
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Chen, G. H. and Wilson, Roland, 1949- (1999) Image segmentation based on the 
multiresolution Fourier transform and Markov random fields. University of Warwick. 
Department of Computer Science. (Department of Computer Science Research Report). 
(Unpublished) CS-RR-351  
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/61064                
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61064
mailto:publications@warwick.ac.uk


Image Segmentation Based On TheMultiresolution Fourier Transform and MarkovRandom FieldsGuo-Huei Chen, Roland WilsonDepartment of Computer Science,University of Warwick,Coventry CV4 7ALSeptember 21, 1998AbstractIn this work, the Multiresolution Fourier Transform (MFT) andMarkov Random Fields (MRFs) are combined to produce as a toolfor image segmentation. Firstly, a Laplacian Pyramid is used as ahigh-pass �lter. Then, the MFT is applied in order to segment im-ages based on the analysis of local properties in the spatial frequencydomain. A methodology for edge detection in image segmentationin the Bayesian framework using Markov random �eld models is thendeveloped. Stochastic Relaxation is also adopted to maximise the like-lihood and �nd the globally minimum energy states using simulatedannealing.
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1 IntroductionImage segmentation is a critical technique for image analysis and it has beendeeply studied. Generally, there are two main approaches to image segmenta-tion: those using boundary information and those using regional information.The boundary-based approaches involve the detection of luminance discon-tinuities such as lines and edges, and attempt to estimate their orientationand position. Noise or random 
uctuations interfere with the detection of theactual features. Various approaches have been tried in an attempt to achievenoise immunity, such as averaging over a larger region. However increasingthe averaging region size causes loss of positional resolution.On the other hand, region-based approaches include thresholding the greylevel image or classifying various attributes, such as granularity, directional-ity and regularity for texture images [1]. Generally, they all attempt to grouptogether the pixels or image blocks of similar characteristics. The main dif-�culty in region-based image segmentation is that the classi�cation requiresglobal information.The implication of this is that the two types of feature refer to di�erent as-pects of the information being sought about given primitives. The featuresused in a boundary-based approach are con�ned to a small area in orderto provide accurate positional information. Conversely, features used in theregion-based approach provide information about the class of a region basedupon some `global' property of the pixels. This would inevitably lead to acontradiction. A possible way of avoiding this is to seek a representation ofthe image (via a suitable transformation) that provides information about allperceptually important features. This leads to multiresolution techniques [1][2] [3], which are used to allow a trade-o� between resolution in class space1



and position for image segmentation. A particular multiresolution method,the MFT, enables the analysis to be carried out over a range of di�erentlevels with kernels/windowing functions of various sizes. By varying the res-olution in both the spatial and spatial frequency domains, the uncertainty iscon�ned to a reasonable extent while the computational e�ciency is main-tained. Markov Random Field models provide a general and natural modelfor the interaction between spatially related random variables, and there is arelatively 
exible optimization algorithm, simulated annealing, that can beused to �nd the globally optimal realization that, in this case, correspondsto the maximum a posteriori(MAP) interpretation [4]. The work presentedin this paper, based broadly on the work of Li [5], incorporates regional andboundary information into the interaction energy function of the multires-olution Markov Random Field (MMRF) [4] and performs the segmentationin a uni�ed process. Detailed descriptions of MFT and MRFs are given inSections 2, 3 and 4.2 Multiresolution Fourier TransformThe MFT is based upon the Short Time Fourier Transform (STFT) andis a generalisation of multiscale methods. The basic idea is to combine aset of STFT's into a single hierarchical transform[1][2][6]. Figure 1 showsthe structure of the spatial and spatial frequency diagram for 2-D MFT atdi�erent levels. In the spatial domain the bottom level is the original image.In the spatial frequency domain the top level is the DFT of the original image,while intermediate levels are supersets of STFT's with di�ering resolutions.The resolution changes by a factor of two between levels in both domains.This enables the MFT to embody local Fourier transforms over a range of2
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mally localised, each level is an optimal representation at its prescribedresolution in each domain.[1] [8].(3) Invertibility: since the STFT can be de�ned to be invertible by judiciouschoice of window function, the MFT has a similar property [8].(4) Resolution: the MFT contains a multiplicity of resolutions in both do-mains, from the original image to its DFT. The di�erent resolutionsconsist of coe�cients that are uniformly distributed across the wholedomain. These sets of coe�cients can represent an uncertain degree oflocality of features in each domain. [1]3 Markov Random FieldsMarkov Random Fields (MRFs) have been used as the basis of an eviden-tial approach to many computer vision and image processing tasks in recentyears. Coupled Markov random �elds can unify the segmentation and re-construction process [4] and are presented as a mechanism for combiningseveral sources of a priori and observational knowledge in a Bayesian frame-work. The MRFs encode the assignment of labels to image sites. Knowledgeis encoded by the neighbourhood structure of the MRF and by the assign-ment of `goodness' potentials to local structures (cliques) in the MRF. Thepotentials then determine the prior probability distribution of labels in theMRF, whose a posteriori probability distribution is derived by combiningthe pooled external observations and a priori distribution. The main ad-vantage of the MRF model is that it provides a general and natural modelfor the interaction between spatially related random variables. There are
exible optimization algorithms, for example simulated annealing or a timeevolution state [9], that can be used to �nd the globally optimal realization4



