THE UNIVERSITY OF

WARWICK

Original citation:

Berry, Vincent (1998) An improved polynomial time algorithm for computing the refined
Buneman tree. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-342

Permanent WRAP url:
http://wrap.warwick.ac.uk/61055

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61055
mailto:publications@warwick.ac.uk

An improved polynomial time algorithm for computing the
refined Buneman tree

Vincent Berry *
Dept. of Computer Science, University of Warwick
vincent@dcs.warwick.ac.uk, fax: +44 1203 525 714.

Abstract

We consider the problem of inferring a tree with positive weight edges on a
set X from a dissimilarity measure on X. This problem, most commonly met in
the classification and numerical taxonomy areas, also arises in evolutionary biology,
where we try to estimate the evolutionary tree of a set of species.

Several studies recently put the emphasis on inferring trees containing reliable
edges [7, 18]. Buneman [10] proposed a principle to build a tree whose edges all
satisfy an important number of combinatorial constraints (called quartets) inferred
from the data. The edges of this tree are in that sense conbinarotially reliable.
However, due to the strict constraints imposed on its edges, this tree sometimes
contains very few edges. In evolutionary biology, as in other areas aiming at the
inference of a tree from a dissimilarity measure, this is a real drawback since such
a tree has a low explanatory power.

Moulton and Steel [17] recently proposed a variant of the Buneman principle.
This variant leads to a tree containing more edges (i.e., of increased explanatory
power) which still verify an important number of combinatorial constraints inferred
from the data. Bryant and Moulton proposed an O(n%) polynomial time algorithm
for solving this problem. We improve this result by providing an O(n®) algorithm
which mainly relies on two ideas: i) a new combinatorial technique based on paths
in a tree to factorize the computations of quartets commonly related to different
edges; i) an interesting merge sort procedure on quartets. These ideas are likely to
apply to other problems related to quartets, currently the most popular paradigm
used to build trees [7, 8, 11, 14].

Keywords: algorithms and data structures, combinatorial technique, computational bio-
logy, dissimilarity analysis, distance-based method, quartets, polynomial time algorithm.

1 Introduction

Phylogenetic reconstruction is a fundamental problem arising in computational biology.
The problem is to retrieve the unknown evolutionary history of living species, modeled
as a tree, called an evolutionary tree or a phylogeny. Phylogenies can be reconstructed
from character or distance data [21]. Character data consists of homologous nucleotide
sequences taken from the species’ genome. Distance data, i.e., estimates of the evolutive
distance between pairs of species, can be obtained from the sequences by assuming a
probabilist model of evolution or by DNA-hybridization. Recently, the emphasis has
been put on distance-based methods for which we can prove a worst-case polynomial
convergence rate under reasonable evolutive conditions [1, 7, 11].

Several studies have investigated distance-based methods proposing evolutionary
trees whose edges are supported by an important number of combinatorial constraints
[7, 8, 17]. These constraints are expressed on quartets of species, a basic structural unit
to describe trees, which can be efficiently inferred from biological data [2, 4, 20] and
which has received much attention recently to build phylogenies [6, 7, 9, 11, 14, 20].
E.g., the Q* method [2, 7] proposes a tree whose edges are supported by Q(n?) to O(n*)
quartets. This method, which relies on a construction introduced by Buneman [10],
leads to a tree only containing combinatorially safe edges, but sometimes containing

*This work was supported by ESPRIT LTR Project no. 20244 — ALCOM-IT.

few edges compared with the species’ unknown phylogeny. At the same time, Moulton
and Steel [17] investigated a related method, called the Refined Buneman tree since it
provides a refinement of the tree obtained by the Buneman construction (i.e., a tree
containing at least the edges inferred by the Buneman method). The edges of the tree
proposed by this new method still satisfy between Q(n) and O(n?) quartets inferred
from the data.

