
http://wrap.warwick.ac.uk/

Original citation:
Harper, J. S., Kerbyson, D. J. and Nudd, G. R. (1998) Analytical modeling of set-
associative cache behaviour. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-349

Permanent WRAP url:
http://wrap.warwick.ac.uk/61062

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61062
mailto:publications@warwick.ac.uk

Analytical Modeling of Set-AssociativeCache BehaviorJohn S. Harper� Darren J. Kerbyson Graham R. NuddSeptember 16, 1998AbstractCache behavior is complex and inherently unstable, yet is a criticalfactor a�ecting program performance. A method of evaluating cache per-formance is required, both to give quantitative predictions of miss-ratio,and information to guide optimization of cache use.Traditional cache simulation gives accurate predictions of miss-ratio,but little to direct optimization. Also, the simulation time is usually fargreater than the program execution time. Several analytical models havebeen developed, but concentrate mainly on direct-mapped caches, oftenfor speci�c types of algorithm, or to give qualitative predictions.In this work novel analytical models of cache phenomena are presented,applicable to numerical codes consisting mostly of array operations inlooping constructs. Set-associative caches are considered, through an ex-tensive hierarchy of cache reuse and interference e�ects, including numer-ous forms of temporal and spatial locality. Models of each e�ect are given,which, when combined, predict the overall miss-ratio. An advantage isthat the models also indicate sources of cache interference.The accuracy of the models is validated through example programfragments. The predicted miss-ratios are compared with simulations, andshown typically to be within �fteen percent. The evaluation time of themodels is shown to be independent of the problem size, generally severalorders of magnitude faster than simulation.1 IntroductionCache performance is one of the most critical factors a�ecting the performance ofsoftware, and with memory latency continuing to increase in respect to processorclock speeds utilizing the cache to its full potential is more and more essential.Yet cache behavior is extremely di�cult to analyze, reecting its unstable naturein which small program modi�cations can lead to disproportionate changes incache miss ratio [2, 12]. A method of evaluating cache performance is required,both to give quantitative predictions of miss ratio, and information to guideoptimization of cache use.�john@dcs.warwick.ac.uk 1

Traditionally cache performance evaluation has mostly used simulation, em-ulating the cache e�ect of every memory access through software. Although theresults will be accurate, the time needed to obtain them is prohibitive, typi-cally many times greater than the total execution time of the program beingsimulated [13]. Another possibility is to measure the number of cache misses in-curred, using the performance monitoring features of modern microprocessors.This can also give accurate results, and in reasonable time, but introduces therestriction that only cache architectures for which actual hardware is availablecan be evaluated.To try and overcome these problems several analytical models of cache be-havior have been developed. One such technique is to extract parameters froman address trace and combine them with parameters de�ning the cache to derivea model of cache behavior [1]. This method is able to accurately predict thegeneral trends in behavior, but lacks the �ne detail that is needed to model theinstability noted above. Analytical models combined with heuristics have alsobeen used to guide optimizing compilers in their choice of source code trans-formations [14, 4, 10]. The models developed however are usually unsuitablefor more general performance evaluation, since they often aim for qualitative,rather than quantitative, predictions. Another area in which analytical modelshave been employed has been in studying the cache performance of particulartypes of algorithm, especially in the analysis of blocked algorithms [9, 3, 5].Attempts have been made at creating general purpose models that are bothaccurate and expressive, with some success [12, 6, 7], but in all cases limitedto describing direct-mapped caches. In this work we present novel analyticaltechniques for predicting the cache performance of a large class of loop nest-ings, for the general case of set-associative caches (i.e. with direct-mapped asthe case with associativity one). All forms of cache reuse and interference areconsidered leading to accurate, yet rapidly evaluated, models. These bene�tsand others are demonstrated through the examination of several example codefragments. The work has a wide range of possible applications, from aidingsoftware development to on the y performance prediction and management.We also plan to integrate the model with an existing system for analyzing theperformance of parallel systems [11].The paper is organized as follows: the next section outlines the problembeing addressed, and the classi�cation of the cache phenomena being modeled.Section 3 describes in detail how the e�ect of array references on the cache isrepresented, and how this representation can be e�ciently computed. In Sec-tions 4, 5, and 6, the di�erent types of cache reuse are considered, in terms ofthe representation developed in Section 3. Finally, Section 7 presents experi-mental data showing how the models compare with simulation, followed by adiscussion of these results and our conclusions in Sections 8 and 9.
2

DO j1 = 0, N1 - 1DO j2 = 0, N2 - 1DO j3 = 0, N3 - 1� � �ENDDOENDDOENDDOFigure 1: General form of considered loop constructs2 Overview of methodology2.1 ConceptsThe models presented in this work consider the cache behavior of array refer-ences accessed by regular looping constructs. The general form of a loop nestingis shown in Figure 1; the loops are numbered from 1 to n, outer-to-innermostrespectively, and are assumed to be normalized such that they count upwardfrom zero in steps of one. The number of iterations performed by a loop ata level k is labeled Nk, and the variable used to index arrays by this loop islabeled jk.Array references considered are of the form:X (�1j1 + �1; : : : ; �mjm + �m) ;where X is the name of an array, m is the number of dimensions of this array,and �k, �k, and k are constants (with 1 � k � n).Such array references can be rearranged into the form of a linear expression,giving the address of the element accessed for a particular combination of valuesof j1 : : : jn, the general form beingB +A1j1 + : : :+Anjn;where B and A1 : : :An are constants. The base address of the array and the �kvalues combine to form B; the A values are derived from the loop multipliers�k and the dimensions of the array. Without loss of generality we assume thatarray indices are in the Fortran style, and that all values are in terms of arrayelements.The concept of an iteration space is also important. The loop boundsN1 : : :Nn represent the full n-dimensional iteration space of the array refer-ence being examined. By limiting the range of certain loops the iteration spacecan also be restricted. For example by only allowing j1 to have the value 0, onlya single iteration of the outermost loop is speci�ed. When modeling cache be-havior this restriction of iterations is a natural way to consider some problems.However, in this work we will only need to restrict the upper bound of loops,for a loop k this can be handled by \binding" a temporary value to Nk.Given two array references R1 and R2, if their linear forms are identical3