which corresponds to the maximum a posteriori (MAP) segmentation [4].Some of the relevant aspects of MRF theory and its application to imagelabelling are brie
y described in the following pages. Consider a set, X, ofdiscrete-valued random variables. Associate with the random variables is agraph, G, de�ned as a �nite set of vertices, T , and a set of edges of the graph,E. The set of all points which are neighbours of a point t will be denotedby Nt. An assignment of values to all the variables in the �eld is called acon�guration, and is denoted $. $t is the value given to the point t by thecon�guration $. A probability measure P will be said to de�ne a MarkovRandom Field if the local characteristics depend only on the knowledge ofthe outcomes at neighbouring points [5] [10], ie. if for every $P ($) > 0; 8 $ 2 X (2)P ($t j$T�t) = P ($t j$Nt) (3)where P ($) and P ($tj$T�t) are the joint and conditional pdf's, respectively.This states, roughly, that the state of a site is dependent only upon the stateof its neighbours (Nt). MRFs can also be characterized in terms of an energyfunction, U, with a Gibbs distribution:P ($) = e�U($)=TZ (4)where T is the temperature, and Z is a normalizing constant. If we areinterested only in the pdf, P ($), the Gibbs energy function U is de�ned as:U($) = Xc2C Vc($) (5)where C is the set of cliques de�ned by the neighbourhood graph G(T;E),and Vc are the clique potentials. Notice that the MRF pdf in Equation (5)is quite general, in that the clique functions can be arbitrary as long as they5



depend only on the nodes in the corresponding cliques. Due to this uniquestructure, in which the global and local properties are related through cliques,the MRF model-based approach provides a useful mathematical frameworkfor the study of image segmentation, as will be discussed in more detail later.4 Image SegmentationThe image segmentation method presented in this work proceeds as follows:� Representation by the Laplacian Pyramid - This is used as a high-pass�lter to create the luminance edges.� Use of Multiresolution Fourier Transform for Feature Extraction - TheMFT is used to transform the luminance edges into a double-sizedimage consisting of local spectra.� Extraction of Local Features - Extracting local features helps to deter-mine the boundary structure of the image. This structure relates notonly to the magnitude of the spectral components, but also to theirrelative phases.� Estimation of Edge Position - These estimate the position of edgesand also a certainty measure given by examining the magnitude of thecorrelation statistic, de�ned in section 4.4.� Application of Markov Random Fields - In this section, a method foredge detection in image segmentation in the Bayesian framework usingMarkov random �eld models is developed. Stochastic Relaxation is alsoadopted to maximise the likelihood.6
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Figure 2: From Gaussian Pyramid to MFT Entry4.1 Representation by the Laplacian PyramidThe basic pyramid representation consists of a number of stacked 2-d arrays,each of which represents a di�erent spatial resolution of image. For an imagev(m;n), 0 � m;n < M , where M = 2N , 0 < l < N , the Gaussian Pyramidcan be expressed as follow:gl(m;n) = K�1Xp=0 K�1Xq=0 w(p; q) gl�1(2m+ p; 2n+ q) (6)The original image, g0, form is,g0(m;n) = v(m;n) (7)where gl(m;n) are the coe�cients or nodes on level l of the representationand w(p; q) is the Gaussian-like weighting function/kernel which is of �nitesize K � K. The kernel w(p; q) therefore de�nes the transformation functionbetween the di�erent resolutions. Each node is given by [11]gl(m;n) = Ll(m;n) + E(gl+1)(m;n) (8)7