The interest in these methods is twofold: first, they provide conservative but reliable
estimates of the species’ history (e.g., the @* method was experimentally shown to
induce less than 1% incorrect edges [6, 18]); more importantly, because of the important
constraints they impose on inferred edges, the corresponding tree can be computed in
polynomial time, whereas most other methods are NP-hard. This motivates a new
and promising approach to phylogeny reconstruction [6, 7, 18, 19]: first compute a
tree containing only safe edges through one of the above methods (see [17] for other
similar constructions) or through other principles (e.g., consensus methods [18]); then
extends this good basis to estimate the species’ phylogeny, by relying on an approximate
algorithm for an usual reconstruction criterion [6, 18].

We are here interested in the first step of this scheme, and more precisely in the Re-
fined Buneman tree method. This method was initially implemented in the well-known
SPLITSTREE phylogenetic package [13] by an exponential algorithm. More recently,
Bryant and Moulton have shown that this problem can be solved in polynomial time [8],
but the O(n®) complexity of their algorithm impedes its application to large data sets.

Here we improve their result by providing an O(n”) algorithm. The interest in this
algorithm also comes from the potentiality of the technique it uses. Indeed, a similar
technique could be applied to solve related problems, e.g., to quickly compute the split
decomposition of a distance and the associated splitsgraph phylogenetic network [3, 13].

2 Preliminaries

Tree metrics and edge-weighted trees

Let X be a set of n species, and let D(X) denote the set of dissimilarity measures on
X, that is, the set of symmetric functions d : X? — R that are zero on the diagonal.
An X-tree is a tree T' = (V, E) together with a labeling L : X — V such that all of the
vertices in V' — L(X) have degree at least three [4]. In this study we will only consider
leaf-labelled X-trees (i.e., X-trees T whose leaves bijectively correspond with L(X)).

An X-tree T = (V, E, L) together with an edge weighting w : F — R induces an
associated distance function dr on X: if we denote by [L(x), L(y)] the unique path in
T between species = and y, then dr(z,y) = ZeE[L(x),L(y)] w(e). Any distance function
arising in this way is called a tree distance, and we denote the set of all tree distances on
X by T(X). In phylogenetic reconstruction, X represents a set of species (e.g., animals)
on which we know a dissimilarity d € D(X). The problem consists in recovering the
evolutionary tree of the species, modeled as an X-tree, whose internal nodes represent
ancestral species and whose edges represent relationship hypotheses and are weighted
by evolutive distances. In other words, we are concerned with maps ¢ : D(X) — T (X).
Several desirable properties of such maps maybe identified in the phylogenetic context,
e.g., continuity, homogeneity, equivariance, polynomial-time computable [17]. The maps
that we consider below verify these properties.

(1)) @

Figure 1: Subtrees Sy, S, defined by: (1) an edge (u,v); (2) a path [u,v].

Splits

Given an X-tree T = (V, E, L), an edge e € E induces a split 0 = {U,V'} of X (that is,
a bipartition of X into two non-empty subsets) in a natural way: we say that z,y € X
are in the same component of the split (U or V) if the unique path in T from L(zx) to
L(y) does not traverse e.

A set of splits is said to be compatible, if and only if there exists an X-tree T' =
(V, E, L) s.t. all splits in the set corresponds to edges in E. Any X-tree T on n species
is uniquely characterized by the set of splits corresponding to its k edges [10] and from
which it can be reconstructed in O(kn) [16, 12].

Subtrees

In this paper, the term subtree only denotes a connected component of an X-tree T =
(V, E, L), which can be obtained by deleting an edge e€ E. We denote by S,, and S, the
two subtrees associated with the end-points of e = (u,v), i.e., the subtrees containing
the species U and the species V respectively (see Fig 1-1), where {U,V'} is the split
induced by e. We refer to S, and S, as the subtrees defined by the edge e=(u,v).

In the following we will also consider paths [u,v] in a tree, and the subtrees S,
and S, they define: S, (resp. S,) denotes the subtree defined by the edge of the path
connected to u (resp. v) and not containing other nodes of the path (see Fig. 1-2).

We denote by Xg, the species contained in a subtree Sy, i.e., Xg, ={zx € X s.t. L(z)€
S1}. Containment relations between subtrees are defined according to the species they
contain: S7 C S7 if and only if Xg, C Xg,.

