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An improved polynomial time algorithm for computing there�ned Buneman treeVincent Berry �Dept. of Computer Science, University of Warwickvincent@dcs.warwick.ac.uk, fax: +44 1203 525 714.AbstractWe consider the problem of inferring a tree with positive weight edges on aset X from a dissimilarity measure on X . This problem, most commonly met inthe classi�cation and numerical taxonomy areas, also arises in evolutionary biology,where we try to estimate the evolutionary tree of a set of species.Several studies recently put the emphasis on inferring trees containing reliableedges [7, 18]. Buneman [10] proposed a principle to build a tree whose edges allsatisfy an important number of combinatorial constraints (called quartets) inferredfrom the data. The edges of this tree are in that sense conbinarotially reliable.However, due to the strict constraints imposed on its edges, this tree sometimescontains very few edges. In evolutionary biology, as in other areas aiming at theinference of a tree from a dissimilarity measure, this is a real drawback since sucha tree has a low explanatory power.Moulton and Steel [17] recently proposed a variant of the Buneman principle.This variant leads to a tree containing more edges (i.e., of increased explanatorypower) which still verify an important number of combinatorial constraints inferredfrom the data. Bryant and Moulton proposed an O(n6) polynomial time algorithmfor solving this problem. We improve this result by providing an O(n5) algorithmwhich mainly relies on two ideas: i) a new combinatorial technique based on pathsin a tree to factorize the computations of quartets commonly related to di�erentedges; ii) an interesting merge sort procedure on quartets. These ideas are likely toapply to other problems related to quartets, currently the most popular paradigmused to build trees [7, 8, 11, 14].Keywords: algorithms and data structures, combinatorial technique, computational bio-logy, dissimilarity analysis, distance-based method, quartets, polynomial time algorithm.1 IntroductionPhylogenetic reconstruction is a fundamental problem arising in computational biology.The problem is to retrieve the unknown evolutionary history of living species, modeledas a tree, called an evolutionary tree or a phylogeny. Phylogenies can be reconstructedfrom character or distance data [21]. Character data consists of homologous nucleotidesequences taken from the species' genome. Distance data, i.e., estimates of the evolutivedistance between pairs of species, can be obtained from the sequences by assuming aprobabilist model of evolution or by DNA-hybridization. Recently, the emphasis hasbeen put on distance-based methods for which we can prove a worst-case polynomialconvergence rate under reasonable evolutive conditions [1, 7, 11].Several studies have investigated distance-based methods proposing evolutionarytrees whose edges are supported by an important number of combinatorial constraints[7, 8, 17]. These constraints are expressed on quartets of species, a basic structural unitto describe trees, which can be e�ciently inferred from biological data [2, 4, 20] andwhich has received much attention recently to build phylogenies [6, 7, 9, 11, 14, 20].E.g., the Q� method [2, 7] proposes a tree whose edges are supported by 
(n2) to O(n4)quartets. This method, which relies on a construction introduced by Buneman [10],leads to a tree only containing combinatorially safe edges, but sometimes containing�This work was supported by ESPRIT LTR Project no. 20244 | ALCOM-IT.1



few edges compared with the species' unknown phylogeny. At the same time, Moultonand Steel [17] investigated a related method, called the Re�ned Buneman tree since itprovides a re�nement of the tree obtained by the Buneman construction (i.e., a treecontaining at least the edges inferred by the Buneman method). The edges of the treeproposed by this new method still satisfy between 
