
http://wrap.warwick.ac.uk/

Original citation:
Uzun, U. (1998) Towards distributed object design. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-338

Permanent WRAP url:
http://wrap.warwick.ac.uk/61051

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61051
mailto:publications@warwick.ac.uk

1

TOWARDS DISTRIBUTED OBJECT DESIGN

By

Ümit UZUN

1. ABSTRACT ..2

2. MOTIVATION ON THE CASE STUDY...2

3. OO DESIGN OF AN IR SYSTEM ...3

3.1 REQUIREMENTS...3
3.2 CONSTRAINTS...4
3.3 NOTATION ...4
3.4 DESIGN DIAGRAMS...4

3.4.1 USE CASE DIAGRAM... 4
3.4.2 CLASS DIAGRAM ... 5
3.4.3 SEQUENCE DIAGRAMS .. 6
3.4.4 COLLABRATION DIAGRAMS.. 8

4. ELEMENTS OF OBJECT ORIENTED DESIGN ..11

5. DISTRIBUTED OBJECT COMMUNICATION ..14

6. DISTRIBUTED OBJECT DESIGN ...15

6.1 PROBLEMS ARISING IN DESIGN OF DISTRIBUTED OBJECT COMPUTING. ...16
6.1.1 What to distribute? (Granularity).. 16
6.1.2 Where to put? (Allocation) ... 17
6.1.3 Physical / Virtual Network Schema? ... 17
6.1.4 How to cluster objects? (Clustering) .. 18
6.1.5 Exploiting and specifying parallelism. .. 18
6.1.6 How to evaluate the quality of the design in terms of distribution? 19
6.1.7 Refinement of the design according to distribution issues... 19

6.2 EXTRA ELEMENTS TO BE REPRESENTED IN A DISTRIBUTED OBJECT DESIGN19
6.3 PROPOSED SOLUTIONS...20

6.3.1 What to distribute? .. 20
6.3.2 Where to put? (Allocation) ... 21
6.3.3 Physical / Virtual Network Schema? ... 21
6.3.4 How to cluster objects? (Clustering) .. 22
6.3.5 Exploiting and specifying parallelism. .. 23
6.3.6 How to evaluate the quality of the design in terms of distribution? 24
6.3.7 Refinement of the design according to distribution issues... 26

7. CONCLUSION...26

8. REFERENCES...27

2

1. ABSTRACT

Today's object-oriented (OO) software development methodologies use a number of

graphical notations in analysis and design stages. There is an increasing research interest in

incorporating distribution issues into these development methods. Allocation of objects and

tasks, object replication and migration, remote interactions, multiple threads of control as well

as network topologies are important issues in distributed object systems. In this report, ways

to add distribution related issues to the object-oriented design methods (especially UML-

based methods) are discussed.

We have implemented a case study in the area of Information Retrieval to concretize

the issues. The implementation of the case study is done in Java [6] programming language,

the source code of the programs is located at http://ftp.dcs.warwick.ac.uk/~umit/IR.

2. MOTIVATION ON THE CASE STUDY

Information retrieval systems are used to retrieve documents from a large number of

document collections satisfying given criteria (queries). As an example, there is an

information retrieval system under the search facil ity of a university library, where the types

of documents are books, journals, theses, etc. Another example is the search engines on the

Internet where the types of documents are web pages, articles in newsgroups, etc.

As the number of documents in the collection increases the process of executing the

query and retrieving documents takes more time. The number of users making a query at the

same time is also another issue; the performance of such a system decreases if more queries

are being executed simultaneously. There have been various efforts to improve quality and

performance of information retrieval. Using hardware with higher performance or using

parallel computers is an effort in the hardware direction, so new hardware architectures are

proposed for that purpose. Another issue is the use of different algorithms in the retrieval task:

in the literature, there are quite a lot of algorithms developed to improve the search.

Distributed object computing may provide different solutions. Designing an

information retrieval system using OO techniques, and implementing the system over a set of

computers connected through a network may overcome this high performance computing

need through using the resources already available and eliminating the need for new high

performance hardware.

3

Implementing distributed object applications is now becoming easier using

technologies like RMI [1] (Remote Method Invocation), CORBA [3] (Common Object

Request Broker Architecture) or DCOM [2] (Distributed Component Object Model),

however, there is not much research work on designing distributed object systems. The point

of defining distribution concerns in the development methodologies is still unclear. In fact,

the design of such an information retrieval system is going to be used to uncover those issues

related to the design of distributed object applications.

The system is going to be designed in two stages. First, an object oriented design will

be produced ignoring the underlying distribution platform and assuming the system will be

running on one central machine. Next, a design including distribution aspects will be

produced. The reason for doing so is to identify the differences between OO and distributed

OO designs.