Quartets

To every set of four species a, b, c,d€ X there are three ways to associate a leaf-labelled
binary tree (see Fig 2). The three possible resolutions are denoted by ab|cd, ac|bd
and ad|bc, indicating how the central edge of the tree bipartitions the four species.
Each of these trees on four species is also called a resolved quartet, or simply a quartet
[7,8, 11, 17].

Let e = (u,v) be an internal edge of an X-tree T, we say that e induces a quartet
ablcd if e bipartitions the four species in the same way as the central edge of the binary
tree representing the quartet. We denote by Q. = {ab|cd, s.t. a,b€ Xg,,a#b, ¢,d €

abled aclbd adlbc

Figure 2: The three possible quartets on species a, b, ¢, d.

Xs,, c#d} the set of quartets induced by e. If c={U,V} is the split induced by e on
X, then the set of quartets induced by o is QQ, =Q.. The quartets induced by an X-tree
T=(V,E, L) are simply those induced by its edges: Q7 =U.crQe. Note that an X-tree
T is uniquely characterized by the set Q7 of quartets it induces [2] and from which it
can be reconstructed in O(|Qr| + n?) time [2].

Similar to the case of edges, the set of quartets induced by a path P = [u,v] in an
X-tree T=(V,E, L) is defined as Qp = {ablcd s.t. a,b€ Xg,,a #b, ¢c,d € Xg,, c#d}.
It can be easily verified that Qp = [.cp Qe, i-e., that Qp denotes the set of quartets
induced by all edges of the path P.

Note that external edges of a leaf-labelled X-tree (i.e., connecting the species of X
to the rest of the tree) are of no interest since they belong to all leaf-labelled X-trees.
These edges (and the splits they induce) are called #rivial and do not induce any quartet
(they can be combined into a tree inducing either of the three possible resolutions for
any set of four species). In the following, we will only consider non-trivial edges and
paths containing only non-trivial edges.

The Buneman tree

Buneman first gave a useful map ¢ to obtain a tree from a dissimilarity measure d on X
by considering quartets [10]: The Buneman score of a quartet g=ablcd, a,b,c,d € X, is
defined as:

1
By = Babled = §(min{ac + bd, ad + bc} — (ab + cd)),
where zy = d(z,y) for z,y € X, and the Buneman indez of a split 0 = {U,V} of X is
fo = pio(d) =

u,u’Gr[Ifl,lvr,lv’ ev ﬂuu’ o’

Here u and u' need not be distinct; likewise for v and v’. Buneman showed that the set
of splits B(d) = {0 s.t. ps,(d) > 0} is compatible. We define the Buneman tree to be
the weighted X-tree associated to B(d), whose edges correspond to the splits o € B(d)
and are weighted according to pq(d).

The Refined Buneman tree

More recently, Moulton and Steel [17] shown that a special relaxation of the condition
o >0 also gives a set of compatible splits: let g1, ..., q|g,| be an ordering of the elements
in @, such that for all 1 < < j < |Q,| we have 8, < ;. The refined Buneman index
of a non-trivial split ¢ is defined as

n—3
_ _ 1
fro = fo(d) =) Z Byi-
=1

n—3

Note that i, can also be defined for trivial splits o [8, 17], but this definition implies
that fi, is always positive if d satisfies the triangle inequality (if this is not the case,
then, without changing the index of the non-trivial splits, we can add a sufficiently
high constant ¢ to every entry of d such that d satisfies the triangle inequality). Thus,
w.l.0.g., we will always suppose that the trivial splits have a positive index. The set of
splits RB(d) = {o s.t. a(d) > 0} is shown to be compatible in [17] and the associated
weighted X-tree, whose edges correspond to the splits o € RB(d) and are weighted
according to iy (d), is called the refined Buneman tree and is denoted by T'(d). It is
clear that B(d) C RB(d), and often B(d) is strictly contained in RB(d), in which case
the refined Buneman tree refines the Buneman tree.

The Anchored Buneman tree

Fix z € X. Given a split 0 = {U,V} with z € U define

Mi = Mi(d) = ue[}gij}ev{ﬁzu\vv’}a
and put B, (d) = {o s.t. u% > 0}. Clearly u? > u, for all splits o, so that B(d) C B,(d).
The set of splits B, (d) is compatible [8]. The weighted X-tree associated to B, (d), whose
edges correspond to the splits o € B;(d) and are weighted according to ul(d), is called
the Buneman tree anchored at x and is denoted by T, (d).

