design and expressthem in a manner that
we can usein acalculation. We can set up diff erent tables to achieve this such as:

Host Description Table(System wide)
Host-Conedion Table (System Wide)
Connredion Description Table (System Wide)
Connredion Connection Table (System Wide)
ClassDescription Table(System wide)

Object Allocation Table (System wide)
Object-Attribute Table (System Wide)
Object-Message Table (System wide)
Attribute Description Table(Object wide)
Message Description Table (Object Wide)
Message-Message Table (Message wide)

Having this information in terms of tables, we can calculate the required costs. However, our
proposed methodis going to be simulation.

24

By simulation:

In this method each entity (class message, host, conrection etc) in the design is going
to be represented as an object and the message interaction is going to simulated as if it is
acdually running. But these objects are only going to change the cost that we clculate. For
example to cdculate the time ast of a MakeSearch operation the script in the definition of
MakeSeach is going to be executed. The global time value is going to be initialized as 0 and
memory and cpu usage of hosts and bandwidth of conrections are going to be initialized to

their default values. An example scenario is asfollows.

Name: MakeSeach(str:String)

Target Objed: anlRInterfacelR_INTERFACE

Input: String str Size 255,

Interading objeds: g:Query(1);
tlist: TermColl edion(1),
aSemre:SeachEngineCore(1),
dli st:DocumentColl ection(1)

Message Sequencing :
0:=q.Creae(str) . dlist:=aSeare.Runquery(q)
Result: dlist
RunTime: 10 units. (excluding messages $nt to ather objeds)

Crede anielR interface
Reduce memory on hat H by size of(i€) (including references to ather object
Crede aconrectiontoie
Send Runquery(q) over connection
Call ie.MakeSearch()
Increase time by runtime
Increase load onhost H
Crede aConnection betweenie and
Send qCredae() over Connedion
Conredion will increase the time by cdculating time using bandwidth and
message size. If both dojects are on the same host then time=0
Cdl g.Create()
Thisis going to exeaute Create's script which will use the conection to return
the result.
Creae aConnection betweenie and aSemre
Send Runquery(q) over connection
Conredion will increase the time by cdculating time using bandwidth and

message size. If bath dbjects are on the same host then time=0

25

Cal aSecore.Runquery()
This is going to exeaute Runquery's script which will use the conection to
return the result.

Return dlist over connection

At the end of this simulation, we aan obtain required information such as: the time it
takes to handle the message, connections used, processing time on each host etc. Changing
the alocation mechanism, we can then look at the same values and dedde which gption is
better.

6.3.7 Refinement of the design according to distribution issues.

Since we can now have ametric for the distribution performance of our design we
can make improvements in our design to resolve the passible bottlenedk or optimization of
some operations. The important isaue is to prove that our changes in the design will yield a
better design and we can show this by evaluating our design under certain criteria & we
discussed earlier.

The ways of refining the design may be similar in dfferent application damains,
which may then form a design pattern for distributed object systems.

7. CONCLUSION

We believe that object oriented methoddogies may play an important role in
distributed systems. However, object oriented design methoddogies do not have enough
suppat for distribution issues. In this document we have introduced initial new elements that
shoud be added into dbject oriented design techniques to addressthe distribution d objeds.
We also demonstrated the problems and possible solutions based on our experienceon a cae

study.

2f

8. References

[1] SunSoft, “ Remote Method Invocation Spedfication”, Sun Microsystems Inc., 2550Garcia
Avenue Mourtain View, CA 94043,USA, 1997

http://www.javasoft.com/products/jdk/1.1/docs/quide/rmi/

[2] N.Brown and C.Kindel “Distributed Comporent Object Model Protocol - DCOM/1.0°
Internet Draft, Microsot Corporation, Network Working Group,May 1996.
http://www.mi crosoft.com/ol edev/ol ecom/

[3] Object Management Group “Common Object Request Broker Architedure’”, OMG
Technical Documentation Archive, 1997. http://www.omg.org/corba/

[4] G.Booch and J.Rumbaugh and 1. Jaaobson, “The Unified Modelling Language for Object

Oriented Development Documentation Set”, Version 1.1,Rational Software Corporation,
September 1997.

http://www.rational .com/uml/documentati on.html

[5] Grady Booch. Object-Oriented Analysis And Design With Applications. The
Benjamin/Cummings Publishing Company, Inc., 390. Bridge Parkway Redwood City,
California94065,USA, second edition, 1994.

[6] SunSoft, “The Java Language Specification’, Sun Microsystems Inc., 2550 Garcia
Avenue Mountain View, CA 94043, USA, 1995 http://www.javasoft.com/products/jdk/

27