3. OO DESIGN OF AN IR SYSTEM

3.1 REQUIREMENTS

• The system is a multi-user information retrieval system, which is used to retrieve relevant

documents to specific criteria from a collection of documents. The query will i nvolve

some search terms.

• The collection will include different type of documents, such as books, journals, on-line

documents in different formats, etc.

• The system should allow introducing new types of documents as well, or the design

should be easily extendible to include new types of documents in the collection.

(Optional)

• Each type of document has its own properties; for example, a book has title, author and

terms, etc., whereas an online document might have title, location, terms, etc., and an

article may have title, author, abstract, journal, volume, etc.

• After the user inputs the query to the system, the system will retrieve a list of relevant

documents.

• Users will be classified in terms of their rights, some users will be able to

add/delete/update documents in the collection, some users not. Some documents will be

marked as private and only users who have rights to access them will be able to retrieve

them as a result to their queries (different access or operation policies might be defined).

4

3.2 CONSTRAINTS

• The number of documents and the number of users are expected to be huge. Therefore,

one computer will not be suff icient considering the response time (performance) and

space requirements, so there will be an underlying distributed computing platform. (a

network of computers using TCP/IP as the network protocol)

• The system would be able to utilize different types of computer hardware and operating

systems, such as Unix and Windows 95/NT.

3.3 NOTATION

UML [4] (Unified Modeling Language) notation is used in the design diagrams. The

Unified Modeling Language (UML) is a language for specifying, visualizing, constructing,

and documenting software systems, as well as for business modeling and other non-software

systems. Extended information about UML notation is located in "UML v1.1 Notation Guide"

on http://www.rational.com/uml.

3.4 DESIGN DIAGRAMS

Looking at the requirements above the most important use cases are: addition and

deletion of documents and searching the document collection. The basic objects to be

involved in such a system are: User, (Administrator), Document, Term, Document Collection,

Search Engine and Query. The following diagrams explain the static structure of this system

(relationship among objects) and the interaction among objects to make the system work.

3.4.1 USE CASE DIAGRAM

Administrator

User 1..n

Delete Document

Add Document

MakeQuery

Authorization

Figure 1 - Use Case Diagram

5

3.4.2 CLASS DIAGRAM

Query
Text : string = ""

Create (text : string)
CreateTermList ()

0..*

User
name : string
password : string
AuthorityCode : int

ChangePassword (oldpass : string, newpass : string)

*

Document Viewer

View Document(d:Document)
ViewDocumentCollection(dc:DocumentCollection)

0..*

1

IR INTERFACE
AvailableDocIds : Vector of long
LatestDocId : long

MakeSearch (text : string) : Document Collection
Create User (name : string, pass : string) : User
DeleteUser (name : string)
AddDocument (id : long, fn : string) : Document
FindDocument (id : long) : Document
DeleteDocument (id : long)
ViewDocument (d : Document)
ViewDocumentCollection (dc : DocumentCollection)
AuthorityCheck (uid : int, operation : string, d : document) : Boolean
RegisterSearchEngineCore (sec : SearchEngineCore)
FindAvaliableSecToAdd () : Search Engine Core

0..*

*

DocumentList

1

docs
1

0..*
Term

id : long
value : string

GetValue () : string
SetValue (val : string)
AddToDocVector (d : Document)
DeleteFromDocVector (id : long)
GetDocVector () : Document Collection

terms

1

Search Engine Core
NumOfDocuments : long = 0

AddDocument (id : long, fn : string)
DeleteDocument (id : long)
FindDocument (id : long) : Document
RunQuery (q : Query) : Document Collection
GetNumOfDocuments () : long

0..*

1

DocumentCollection
size : long = 0

AddDocument (d : Document)
DeleteDocument (id : long)
FindDocument (id : long) : Document
GetSize () : long
GetAt (i : long) : Document

1

1

0..*

TermList1

TermCollection
size : Long = 0

AddTerm (t : Term)
DeleteTerm (id : int)
AddDocumentTerms (d : Document)
DeleteDocumentTerms (d : Document)
SearchTerm (t : Term) : Document Collection
FindTerm (id : long) : Term
GetSize () : long
GetAt (i : long) : Term

0..*

1

Document
id : long
type : string

CreateTermList ()
GetTermList () : TermCollection
SearchTerm (t : Term) : Boolean
Summarize () : string

0..*

1

Figure 2 - Class Diagram

6

3.4.3 SEQUENCE DIAGRAMS

aUser : User anIRinterface : IR
INTERFACE

aSEcore : Search
Engine Core

q : Query : TermCollection : Term

1: MakeSearch (string)