3 An improved algorithm for the refined Buneman tree

3.1 Mathematical basis of the algorithm

The algorithm designed by Bryant and Moulton [8] to compute the splits RB(d) of the
Refined Buneman tree is iterative, i.e., it assumes an arbitrary order on the species
X = {x1,...,z,}, computes RB(d) for a small subset of species then extends it by
progressively incorporating the other species. The same iterative technique has been
successfully used to solve other related problems [3, 7].

Let Xy = {x1,...,zr} and dj be the dissimilarity d restricted to X}, the correctness
of the iterative approach for computing RB(d) relies on the following lemma:

Lemma 1 ([8]) Suppose |X|>4, and fir x € X. If o={U,V'} is a split in RB(d) with
v €U, and |U|>2, then either {U,V} € By(d) or {U — {x},V}ERB(dx_{4}) or both.

Thus, the algorithm of [8] first computes RB(ds) = B(d4), then at each step k£ (k
ranging from 5 to n), the set RB(dj) is computed by considering the splits o € By, (dk,)
and {U Uz, V}, {U,V Uz}, where {U,V} € RB(di—1). From these splits, only those
having a positive refined Buneman index are included in RB(dy).

The most time consuming step of this O(n®) algorithm is to compute the index of
the splits considered for addition in the set RB(d) at each step k. To compute the
index of a split, we have to know the k—3 quartets of least Buneman score it induces.
The set @) x of all existing quartets is sorted at the beginning of the algorithm according
to their Buneman score. Then, for each examined split o, the algorithm proceeds in
ascending order through the sorted list @) x, to find the k£ — 3 quartets of lower Buneman
score induced by o. However, this can require up to O(n*) for each split, i.e., O(n®) at
each step (O(k) splits are considered), hence the O(n®) complexity of the algorithm.

The main inefficiency of this algorithm is to consider the different splits separately.
In doing so, it does not to take advantage of the structure of the set of splits considered
at each step k, i.e., does not use the fact that they originate from trees (T}, (dj) and
T(dg—1)). In the following we propose a combinatorial technique based on this feature
of the problem to reduce the number of steps required in the computation of RB(dy) at
each step k.

3.2 Considering paths in a tree

We describe here a combinatorial technique based on the paths in a tree, which enables
us to know in an efficient way the quartets of Qx induced by any given split o, thus
avoiding to consider potentially irrelevant quartets. Moreover, this technique allows to
factorize the processing of quartets commonly induced by different edges.

Figure 3: An X-tree with X = {a,b,c,d,e, f}.

In a given tree Ty, (dj) (or similarly T'(dx_1)), a quartet, let ab|cd, is usually induced
by several edges. Define [u, v] to be the path [a, c|N[b,d] = [a,d]N[b,c]. The set of edges
of [u,v] is exactly the set of all edges inducing ab|cd. Moreover, these edges do not only
have abled in common: they also all induce the quartets zy|zt where z,y € Xg, , z#y
and z,t€ Xg,, z#t, where S, and S, are the two subtrees defined by the path [u, v] (cf.
Fig. 1-2). The fact that all these edges induce a non-negligible number of quartets in
common (in the general case) gives the idea to consider the paths Pf,... , Pf to which
an edge e belongs to describe the set (). of quartets induced by the edge as a function of
the sets Qpe of quartets induced by the paths P respectively. More precisely, we have:

Qe = U QP{B .

1>i>1

The correctness of this formula can be easily verified from the definitions. By sorting
separately the lists ()pe of quartets induced by the P paths, we can then know easily,
by a merging procedure, the k£ — 3 quartets of smallest Buneman score induced by any
edge e. Since any edge e of an X-tree belongs to O(n?) paths, this merge sort procedure
on quartets would allow us to compute the index of any split o in O(n?), whereas this
required O(n”) in the algorithm of [8]. Provided that all Q pe lists can be obtained sorted
by preprocessing in at most O(n?), this would allow us to process all the splits arising
from Ty, (dx) and T(dg_1) in O(n*) rather than the O(n®) required in [8].