(n) and O(n3) quartets inferredfrom the data.The interest in these methods is twofold: �rst, they provide conservative but reliableestimates of the species' history (e.g., the Q� method was experimentally shown toinduce less than 1% incorrect edges [6, 18]); more importantly, because of the importantconstraints they impose on inferred edges, the corresponding tree can be computed inpolynomial time, whereas most other methods are NP-hard. This motivates a newand promising approach to phylogeny reconstruction [6, 7, 18, 19]: �rst compute atree containing only safe edges through one of the above methods (see [17] for othersimilar constructions) or through other principles (e.g., consensus methods [18]); thenextends this good basis to estimate the species' phylogeny, by relying on an approximatealgorithm for an usual reconstruction criterion [6, 18].We are here interested in the �rst step of this scheme, and more precisely in the Re-�ned Buneman tree method. This method was initially implemented in the well-knownSplitsTree phylogenetic package [13] by an exponential algorithm. More recently,Bryant and Moulton have shown that this problem can be solved in polynomial time [8],but the O(n6) complexity of their algorithm impedes its application to large data sets.Here we improve their result by providing an O(n5) algorithm. The interest in thisalgorithm also comes from the potentiality of the technique it uses. Indeed, a similartechnique could be applied to solve related problems, e.g., to quickly compute the splitdecomposition of a distance and the associated splitsgraph phylogenetic network [3, 13].2 PreliminariesTree metrics and edge-weighted treesLet X be a set of n species, and let D(X) denote the set of dissimilarity measures onX, that is, the set of symmetric functions d : X2 ! R that are zero on the diagonal.An X-tree is a tree T = (V;E) together with a labeling L : X ! V such that all of thevertices in V � L(X) have degree at least three [4]. In this study we will only considerleaf-labelled X-trees (i.e., X-trees T whose leaves bijectively correspond with L(X)).An X-tree T = (V;E;L) together with an edge weighting w : E ! R>0 induces anassociated distance function dT on X: if we denote by [L(x); L(y)] the unique path inT between species x and y, then dT (x; y) =Pe2[L(x);L(y)]w(e). Any distance functionarising in this way is called a tree distance, and we denote the set of all tree distances onX by T (X). In phylogenetic reconstruction, X represents a set of species (e.g., animals)on which we know a dissimilarity d 2 D(X). The problem consists in recovering theevolutionary tree of the species, modeled as an X-tree, whose internal nodes representancestral species and whose edges represent relationship hypotheses and are weightedby evolutive distances. In other words, we are concerned with maps � : D(X)! T (X).Several desirable properties of such maps maybe identi�ed in the phylogenetic context,e.g., continuity, homogeneity, equivariance, polynomial-time computable [17]. The mapsthat we consider below verify these properties.
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Figure 1: Subtrees Su; Sv de�ned by: (1) an edge (u; v); (2) a path [u; v].SplitsGiven an X-tree T = (V;E;L), an edge e 2 E induces a split � = fU; V g of X (that is,a bipartition of X into two non-empty subsets) in a natural way: we say that x; y2Xare in the same component of the split (U or V ) if the unique path in T from L(x) toL(y) does not traverse e.A set of splits is said to be compatible, if and only if there exists an X-tree T =(V;E;L) s.t. all splits in the set corresponds to edges in E. Any X-tree T on n speciesis uniquely characterized by the set of splits corresponding to its k edges [10] and fromwhich it can be reconstructed in O(kn) [16, 12].SubtreesIn this paper, the term subtree only denotes a connected component of an X-tree T =(V;E;L), which can be obtained by deleting an edge e2E. We denote by Su and Sv thetwo subtrees associated with the end-points of e= (u; v), i.e., the subtrees containingthe species U and the species V respectively (see Fig 1-1), where fU; V g is the splitinduced by