2: q:=Create (string)

3: Create Term List ()

4: RunQuery (q)

5: tList=Get Term List ()

6: *(t=tList[1]..tList[n]) SearchTerm (t)

7: GetDocVector ()

Figure 3 - Sequence Diagram for MakeQuery

anIRinterface :
IR INTERFACE

aUser : User aSEcore : Search
Engine Core

aDocumentCollection
: DocumentCollection

doc : Document : Term : Term
Collection

1: AddDocument (long, string)

2: AddDocument (long, string)

3: doc:=Create (long, string)

4: AddDocument (Document)

5: AddDocumentTerms (doc)

6: tList:=GetTermList ()

7: *(for t=tList[1]..tList[n]) AddToDocVector

Figure 4 - Sequence Diagram for Add Document

7

aUser : User anIRinterface :
IR INTERFACE

aSEcore : Search
Engine Core

 : Term
Collection

aDocumentCollection
: DocumentCollection

 : Term doc : Document

1: DeleteDocument (long)

2: DeleteDocument (long)

3: FindDocument (long)

4: doc:=FindDocument (long)

5: DeleteDocumentTerms (doc)

6: tList:GetTermList ()

7: *(t=tList[1]..tList[n]) DeleteFromDocVector (long)

8: DeleteDocument (long)

Figure 5 - Sequence Diagram for Delete Document

8

3.4.4 COLLABRATION DIAGRAMS

aUser : User

anIRinterface : IR INTERFACE

aSEcore : Search Engine Core

q : Query

3: Create Term List ()

 : TermCollection

 : Term

Search 1: MakeSearch (string)

2: q:=Create (string)

4: RunQuery (q)

6: *(t=tList[1]..tList[n]) SearchTerm (t)

5: tList=Get Term List ()

7: GetDocVector ()

Figure 6 - Collaboration Diagram for Make Query

9

aUser : User

anIRinterface : IR INTERFACE

aSEcore : Search Engine Core aDocumentCollection : DocumentCollection

doc : Document

 : Term

 : TermCollection

1: AddDocument (long, string)

2: AddDocument (long, string)

4: AddDocument (Document)

3: doc:=Create (long, string)

5: AddDocumentTerms (doc)

7: *(for t=tList[1]..tList[n]) AddToDocVector (Document)

6: tList:=GetTermList ()

Figure 7 - Collaboration Diagram for AddDocument

10

aUser : User

anIRinterface : IR INTERFACE

aSEcore : Search Engine Core

 : TermCollection

aDocumentCollection : DocumentCollection

 : Term

3: FindDocument (long)

doc : Document

1: DeleteDocument (long)

2: DeleteDocument (long)

4: doc:=FindDocument (long)
8: DeleteDocument (long)

5: DeleteDocumentTerms (doc)

7: *(t=tList[1]..tList[n]) DeleteFromDocVector (long)

6: tList:GetTermList ()

Figure 8 - Collaboration Diagram for Delete Document

11

4. ELEMENTS OF OBJECT ORIENTED DESIGN

Object oriented methodologies focus on determining the objects in a system, and their

relationships and interaction. Several graphical notations are used to express the static

structure and interaction of objects. The notation used in our case study is based on one of the

most versatile methodologies, which is UML (the Unified Modeling Language).

In order to incorporate distribution issues in OO methodologies we should first look

at the elements of object oriented design and attributes of those elements. Then, we will

identify the new elements needed in the design for distributed systems. In the following parts

elements and properties of those elements, which are most common in all OO methodologies,

are shown. These fundamental elements of object orientation are discussed heavily in the

literature hence detailed descriptions will not be included here. The following information

will be useful to form a basis for distributed object design elements and properties.

Table 1 - STATIC STRUCTURE ELEMENTS

ELEMENT PROPERTIES Short Description
CLASS (OBJECT)

Name The name of the class
Attributes Collection of attributes belonging to the class
Operations Collection of operations belonging to the class

ATTRIBUTE
Name The name of the attribute
Type Type of the attribute
Initial Value Initial value of the attribute
Access Control Public, private or protected access to attribute

OPERATION
(METHOD)

Name The name of the method
Return Type Specifies the return type for the method
Parameters Collection of parameters that is valid for the

method
Access Control Public, private or protected access to method
Preconditions Specifies the predicates assumed by the

operation (entry behavior of an operation)
Postconditions Specifies the predicates that are satisfied by the

operation (exit behavior of the operation)
Exceptions Identifies the set of exceptions that can be

raised by an operation
PARAMETER

Name The name of the parameter
Type Indicates the data type of the parameter
Call Semantic Call by Value or Call by Reference
InitValue Sets the initial value of the parameter