However, this analysis is valid only if each quartet is encountered only once in the
@pe sets. This may not be the case since a given quartet may be induced by several
Pf paths. To avoid this redundancy, we would like a quartet to be registered in only
one path, but without losing any information when taking the union of the P{’s for any
edge e. We do that by attaching each quartet abled only to the unique path [u,v] =
[a,c] N [b,d] = [a,d] N [b,c]. Equivalently, we define the set Qp of quartets which are
specifically induced by a path P=]u,v] as:

Qp = {ab|CdS.t.aEXSa,bEXSb,CEXSc,dEXSd,
SaCSmeCSmSa#SbaScCSvanCSvaSc#Sd}a

where S, and S, are defined as in section 2. From this definition we have:

Lemma 2 Let T = (V,E, L) be an X -tree,
(1) Vq=abled € Qr, 3P unique s.t. ¢ € Qp.
(11) Ve€E,Qe = U5 Qpr-

PROOF: see appendix.

For example, in Fig. 3, the edge e = (u,v) belongs to paths [u, v], [u, w], [z, v], [z, w]
and we have Qy, ,1 = {acl|de, ac|df, ac|dg, be|de, be|df, be|dg}, Qv = {ablde, ab|df, abldg},
Qi) = {aclef,belef, acleg, beleg, aclfg,bclfg}, Quuuy = {ablef, ableg,ablfg}, and it
can be easily verified that Q. = Qpy »)U Qju,w]YLz,0]YU Llz,w)-

We now prove the important fact that the sorted lists Qp for all paths P in an
X-tree can be obtained in O(n?*). The algorithm we propose relies on the fact that the
end-points of (non-trivial) paths are internal nodes of the X-tree and on the following
lemma:

Lemma 3 If A is an internal node of an X-tree T = (V,E,L) and e; = (A, B), e; =
(A,C), e, =(A, D) are three edges connected to A (assuming also that e; is an internal
edge), then A is one of the two end-points of the unique path P s.t. ablcd € Qp, Ya,be
Xsp,Ve€Xg, and Vde Xg,,.

Algorithm 1: Compute the sets Qp for paths P in an X-tree T=(V, E, L).

1 Traverse T to compute for each edge e = (A, B) € E the lists Xg, and Xg, of
species contained in the subtrees S4 and Sp it defines.
/* Associate with each quartet q the end-points of the path P s.t. g€ Qp: */
2 Traverse T and foreach internal node A € V do
foreach e; = (A, B)
foreach a,b € Xg,
foreach €; = (A, C),ek = (A,D) (ei 75 € 75 ek)
foreach c € Xg,,d € Xg,
L | Add A to the entry of Qx which corresponds to ab|cd.

/* Collect the elements of the Qp lists from Qx: */
Let Mp be a square matrix storing Qp for all paths P =[A,B] in T.
Set all Qp lists in Mp to empty.
4 Traverse (Qx in descending order and foreach quartet ¢ do
Let A, B be the two nodes associated to ¢ in Qx during loop 2,
LAdd q to MplA, B].

The correctness of the algorithm follows from lemma 3. Moreover, we can prove:

Theorem 4 If T=(V,E, L) is an X-tree, then Algorithm 1 computes in O(n*) the sets
Op of quartets specifically induced by the paths P in T, where n=|X]|.

PROOF:

e Line 1 is implemented by a simple post-ordered recursive search of the tree. For
each edge e = (A, B) € E processed during this search, assuming w.l.0.g. that A
is the father of B in the search of the tree, the list Xg, of species contained in a
subtree Sp is simply the union of the lists of species of the subtrees contained in
Sp. Moreover, the list of species associated to the subtree S4 is simply X — Xg,.
The execution of line 1 thus requires no more than O(n?).

e The loop of line 2 requires O(n*) if we perform a global analysis: each quartet ¢ is
referenced only twice (respectively, when A and B are processed, where P = [A, B
is the unique path P s.t. ¢ € Qp), and all referenced quartets are obtained in
O(1) through the Xg, lists implemented as chained lists. Moreover line 3 can be
performed in O(1), by resorting to the usual matrix Mg with four dimensions
[7] (each entry Mg[a,b,c,d] has a sub-entry for each of the 3 possible resolutions

Algorithm 2: A merge sort algorithm on quartet to construct RB(d).