except B1 6= B2, then they are said to be in translation. This means that theaccess patterns of both references are identical, but o�set by jB1-B2j elementsin the address space. References in translation with one another are said to bein the same translation group.2.2 Evaluation strategyThe function of the cache is to provide data reuse, that is, to enable memoryregions that have recently been accessed to be subsequently accessed with amuch smaller latency. Two basic forms of reuse exist: self dependence reusein which an array reference repeatedly accesses the same elements of an array,and group dependence reuse in which elements are repeatedly accessed thatwere most recently used by a di�erent array reference.When considering an array reference R, its reuse dependence ~R is de�nedas the reference from which its reuse arises. When R = ~R it is a self dependence,conversely, when R 6= ~R it is a group dependence. Since it is possible formore than two references to access the same data elements, when identifyingdependences ~R is de�ned as the reference with the smallest reuse distance fromR, related to the number of loop iterations occurring between ~R accessing anelement, and R reusing it.Unlike the most well known system for classifying cache misses, the \threeC's" model (compulsory, capacity and conict misses [8]), the method presentedby this paper uses a two part model. Compulsory misses are de�ned as before,but capacity and conict misses are considered a single category|interferencemisses|since the underlying cause is the same, reusable data being ejectedfrom the cache.To predict the number of cache misses su�ered by an array reference interfer-ence is divided into several types, dependent on their source. Self interferenceoccurs when the reference obstructs its own reuse, internal cross interferenceoccurs due to references in the same translation group, and external cross in-terference is caused by references in di�erent translation groups. Sections 5and 6 describe how these e�ects are modeled for self and group dependencesrespectively.A distinction is also made between the temporal and spatial components ofa reference's miss ratio. The spatial miss ratio is de�ned as the average numberof cache misses needed to load a single cache line of data; all three types ofinterference contribute to this ratio, and are modeled in Section 4. The spatialmiss ratio is applied to the predicted number of temporal misses to give thetotal number of cache misses for a reference. Repeating this procedure for allreferences in the loop nesting gives the prediction for the entire code fragment.3 Modeling cache footprintsA common requirement when modeling interference is to identify the e�ect onthe cache of accessing all references in a single translation group, for a speci�ed4

PSfrag replacements
C=Laa (a) Cache representation 1 1 5 32 2

PSfrag replacements line data
 (b) Example of Figure 2: Examples of cache layout and set overlap .iteration space. Once the e�ect on the cache is known, it can be used to predictthe e�ect on the reuse of the references being examined, and from this theresulting number of cache misses can be predicted.A cache of size C, with L elements in a line, and associativity a can beconsidered as a rectangular grid, C=La cache lines wide and a lines deep, asshown in Figure 2(a). Each vertical column represents a single \set" of the cache,each containing a lines. A mapping function determines which set a memoryelement is stored in; the usual mapping function, which this paper examines,is simply x mod (C=La), where x is the address of the element in question.The line in the set that is actually used depends on the replacement strategyemployed. In this paper only the \least-recently-used" strategy is considered,replacing the line in the set that was last accessed the earliest.Given this view of the cache, the e�ect of a translation group on the cachecan also be visualized. For each of the C=La sets a certain number of the linescontain data accessed by the translation group. This number can be thought ofas the \overlap" of each set, and is labeled . Figure 2(b) shows an example fora small 4-way set-associative cache (C = 64L, a = 4). Data elements loaded intothe cache are darkly shaded, with the value of for each set shown underneath.To identify interference, cache footprints such as this are compared with thefootprints of the data being reused, either set-by-set or statistically as a whole.The method of detecting interference is simple: it occurs wherever the combinedoverlap of the footprints is greater than the level of associativity.The model represents each cache footprint as a sequence of regions, eachregion having a constant value of , the overlap. As well as , two otherparameters de�ne each region, its �rst element of the region (i.e. a value betweenzero and (C=a)- 1), and the number of elements in the region. Considering theexample footprint in Figure 2(b), it is clear that it is de�ned by the followingsequence of regions (start; size;),(0;L; 1); (L; 2L; 2); (3L;L; 1); (6L; 2L; 2); (8L; 3L; 5); (11L; 3L; 3): (1)In the rest of this section of the paper, we show how footprints of this form canbe calculated e�ciently for individual translation groups.

5

a

PSfrag replacements �k �k-1
�k+1St

cache sets
time

array footprint region cache dataFigure 3: Example of mapping array footprint regions into the cache.3.1 Finding the cache footprint of a single referenceAn accurate method of mapping a regular data footprint into a direct-mappedcache has previously been presented in detail [7, 12]. As such we only considerthe problem briey, extending the method given in [7] (which is descendedfrom [12]) to set-associative caches.Given an array reference we wish to �nd the cache footprint of the datait accesses for a particular iteration space, the form of which is de�ned bythe values N1 : : :Nn. The structure of these array elements is de�ned by thereference itself, the array dimensions, and the iteration space. For the majorityof array references encountered, the array footprint can be expressed using fourparameters: the address of the �rst element �t, the number of elements in eachcontiguous region St, the distance between the start of two such regions �t, and�nally the number of regions Nt.After identifying these four parameters, the array footprint they describe ismapped into the cache to give the cache footprint of the reference in question.The cache footprint is de�ned by parameters similar to those describing thearray footprint: the interval between regions �, the number of regions N, andthe position of the �rst1 region �. Two parameters de�ne the structure of thedata elements in each region, the level of overlap , as de�ned in Section 3, andS, the number of elements in the region divided by the overlap. ConsideringFigure 2, and S can be thought of as the average \height" and \width" ofeach region in the footprint.To �nd the parameters de�ning the cache footprint we use a recursivemethod of dividing the cache into regular areas. At each level of recursion k,areas of size �k are mapped into a single area of size �k-1, illustrated in Fig-ure 3 for part of a cache. A recurrence relation de�nes the sequence of �k values,representing how the array footprint regions map into the cache,�0 = C=a; �1 = �t; �k = �k-1 - �k-2 mod �k-1; for k � 0. (2)The sequence is truncated at a level s, where either all Nt regions map into thecache without overlapping, or overlapping occurs between regions. To detect1the \�rst" region is not the one nearest cache set zero, but she �rst region in the sequenceof N, this sequence may cross the cache boundary.6

overlap from either end of an area of size �k-1 a value ~�k is introduced, thesmallest distance between two regions in the area. If ~�k < St overlapping occurson level k, where, ~�k = min (�k; �k-1 - �k) : (3)At level s, the cache has been divided into �0=�s-1 areas of size �s-1; in eachthere are a certain number of footprint regions of size St, each a distance ~�s fromthe previous. There are r areas that contain ns + 1 regions, and (�0=�s-1) - rareas containing ns,ns = � Nt�0=�s-1 � ; and r = �Nt - ns (�0=�s-1)� : (4)In the simplest case, when s = 1, i.e. the array footprint didn't wrap aroundthe end of the cache (no overlapping), � = �s and N = Nt. In the general casewhen s > 1, the distance between each area � = �s-1, and the total numberof areas N = b�0=�s-1c. The position of the �rst region can also be found,� = �t mod (C=a).The overlap of a single area is found by dividing the total number of elementsin it by the distance from the start of the �rst region to the end of the last. Theaverage level of overlap is found by combining the overlap for both types ofarea, = (nsSt=fl(ns))(�0=�s-1 - r) + ((ns + 1)St=fl(ns + 1))rN ; (5)where fl(x) = St + (x- 1)+~�s, the distance from the start of the �rst region tothe end of the last.2To �nd S for a single area, the size of the \gaps" between regions is sub-tracted from the distance from the start of the �rst region to the end of the lastregion. As when �nding the values for both types of area are combined,S = fi(ns)(�0=�s-1 - r) + fi(ns + 1)rNfi(x) = fl(x) - (x- 1)+(~�s - St)+The function fi(x) gives the value of S for an area containing x regions, each ~�sfrom the previous.3.2 Combining individual cache footprintsUsing the techniques presented in the previous section, the cache footprintof a reference for a de�ned iteration space can be identi�ed. This gives theinformation necessary to predict how that reference interacts with the footprintsof other references, thus allowing interference to be detected.Generally, however, there are more than two references in a loop nesting, andtherefore interference on a reference can originate from more than one source.2Note that x+ = max(x; 0). 7