ASSOCIATION

12

Name The name of the association
Roles Roles incorporated in this association

ROLE
Name The name of this role
Class Specifies a class belonging to the role
Association Specifies an association belonging to the role
Cardinality Determines the cardinality of the role

AGGREGATION
(COMPOSITION)

Name The name of the Aggregation relationship
Client Class (this) The client class of an aggregation
Supplier Class The supplier class of an aggregation
Client Cardinality The cardinality of the client class of an

aggregation
Supplier
Cardinality

The cardinality of the supplier class of an
aggregation

GENERALIZATION
(INHERITANCE)

Name The name of the Inheritance relationship
Client Class (this) The client class of an Inheritance
Parent Class The parent class of an Inheritance

Table 2 - INTERACTION STRUCTURE ELEMENTS

MESSAGE
Name The name of the message
Sender The sender object of the message
Receiver(s) The receiver object (s) of the message
Receiver Method The method of the receiver object that responds

to the message
INTERACTION

Name The name of the Interaction sequence.
Messages The ordered collection of messages take place

in the interaction sequence
STATE

Name Name of the state
Transitions Collection of possible transitions to other states
Nested States Collection of states included in the state

EVENT
Name Name of the event
Transitions Collection of transitions to trigger

TRANSITION
Name Name of the transition
Source State The state which transition will occur from
Destination State The state which transition will occur to
Destination
Transitions

The transitions that will be triggered as
destination (useful in forking)

Guard Conditions The conditions should be satisfied to trigger the
transition

13

In the class diagram, Figure-2, we can see the static structure elements of a typical

object-oriented design in a graphical notation, the following table includes examples from the

class diagram.

Table 3 - EXAMPLES OF STATIC STRUCTURE ELEMENTS

CLASS (OBJECT)
Name Document
Attributes Id
Operations Type

ATTRIBUTE
Name Text (in Class Query)
Type String
Initial Value ""
Access Control Private

OPERATION
(METHOD)

Name FindDocument (in Class DocumentCollection)
Return Type Document
Parameters Id
Access Control Public
Preconditions N/A
Postconditions N/A
Exceptions N/A

PARAMETER
Name Id
Type Long
Call Semantic Call by Reference (Default)
InitValue N/A

In the Sequence diagram, Figure-3, we can see the interaction structure elements of

an OO design in a graphical notation. Following table includes examples from the sequence

diagram.

Table 4 - EXAMPLES OF INTERACTION STRUCTURE ELEMENTS

MESSAGE
Name MakeSearch(String)
Sender aUser
Receiver(s) anIRinterface
Receiver Method MakeSearch(string)

INTERACTION
Name MakeQuery
Messages 1-anIRinterface.MakeSearch

2-Query.Create
3-Query.CreateTermList

14

4-aSecore.RunQuery
5-Query.GetTermList
6-TermCollection.SearchTerm (*=repeated)
7-GetDocVector

5. DISTRIBUTED OBJECT COMMUNICATION

Distributed systems require that computations running in different address spaces,

potentially on different hosts, be able to communicate. The primary goal of Distributed Object

Computing is to provide solutions to allow communication between objects on different

computing environments (usually connected through a network). Objects may reside on

different types of architectures and might be implemented in different programming

languages.

For a basic communication mechanism, there are sockets which can be seen as a

communication channel between two networked computer (server and client), which are

flexible and sufficient for general communication. However, sockets require the client and

server to engage in applications-level protocols to encode and decode messages for exchange,

and the design of such protocols is difficult and can be error-prone.

An alternative to sockets is Remote Procedure Call (RPC), which abstracts the

communication interface to the level of a procedure call. Instead of working directly with

sockets, the programmer calls remote procedures as if they were local, when in fact the

arguments of the call are packaged up and sent to the remote target of the call. RPC systems

encode arguments and return values. RPC, however, is not very suitable for distributed object

systems, where communication between program-level objects residing in different address

spaces is needed. In order to match the semantics of object invocation, distributed object

systems require remote method calls (invocations). In such systems, a local surrogate (stub)

object manages the invocation on a remote object.

The biggest effort to support the DOC idea is CORBA (Common Object Request

Broker Architecture). After Java assumed a dominant role in Internet based programming,

DOC became more important to the general users of OO techniques. Now all OO

programming language tool providers are putting some level of remote object communication

mechanism into their products. For example, Sun provides RMI for Java, Microsoft provides

DCOM for Windows based programming, and the OMG (Object Management Group) defines

CORBA for that purpose.