(a) Original shapes Image (b) High-pass �ltered version of (a)Figure 3: The shapes image and its high-pass �ltered versionwhere E(I) is the expanded version of the image, I, using the kernel,w(p,q), as an interpolator. Formally,E(gl+1)(m;n) = K K�1Xp=0 K�1Xq=0 w(p; q) gl+1( bm� p2 c ; bn� q2 c ) (9)It can be seen that each level of the Laplacian Pyramid is the di�erencebetween successive levels of the Gaussian Pyramid. It has been shown thateach level of the Gaussian Pyramid, gl+1, is a low-pass �ltered version of theprevious level, gl [11]. Conversely, each level of the Laplacian Pyramid, Ll,is the high-pass �ltered version of gl. L0 is therefore the high-pass �lteredversion of the original image [8]. Figure 3 shows the `Shapes' image and itshigh-pass �ltered version, L0(m;n). To form a suitably pre-whitened inputto the MFT on level l, level l of the Gaussian Pyramid is expanded l timesand substracted from the original image. Thus the input to the MFT can bewritten as Ll(m;n) = g0(m;n) � El(gl)(m;n) (10)8



(a)MFT spectrum at level 3 (b)MFT spectrum level 2Figure 4: MFT spectrum of shapes imageas shown in Figure 2.4.2 Use of Multiresolution Fourier Transform for Fea-ture ExtractionOnce the high-pass �ltered image of size N � N is obtained, the MFT isused to transform it into a 2N � 2N spectral image in spatial frequencydomain [8]. Figures 4 and 5 show the MFT spectra of the `Shapes' and`Lena' images. The local spectra of the MFT are obtained using the FFT.The MFT levels, however, provide both spectral and positional informationat two di�erent resolutions, level 3 having greater spatial frequency resolutionand level 2 having greater spatial resolution, for example. At levels with highspatial resolution, the boundaries of the shapes are represented by energyconcentrated in an orthogonal orientation within the local spectra of MFT. Incontrast, on levels with high frequency resolution, a given shape is represented9



(a) Original Lena Image (b) High-pass �ltered version of (a)