e. We refer to Su and Sv as the subtrees de�ned by the edge e=(u; v).In the following we will also consider paths [u; v] in a tree, and the subtrees Suand Sv they de�ne: Su (resp. Sv) denotes the subtree de�ned by the edge of the pathconnected to u (resp. v) and not containing other nodes of the path (see Fig. 1-2).We denote byXS1 the species contained in a subtree S1, i.e., XS1=fx2X s.t. L(x)2S1g. Containment relations between subtrees are de�ned according to the species theycontain: S1 � S2 if and only if XS1 � XS2 .QuartetsTo every set of four species a; b; c; d2X there are three ways to associate a leaf-labelledbinary tree (see Fig 2). The three possible resolutions are denoted by abjcd, acjbdand adjbc, indicating how the central edge of the tree bipartitions the four species.Each of these trees on four species is also called a resolved quartet, or simply a quartet[7, 8, 11, 17].Let e = (u; v) be an internal edge of an X-tree T , we say that e induces a quartetabjcd if e bipartitions the four species in the same way as the central edge of the binarytree representing the quartet. We denote by Qe = fabjcd; s.t. a; b 2XSu ; a 6= b; c; d 2
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ad|bcFigure 2: The three possible quartets on species a; b; c; d.3



XSv ; c 6=dg the set of quartets induced by e. If �=fU; V g is the split induced by e onX, then the set of quartets induced by � is Q�=Qe. The quartets induced by an X-treeT =(V;E;L) are simply those induced by its edges: QT =[e2EQe. Note that an X-treeT is uniquely characterized by the set QT of quartets it induces [2] and from which itcan be reconstructed in O(jQT j+ n2) time [2].Similar to the case of edges, the set of quartets induced by a path P = [u; v] in anX-tree T = (V;E;L) is de�ned as QP = fabjcd s.t. a; b 2XSu ; a 6= b; c; d 2XSv ; c 6= dg.It can be easily veri�ed that QP = Te2E Qe, i.e., that QP denotes the set of quartetsinduced by all edges of the path P .Note that external edges of a leaf-labelled X-tree (i.e., connecting the species of Xto the rest of the tree) are of no interest since they belong to all leaf-labelled X-trees.These edges (and the splits they induce) are called trivial and do not induce any quartet(they can be combined into a tree inducing either of the three possible resolutions forany set of four species). In the following, we will only consider non-trivial edges andpaths containing only non-trivial edges.The Buneman treeBuneman �rst gave a useful map � to obtain a tree from a dissimilarity measure d on Xby considering quartets [10]: The Buneman score of a quartet q=abjcd, a; b; c; d 2 X, isde�ned as: �q = �abjcd := 12(minfac+ bd; ad+ bcg � (ab+ cd));where xy = d(x; y) for x; y 2 X, and the Buneman index of a split � = fU; V g of X is�� = ��(d) = minu;u02U;v;v02V �uu0jvv0 :Here u and u0 need not be distinct; likewise for v and v0. Buneman showed that the setof splits B(d) = f� s.t. ��(d) > 0g is compatible. We de�ne the Buneman tree to bethe weighted X-tree associated to B(d), whose edges correspond to the splits �2B(d)and are weighted according to ��(d).The Re�ned Buneman treeMore recently, Moulton and Steel [17] shown that a special relaxation of the condition��>0 also gives a set of compatible splits: let q1; : : : ; qjQ�j be an ordering of the elementsin Q� such that for all 1 � i � j � jQ�j we have �qi � �qj . The re�ned Buneman indexof a non-trivial split � is de�ned as��� = ���(d) := 1n� 3 � n�3Xi=1 �qi :Note that ��� can also be de�ned for trivial splits � [8, 17], but this de�nition impliesthat ��� is always positive if d satis�es the triangle inequality (if this is not the case,then, without changing the index of the non-trivial splits, we can add a su�cientlyhigh constant c to every entry of d such that d satis�es the triangle inequality). Thus,w.l.o.g., we will always suppose that the trivial splits have a positive index. The set ofsplits RB(d) = f� s.t. ��(d) > 0g is shown to be compatible in [17] and the associatedweighted X-tree, whose edges correspond to the splits � 2 RB(d) and are weightedaccording to ���(d), is called the re�ned Buneman tree and is denoted by T (d). It isclear that B(d) � RB(d), and often B(d) is strictly contained in RB(d), in which casethe re�ned Buneman tree re�nes the Buneman tree.4