Amongst these CORBA is the most robust and provides the most complete solutions

to the problems of DOC. Although RMI is only for Java, since the Java Virtual Machine

(JVM) can run on heterogeneous platforms, it provides machine independence but not

15

language independence. Microsoft's DCOM is providing solutions to a certain level under

Windows platforms.

6. DISTRIBUTED OBJECT DESIGN

Object Oriented design methodologies are known to be a good way to develop

applications. [5] As the communication technology improved, modern applications brought

new needs in terms of making better use of new networking environments. New Object

Oriented programming languages (Java) have arisen providing networking capabili ties as

language constructs. New specifications (CORBA) have been developed to implement

distributed object computing, utili zing communication of remote objects li ving on different

hosts. Consequently, most of the vendors in software industry have some sort of stake in

Distributed Object Computing (DOC) nowadays. In DOC, the implementation level

technologies are preceding design level methodologies, as happened for object orientation

development itself.

We may define a distributed object oriented application as an object-oriented

application where its objects are located in different hosts. Although this difference might not

seem great, it requires many changes to distribute an OO application.

If we take the above case study as an example, the implementation of the system as a

distributed application is not very difficult using RMI, CORBA, or other distributed object

communication platforms. However, the design characteristics of such a distributed object

system is not easily expressed in any of the current software development methodologies.

Moreover, it is very difficult to predict the performance or error-prone parts of the system

without having a good design prior to the implementation.

In this part of the document, necessary elements in distributed object design in

addition to the elements of OO design will be discussed demonstrating problems that emerged

from on the case study.

16

6.1 Problems arising in design of distributed object computing.

6.1.1 What to distribute? (Granularity)

The unit of distribution may depend on the application domain, problem size, possible

parallelism (concurrency) potential in the system, physical constraints on resource allocation,

etc. Coarser grain distributions will reduce the communication cost but decrease the level of

distribution. On the other hand, finer grain distributions will i ncrease the communication cost

since even more messages will need to be sent across network, which is costly. The following

questions related to our case study will make this problem clearer.

Shall we distribute the documents, terms, the whole search engine, collection type

objects in the system or any object as small as an Integer?

Actually, all of these cases are possible. Intuitively (seeing a search engine as a

worker in the system) we can say the best is to assign a different search engine to a different

host (increasing the number of co-workers) , where each search engine is responsible for its

own documents. In this case a central controller interface may control and/or query those

distributed search engines. This is the basic supervisor/worker model of distributed

computing.

Another option may be to distribute all the documents over the hosts and create many

search engines, which are accessing the documents that they need. In this way, they could

send broadcast messages to all documents hence increasing the concurrency. The same idea

may be applied to any collections: distributing the items in a collection and accessing them

concurrently.

One can think of different levels of granularity in distribution. The problem is which

one is suitable or better with respect to certain criteria (the response time to a query in our

case). Would it be possible to decide this without knowing the actual physical network

characteristics? Would someone decide differently, if there were only a small number of hosts

connected with a high-speed network or a large number of hosts with varying speed of

connections?

17

We therefore need a way of specifying distribution units in our system and a way of

evaluating the quality of this choice. None of the object oriented design methodologies

supports this type of feature at this time.

6.1.2 Where to put? (Allocation)

Assuming we have identified the objects to be distributed, the question now is how to

allocate objects to physical hosts. From our case study again shall we randomly distribute the

objects over the network or would it be better in terms of performance if we allocate them in a

predefined structure? Intuitively again we may argue that to put more objects onto more

powerful hosts and put highly interacting objects onto closer (in terms of network speed)

hosts would increase the performance. Is this true? If so, how are we going to prove that this

is better than another way of allocation?

Another issue in allocation may come from the constraints in physical situations. For

example, an object or the objects of a certain class may require a certain resource that is only

available on a certain host, therefore this object should always reside on the host or hosts for

which this resource is available. An object that prints to a printer may be this kind of an object

where a printer may only be available only on some hosts

We can also consider the migration of objects in this section. Would the objects be

able to move or would the reallocation of an object (migration) be possible in our system? If

so, how is this going to be modeled in the design? The same argument applies to replication

of objects. For reliability reasons, we may consider replicating objects.

Therefore, to handle the allocation problem we need a mechanism to specify and

evaluate the allocation of objects in the object oriented design methodologies.

6.1.3 Physical / Virtual Network Schema?

As we have already mentioned, in order to answer some of the critical questions

coming from distribution the physical network that a system wil l work on is also important.

Therefore, we need to specify network characteristics in the design of the system, which

should be integrated into the methodology used to specify the software structure of the

system. Most of the methodologies leave this problem to the implementation level, claiming

that the hardware to use wouldn't be a consideration in the design level.