5 Construct the list @ x of all possible quartets ab|cd on X, sorted according to their
Buneman score Byp)cq-

6 Let Sy := B(d4)

7 foreach k from 5 ton

8 Let Sk = {{:Ek,Xk — xk}}

9 | Construct By, (dy) and Ty, (di) = (Vi , Es, s La,.)-

10 | Compute the sets Qp of quartets induced by all paths P in Ty, (dj).

11 | foreach edge e € E;, compute the lists of paths P{ s.t. e C P.

12 | foreach each split o corresponding to an edge e€ E,

13 Compute the list L, of k — 3 quartets of smallest Buneman score it induces.

14 Add o to S iff i, > 0.

15 | Construct T(dx—1) = (Va,_,» Fa,_,, La,_,) from S_;.

16 | Compute the sets Qp of quartets induced by all paths P in T'(dj_1).

17 | foreach edge e€ E;, | compute the lists of paths Pf s.t. e C Pf.

18 | Construct the list L;, of all possible quartets to which z; belongs, sorted ac-

cording to their Buneman score.

19 | foreach split 0 = {U,V'} corresponding to an edge e€ Egq, _,

20 Compute the lists L, and Ly~ of the k—3 quartets of smallest Buneman score
induced respectively by o/ ={U Uz, V} and " ={U,V U z}.
21 Add o’ and ¢” to Sy whenever fi, >0, resp. ji,~ >0, or whenever they are trivial.

Output RB(d) = S,, and {1, s.t. 0 € S, }.

of (a,b,c,d), which contains a pointer on the entry of @Qx corresponding to the
resolution). This matrix is initialized in an O(n*) straight-forward way when
sorting the quartets of QQx, at the beginning of the main algorithm.

e The traversal of @) x in line 4 requires O(1) operations to process each entry of Qx,
since each one is associated with only three informations (the quartet ¢ and the
two end-points A and B of the path P = [A, B] s.t. ¢ € Qp), which enables us to
perform in O(1) the addition of ¢ to the head of the chained list Mp[A, B] = Qp.
Since Qx contains O(n) entries, the execution of line 4 requires O(n?). O

3.3 The O(n®) algorithm to compute BD(d)

Thanks to the preprocessing of the paths described in the previous section, computing
the refined Buneman index of all the splits arising from T}, (dx) and T'(di_1) is performed
as a series of merge sorts which only require O(n*). We detail the resulting procedure
used to compute RB(d) in Algorithm 2. Tts correctness follows from lemmas 1, 2 and 3.

Theorem 5 If d is a dissimilarity on X and n:=|X|>4, then Algorithm 2 constructs
RB(d) in time O(nd).

PROOF:
e Line 5 requires O(n*log n) since 3(’}) elements are sorted. Line 6 is in O(1).

e The main loop, line 7, is performed O(n) times. Line 8 requires O(1) at each step
of this loop, i.e., is O(n) on the overall execution.

e Line9: the splits of By, (dx) can be obtained in a natural way in O(k%), as indicated
in [8], which leads to O(n®) on the overall execution of the algorithm. A more
involved argument shows that By, (dj) can actually be computed in O(n?) (Bryant,
personal communication), but the O(n*) bound suffices to establish the result.