The Anchored Buneman treeFix x 2 X. Given a split � = fU; V g with x 2 U de�ne�x� = �x�(d) := minu2U;v;v02V f�xujvv0g;and put Bx(d) = f� s.t. �x� > 0g. Clearly �x� � �� for all splits �, so that B(d) � Bx(d).The set of splitsBx(d) is compatible [8]. The weightedX-tree associated to Bx(d), whoseedges correspond to the splits � 2 Bx(d) and are weighted according to �x�(d), is calledthe Buneman tree anchored at x and is denoted by Tx(d).3 An improved algorithm for the re�ned Buneman tree3.1 Mathematical basis of the algorithmThe algorithm designed by Bryant and Moulton [8] to compute the splits RB(d) of theRe�ned Buneman tree is iterative, i.e., it assumes an arbitrary order on the speciesX = fx1; : : : ; xng, computes RB(d) for a small subset of species then extends it byprogressively incorporating the other species. The same iterative technique has beensuccessfully used to solve other related problems [3, 7].Let Xk = fx1; : : : ; xkg and dk be the dissimilarity d restricted to Xk, the correctnessof the iterative approach for computing RB(d) relies on the following lemma:Lemma 1 ([8]) Suppose jXj>4, and �x x 2 X. If �=fU; V g is a split in RB(d) withx 2 U , and jU j>2, then either fU; V g2Bx(d) or fU � fxg; V g2RB(dX�fxg) or both.Thus, the algorithm of [8] �rst computes RB(d4) = B(d4), then at each step k (kranging from 5 to n), the set RB(dk) is computed by considering the splits �2Bxk(dk)and fU [ xk; V g; fU; V [ xkg, where fU; V g 2 RB(dk�1). From these splits, only thosehaving a positive re�ned Buneman index are included in RB(dk).The most time consuming step of this O(n6) algorithm is to compute the index ofthe splits considered for addition in the set RB(dk) at each step k. To compute theindex of a split, we have to know the k�3 quartets of least Buneman score it induces.The set QX of all existing quartets is sorted at the beginning of the algorithm accordingto their Buneman score. Then, for each examined split �, the algorithm proceeds inascending order through the sorted list QX , to �nd the k�3 quartets of lower Bunemanscore induced by �. However, this can require up to O(n4) for each split, i.e., O(n5) ateach step (O(k) splits are considered), hence the O(n6) complexity of the algorithm.The main ine�ciency of this algorithm is to consider the di�erent splits separately.In doing so, it does not to take advantage of the structure of the set of splits consideredat each step k, i.e., does not use the fact that they originate from trees (Txk(dk) andT (dk�1)). In the following we propose a combinatorial technique based on this featureof the problem to reduce the number of steps required in the computation of RB(dk) ateach step k.3.2 Considering paths in a treeWe describe here a combinatorial technique based on the paths in a tree, which enablesus to know in an e�cient way the quartets of QX induced by any given split �, thusavoiding to consider potentially irrelevant quartets. Moreover, this technique allows tofactorize the processing of quartets commonly induced by di�erent edges.5
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wxFigure 3: An X-tree with X = fa; b; c; d; e; fg.In a given tree Txk(dk) (or similarly T (dk�1)), a quartet, let abjcd, is usually inducedby several edges. De�ne [u; v] to be the path [a; c]\ [b; d] = [a; d]\ [b; c]. The set of edgesof [u; v] is exactly the set of all edges inducing abjcd. Moreover, these edges do not onlyhave abjcd in common: they also all induce the quartets xyjzt where x; y 2XSu ; x 6= yand z; t2XSv ; z 6= t, where Su and Sv are the two subtrees de�ned by the path [u; v] (cf.Fig. 1-2). The fact that all these edges induce a non-negligible number of quartets incommon (in the general case) gives the idea to consider the paths P e1 ; : : : ; P el to whichan edge e belongs to describe the set Qe of quartets induced by