18

However, in distributed object systems we believe that this is not true. We claim that

the network characteristics play a significant role in important parameters (e.g. performance,

reliability, cost etc.) of a distributed object system, hence the network to be used should be

clearly specified and utilized in a distributed object design.

If we look at our case study again, without knowing or proposing a network structure

we cannot say anything about performance or reliabili ty of our design. For example, we

would like to be able to say: with N hosts having a network with speed S and D documents

the cost of a query operation would be C. Moreover, this information would be very useful in

the case of a decision to upgrade. This way one could decide on the feasibility of adding a

new host to the system or upgrading one or more of the hosts in the system.

6.1.4 How to cluster objects? (Clustering)

Clustering of highly interacting objects is an important issue. If we can analyze the

message interactions between the objects to identify the highly interacting objects, and group

them together it would greatly reduce the network traffic, hence increase the performance of

the system.

UML and other design methodologies support collaboration (object interaction)

diagrams, however the focus is only on the sequence of messages among objects. The objects

are used as members of a certain class, therefore, collaboration diagrams are not enough to

express exact interaction among objects. Another important issue is the multiplicity of objects

and frequency of messages involved in an interaction, and this is also missing in the design.

Differentiation of concurrent and sequential messages would also be useful.

This is also related to the allocation problem, because once a good way of clustering

objects is found, the allocation of these clusters to different hosts would be useful. In our case

study we don't know if we shall put the documents and it’ s terms onto the same host or put the

documents on one host and it's terms onto another one.

6.1.5 Exploiting and specifying parallelism.

One important use of distribution is making objects on different hosts execute

concurrently. Therefore, we need to identify possible interactions that can take place at the

19

same time. For example in the case of multiple queries, while one search engine is searching

in a document another search engine may search in another document. Alternatively, in the

case of single query, while one search engine is searching for a keyword another search

engine may search for another keyword.

We therefore need to specify clearly which interactions are going to take place

concurrently.

6.1.6 How to evaluate the quality of the design in terms of distribution?

Once the design of a system reaches a certain level one can begin worrying about the

quality of the design in terms its expected performance on a distributed system. If there is any

bottlenecks in the system, it is preferable to identify them in the design stage. If there were

alternative ways of designing a part of the system, is it be possible to determine the better one

in a rational or mathematical way?

6.1.7 Refinement of the design according to distribution issues.

As we can see, distributing an object-oriented system brings a whole lot of problems

with its advantages, so the question of changing the design according to the distribution

parameters is becoming inescapable. That change may cover addition of new objects (li ke

proxies) or composition of some objects to a larger object to avoid high network interaction or

decomposition of an object into smaller objects to increase paralleli sm.

However, without having necessary parameters about the design in terms of

distribution, the revision of the design may become meaningless because the reason behind

the change to the design would not be apparent.

We will discuss possible solutions to these problems in later sections.

6.2 Extra elements to be represented in a distributed object design

In addition to the elements listed above for the object oriented design, the following

information should be represented at the design stage. So that evaluation of the design

becomes possible and some of the ambiguities, which may cause a failure in the

implementation of the system, may be resolved.

20

Node, Host

- Average memory available

- Average load

Communication Link

- Speed

- Average bandwidth available (or number of simple messages per time unit)

Remotely accessible object

 -Location (specific node?)

-Services provided (interface)

-Mobilit y (allow to move?)

Message (method)

-Size (parameters and return value)

-Computation time

-Structure of message sequence in that message (including concurrency &

syncronization)

-Number of target objects (1 or collection?)

-Frequency of this message to be sent

6.3 Proposed solutions

Firstly, the above elements should be included in the design. Some of those elements

have already been introduced but others should also be included in a useful manner.

Assuming we can have the above information from the design of the system, we can then

begin answering the above questions.

6.3.1 What to distribute?

Introducing a notion of remote object will allow the designer to choose the level of

granularity, i.e. once a class is defined to be remotely accessible, the objects of this class can

be accessible from other hosts in the system. This way any class (basic or complex) may be

marked as remotely accessible. Allocation of objects is another problem and will be explained

later.

An example from the case study: if we want to make the Document objects remotely

accessible then in the definition of the class we shall mark Document as a RA (Remotely

Accessible) class.

21

6.3.2 Where to put? (Allocation)

Once we decide which classes are going to be remote then we can think of allocation

of objects of this class. In other words, we shall decide the creation location of the objects in

the first place. The choices are :

Minimum distribution: Force creation of all of the objects in a certain host.

Maximum distribution: Force the creation of objects in different hosts.

Optimum distribution: Force creation of objects on a lightly loaded host.

On the creator host: Create the object in the same host that creates that object.