As well as modeling the interference from each reference in the loop nesting, itis also important that interference on a single element only be counted once.Simply comparing the cache footprint of every reference in the loop with thefootprint of the reference being examined will not meet this requirement.As noted in Section 2.1, it is possibly to classify the array references in aloop nesting into translation groups, all members of a group have exactly thesame access pattern, the only di�erence being that the patterns are o�set fromone another in the address space. This allows the references in a translationgroup to be combined into a single cache footprint|it is this meta-footprintthat is used to identify interference.The problem can be stated as follows: given q references in translation:R1 : : : Rq, it is necessary to �nd the cumulative cache footprint of these refer-ences, assuming that the array footprint of the references is de�ned by the pa-rameters St, Nt and �t, and the values �t1 : : : �tq. The combined cache footprintis de�ned as a sequence of regions de�ned by triples, (�; S; �), the position ofthe region, the size in elements, and the level of overlap, as shown in (1).3.2.1 Finding the one-dimensional footprintExamining the calculations in Section 3.1 shows that the only parameter ofthe cache footprint depending on �t is �, the position of the �rst region, de-�ned as � = �t mod (C=a). It follows therefore that all references R1 : : : Rqshare the same cache footprint, but with individual values of �: (�t1 mod(C=a)) : : : (�tq mod (C=a)).This property is easy to visualize, form a cylinder from the rectangularrepresentation of the cache in Figure 2(a), such that the �rst and last sets areadjacent to one another. The surface area of the cylinder represents the cache.If we project a cache footprint onto the cylinder, such that it starts at the�rst element of the cache (i.e. � = 0), by rotating the footprint �t positions3around the circumference of the cylinder we have the actual cache footprint.This simpli�es the problem of �nding the combined cache footprint, instead ofcomputing q footprints and merging them, it is only necessary to compute onefootprint, then consider rotated copies.Generating the position of every footprint region. From the de�nitionof � given above, the start and end points of each region in the cache footprint ofeach reference can be enumerated. The region starting positions for reference Riare de�ned by the series,�(�ti + k�) mod (C=a) j k = 0 : : :N- 1� (6)� �ti mod (C=a); (�ti + �) mod (C=a); : : : ; (�ti + (N - 1)�) mod (C=a):and the position of the end of each region by,�(�ti + S + k�) mod (C=a) j k = 0 : : :N- 1 � :3Or rather �t mod (C=a) since the circumference of the cylinder is C=a.8

One possible method of merging all q footprints would be to enumerate thestart and end positions of each reference, and then sort them into smallest-�rst order. Fortunately, there is a much more e�cient method. Each rotatedfootprint can only cross the boundary between cache position C=a and positionzero once. This allows the start and end positions of each region to be generatedin numerical order, by generating the points after the cache boundary, followedby the points before the cache boundary.First the starting points of each region in the footprint of reference i are con-sidered. The �rst region (when counting from zero) to start after position C=a,is, start afteri = �C=a- (�ti mod (C=a))� � :The list of starting positions in (6) can now be split in two and recombined, sothat the list of positions in ascending order is,�(�ti + k�) mod (C=a) j k = start afteri : : : (N- 1)�++ �(�ti + k�) mod (C=a) j k = 0 : : : (start afteri - 1)� ;assuming that the ++ operator concatenates two lists.A similar method can be used to generate the end points of each region inthe footprint of reference Ri. The �rst end point after cache position C=a is,end afteri = �C=a- ((S +�ti) mod (C=a))� � ;and the list of end points in numerical order is,�(S + �ti + k�) mod (C=a) j k = end afteri : : : (N- 1) �++ �(S +�ti + k�) mod (C=a) j k = 0 : : : (end afteri - 1) � :Merging the q footprints. Given q lists of region start positions, and q listsof end positions as de�ned in the previous section it is straightforward to con-struct a new list of regions, such that no two regions overlap. The end productof this process is a sequence of triples, each of the form (�; S; [v1 : : : vq]). Thetwo values � and S de�ne the position and size of the region; v is a bit-vectorsuch that vi = 1 if the region is a subset of reference i's individual footprint.It can be seen that � is a consequence of v, since the level of overlapping in aregion is directly related to the references being accessed in that region.The merging process is straightforward since the lists of region boundariesare known to be in ascending numerical order. A working value of v is main-tained, initially set to reect the references whose footprints wrap around fromthe end to the start of the cache. While there are elements left in any of the2q lists, the list with the smallest �rst element is found. This element is deleted,and a footprint region is created from the previously found point to the currentpoint, with the current value of v. Assuming that the list refers to reference Rk;if it is the list of start points then vk is set to one, otherwise it is set to zero.9

3.2.2 Finding the cumulative overlap of a regionAfter merging the reference's footprints as in the previous section the structureof the translation group's cache footprint is almost complete. Instead of the(�; S; �) representation that is required, it is in the form (�; S; [v1 : : : vq]).Theproblem then, is to calculate � given vector v.The average level of overlap of a reference's cache footprint has already beencalculated as , in (5). Using the same logic as in Section 3.2.1 all referencesin the translation group must have the same value of .A natural method of �nding � is to simply multiply by the number of bitsin v that are set, i.e. the number of references in the region. On considering howcaches work, it can be seen that this method is only guaranteed to work whenno two references access the same array. If two or more references do access thesame array, there is the possibility that there could be an intersection betweenthe two sets of array elements accessed. If such an intersection occurs, theseelements will only be stored in the cache once, not twice as predicted if we take2 as the overlap of the two references combined.This feature means that the amount of sharing between any two referencesmust be examined. We de�ne this by a ratio, ranging from zero, if they have noelements in common, to one, when all elements are accessed by both references.This ratio, sharing(Rx; Ry) for two references Rx and Ry, is calculated from thearray footprint of the translation group|the parameters St, �t, Nt, and �tde�ned in Section 3.1.Calculating sharing(Rx; Ry). The de�nition of sharing(Rx; Ry) consists oftwo expressions: the degree of sharing between the two array footprints whenconsidered as two contiguous regions, and the degree of sharing between theindividual regions inside the footprints. The distinction between these twoconcepts is shown in Figure 4 for the two references Rx and Ry, �rst as singleregions, then as a sequence of regions.Considering the footprints as two single regions (Figure 4(a)) it can be seenthat the distance between the two regions is j�tx - �tyj, subtracting this valuefrom the total extent of the region Nt�t gives the total number of shared ele-ments. Hence the ratio of shared elements is (Nt�t - j�tx -�tyj)+=(Nt�t).The level of sharing between two regions of the footprint (Figure 4(b)) isfound in a similar manner. The distance between two possibly overlappingregions is j�tx - �tyj mod �t. Since overlapping could occur in either directionthe smallest possible distance between overlapping regions � is de�ned as,� = min ����tx -�ty�� mod �t; �t - ����tx - �ty�� mod �t�� :If � � St then there is no sharing, otherwise St-� elements are shared betweenthe two regions. Then the ratio de�ning the level of sharing between the tworegions is (St - �)+=St.Multiplying the two sharing ratios, that for the footprints as a whole andthat for two regions, gives the overall ratio of shared elements between the two10