the edge as a function ofthe sets QP ei of quartets induced by the paths P ei respectively. More precisely, we have:Qe = [1�i�lQP ei :The correctness of this formula can be easily veri�ed from the de�nitions. By sortingseparately the lists QP ei of quartets induced by the P ei paths, we can then know easily,by a merging procedure, the k � 3 quartets of smallest Buneman score induced by anyedge e. Since any edge e of an X-tree belongs to O(n2) paths, this merge sort procedureon quartets would allow us to compute the index of any split � in O(n3), whereas thisrequired O(n5) in the algorithm of [8]. Provided that all QP ei lists can be obtained sortedby preprocessing in at most O(n4), this would allow us to process all the splits arisingfrom Txk(dk) and T (dk�1) in O(n4) rather than the O(n5) required in [8].However, this analysis is valid only if each quartet is encountered only once in theQP ei sets. This may not be the case since a given quartet may be induced by severalP ei paths. To avoid this redundancy, we would like a quartet to be registered in onlyone path, but without losing any information when taking the union of the P ei 's for anyedge e. We do that by attaching each quartet abjcd only to the unique path [u; v] =[a; c] \ [b; d] = [a; d] \ [b; c]. Equivalently, we de�ne the set QP of quartets which arespeci�cally induced by a path P =[u; v] as:QP = �abjcd s.t. a2XSa ; b2XSb ; c2XSc ; d2XSd ;Sa�Su; Sb�Su; Sa 6=Sb; Sc�Sv; Sd�Sv; Sc 6=Sd	;where Su and Sv are de�ned as in section 2. From this de�nition we have:Lemma 2 Let T = (V;E;L) be an X-tree,(i) 8q = abjcd 2 QT ; 9P unique s.t. q 2 QP :(ii) 8e2E;Qe = S1�i�lQP ei :Proof: see appendix.For example, in Fig. 3, the edge e = (u; v) belongs to paths [u; v]; [u;w]; [x; v]; [x;w]and we haveQ[u;v] = facjde; acjdf; acjdg; bcjde; bcjdf; bcjdgg, Q[x;v] = fabjde; abjdf; abjdgg,Q[u;w] = facjef; bcjef; acjeg; bcjeg; acjfg; bcjfgg, Q[x;w] = fabjef; abjeg; abjfgg, and itcan be easily veri�ed that Qe = Q[u;v][Q[u;w][Q[x;v][Q[x;w].6



We now prove the important fact that the sorted lists QP for all paths P in anX-tree can be obtained in O(n4). The algorithm we propose relies on the fact that theend-points of (non-trivial) paths are internal nodes of the X-tree and on the followinglemma:Lemma 3 If A is an internal node of an X-tree T = (V;E;L) and ei = (A;B), ej =(A;C), ek=(A;D) are three edges connected to A (assuming also that ei is an internaledge), then A is one of the two end-points of the unique path P s.t. abjcd2QP , 8a; b2XSB ;8c2XSC and 8d2XSD .Algorithm 1: Compute the sets QP for paths P in an X-tree T =(V;E;L).1 Traverse T to compute for each edge e = (A;B) 2 E the lists XSA and XSB ofspecies contained in the subtrees SA and SB it de�nes./* Associate with each quartet q the end-points of the path P s.t. q2QP : */2 Traverse T and foreach internal node A 2 V doforeach ei = (A;B)foreach a; b 2 XSBforeach ej = (A;C); ek = (A;D) (ei 6= ej 6= ek)foreach c 2 XSC ; d 2 XSD3 Add A to the entry of QX which corresponds to abjcd./* Collect the elements of the QP lists from QX : */Let MP be a square matrix storing QP for all paths P = [A;B] in T .Set all QP lists in MP to empty.4 Traverse QX in descending order and foreach quartet q doLet A;B be the two nodes associated to q in QX during loop 2,Add q to MP [A;B].The correctness of the algorithm follows from lemma 3. Moreover, we can prove:Theorem 4 If T =(V;E;L) is an X-tree, then Algorithm 1 computes in O(n4) the setsQP of quartets speci�cally induced by the paths P in T , where n= jXj.Proof:� Line 1 is implemented by a simple post-ordered recursive search of the tree. Foreach edge e = (A;B) 2 E processed during this search, assuming w.l.o.g. that Ais the father of B in the search of the tree, the list XSB of species contained in asubtree SB is simply the union of the lists of species of the subtrees contained inSB. Moreover, the list of species associated to the subtree SA is simply X �XSB .The execution of line 1 thus requires no more than O(n2).� The loop of line 2 requires O(n4) if we perform a global analysis: each quartet q isreferenced only twice (respectively, when A and B are processed, where P = [A;B]is the unique path P s.t. q 2 QP ), and all referenced quartets are obtained inO(1) through the XSi lists implemented as chained lists. Moreover line 3 can beperformed in O(1), by resorting to the usual matrix MQ with four dimensions[7] (each entry MQ[a; b; c; d] has a sub-entry for each of the 3 possible resolutions7