Continuing the same example of documents, we may want to create every document

on a specific host, or distribute them all over the hosts, or keep them on the same host where

the search engine core is located that creates documents.

6.3.3 Physical / Virtual Network Schema?

As we discussed earlier, the description of the network is a necessity. We can use a

descriptive language and/or graphical representation of the network.

Suppose we have 4 hosts in the system named varsity, gem, sun, mypc, we can

roughly describe the network as follows:

Host:
Name: Gem
CPU: Sparc something
Memory: don't know
Average load: 50%
Connected to: Ethernet Segment
Connection speed: 100Mbps

Host:
Name: Sun
CPU: Sparc something
Memory: don't know
Average load: 20%
Connected to: Ethernet Segment
Connection speed: 10Mbps

Host:
Name: Varsity
CPU: Ultra 170
Memory: 32M
Average load: 60%
Connected to: Ethernet Segment

22

Connection speed: 10Mbps
Host:

Name: MyPC
CPU: Pentium 200
Memory: 32M
Average load: 20%
Connected to: DialupNet
Connection speed: 33.6 Kbps

Network
Name: Ethernet Segment
Average bandwidth: 1Mbps

Network
Name: Dialup Net
Average bandwidth: 33.6 Kbps

Connection
End1: Ethernet Segment
End2: Dialup Net
Average Bandwidth: 5Mbps

Note that host descriptions implicitly define connections as well.

6.3.4 How to cluster objects? (Clustering)

In order to be able to do this we need to know a lot about the message interactions

between objects. We may use a pseudo-code li ke language to define the message interactions

only. This information can be obtained from collaboration diagrams as well. For the query

operation, this code may be something li ke:

Operation
Name: MakeSearch(str:String)
Target Object: anIRInterface:IR_INTERFACE
Input: String str Size: 255;
Interacting objects: q:Query(1);

tlist:TermCollection(1),
aSecore:SearchEngineCore(1),
dlist:DocumentCollection(1)

Message Sequencing :
q:=q.Create(str) . dlist:=aSecore.Runquery(q)

Result: dlist
RunTime: 10 units. (excluding messages sent to other objects)

Operation
Name: RunQuery(q:Query)
Target Object: anIRInterface:IR_INTERFACE
Input: Query q, Size: evaluated;
Interacting objects: q:Query(1),

tlist:TermCollection(1),
t:Term(Many Avg:5)
dlist:DocumentCollection(1)
resultdlist:DocumentCollection(1)
d:Document

Message Sequencing :

23

tlist:=q.GetTermList() .
for each t in tlist
 dlist:=t.GetDocVector()
 for each d in dlist

resultdlist.AddDocument(d);
 endfor

 endfor
Result: resultdlist
RunTime : 0 (Excluding messages send to other objects)

Once we get the message interaction among objects, we may discover ways to find

out which objects in the system are communicating more than others so that we can group

them together. On the other hand, we have to relate this information to the allocation of

objects since sending a message to an object on the same host and sending a message located

on another host is different.

How to do the clustering is still a question but we believe clustering methods used in

other areas of computing research (e.g. Information Retrieval) may be applied to here.

6.3.5 Exploiting and specifying parallelism.

This can be clearly specified in the message interaction scripts by introducing parallel

activation of messages. For example, "||" notation can be used to specify two messages are

going to be send at the same time and "par for" kind of notation can be used to specify parallel

execution of loops. Thus for example

for each t in tlist
 dlist:=t.GetDocVector()
 for each d in dlist

resultdlist.AddDocument(d);
 endfor

 endfor

can be expressed as a parallel sending of messages as:

par for each t in tlist
 dlist:=t.GetDocVector()
 for each d in dlist

resultdlist.AddDocument(d);
 endfor

 endparfor

This sort of specification not only helps us identifying possible parallel sending of

messages but also helps us determining possible problems in parallelism. In the above

example dlist and resultdlist objects are being updated in a parallel execution which puts the

system in a critical section therefore extra care must be taken in this case. A separate dlist

object should be assigned for each t, and the update of resultdlist should be guarded.

24

6.3.6 How to evaluate the quality of the design in terms of distribution?

As we now have enough information about object location and object interactions we

can calculate a cost function for each system-wide operation and object under certain

configuration. Example cost functions that can be useful in our case study would be.

TimeCost of MakeSearch operation when Documents are randomly allocated to

hosts.

TimeCost of MakeSearch operation when SearchEngineCores are randomly allocated

to hosts and Documents are allocated with their SearchEngineCores.

