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Abstract

In this work, the Multiresolution Fourier Transform (MFT) and
Markov Random Fields (MRFs) are combined to produce as a tool
for image segmentation. Firstly, a Laplacian Pyramid is used as a
high-pass filter. Then, the MFT is applied in order to segment im-
ages based on the analysis of local properties in the spatial frequency
domain. A methodology for edge detection in image segmentation
in the Bayesian framework using Markov random field models is then
developed. Stochastic Relaxation is also adopted to maximise the like-
lihood and find the globally minimum energy states using simulated
annealing.
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1 Introduction

Image segmentation is a critical technique for image analysis and it has been
deeply studied. Generally, there are two main approaches to image segmenta-
tion: those using boundary information and those using regional information.
The boundary-based approaches involve the detection of luminance discon-
tinuities such as lines and edges, and attempt to estimate their orientation
and position. Noise or random fluctuations interfere with the detection of the
actual features. Various approaches have been tried in an attempt to achieve
noise immunity, such as averaging over a larger region. However increasing
the averaging region size causes loss of positional resolution.

On the other hand, region-based approaches include thresholding the grey
level image or classifying various attributes, such as granularity, directional-
ity and regularity for texture images [1]. Generally, they all attempt to group
together the pixels or image blocks of similar characteristics. The main dif-
ficulty in region-based image segmentation is that the classification requires
global information.

The implication of this is that the two types of feature refer to different as-
pects of the information being sought about given primitives. The features
used in a boundary-based approach are confined to a small area in order
to provide accurate positional information. Conversely, features used in the
region-based approach provide information about the class of a region based
upon some ‘global’ property of the pixels. This would inevitably lead to a
contradiction. A possible way of avoiding this is to seek a representation of
the image (via a suitable transformation) that provides information about all
perceptually important features. This leads to multiresolution techniques [1]

[2] [3], which are used to allow a trade-off between resolution in class space



and position for image segmentation. A particular multiresolution method,
the MFT, enables the analysis to be carried out over a range of different
levels with kernels/windowing functions of various sizes. By varying the res-
olution in both the spatial and spatial frequency domains, the uncertainty is
confined to a reasonable extent while the computational efficiency is main-
tained. Markov Random Field models provide a general and natural model
for the interaction between spatially related random variables, and there is a
relatively flexible optimization algorithm, simulated annealing, that can be
used to find the globally optimal realization that, in this case, corresponds
to the maximum a posteriori(MAP) interpretation [4]. The work presented
in this paper, based broadly on the work of Li [5], incorporates regional and
boundary information into the interaction energy function of the multires-
olution Markov Random Field (MMRF) [4] and performs the segmentation
in a unified process. Detailed descriptions of MFT and MRFs are given in
Sections 2, 3 and 4.

2 Multiresolution Fourier Transform

The MFT is based upon the Short Time Fourier Transform (STFT) and
is a generalisation of multiscale methods. The basic idea is to combine a
set of STFT’s into a single hierarchical transform[1][2][6]. Figure 1 shows
the structure of the spatial and spatial frequency diagram for 2-D MFT at
different levels. In the spatial domain the bottom level is the original image.
In the spatial frequency domain the top level is the DFT of the original image,
while intermediate levels are supersets of STFT’s with differing resolutions.
The resolution changes by a factor of two between levels in both domains.

This enables the MFT to embody local Fourier transforms over a range of
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Figure 1: Structure of 2-D MFT in spatial /spatial frequency diagram

scales. Analogous to the continuous transform, the 2-D MFT component at

position £(1) has frequency (1) and scale o(l) where [ is the transform level.

A 2-D MFT coefficient can be represented by

— — — P

#(E(),3(1),0(1)) =3 wal€(1) =€) a(€(D)) el 7O (1)

where w, (£(1) — £(1)) is a window function. Therefore each level of MFT re-
sembles a 2-D Short Time Fourier Transform (STFT). z(£/(1)) is the original
N x N image sampled at the point f_; at level [ in the spatial domain. The
MFT has following important properties for image analysis[1][7][8]:

(1) Linearity: MFT is a hierarchical set of STFT’s, and the STFT is linear
by definition. Hence, the MFT is linear.

(2) Locality: alevel of the MFT is a combined spatial and spatial frequency

representation of the image. By choosing analysis vectors that are opti-
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mally localised, each level is an optimal representation at its prescribed

resolution in each domain.[1] [8].

(3) Invertibility: since the STFT can be defined to be invertible by judicious

choice of window function, the MET has a similar property [8].