Algorithm 2: A merge sort algorithm on quartet to construct RB(d).5 Construct the list QX of all possible quartets abjcd on X, sorted according to theirBuneman score �abjcd.6 Let S4 := B(d4).7 foreach k from 5 to n8 Let Sk = ffxk;Xk � xkgg.9 Construct Bxk(dk) and Txk(dk) = (Vxk ; Exk ; Lxk).10 Compute the sets QP of quartets induced by all paths P in Txk(dk).11 foreach edge e 2 Exk compute the lists of paths P ei s.t. e � P ei .12 foreach each split � corresponding to an edge e2Exk13 Compute the list L� of k � 3 quartets of smallest Buneman score it induces.14 Add � to Sk i� ��� > 0.15 Construct T (dk�1) = (Vdk�1 ; Edk�1 ; Ldk�1) from Sk�1.16 Compute the sets QP of quartets induced by all paths P in T (dk�1).17 foreach edge e2Edk�1 compute the lists of paths P ei s.t. e � P ei .18 Construct the list Lxk of all possible quartets to which xk belongs, sorted ac-cording to their Buneman score.19 foreach split � = fU; V g corresponding to an edge e2Edk�120 Compute the lists L�0 and L�00 of the k�3 quartets of smallest Buneman scoreinduced respectively by �0=fU [ xk; V g and �00=fU; V [ xkg.21 Add �0 and �00 to Sk whenever ���0>0, resp. ���00>0, or whenever they are trivial.Output RB(d) = Sn and f��� s.t. � 2 Sng.of (a; b; c; d), which contains a pointer on the entry of QX corresponding to theresolution). This matrix is initialized in an O(n4) straight-forward way whensorting the quartets of QX , at the beginning of the main algorithm.� The traversal of QX in line 4 requires O(1) operations to process each entry of QX ,since each one is associated with only three informations (the quartet q and thetwo end-points A and B of the path P = [A;B] s.t. q 2 QP ), which enables us toperform in O(1) the addition of q to the head of the chained list MP [A;B] = QP .Since QX contains O(n4) entries, the execution of line 4 requires O(n4). �3.3 The O(n5) algorithm to compute BD(d)Thanks to the preprocessing of the paths described in the previous section, computingthe re�ned Buneman index of all the splits arising from Txk(dk) and T (dk�1) is performedas a series of merge sorts which only require O(n4). We detail the resulting procedureused to compute RB(d) in Algorithm 2. Its correctness follows from lemmas 1, 2 and 3.Theorem 5 If d is a dissimilarity on X and n := jXj�4, then Algorithm 2 constructsRB(d) in time O(n5).Proof:� Line 5 requires O(n4 log n) since 3�n4� elements are sorted. Line 6 is in O(1).� The main loop, line 7, is performed O(n) times. Line 8 requires O(1) at each stepof this loop, i.e., is O(n) on the overall execution.8



� Line 9: the splits of Bxk(dk) can be obtained in a natural way inO(k4), as indicatedin [8], which leads to O(n5) on the overall execution of the algorithm. A moreinvolved argument shows that Bxk(dk) can actually be computed in O(n2) (Bryant,personal communication), but the O(n4) bound su�ces to establish the result.Constructing the tree on n species whose edges correspond to the k splits of someset is only O(kn) thanks to the linear algorithms of Meacham and Gus�eld [16, 12].Since Bxk(dk) contains O(n) splits, constructing Txk(dk) only requires O(n2) ateach step, i.e., O(n3) for the whole algorithm.� Line 10 require O(n4) from theorem 4 and thus O(n5) on the whole algorithm.� Line 11 is performed in a similar way as line 1 of Algorithm 1. The tree is recur-sively traversed and for each edge e = (u; v) we establish the lists of internal nodesV iu and V iv contained in the two subtrees Su and Sv de�ned by e, then we know thatthe lists of paths to which e belong is exactly Lp[e] = f[u; v] s.t. u2 V iu ; v 2 V iv g.Since Lp[e] contains up to O(n2) paths, each obtained in O(1), line 11 requiresO(n3) at each step k, i.e., O(n4) for the whole algorithm.