PSfrag replacements RxRy�tx �ty
NtSt

(a) Footprints as single regionsPSfrag replacements
RxRy�tx �ty j�tx - �tyj mod �t� �t(b) Footprints as multiple regionsFigure 4: Array footprint sharingfootprints, i.e.sharing(Rx; Ry) = �Nt�t - ���tx - �ty���+Nt�t ! (St - �)+St ! : (7)Finding � of a region. The sharing(Rx; Ry) function de�ned in (7) allowsthe combined level of overlap between two references to be found. For exampleif Rx[Ry is the level of overlap occurring when Rx and Ry access the sameregion of the cache, Rx and Ry are the overlaps of the individual references,and Rx\Ry is the overlap shared between Rx and Ry, then, Rx[Ry = Rx + Ry - Rx\Ry ;= (2 - sharing(Rx; Ry)) : (8)The second line of this equation follows since only references in translation aremerged in this way, and the intersection is directly related to how many elementsthe two references share (as an average across the entire cache).To �nd �, the average level of overlap across all references fRi j vi = 1 g, itis necessary to extend the union operator shown above to include an arbitrarynumber of references. Considering (8) it's evident that there is a similaritybetween �nding the combined overlap and the number of elements in a unionof sets. That is, (8) is analogous tojS1 [S2j = jS1j + jS2j - jS1 \ S2j : (9)The general form of this expression for the number of elements in a union is,jS1 [� � � [Snj =X1 jSij -X2 jSi \ Sjj+X3 jSi \ Sj \ Skj - � � � � jS1 \ S2 \ � � � \ Snj :11

where the Pi symbol stands for the summation of all i-element combinationsof S1 : : : Sn. The expression jS1 [� � � [Snj is analogous to R1[���[Rn in exactlythe same way that (9) is analogous to to (8), and therefore R1[���[Rn = n -X2 Ri\Rj+X3 Ri\Rj\Rk - � � � � R1\R2\���\Rn : (10)It is still necessary to de�ne the average overlap of an intersection between anarbitrary number of references. A two-reference intersection was shown in (8),this can be extended to an arbitrary number of references, R1\���\Rn = nY2 sharing(Ri; Rj) ; (11)where the symbol Q2 stands for the product of all two-element combinationsof Ri and Rj.Now it is possible to �nd �, the average overlap of a cache footprint regioncontaining references de�ned by the vector v. Computing (10) for the referencesincluded in the region, i.e. the set fRi j vi = 1 g, gives �.3.2.3 Notes on optimizing the calculation of �The method shown in the previous paragraphs is obviously highly combinatorialin nature. When the bit vector v contains n ones, the number of multiplicationsrequired is, op(n) = 1 + nXk=2�nk��n2�;this grows rapidly, making computing � slow for relatively small values of n(for example op(10) � 4:5�104, and op(15) � 3:4�106). Since one of the mainreasons for using analytical methods is their increased speed this is clearly unde-sirable. Fortunately two straightforward modi�cations push the combinatorialbarrier back some distance.Firstly, the value of � does not have to be completely evaluated at theboundary of each footprint region. Considering the identity,jS1 [� � � [Sn [Sn+1j = jS1 [� � � [Snj + jSn+1j -X1 jSi \ Sn+1j+X2 jSi \ Sj \ Sn+1j - � � � � jS1 \ � � � \ Sn \ Sn+1j ;shows that � can be adaptively calculated from the previous region's valuewhen a single reference enters or leaves the union. This approximately halvesthe number of multiplications required.Secondly, since one of the constraints of the model is that an array maynot overlap any other arrays, there can be no sharing of data elements betweenreferences accessing di�erent arrays. This means that only a subset of vector vneed be examined when computing �|those where vi = 1 and where refer-ence Ri accesses the same array as that accessed by the array reference whose12

state changed at the region boundary. Depending upon the distribution of ar-ray references to arrays, this modi�cation can decrease the complexity of the � calculation by orders of magnitude.4 Modeling spatial interferenceAs noted in Section 2 the temporal and spatial cache e�ects of an array referenceare modeled separately. Spatial reuse occurs when more than one element in acache line is accessed before the data is ejected from the cache. For a reference Rthe innermost loop on which spatial reuse may occur is labeled ls, wherels = max fi j 0 < Ai < L g :The spatial miss ratio of a reference, labeled Ms, is de�ned such that multi-plying it by the predicted number of temporal misses su�ered by a referencepredicts the actual number of cache misses occurring. This ratio encapsulatesall spatial e�ects on the reference, and is found by combining four more speci�cmiss ratios: the compulsory miss ratio Cs, the self interference miss ratio Ss,the internal cross interference miss ratio Is, and �nally the external cross inter-ference ratio Es, Ms = min (1;max(Cs; Ss) + Is + Es) :The value of Cs for a particular reference follows directly from the arrayfootprint of the reference de�ned over all loops 1 : : : n. It is the ratio betweenthe number of cache lines in each footprint region and the number of referencedelements within each region.When studying the level of interference a�ecting a spatial reuse dependenceit is necessary to examine what happens between each iteration of loop ls.Figure 5 illustrates this for self interference. The left hand side of the �gureshows a square matrix Y being accessed by the array reference Y(2j1; j2); on theright is shown how this maps into the cache, both over time and for a completeiteration of loop j1 (assuming a 4-way associative cache). The elements thatmay interfere with Y(6; 0) reusing the data loaded into the cache by Y(4; 0) areshaded. The three types of spatial interference are considered in the followingsections.4.1 Calculating spatial self interferenceAs shown in Figure 5 the reference being modeled can obstruct its own spatialreuse; this happens when the number of data elements accessed on a single iter-ation of loop ls that map to a particular set in the cache is greater than the levelof associativity. To analyze this mapping process the recurrence shown in (2)is used, but with slightly di�erent array footprint parameters. The distancebetween each footprint region �t is de�ned by the distance between elementsaccessed on successive iterations of loop ls (see Figure 5), and the size of each13