(4) Resolution: the MFT contains a multiplicity of resolutions in both do-
mains, from the original image to its DF'T. The different resolutions
consist of coefficients that are uniformly distributed across the whole
domain. These sets of coefficients can represent an uncertain degree of

locality of features in each domain. [1]

3 Markov Random Fields

Markov Random Fields (MRFs) have been used as the basis of an eviden-
tial approach to many computer vision and image processing tasks in recent
years. Coupled Markov random fields can unify the segmentation and re-
construction process [4] and are presented as a mechanism for combining
several sources of a priori and observational knowledge in a Bayesian frame-
work. The MRFs encode the assignment of labels to image sites. Knowledge
is encoded by the neighbourhood structure of the MRF and by the assign-
ment of ‘goodness’ potentials to local structures (cliques) in the MRF. The
potentials then determine the prior probability distribution of labels in the
MRF, whose a posterior: probability distribution is derived by combining
the pooled external observations and a prior: distribution. The main ad-
vantage of the MRF model is that it provides a general and natural model
for the interaction between spatially related random variables. There are
flexible optimization algorithms, for example simulated annealing or a time

evolution state [9], that can be used to find the globally optimal realization
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which corresponds to the maximum a posteriori (MAP) segmentation [4].
Some of the relevant aspects of MRF theory and its application to image
labelling are briefly described in the following pages. Consider a set, X, of
discrete-valued random variables. Associate with the random variables is a
graph, GG, defined as a finite set of vertices, T', and a set of edges of the graph,
E. The set of all points which are neighbours of a point t will be denoted
by N;. An assignment of values to all the variables in the field is called a
configuration, and is denoted w. w; is the value given to the point t by the
configuration w. A probability measure P will be said to define a Markov
Random Field if the local characteristics depend only on the knowledge of

the outcomes at neighbouring points [5] [10], ie. if for every w
P (w) > 0, VwelX (2)

P (@ |wr) = P(w|wn,) (3)

where P(w) and P(w;|wr_;) are the joint and conditional pdf’s, respectively.
This states, roughly, that the state of a site is dependent only upon the state
of its neighbours (NV;). MRFs can also be characterized in terms of an energy

function, U, with a Gibbs distribution:

P(@) = S — (4)

where T' is the temperature, and Z is a normalizing constant. If we are
interested only in the pdf, P(w), the Gibbs energy function U is defined as:
Ul@) = > Vo(w) (5)

ceC
where C'is the set of cliques defined by the neighbourhood graph G(T, E),
and V, are the clique potentials. Notice that the MRF pdf in Equation (5)

is quite general, in that the clique functions can be arbitrary as long as they
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depend only on the nodes in the corresponding cliques. Due to this unique
structure, in which the global and local properties are related through cliques,
the MRF model-based approach provides a useful mathematical framework

for the study of image segmentation, as will be discussed in more detail later.

4 Image Segmentation
The image segmentation method presented in this work proceeds as follows:

e Representation by the Laplacian Pyramid - This is used as a high-pass

filter to create the luminance edges.

e Use of Multiresolution Fourier Transform for Feature Extraction - The
MFT is used to transform the luminance edges into a double-sized

image consisting of local spectra.

e Extraction of Local Features - Extracting local features helps to deter-
mine the boundary structure of the image. This structure relates not
only to the magnitude of the spectral components, but also to their

relative phases.

e Estimation of Edge Position - These estimate the position of edges
and also a certainty measure given by examining the magnitude of the

correlation statistic, defined in section 4.4.

e Application of Markov Random Fields - In this section, a method for
edge detection in image segmentation in the Bayesian framework using
Markov random field models is developed. Stochastic Relaxation is also

adopted to maximise the likelihood.
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Figure 2: From Gaussian Pyramid to MF'T Entry

4.1 Representation by the Laplacian Pyramid

The basic pyramid representation consists of a number of stacked 2-d arrays,
each of which represents a different spatial resolution of image. For an image
v(m,n), 0 < m,n < M, where M =2V, 0 <[ < N, the Gaussian Pyramid

can be expressed as follow:

K—1 K—
Z Z q) gi—1(2m + p,2n + q) (6)

The original image, gy, form is,
go(m,n) = v(m,n) (7)

where g;(m,n) are the coefficients or nodes on level [ of the representation
and w(p, q) is the Gaussian-like weighting function/kernel which is of finite
size K x K. The kernel w(p, q) therefore defines the transformation function

between the different resolutions. Each node is given by [11]

gi(m,n) = Li(m,n) + E(gi41)(m,n) (8)