� Lines 12 to 14 are performed like a merging procedure: we merge the O(k2) sortedlists QP ei into one sorted list, corresponding to the quartets induced by the edge.However, we stop the process when knowing the �rst k � 3 elements of the list,which su�ce to compute ���. This classical procedure can be performed in O(k3),for each split �. Since at each step k we examine the O(k) splits of the tree Txk(dk),this line requires O(k5), i.e., O(n5) for the whole algorithm.� Line 15, requires O(n2) at each step (as the second half of line 9), i.e., O(n3) forthe whole algorithm. Lines 16 and 17 (as steps 10 and 11) respectively requireO(n5) and O(n4).� Line 18 requires O(n3 logn) at each of the k steps, i.e., O(n4 logn) on the whole.� Lines 19 to 21: the loop of line 19 is performed O(k) times at each step k, i.e.,O(n2) for the whole algorithm. The splits �0 and �00 induce the same quartets as �,plus some quartets of Lxk . Thus, to obtain L�0 (equiv. L�00), line 20 proceeds bymerging the QP ei lists, as line 13 (one more list being considered, namely Lxk). Theonly di�erence with line 13 is that when the smallest quartet of Lxk is considered,it is disregarded if not induced by �0 (resp �00). Knowing if a quartet q = abjcxk2Lxk is induced by �0 (resp �00) can be checked in O(1) if we store for each split� = fU; V g of T (dk�1) the species contained in its two components in a binaryarray of size n (these arrays can be initialized in O(k3) during the traversal of line1 of Algorithm 1, called at line 16 of the present algorithm). During the mergingprocedure, at most O(k3) quartets from Lxk are considered, and at most O(k)quartets from the O(k2) other lists, each quartet being processed in O(1). As aresult, line 20 requires O(k3) operations, i.e., O(n5) for the whole algorithm sinceit is performed at each step of the loop of line 19. Computing ���0 and ���00 requiresonly O(k), thus O(n5) for the whole algorithm. �4 DiscussionIn this paper we proposed a faster algorithm to compute the Re�ned Buneman tree ona set of species from a dissimilarity measure. The O(n5) complexity achieved by the9
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[18] K. Rice, M. Steel, T. Warnow, and S. Yooseph. Hybrid tree construction methods. manuscript,1997.[19] K. Rice, M.A. Steel, T. Warnow, and S. Yooseph. Better methods for solving parsimony andcompatiblity. In Proc. of the 2nd Ann. Int. Conf. on Computational Molecular Biology (RECOMB).ACM, 1998.[20] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. J. ofClassi�cation, 9:91{116, 1992.[21] D.L. Swo�ord, G.J. Olsen, P.J. Wadell, and D.M. Hillis. Molecular systematics (2nd edition),chapter Phylogenetic Inference, pages 407{514. Sunderland, USA, 1996.Appendix - proof of lemma 2Recall that P ei denotes the set of (non-trivial) paths in T to which the edge e 2 E belongs.(i) 8q = abjcd 2 QT ; 9P unique s.t. q 2 QP :q 2 QPei � f [a; u] \ [b; u] = u ; [c; v] \ [d; v] = v ; a; b 2 XSu ; a 6= b ; c; d 2 XSv ; c 6= d g� [u; v] = [a; c] \ [b; d] = [a; d] \ [b; c]:However, there exists a unique path in T corresponding to [a; c]\ [b; d] (and to [a; d]\ [b; c]), which meansthat P ei = [u; v] is the unique path in T s.t. q 2 QPei .(ii) 8e2E;Qe = S1�i�lQPei :Let e = (u; v) be any given edge of E.a) 8q 2 Qe ) 9P ei s.t. q 2 QPei :W.l.o.g. let q = abjcd. q 2 Qe ) a; b 2 XSu ; a 6= b; c; d 2 XSv ; c 6= d)� the node A indicated by [a; c] \ [b; d] \ [a; b] is in Su.� the node B indicated by [a; c] \ [b; d] \ [c; d] is in Sv.Since nodes A and B are the end-points of the unique path P s.t. q 2 QP , A 2 Su and B 2 Sv implythat e belongs to P (otherwise there would be a cycle in T ).b) 8P ei ; 8q 2 QPei ) q 2 Qe:W.l.o.g., let P ei = [u0; v0] and q = abjcd. q 2 QPei ) a 6= b and a; b 2 XSu0 ; c 6= d and c; d 2 XSv0 . Sincee 2 P ei , we have Su0 � Su and Sv0 � Sv, thus a; b 2 XSu and c; d 2 XSv . This implies abjcd=q 2 Qe byde�nition of Qe. �
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