(a)MFT spectrum at level 3 (b)MFT spectrum at level 2Figure 5: MFT spectrum of Lena image
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within a single spectrum by symmetrically distributed energy.4.3 Extraction of Local FeaturesAn image can be considered to consist of regions, each with an associatedboundary. The boundaries are contiguous to one another and of di�erent sizeand orientation. These are typically known as lines and edges; a more generalterm is local image feature. The multiresolution approach to the problemcan be based on this characteristic. A hierarchical structure represents animage by local features de�ned at di�erent spatial resolutions. An ideallocal feature in the continuous 2-d spatial domain can be represented by thefollowing oriented regionv̂ (x; y) = v̂ ( x cos � + y sin � ) (11)and its Fourier transform is given by[1]V̂ (~!) = Û ( u sin � � v cos � ) V̂ ( u cos � + v sin � ) (12)where V̂ (u; v) is con�ned to a line which is perpendicular to the orientationof the feature in the spatial domain. Speci�cally, if ~�xy is de�ned as thecentroid of v̂(x; y), then the argument of V̂ (~!) is given by [12]Arg [ V̂ (~!) ] = ~! � ~� + " (13)V̂ (~!) = j V̂ (~!) j e�j (~!�~� + ") (14)where " is a phase constant. In other words, the spatial o�set of these fea-tures is directly proportional to the phase variation of the spectrum in anorthogonal orientation as illustrated in Figure 6 [1]. In the frequency do-main, this correspondonds to convolving the spectrum with the transformedwindows, the e�ect being to smooth out the energy concentration, in the11
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v̂(x; y)Figure 6: Linear phase property of local feature segment.form of an oriented and elongated region. Thus, for an edge between tworegions with homogeneous gray levels in an image block, the orientation canbe estimated by analysing its Fourier spectrum. For example, Figure 7 showsan edge segment between two regions of homogeneous gray level. In order toenhance the edge, Figure 7(b) shows the high-pass �ltered version of Figure7(b). Figure 7(c) shows the Fourier transform of the high-pass image. Asexpected, the energy is concentrated along the direction orthogonal to thatof the edge in spatial domain. However, for a grey level image with a sharpcorner as shown in Figure 8 we can see that the Fourier spectrum in Figure8(c) contains more than one feature inside the region and this will interferewith the analysis. Thus, instead of taking into account all the Fourier co-e�cients in the whole half plane of the spectrum, a number of orientationsare tested and only those coe�cients within a strip along the orientationestimated using the method described in section 4.4 are taken into account.This reduces the in
uence of texture 
uctuations and separates the boundary12



(a) (b) (c) (d)Figure 7: An edge between two adjacent grey level regions and its Fourierspectrum. (a) the original image, (b) the high-passed version of the originalimage, (c) the Fourier spectrum of the high-passed version, (d) a half-plane ofthe spectrum containing the Fourier coe�cients along a speci�c orientation.

(a) (b) (c) (d)Figure 8: An boundary between two adjacent grey level regions and itsFourier spectrum. (a) the original image, (b) the high-passed version ofthe original image, (c) the Fourier spectrum of the high-passed version, (d) ahalf-plane of the spectrum containing the Fourier coe�cients along a speci�corientation.
13



from the texture features.4.4 Estimation of Edge PositionThe centroid of the segment contained in each block is calculated using amethod similar to Calway [1]. As described in[1][8][12][13] and [14], for anedge or boundary segment between regions of homogeneous gray levels, thespatial information is contained in the phase of the Fourier transform. Thespatial position of the centroid of such a linear feature can be estimated byaveraging the phase di�erence over all frequencies. This method uses thecorrelation statistic [1]. Setting ~! equal to (u; v), equation (14) can bere-written as [13] V̂ (u; v) = j V̂ (u; v) j e�j(ux+vy) (15)where (x; y) is the position of the centroid of the linear feature and j V̂ (u; v) jis the spectrum of a feature at (0; 0). Because of Hermitian symmetry onlythe coe�cients in the half-plane have to be considered.The autocorrelation coe�cients of the image spectrum in the u and vdimensions are �u = Pu;v 2�� V̂ (u; v) V̂ �(u+ u0; v)Pu;v 2�� jV̂ (u; v)j2 (16)�v = Pu;v 2�� V̂ (u; v) V̂ �(u; v + v0)Pu;v 2�� jV̂ (u; v)j2 (17)where u0 and v0 are sampling intervals in the u and v dimensions respectively.By substituting equation (15) into equations (16) and (17), the estimate ofthe centroid position (x; y) can be given as [8]x0 = N � Arg(�u)2� (18)y0 = N � Arg(�v)2� ; (19)14