(a) Original shapes Image (b) High-pass filtered version of (a)

Figure 3: The shapes image and its high-pass filtered version

where E(I) is the expanded version of the image, I, using the kernel,

w(p,q), as an interpolator. Formally,

K-1 K-1

E(giy1)(m,n) = K Z Z w(p,q) gre1( |

p=0 ¢=0

m—p n—gq

DI DI C)

It can be seen that each level of the Laplacian Pyramid is the difference
between successive levels of the Gaussian Pyramid. It has been shown that
each level of the Gaussian Pyramid, ¢;,1, is a low-pass filtered version of the
previous level, g; [11]. Conversely, each level of the Laplacian Pyramid, L,
is the high-pass filtered version of ¢;. L is therefore the high-pass filtered
version of the original image [8]. Figure 3 shows the ‘Shapes’ image and its
high-pass filtered version, Ly(m,n). To form a suitably pre-whitened input
to the MF'T on level [, level [ of the Gaussian Pyramid is expanded [ times
and substracted from the original image. Thus the input to the MFT can be
written as

Li(m,n) = go(m,n) — El(gl)(man) (10)
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(a)MFT spectrum at level 3 (b)MFT spectrum level 2

Figure 4: MFT spectrum of shapes image
as shown in Figure 2.

4.2 Use of Multiresolution Fourier Transform for Fea-
ture Extraction

Once the high-pass filtered image of size N x N is obtained, the MFT is
used to transform it into a 2 N x 2 N spectral image in spatial frequency
domain [8]. Figures 4 and 5 show the MFT spectra of the ‘Shapes’ and
‘Lena’ images. The local spectra of the MFT are obtained using the FFT.
The MFT levels, however, provide both spectral and positional information
at two different resolutions, level 3 having greater spatial frequency resolution
and level 2 having greater spatial resolution, for example. At levels with high
spatial resolution, the boundaries of the shapes are represented by energy
concentrated in an orthogonal orientation within the local spectra of MFT. In

contrast, on levels with high frequency resolution, a given shape is represented



(a) Original Lena Image (b) High-pass filtered version of (a)

(a)MFT spectrum at level 3 (b)MFT spectrum at level 2

Figure 5: MFT spectrum of Lena image
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within a single spectrum by symmetrically distributed energy.

4.3 Extraction of Local Features

An image can be considered to consist of regions, each with an associated
boundary. The boundaries are contiguous to one another and of different size
and orientation. These are typically known as lines and edges; a more general
term is local image feature. The multiresolution approach to the problem
can be based on this characteristic. A hierarchical structure represents an
image by local features defined at different spatial resolutions. An ideal
local feature in the continuous 2-d spatial domain can be represented by the

following oriented region
0(z,y) = 0(xcosh + ysinh) (11)

and its Fourier transform is given by/[1]

V(@) = U(usind —vcosf) V(ucosf + v sinf) (12)
where V (u,v) is confined to a line which is perpendicular to the orientation
of the feature in the spatial domain. Specifically, if 7, is defined as the
centroid of ©(z,y), then the argument of V (&) is given by [12]

Arg [ V(@)] = 371 + ¢ (13)
V(@) = | V(@) [e? @759 (14)

where ¢ is a phase constant. In other words, the spatial offset of these fea-
tures is directly proportional to the phase variation of the spectrum in an
orthogonal orientation as illustrated in Figure 6 [1]. In the frequency do-
main, this correspondonds to convolving the spectrum with the transformed

windows, the effect being to smooth out the energy concentration, in the
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Figure 6: Linear phase property of local feature segment.

form of an oriented and elongated region. Thus, for an edge between two
regions with homogeneous gray levels in an image block, the orientation can
be estimated by analysing its Fourier spectrum. For example, Figure 7 shows
an edge segment between two regions of homogeneous gray level. In order to
enhance the edge, Figure 7(b) shows the high-pass filtered version of Figure
7(b). Figure 7(c) shows the Fourier transform of the high-pass image. As
expected, the energy is concentrated along the direction orthogonal to that
of the edge in spatial domain. However, for a grey level image with a sharp
corner as shown in Figure 8 we can see that the Fourier spectrum in Figure
8(c) contains more than one feature inside the region and this will interfere
with the analysis. Thus, instead of taking into account all the Fourier co-
efficients in the whole half plane of the spectrum, a number of orientations
are tested and only those coefficients within a strip along the orientation
estimated using the method described in section 4.4 are taken into account.