Constructing the tree on n species whose edges correspond to the k splits of some
set is only O(kn) thanks to the linear algorithms of Meacham and Gusfield [16, 12].
Since By, (di) contains O(n) splits, constructing T, (dx) only requires O(n?) at
each step, i.e., O(n3) for the whole algorithm.

e Line 10 require O(n*) from theorem 4 and thus O(n®) on the whole algorithm.

e Line 11 is performed in a similar way as line 1 of Algorithm 1. The tree is recur-
sively traversed and for each edge e = (u,v) we establish the lists of internal nodes
Vi and V! contained in the two subtrees S, and S, defined by e, then we know that
the lists of paths to which e belong is exactly Ly[e] = {[u,v] s.t. u€ V}},v € V;i}.
Since L,[e] contains up to O(n?) paths, each obtained in O(1), line 11 requires
O(n3) at each step k, i.e., O(n*) for the whole algorithm.

e Lines 12 to 14 are performed like a merging procedure: we merge the O(k?) sorted
lists Qpe into one sorted list, corresponding to the quartets induced by the edge.
However, we stop the process when knowing the first £ — 3 elements of the list,
which suffice to compute fi,. This classical procedure can be performed in O(k?),
for each split . Since at each step k& we examine the O(k) splits of the tree T}, (dy),
this line requires O(k%), i.e., O(n®) for the whole algorithm.

e Line 15, requires O(n?) at each step (as the second half of line 9), i.e., O(n?) for
the whole algorithm. Lines 16 and 17 (as steps 10 and 11) respectively require
O(n®) and O(n%).

e Line 18 requires O(n?logn) at each of the k steps, i.e., O(n*logn) on the whole.

e Lines 19 to 21: the loop of line 19 is performed O(k) times at each step k, i.e.,
O(n?) for the whole algorithm. The splits o’ and o induce the same quartets as o,
plus some quartets of L,,. Thus, to obtain L, (equiv. L,»), line 20 proceeds by
merging the Qpe lists, as line 13 (one more list being considered, namely Ly,). The
only difference with line 13 is that when the smallest quartet of L, is considered,
it is disregarded if not induced by o’ (resp ¢”'). Knowing if a quartet ¢ = ab|czy €
Ly, is induced by ¢’ (resp ¢”) can be checked in O(1) if we store for each split
o = {U,V} of T(dx_1) the species contained in its two components in a binary
array of size n (these arrays can be initialized in O(k%) during the traversal of line
1 of Algorithm 1, called at line 16 of the present algorithm). During the merging
procedure, at most O(k®) quartets from L,, are considered, and at most O(k)
quartets from the O(k?) other lists, each quartet being processed in O(1). As a
result, line 20 requires O(k?) operations, i.e., O(n®) for the whole algorithm since
it is performed at each step of the loop of line 19. Computing ji,r and fi,# requires
only O(k), thus O(n%) for the whole algorithm. O

4 Discussion

In this paper we proposed a faster algorithm to compute the Refined Buneman tree on
a set of species from a dissimilarity measure. The O(n®) complexity achieved by the

new algorithm may still appear important, however, note that it is only cubic in the size
of the input d. Moreover, the Refined Buneman method in itself is intrinsically tied to
quartets of species (through the 3,’s), whose number is in O(n?). This seems to indicate
a lower bound on the best achievable complexity for this problem, as long as we want
to compute the index of the splits we infer.

The space complexity of the algorithm is in O(n*) as also required by the algorithm
of Bryant and Moulton [8]. Reducing this complexity is one of the next important steps.

The lower complexity achieved in this paper for computing the Refined Buneman
Tree also makes the method more suitable for comparison with other methods of phy-
logeny reconstruction through intensive simulations, as is usual in the domain [7, 15].

Finally, note that besides the improvement in complexity it provides for the Re-
fined Buneman problem, the quartet merge sort technique detailed in this paper seems
promising for tackling other similar problems, e.g., computing the splitsgraph phyloge-
netic network [3, 13].

Acknowledgments

I would like to thank D. Bryant and V. Moulton for discussing their results and for checking those of
the current paper. Thanks are due to D. Bryant for a careful reading of this manuscript.

References

[1] K. Atteson. The performance of neighbor-joining algorithms of phylogeny reconstruction. In Proc.
of COCOON, Computing and Combinatorics, pages 101-110. Springer, 1997.

[2] H-J. Bandelt and A. Dress. Reconstructing the shape of a tree from observed dissimilarity data.
Adv. in appl. math., 7:309-343, 1986.

[3] H.-J. Bandelt and A. Dress. A canonical decomposition theory for metrics on a finite set. Advances
Math, 92:47-105, 1992.