4 60
0

PSfrag replacements
j1

j2
Y

time
C=aL a

�t

elements being reusedelements that may interfereFigure 5: Example of spatial reuse from Y(2j1; j2)footprint region is de�ned as the size of a cache line L to ensure that interferencebetween lines is detected.As in Section 3.1, the result of the mapping process is that the cache isdivided into �0=�s-1 areas of size �s-1; each with a certain number of footprintregions, each a distance ~�s from the previous. There are r areas that containns + 1 regions, and (�0=�s-1) - r areas containing ns (Section 3.1).By examining each of the two types of area separately, calculating the valueof Ss in each, and combining the two values, it is possible to predict the overalllevel of self interference,Ss = 1 -�fs(ns) (b�0=�s-1c- r)(ns)Nt + fs(ns + 1) (r)(ns + 1)Nt �where the function fs(x) gives the probability that an element in an area of size�s-1, containing x elements, does not su�er from spatial interference.De�ning fs(x). It is immediately possible to identify two special cases,1. if ~�s = 0 then all elements in the area occupy the same cache set; if thenumber of elements x is greater than the level of associativity interferenceoccurs, thus fs(x) = � 0 if x � a1 if x > a. when ~�s = 0.2. if there is only one element per set and no overow between neighboringareas, then reuse must be total,fs(x) = 1; when ~�s � L and x~�s < �s-1.In the general case the solution is not so straightforward, the main complicationbeing the possibility that the distance from the �rst to the last element in thearea (i.e. x~�s) is greater than the size of the area itself, and therefore the14

elements \wrap-around" the end of the area, possibly interfering with those atthe start.To handle this a hybrid analytical-simulation technique is used: each of thex elements in the area has L di�erent positions in a cache line where it mightoccur, each position is analyzed for whether reuse can occur or not, leading tothe overall probability of reuse for that element. Repeating for the other x- 1elements, and combining all the individual probabilities gives the value of fs(x).For an element y from 0 : : : x - 1, it is possible to list the positions in thecache of the elements surrounding it,points(y) = before(y) ++ after(y)before(y) = [k~�s j k = 0 : : : (y - 1)]after(y) = [k~�s + � j k = (y + 1) : : : (x- 1)]� = �-stride if �s > 0+stride if �s < 0where the stride of a reference is the distance between elements accessed onsuccessive iterations of the spatial reuse loop ls.The essence of the problem is now as follows. From points(y), deduce thenumber of points that occur in the cache line-sized region z : : : (z + L), giventhat the points wrap around to zero at position �s-1. A generalized form ofthe series de�ned above is[kA + B j k = 0 : : : (C - 1)] ;with, before(y))after(y)) A = ~�s;A = ~�s; B = 0;B = (y + 1)~�s + �; C = y;C = (x - y) - 1:For this general series the number of points within an interval z : : : (z + L),including the wrap around e�ect, is given by,incl(z) = � (C-1)A+B�s-1 �Xi=� B�s-1 � min C;�zi - BA �+!-min C;�zi + L- BA �+!!where zi = z + i�s-1.Thus to �nd the total number of elements within a particular cache-line sizedinterval the above expression is evaluated for both before(y) and after(y), sothat the total number of elements in a particular interval z : : : (z + L) isincl(z; before(y)) + 1 + incl(z; after(y)):If this value, the number of elements in a particular line, is greater than thelevel of associativity a, then self interference occurs; by averaging over the L-1possible positions for the start of a line containing the interval y, the probability15

of reuse can be found. By repeating this process for the x- 1 other elements inthe area the overall probability, and hence Ss, can be calculated.4.2 Internal spatial cross interferenceAs well as being caused by the reference itself, spatial interference may also arisedue to the other references in the same translation group. When the numberof data elements mapping to a particular cache set, on a single iteration ofloop ls, is greater than the level of associativity a, interference will occur. Thisphenomena is often referred to as \ping-pong" interference, and may a�ectperformance massively since it is possible for all spatial reuse by the referenceto be prevented.When considering a reference R, ping-pong interference is detected by calcu-lating the cache footprint of all references in the translation group, for a singleiteration of the spatial reuse loop (i.e. let N1:::l = 1). Considering only theregions where � > a, if any are less than L elements from the position ofthe �rst element accessed by R, i.e. �R mod (C=a), then ping pong interferenceoccurs.Assuming that the closest footprint region before �R mod (C=a) is �b posi-tions away, and the closest region after R is �a positions away, then the missratio due to internal interference is de�ned as follows,Is = min 1;�1 - �a - 1L �+ +�1- �bL �+! :4.3 External spatial interferenceAfter considering the interference from the reference's own translation group,interference from the other translation groups|external interference|must bemodeled. Each group is examined in turn, the overall miss ratio due to externalinterference Es being the sum of each group's individual external interferenceratio.For a reference R, with spatial reuse on loop ls, the probability PR, thataccessing a random data element will �nd an element in a set containing dataspatially reused by R, is de�ned by,PR = NRSRC=a ;where NR and SR are the number and size of regions in reference R's cachefootprint on loop ls respectively (see Section 3.1).Restricting the iteration space to a single iteration of loop ls (i.e. let Nls =1), the cache footprint of each translation group (of which R is not a member)is examined. By counting the number of elements in these footprints that couldcause spatial interference on R, and multiplying by PR, a prediction of thenumber of misses is made. 16

If the average level of overlap for the translation group containing R is R,and the footprint of each other translation group is represented by a sequenceof (�; S; �) triples, then an individual footprint region can possibly interferewith R only if R + � > a. Also, if interference does occur, the number ofcache misses for that set can not be greater than the actual number of elementsin the set. This leads to the de�nition of the following function giving the \missoverlap", -miss (R; �) = min � R; (R + � - a)+� : (12)Mapping this function, multiplied by the size of each region, over the cachefootprint of each translation group gives the total number of elements accessedby the group that might cause a cache miss4. Multiplying this value by PR, anddividing by the total number of iterations made by loop ls, gives the externalmiss ratio for a single translation group G,Es(G) = PRP� (-miss (R; �)� S)Nls+1 � � � � � Nn ;where the symbol P� stands for the summation across all of the translationgroup's cache footprint regions (�; S; �). By summing Es(G) over all transla-tion groups G, such that R 62 G, the overall value of Es is found.5 The cache behavior of a self dependenceAs noted in Section 2, a self dependence occurs when an array reference accessesparticular data elements more than once. This happens when one or more ofthe loop variables j1 : : : jn are not used by the reference. For example, the arrayreference A(j3; j1) does not use j2, and therefore all iterations of loop 2 accessexactly the same set of elements, namely fA(0; j1) : : :A(N3- 1; j1)g. The inner-most loop on which reuse occurs is de�ned as loop l, where l = fmaxk jAk = 0 g.In theory, each time loop l is entered the �rst iteration would load the refer-enced elements into the cache, and subsequent iterations reuse them. That the�rst iteration of loop l must load the elements gives the number of compulsorymisses, Ms l-1Yk=1Nk nYk=l+1Nk; (13)that is: the spatial miss ratio, multiplied by the number of times loop l isentered, multiplied by the number of unique elements referenced.But the cache capacity is limited|it may not be possible to hold all elementsreferenced by loop l in the cache at once. This factor is not only dependent onwhether the size of the cache is greater than the number of elements, as withspatial reuse the accessed elements may map into the cache in such a way asto prevent reuse. Although using a cache with high associativity can prevent4When the referenced array is signi�cantly smaller than the number of sets in the cache,only footprint regions that actually overlap with the array are considered.17