This reduces the influence of texture fluctuations and separates the boundary

12



(a) (b) () (d)

Figure 7: An edge between two adjacent grey level regions and its Fourier
spectrum. (a) the original image, (b) the high-passed version of the original
image, (c) the Fourier spectrum of the high-passed version, (d) a half-plane of
the spectrum containing the Fourier coefficients along a specific orientation.

(a) (b) () (d)

Figure 8: An boundary between two adjacent grey level regions and its
Fourier spectrum. (a) the original image, (b) the high-passed version of
the original image, (¢) the Fourier spectrum of the high-passed version, (d) a
half-plane of the spectrum containing the Fourier coefficients along a specific
orientation.
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from the texture features.

4.4 Estimation of Edge Position

The centroid of the segment contained in each block is calculated using a
method similar to Calway [1]. As described in[1][8][12][13] and [14], for an
edge or boundary segment between regions of homogeneous gray levels, the
spatial information is contained in the phase of the Fourier transform. The
spatial position of the centroid of such a linear feature can be estimated by
averaging the phase difference over all frequencies. This method uses the
correlation statistic [1]. Setting & equal to (u,v), equation (14) can be

re-written as [13]

V(u,0) = | V(u,v) [emd0et) (15)

where (z,y) is the position of the centroid of the linear feature and | V (u,v) |
is the spectrum of a feature at (0,0). Because of Hermitian symmetry only
the coefficients in the half-plane have to be considered.

The autocorrelation coefficients of the image spectrum in the v and v

dimensions are

A~

~ Tuweo, Vw,v) Vi{u+u/,v)
Zu,v €0y |V(u7 U)|2

(16)

V() 7 :
py = Zu,v €0y (U, U)A (uvs +v ) (17)
ZU,v €0y |V(u7 U)|

where v’ and v are sampling intervals in the u and v dimensions respectively.

By substituting equation (15) into equations (16) and (17), the estimate of

the centroid position (z,y) can be given as [8]

N - AT‘g(pu)

= — ]-
o 2T ( 8)
N - Arg(p,)
= - I\ 1
Yo o ) ( 9)
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and the sampling interval is 2% In the multiresolution image model, the
parameters obtained refer to local features defined at different spatial resolu-
tions and these are determined from the spatial frequency vectors on different
levels of the MF'T. For each local feature in a given orientation, the corre-
lation stastistics used in the estimation scheme provide an estimate of the
linear phase increment in an orthogonal orientation within the relevant spa-
tial frequency vector. However, the correlation statistics provide a measure
of the energy variation over all orientations, given the linear phase model. Tt
is therefore necessary to find other ways to model the magnitude distribution.
However, both of Calway’s and Li’s methods are based on the assumption
that each block only contains a single feature. If not, it will be divided into
4 sub-blocks, and each of these will be re-estimated at the higher spatial res-
olution until a single feature is found or the block is too small to analyse [8].
Here the spatial frequency block is divided into orientation segments instead
of dividing the spatial block into sub-blocks. The estimated features are dis-
played by constructing an image in which each feature is represented by a
straight line within the spatial region referred to by the spatial frequency
vector. This line is shown at the appropriate orientation and position with a
certain length. The luminance value of each line is then set to the magnitude
of the MFT coefficients. Figure 9 shows the result of this approach. In order

to ensure that interesting features with relatively low energies are not missed,

a normalisation process is performed to increase their visibility.

4.5 Application of Markov Random Fields

Based on the result of the feature extraction of MFT, Bayesian probability
theory is used to label the image sites. Pixels are labelled corresponding

to the number of segments or regions and the label of site is compatible,
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(a) image reconstructed at level 4 (b) image reconstructed at level 3

Figure 9: The shapes image reconstructed by MFT coeffecients

in some sense, with the labels of neighbouring sites. Stochastic Relaxation
is used to maximise the likelihood and, as in [5], this approach is based on
incorporating both regional and boundary information into the interaction
energy function of the MMRF and performing the segmentation in a unified
process. Li defines [8] the interaction energy between a site and its neigh-
bourhood defining the MRF is a function of the four immediate neighbouring
sites and is defined as

Ulwy, wn,, Xu,) = Y, V(wy, o, Xu) (20)

t'eEN}

where w;, 1 < w; < L, is the class label at site ¢, X, represents the mea-
surements over the sites within the neighbourhood A; and the measurement
Xy is the squared grey level difference estimated from these two sites. The
pairwise interaction potential V' is a suitably defined function of class labels
of the two neighbouring sites ¢t and t'. Note that, at present, only the nominal

top level in used, with no propagation. Also, there is no interaction between
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site t and its father in the calculation of V. Define