[4] J.P. Barthélemy and A. Guénoche. Trees and prozimities representations. Wiley, 1991.
[6] V. Berry. Improving the bound for computing the refined buneman tree. manuscript, 1998.

[6] V. Berry and O. Gascuel. Reconstructing phylogenies from resolved 4-trees. Technical Report
97076, LIRMM, 1997.

[7] V. Berry and O. Gascuel. Inferring evolutionary trees with strong combinatorial confidence. The-
oretical Computer Science (to appear), 1998.

[8] D. Bryant and V. Moulton. A polynomial time algorithm for constructing the refined buneman
tree. Appl. Math. Lett., in press, 1998.

[9] D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Advances in Appl.
Math., 16:425-453, 1995.

[10] P. Buneman. Mathematics in Archeological and Historical Sciences, chapter The recovery of trees
from measures of dissimilarity, pages 387-395. Edhinburgh University Press, 1971.

[11] P.L. Erdés, M.A. Steel, L.A. Szkely, and T.J. Warnow. Constructing big trees from short sequences.
In 24th International Colloquium on Automata Langages and Programming, 1997.

[12] D. Gusfield. Efficient algorithms for inferring evolutionnary trees. Networks, 21:19-28, 1991.

[13] D. Huson. SPLITSTREE - a program for analyzing and visualizing evolutionary data. CABIOS (to
appear), 1997.

[14] T. Jiang, P. Kearney, and M. Li. Orchestrating quartets: approximation and data correction.
submitted, 1998.

[15] M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny algorithms under equal
and unequal evolutionary rates. Mol. Biol. Evol., 11:459-468, 1994.

[16] C. Meacham. A manual method for character compatibility. Tazon, 30:591-600, 1981.

[17] V. Moulton and M. Steel. Retractions of finite distance functions onto tree metrics. Discrete Applied
Math., 1998. (To appear).

10

[18] K. Rice, M. Steel, T. Warnow, and S. Yooseph. Hybrid tree construction methods. manuscript,
1997.

[19] K. Rice, M.A. Steel, T. Warnow, and S. Yooseph. Better methods for solving parsimony and
compatiblity. In Proc. of the 2nd Ann. Int. Conf. on Computational Molecular Biology (RECOMB).
ACM, 1998.

[20] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. J. of
Classification, 9:91-116, 1992.

[21] D.L. Swofford, G.J. Olsen, P.J. Wadell, and D.M. Hillis. Molecular systematics (2nd edition),
chapter Phylogenetic Inference, pages 407-514. Sunderland, USA, 1996.

Appendix - proof of lemma 2

Recall that P denotes the set of (non-trivial) paths in T to which the edge e € E belongs.
(?) Vg = abled € Qr, 3P unique s.t. ¢ € Qp:

{[azu]m[bau]:ua [c,v]ﬁ[d,v]zv, a,b € Xs,,a#b, C,dEst,C#d}
[u,v] = [a,e] N [b,d] = [a,d] N [b,c].

q € Qps

However, there exists a unique path in T' corresponding to [a, c]N[b,d] (and to [a,d]N[b,]), which means
that Pf = [u,v] is the unique path in T s.t. ¢ € Qps.
(it) Ye€ E,Q. = Ulgigl Qpe:
Let e = (u,v) be any given edge of E.

a) Vg € Qe = 3P s.t. ¢ € Qpe:
W.lo.g. let g =abled. ¢ € Q. = a,b € Xg,,a #b, ¢,d € Xs,,c #d =

e the node A indicated by [a,c] N [b,d] N [a,b] is in S,,.

e the node B indicated by [a,c] N [b,d] N [c,d] is in S,.
Since nodes A and B are the end-points of the unique path P s.t. ¢ € Qp, A € S, and B € S, imply
that e belongs to P (otherwise there would be a cycle in T').

b) VP{,VYq € Qps = q € Qe
W.lo.g., let Pf =[u',v'] and ¢ = abled. ¢ € Qpe = a #banda,be Xs,, ¢ #dand ¢,d € Xs,. Since
e € P7, we have S,» C S, and S,y C S, thus a,b € Xs, and ¢,d € Xs,. This implies ablcd=q € Q. by
definition of Q.. d

11