interference in certain cases, as the number of elements accessed increases theproblem may return.5.1 Self interferenceSelf interference on a reference is modeled by mapping the array footprint of theelements accessed by a single iteration of loop l into the cache, removing thoseelements that fall in sets with overlap greater than the level of associativity.Subtracting the number of elements left from the original number of elementsgives the number of cache misses per iteration.We use the same mapping process as shown in Section 3.1, with one impor-tant modi�cation, the function fi(x) is replaced by fr(x) (and the way in which is calculated is changed to reect this). Whereas fi(x) gave the number ofsets that could interfere in an area containing x regions, fr(x) gives the numberthat can be reused, i.e. those where � a. Given fr(x) the number of reusableelements in the footprint follows as NS , and therefore the total number ofcache misses due to self interference isMs l-1Yk=1Nk! (Nl - 1) nYk=l+1Nk!-NS !|the number of times loop l is entered multipled by the number of cache misseseach iteration (excluding when jl = 0, which is handled by the compulsory misscalculation shown in (13)).The de�nition of function fr(x) uses a similar method to that shown in Sec-tion 4.1 for calculating spatial self interference. The structure of the cache sec-tion being examined was described in Section 3.1; an area of size �s-1 containingx regions of size St, each at an interval ~�s from the previous. The �rst regionis located at the beginning of the area, and the regions wrap around the end ofthe area (i.e. the position in the area of region k is actually (k~�s) mod �s-1).For an area with this structure, the function fr(x) must calculate the numberof positions in which the level of overlap is less than or equal to the level ofassociativity, i.e. where no interference occurs. For a single position z in thearea, the level of overlap (i.e. the number of regions crossing this point) isgiven by the number of regions beginning before this point minus the numberof regions ending before it. To include the wrapping e�ect this expression issummed over all possible \wrap arounds" in which a region appears, i.e.,overlap(z) = � fl(x)�s-1 �-1Xi=0 min�x;� zi~�s �+ 1� - & (zi - St)+~�s ' (14)where zi = z + i�s-1.A possible de�nition fr(x) would be to test every position in the area, i.e.z = 0 : : : (�s-1 - 1), and count the number of times that overlap(z) � a.Fortunately there is a more e�cient method: since there are only x footprintregions, the value of overlap(z) can only change a maximum of 2x times (at18

the start and end of each region). Using a similar method to when �ndingthe one-dimensional footprint of a translation group (see Section 3.2.1), these2x positions are enumerated in ascending order, and the atomic regions theyde�ne are examined.Finally, the de�nition of in (5) includes positions in the area where reusecannot occur (since it is still relevant when calculating interference). However,when looking at the reuse of a footprint it is necessary for to be the averageoverlap of the positions in the footprint where reuse does occur. This can becalculated while computing the value of fr(x).5.2 Internal cross interferenceAfter examining the level of self interference on a self dependent reference thecache footprint of the data not subject to self interference is known; character-ized by the parameters S, �, N and . It is still uncertain whether or not theseregions of the cache can be reused since data accessed by the other array refer-ences in the loop nesting may map to the same cache sets, possibly preventingreuse.Interference from other references in the same translation group is considered�rst. The cache footprint of these references is identi�ed (using the techniquesshown in Section 3) and then compared region by region with the footprint ofthe data not subject to self interference. Interference can only occur whereverthe two footprints overlap, and only when the combined level of overlap isgreater than the level of associativity, that is when + � > a. Assumingthat two footprint regions overlap for size positions, then the number of missesoccurring on each iteration of loop l issize � -miss (; �)�Ms:The summation of this expression over all sections of the cache where two foot-print regions overlap gives the total number of cache misses on each iterationof the reuse loop; multiplying by N1 : : :Nl gives the total number of misses.To increase the accuracy of the next stage|predicting the level of externalinterference|the values of NS and (the number of reusable positions andaverage overlap) are adjusted to take account of internal interference. Thenumber of reusable positions after considering internal interference NS 0 is thecombined size of all regions where interference doesn't occur, and the adjustedoverlap 0 is the average value of + � across all these regions.5.3 External interferenceThe �nal source of temporal interference on a self dependence to be consideredis external cross interference. This is interference arising from references inother translation groups to the reference being examined. Unlike when mod-eling internal cross interference, it is not possible to simply compare the twocache footprints (the reference's possibly reusable data, and the footprint of the19

interfering translation group) exactly because they are not in translation. Thefootprints are \moving" through the cache in di�erent ways and hence incom-parable. Instead, a statistical method is used, based on the dimensions of thetwo footprints|the total size and the average overlap.Similarly to when modeling external interference on spatial dependences(see Section 4.3) each external translation group is considered in turn. Thenumber of footprint positions that could possibly cause interference are foundby summation over the cache footprint of the group. To �nd the average numberof cache misses this quantity is multiplied by the size of the reusable footprintand divided by the number of possible positions,external misses =MsNS 0 �X� (S� -miss (0; �))�C=a :This gives the number of misses on each iteration of loop l caused by a partic-ular translation group. Summing this expression over all external groups andmultiplying by the total number of iterations of loop l gives the actual numberof cache misses due to external interference.6 Modeling group dependencesA group dependence occurs when an array reference reuses data that was mostrecently accessed by another reference in the same translation group. For areference R the reference that it is dependent upon is denoted ~R; Section 2.2has described how dependences are identi�ed.The de�nition of the spatial miss ratio given in Section 4 must be alteredslightly to model group dependences, it must also include any spatial groupreuse occurring. This is when R is in the same cache line as ~R a certain numberof times per every L elements accessed. If the constant distance between thetwo references, B~R - BR, is less than the size of a cache line, then this is thenumber of times that R must load an element itself per cache line. Thereforethe actual spatial miss ratio is de�ned by,M 0s =MsL - �B~R - BR�L :The number of compulsory misses is de�ned by the number of elementsaccessed only by R, not by ~R, multiplied by the spatial miss ratio. Since thesharing(Rx; Ry) function de�ned in (7) gives the ratio of elements shared be-tween Rx and Ry, we have thatcompulsory misses =M 0s nYk=1Nk!�1- sharing�R;~R�� :For a reference R, the innermost loop on which group reuse occurs is de�nedas lg = max
i(R) ��� 1 � i � m; �i(R) 6= �i(~R)�20