From the above two costs if one is significantly smaller than the other one than we

would make a rational decision on our design of distribution and be more sure that we are

going in the right direction to implementation. Other criteria may also be important such as

memory and CPU usage of different hosts under a certain input. In order to be able to evaluate

these costs we should integrate the logical design and physical design characteristics of the

system. There are two ways of evaluating the design, by calculation or by simulation.

By Calculation :

We need to extract required values from the design and express them in a manner that

we can use in a calculation. We can set up different tables to achieve this such as :

Host Description Table(System wide)

Host-Conection Table (System Wide)

Connection Description Table (System Wide)

Connection Connection Table (System Wide)

Class Description Table(System wide)

Object Allocation Table (System wide)

Object-Attribute Table (System Wide)

Object-Message Table (System wide)

Attribute Description Table(Object wide)

Message Description Table (Object Wide)

Message-Message Table (Message wide)

Having this information in terms of tables, we can calculate the required costs. However, our

proposed method is going to be simulation.

25

By simulation :

In this method each entity (class, message, host, connection etc) in the design is going

to be represented as an object and the message interaction is going to simulated as if it is

actually running. But these objects are only going to change the cost that we calculate. For

example to calculate the time cost of a MakeSearch operation the script in the definition of

MakeSearch is going to be executed. The global time value is going to be initiali zed as 0 and

memory and cpu usage of hosts and bandwidth of connections are going to be initialized to

their default values. An example scenario is as follows.

Name: MakeSearch(str:String)
Target Object: anIRInterface:IR_INTERFACE
Input: String str Size: 255;
Interacting objects: q:Query(1);

tlist:TermCollection(1),
aSecore:SearchEngineCore(1),
dlist:DocumentCollection(1)

Message Sequencing :
q:=q.Create(str) . dlist:=aSecore.Runquery(q)

Result: dlist
RunTime: 10 units. (excluding messages sent to other objects)

Create an ie:IR_interface

Reduce memory on host H by size of(ie) (including references to other object

Create a connection to ie

Send Runquery(q) over connection

Call ie.MakeSearch()

Increase time by runtime

Increase load on host H

Create a Connection between ie and q

Send q.Create() over Connection

Connection will increase the time by calculating time using bandwidth and

message size. If both objects are on the same host then time=0

Call q.Create()

This is going to execute Create's script which will use the conection to return

the result.

Create a Connection between ie and aSecore

Send Runquery(q) over connection

Connection will increase the time by calculating time using bandwidth and

message size. If both objects are on the same host then time=0

26

Call aSecore.Runquery()

This is going to execute Runquery's script which will use the conection to

return the result.

Return dlist over connection

At the end of this simulation, we can obtain required information such as: the time it

takes to handle the message, connections used, processing time on each host etc. Changing

the allocation mechanism, we can then look at the same values and decide which option is

better.

6.3.7 Refinement of the design according to distribution issues.

Since we can now have a metric for the distribution performance of our design we

can make improvements in our design to resolve the possible bottleneck or optimization of

some operations. The important issue is to prove that our changes in the design will yield a

better design and we can show this by evaluating our design under certain criteria as we

discussed earlier.

The ways of refining the design may be similar in different application domains,

which may then form a design pattern for distributed object systems.

7. CONCLUSION

We believe that object oriented methodologies may play an important role in

distributed systems. However, object oriented design methodologies do not have enough

support for distribution issues. In this document we have introduced initial new elements that

should be added into object oriented design techniques to address the distribution of objects.

We also demonstrated the problems and possible solutions based on our experience on a case

study.

27

8. References

[1] SunSoft, “Remote Method Invocation Specification” , Sun Microsystems Inc., 2550 Garcia

Avenue Mountain View, CA 94043, USA, 1997

http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/

[2] N.Brown and C.Kindel “Distributed Component Object Model Protocol - DCOM/1.0”

Internet Draft, Microsot Corporation, Network Working Group, May 1996.

 http://www.microsoft.com/oledev/olecom/

 [3] Object Management Group “Common Object Request Broker Architecture” , OMG

Technical Documentation Archive, 1997. http://www.omg.org/corba/

[4] G.Booch and J.Rumbaugh and I. Jacobson, “The Unified Modelling Language for Object

Oriented Development Documentation Set” , Version 1.1, Rational Software Corporation,

September 1997.

 http://www.rational.com/uml/documentation.html

[5] Grady Booch. Object-Oriented Analysis And Design With Applications. The

Benjamin/Cummings Publishing Company, Inc., 390. Bridge Parkway Redwood City,

California 94065, USA, second edition, 1994.

[6] SunSoft, “The Java Language Specification” , Sun Microsystems Inc., 2550 Garcia

Avenue Mountain View, CA 94043, USA, 1995. http://www.javasoft.com/products/jdk/