Xtt’ = (l‘t — 1‘2)2 (21)

0'121):[ = Z Xtt’ ,Vt and tl (22)
W=y

0.31 = Z Xtt’ ,Vt and t, (23)
W ATy

where x; and z} are the grey level at sites t and ¢/, o2 is the average value of
the intra-region grey level difference and o2, is the average value of the inter-
region grey level difference. These are both re-calculated at the beginning
of each iteration because of their dependence on the varying configuration.
The probability distribution functions of the two differences roughly match
Gaussian distributions with different means and variances. We then define

the region and boundary energy function, based on Bayes’s theorem as fol-
lows: [8]

e The Region Energy Function:

P

( ln(m’—)) — X if w, = wy and wy # Bl

o 202,

Vi(ws, wp, Xw) = In (P(?;wt’)) — ;{it;’ if w; # wy and wy # Bl

| O if wy = Bl

(24)
where Bl is the boundary label. The physical interpretation of equation
(24) is that if sites ¢ and ¢’ belong to the same class, the probability will
be higher and assigning ¢ and ¢’ the same label will be encouraged by
a lower interaction energy. By contrast, if sites ¢ and ¢’ do not belong
to the same class, the probability will be lower and it is likely that a

larger interaction energy will be produced to discourage the assignment

17



of the same label to sites ¢ and #'. Furthermore, if sites ¢ and ¢’ are
assigned different class labels when they do belong to the same class,
the algorithm will tend to impose a larger interaction energy to penalise
the assignment of different labels to sites ¢t and ¢'. Conversely, if they
do not belong to the same class, the algorithm will tend to endorse
the assignment of different labels to the sites with a lower interaction

energy.

The Boundary Energy Function:

( EWB’I'LB’!‘{];1
w T 41 + ! 2 .
ln(P(;zt))+( tU t)_;i_zd if @y = wy
and wy = Bl
‘/b(wt, (v D) = energy
TWt=TT ! E +El b .
ln (P( Owd t)) + ( to' t) _2££d lf Wt%wt/
and wy = Bl
. 0 lf wtl % Bl
(25)

where o.. are appropriate normalisation factors. The potential of the
boundary process between sites ¢ and ¢’ is defined, in a fashion sim-
ilar to equation (24), by combining an energy from MFT coefficients
and replacing the grey level difference X by a ‘distance’ measure, D,
between the estimated boundary segments, shown in Figure 10. The

distance measure is given by [8]
D = || 1]|(sin(6)) + sin(6)), 0< 6,6, < /2 (26)

where [ is the vector, estimated from MFET coefficients, joining the

centroids of the boundary segments within the two blocks, #; is the

18



Figure 10: ‘Distance’ between boundary segments

angle between I"and one of the boundary segments and 6, is the angle
between [ and the other segment. From Figure 10, it is apparent that
the better aligned a boundary segment pair, the smaller the 6; and
0y, therefore the shorter the ‘distance’ between them. The ‘energy’
term in equation (25) is a negative value added to the energy function
encourage the site to be labelled as a boundary. If there is no feature,
that is zero MFT coefficients, the block energy will be zero. After the
site has been labelled as a boundary, the ‘energy’ term and ‘distance’

measure are used to iterate and find the orientation of the site.

5 Experiments

A number of trials have been conducted to test the ability of this approach
to refine the boundary connections. To get the appropriate centroid feature
from the MFT coefficients, the image scale is limited at Gaussian pyramid

level 4 and 5, giving an image size of (32 x 32) and (64 x 64). The block
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(a) Shape Image at level 3 (b) Shape Image at level 2

(a) Lena image at level 3 (b) Lena image at level 2

Figure 11: The Segmentation Results
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sizes are (8 x 8) and (32 x 32). The segmentation results for different images
are shown in Figure 11. From the these results, it can be seen that while
edges are represented reasonably well, there is some over-segmentation at
the sharp corners or small regions. This can be improved by adjusting the

energy function and the constraints of boundary connection.

6 Conclusions And Future Work

This work is based broadly on that of Li [8], however it is refocused on non-
texture image processing. The main contribution of this work is a novel
method of improving boundary connections after segmentation. The results,
shown in Figure 11, show that edges are generally represented at an appro-
priate scale. This approach is still in the initial stage and further work could

involve multiple levels and refine the boundary connection strategy.
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