where m is the number of dimensions in the array being accessed. To identifycross interference on a group dependence it is only necessary to examine theperiod between ~R accessing an arbitrary element and R reusing it. This is de�nedas �g iterations of loop lg: �g = �k(~R) - �k(R);with k the innermost dimension of the array where the �k constants of the tworeferences di�er.Consider for example, the case when R = A(j2; j1) and ~R = A(j2; j1 + 2).Here lg = 1, and �g = 2, that is, after ~R accesses element A(j2; 2), two iterationsof loop 1 pass before R accesses the same element. Interference occurs if theelement has been ejected from the cache during these two iterations.6.1 Internal interferenceInternal cross interference is found by examining the cache footprint of thetranslation group of R for the �rst �g iterations of loop lg, i.e. the iterationspace with N1 : : :Nlg-1 = 1 and Nlg = �g. For each region in the footprintthat contains data accessed by R the probability of interference is calculated, themaximum probability across the whole footprint is then the actual probabilityof internal interference. For a footprint region with average overlap �, thisprobability is de�ned as, Pi(�) = min(1; � - a)+;i.e. for interference to de�nitely occur > a + 1, while if < a interferencede�nitely doesn't occur; there is a gradient between these two certainties.The number of cache misses is de�ned as the number of elements that couldtheoretically be reused, multiplied by the maximum value of Pi(�) and thespatial miss ratio,int. misses =M 0s0@ lgYk=1Nk1A sharing�R;~R� (max� Pi(�)) :6.2 External interferenceWhen the maximum value of Pi is less than 1, and therefore internal interferenceis not total, external cross interference must also be considered. Again theiteration space is de�ned as �g iterations of loop lg, but this time the cachefootprints of the translation groups that R is not a member of are examined.For each such group, the number of cache misses caused is found by countingthe number of positions in its footprint where interference may occur, and ap-plying the same probabilistic method used when predicting external interferenceon a self dependence (see Section 5.3). Assuming that the cache footprint ofthe translation group containing R has an average overlap of 0 in the regionscontaining data accessed by R (this can be calculated while �nding internal21

interference), then a footprint region with overlap � may possibly cause inter-ference if 0 + � > a. The actual number of misses per translation group isde�ned asext. misses =M 0s0@ X� �+ �>a (S� -miss (�; 1))1A� (C=a) (1 -maxPi)0@lg-1Yk=1 Nk1A�Nlg - �g� :7 Example resultsTo demonstrate the validity and bene�ts of the techniques described, this sectionpresents experimental results obtained using an implementation of the model.Code fragments are expressed in a simple language which allows the details ofthe arrays being accessed, the loop structures, and the array references them-selves to be speci�ed. Here three examples typical of nested computations areshown, chosen for their contrasting characteristics to ensure that all parts ofthe cache model are exercised. Each manipulates matrices of double precisionvalues, arranged in a single contiguous block of memory. They are:1. A matrix-multiply, consisting of three nested loops, containing four arrayreferences in total. Each reference allows temporal reuse to occur withinone of the loops, one reference may be subject to considerable spatialinterference. The Fortran code is shown in Figure 6(a).2. A \Stencil" operation, from [10]. This kernel shows group dependencereuse, and doesn't always access memory sequentially. See Figure 6(b).3. A two dimensional Jacobi loop, from [2], originally part of an applica-tion that computes permeability in porous media using a �nite di�erencemethod. This kernel exhibits large amounts of group dependence reuse,and contains signi�cantly more array references than the others. Thematrices IVX and IVY contain 32-bit integers. See Figure 6(c).Each example kernel has been evaluated for a range of cache parameters,comparing the predicted miss ratio against that given by standard simulationtechniques5. The average percentage errors are shown in Table 1.The results for C = 16384;L = 16, and for C = 32768;L = 16 are shown inFigure 7 for the three example kernels. Miss ratio and absolute error are plottedagainst the width and height of the matrices. Also shown, in Table 2, are therange of times taken to evaluate each problem on a 167MHz SUN ULTRA-1workstation, for a single cache con�guration.5A locally written cache simulator was used that accepts loop descriptions in the sameform that the analytical model uses. It has been validated by comparing its results with Hill'sDinero III trace-driven simulator [8]. 22

DO I = 0, N-1DO J = 0, N-1Z(J, I) = 0.0DO K = 0, N-1Z(J, I) = Z(J, I)+ X(K, I) * Y(J, K)ENDDOENDDOENDDO (a) Matrix multiply
DO I = 0, N-2DO J = 0, N-2A(J, I) = A(J, I+1)+ B(J, I) + B(J+1, I)+ C(I, J) + C(I+1, J)ENDDOENDDO (b) StencilDO J = 1, N-2DO I = 1, N-2VXN(I,J) = (c0 * VXO(I,J) + dty2 * (VXO(I-1,J) + VXO(I+1,J))+ dtx2 * (VXO(I,J+1) + VXO(I,J-1))- dtx * (PO(I,J) - PO(I,J-1)) - c1) * IVX(I,J)VYN(I,J) = (c0 * VYO(I,J) + dty2 * (VYO(I-1,J) + VYO(I+1,J))+ dtx2 * (VYO(I,J+1) + VYO(I,J-1))- dty * (PO(I-1,J) - PO(I,J)) - c2) * IVY(I,J)ENDDOENDDO (c) 2D JacobiFigure 6: Example kernels8 DiscussionThe experimental data presented in the previous section shows that the predic-tions made by the model are generally very accurate: the majority of averageerrors are within ten percent, with all but three of the �fty four examples havingaverage errors of less than �fteen percent. When combined with the increasedspeed of prediction we believe that the analytical approach is more practicalthan simulation when examining the individual kernels of an application.One of the motivations for this work was to minimize the time taken whenevaluating a program fragment. As expected the analytical model is muchquicker to compute than a simulation, typically by several orders of magnitude,even with the smallest problem sizes. As the number of memory referencesgrows the gulf widens: simulation time increasing proportionally to the numberof accesses, the time needed to evaluate the analytical model staying mostlyconstant. The Jacobi example is the slowest to evaluate analytically becauseit has eighteen array references to evaluate, compared to Stencil's six and thematrix multiply's four. Even so, the combinatorial e�ects that might have beenfeared are not a problem.It is also clear from the miss ratio plots that using set-associative caches23

a = 1 a = 2 a = 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

C=16384, L=32, a=1 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

C=16384, L=32, a=2 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

C=16384, L=32, a=4 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

C=32768, L=16, a=1 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

C=32768, L=16, a=2 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

C=32768, L=16, a=4 N

predicted miss-ratio
difference from simulation

Matrix multiply
-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=16384, L=32, a=1 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=16384, L=32, a=2 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=16384, L=32, a=4 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=32768, L=16, a=1 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=32768, L=16, a=2 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=32768, L=16, a=4 N

predicted miss-ratio
difference from simulation

Stencil
-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=16384, L=32, a=1 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=16384, L=32, a=2 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=16384, L=32, a=4 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=32768, L=16, a=1 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=32768, L=16, a=2 N

predicted miss-ratio
difference from simulation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

C=32768, L=16, a=4 N

predicted miss-ratio
difference from simulation

JacobiFigure 7: Predicted miss ratios and absolute errors for C = 16384;L = 32, andC = 32768;L = 16 con�gurations. 24

C 8192 16384 32768Experiment a L 16 32 16 32 16 321 5.79 9.36 4.99 6.97 4.99 7.19Matrix 2 3.85 7.02 4.07 6.22 4.89 6.12Multiply 4 2.42 4.89 3.29 3.51 3.90 3.971 12.1 11.2 12.9 12.3 10.1 11.8Stencil 2 16.1 17.9 12.5 19.2 4.78 9.604 10.9 13.4 6.17 8.78 1.73 3.641 7.48 9.57 10.3 11.8 9.56 10.8Jacobi 2 6.04 7.75 11.1 12.5 10.7 11.84 4.72 6.99 9.16 10.5 9.34 10.2Table 1: Average percentage errors of example predictions when compared withsimulated results. Analytical Model SimulationExperiment Min. Max. Mean Min. Max. MeanMatrix mult. 0.00093 0.018 0.0014 0.0058 18.20 4.932D Jacobi 0.0095 0.019 0.010 0.019 4.21 1.50Stencil 0.0016 0.018 0.0029 0.0079 1.45 0.52Table 2: Calculation times for C = 16384;L = 32; a = 2 experiments (seconds.)does not avoid the problem of cache interference. Even for a 4-way associativecache there are still large variations in miss ratio, especially in the Stencil andJacobi kernels, i.e. as the number of array references increases. By using usingwell known techniques such as padding array dimensions and controlling baseaddresses, guided by an analytical model such as presented here, the variationscan be reduced to decrease the miss ratio.A bene�t of using analytical models that has not yet been mentioned is theextra information available through using analytical models. When trying tolower the number of cache misses in a program it is important to know bothwhere and why the cache misses occur. Due to the structure of the methodpresented in this paper both requirements can be met simply by examiningthe outputs of the component models. For example, with the matrix multiplykernel we can examine both the miss ratio of each reference (Figure 8(a)), andthe miss ratio due to each type of interference (Figure 8(b)). These show thatthe vast majority of the misses are due to reference Y(J,K), and that between80 and 90 percent of the interference is self interference (in this case spatial selfinterference, due to array Y being accessed non-sequentially).9 ConclusionsA hierarchical method of classifying cache interference has been presented, forboth self and group dependent reuse of data, considering both temporal and25

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

N

X(K,I)
Y(J,K)
Z(J,I)

(a) Reference miss ratios 0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

N

Compulsory
Self

Internal
External

(b) % miss ratio by typeFigure 8: Examining the Matrix multiply, C = 16348;L = 32; a = 1.spatial forms. Analytical techniques of modeling each category of interferencehave been developed for array references in loop nestings. It has been shownthat these techniques give accurate results, comparable with those found bysimulation, and that they can be implemented such that predictions can bemade at a much faster rate than with simulation. More importantly, the pre-diction rate has been shown to be dependent on the number of array referencesin the program, rather than the actual number of memory accesses (as withsimulation).It is envisaged that the bene�ts of the models|accuracy and speed ofprediction|will allow their use in a wide range of situations, including thosethat are impractical with more traditional techniques. An important exampleof such a use will be run-time optimization of programs, using analytical modelsof the cache behavior of algorithms to drive the optimization process. Areasthat will be addressed in future work include such optimization strategies, aswell as extensions to the model itself. It is also intended to use the techniquesas part of a general purpose performance modeling system [11].Acknowledgements. This work is funded in part by DARPA contract N66001-97-C-8530, awarded under the Performance Technology Initiative administeredby NOSC.References[1] Anant Agarwal, Mark Horowitz, and John Hennessy. An analytical cachemodel. ACM Transactions on Computer Systems, 7(2):184{215, May1989.[2] Fran�cois Bodin and Andr�e Seznec. Skewed associativity improves programperformance and enhances predictability. IEEE Transactions on Com-puters, 46(5):530{544, May 1997.26

[3] Stephanie Coleman and Kathryn S. McKinley. Tile size selection usingcache organisation and data layout. In Proceedings of the SIGPLAN '95Conference on Programming Language Design and Implementation,volume 30, pages 279{289, June 1995.[4] Thomas Fahringer. Automatic cache performance prediction in a paralleliz-ing compiler. In Proceedings of the AICA'93 | International Section,September 1993.[5] Christine Fricker, Olivier Temam, and William Jalby. Inuence of cross-interferences on blocked loops: A case study with matrix-vector multi-ply. ACM Transactions on Programming Languages and Systems,17(4):561{575, July 1995.[6] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equa-tions: An analytical representation of cache misses. In Proceedings of the11th ACM International Conference on Supercomputing, Vienna, Aus-tria, July 1997.[7] John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Predicting thecache miss ratio of loop-nested array references. Research Report CS-RR-336, Department of Computer Science, University of Warwick, Coventry,UK, December 1997.[8] Mark D. Hill. Aspects of Cache Memory and Instruction Bu�er Per-formance. PhD thesis, University of California, Berkeley, 1987.[9] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cacheperformance and optimizations of blocked algorithms. In Proceedings ofthe Fourth International Conference on Architectural Support for Pro-gramming Languages and Operating Systems, pages 63{74, Santa Clara,California, 1991.[10] Kathryn S. McKinley and Olivier Temam. A quantitative analysis of loopnest locality. In Proceedings of the 7th Conference on ArchitecturalSupport for Programming Languages and Operating Systems, volume 7,Cambridge, MA, October 1996.[11] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton. Anoverview of the CHIP3S performance toolset for parallel systems. In Proc.of the ISCA Int. Conf. on Parallel and Distributed Computing Sys-tems, page 527, Orlando, September 1995.[12] Olivier Temam, Christine Fricker, and William Jalby. Cache interferencephenomena. In Proceedings of ACM SIGMETRICS, pages 261{271, 1994.[13] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation:A survey. ACM Computing Surveys, 29(2):129{170, June 1997.27

[14] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.In Proceedings of the SIGPLAN '91 Conference on Programming Lan-guage Design and Implementation, volume 26, pages 30{44, June 1991.

28