and the sampling interval is 2�N . In the multiresolution image model, theparameters obtained refer to local features de�ned at di�erent spatial resolu-tions and these are determined from the spatial frequency vectors on di�erentlevels of the MFT. For each local feature in a given orientation, the corre-lation stastistics used in the estimation scheme provide an estimate of thelinear phase increment in an orthogonal orientation within the relevant spa-tial frequency vector. However, the correlation statistics provide a measureof the energy variation over all orientations, given the linear phase model. Itis therefore necessary to �nd other ways to model the magnitude distribution.However, both of Calway's and Li's methods are based on the assumptionthat each block only contains a single feature. If not, it will be divided into4 sub-blocks, and each of these will be re-estimated at the higher spatial res-olution until a single feature is found or the block is too small to analyse [8].Here the spatial frequency block is divided into orientation segments insteadof dividing the spatial block into sub-blocks. The estimated features are dis-played by constructing an image in which each feature is represented by astraight line within the spatial region referred to by the spatial frequencyvector. This line is shown at the appropriate orientation and position with acertain length. The luminance value of each line is then set to the magnitudeof the MFT coe�cients. Figure 9 shows the result of this approach. In orderto ensure that interesting features with relatively low energies are not missed,a normalisation process is performed to increase their visibility.4.5 Application of Markov Random FieldsBased on the result of the feature extraction of MFT, Bayesian probabilitytheory is used to label the image sites. Pixels are labelled correspondingto the number of segments or regions and the label of site is compatible,15



(a) image reconstructed at level 4 (b) image reconstructed at level 3Figure 9: The shapes image reconstructed by MFT coe�ecientsin some sense, with the labels of neighbouring sites. Stochastic Relaxationis used to maximise the likelihood and, as in [5], this approach is based onincorporating both regional and boundary information into the interactionenergy function of the MMRF and performing the segmentation in a uni�edprocess. Li de�nes [8] the interaction energy between a site and its neigh-bourhood de�ning the MRF is a function of the four immediate neighbouringsites and is de�ned asU($t; $Nt; XNt) = Xt02Nt V ($t; $t0 ; Xtt0) (20)where $t; 1 � $t � L, is the class label at site t, XNt represents the mea-surements over the sites within the neighbourhood Nt and the measurementXtt0 is the squared grey level di�erence estimated from these two sites. Thepairwise interaction potential V is a suitably de�ned function of class labelsof the two neighbouring sites t and t0. Note that, at present, only the nominaltop level in used, with no propagation. Also, there is no interaction between16



site t and its father in the calculation of V . De�neXtt0 = (xt � x0t)2 (21)�2wx = X$t=$t0 Xtt0 ; 8t and t0 (22)�2ox = X$t 6=$t0 Xtt0 ; 8t and t0 (23)where xt and x0t are the grey level at sites t and t0, �2wx is the average value ofthe intra-region grey level di�erence and �2ox is the average value of the inter-region grey level di�erence. These are both re-calculated at the beginningof each iteration because of their dependence on the varying con�guration.The probability distribution functions of the two di�erences roughly matchGaussian distributions with di�erent means and variances. We then de�nethe region and boundary energy function, based on Bayes's theorem as fol-lows: [8]� The Region Energy Function:Vr($t; $t0; Xtt0) = 8>>>>>>><>>>>>>>: ln�P ($t 6=$t0)�ox �� Xtt02�2ox if $t = $t0 and $t0 6= Blln�P ($t=$t0)�wx �� Xtt02�2wx if $t 6= $t0 and $t0 6= Bl0 if $t0 = Bl (24)where Bl is the boundary label. The physical interpretation of equation(24) is that if sites t and t0 belong to the same class, the probability willbe higher and assigning t and t0 the same label will be encouraged bya lower interaction energy. By contrast, if sites t and t0 do not belongto the same class, the probability will be lower and it is likely that alarger interaction energy will be produced to discourage the assignment17



of the same label to sites t and t0. Furthermore, if sites t and t0 areassigned di�erent class labels when they do belong to the same class,the algorithm will tend to impose a larger interaction energy to penalisethe assignment of di�erent labels to sites t and t0. Conversely, if theydo not belong to the same class, the algorithm will tend to endorsethe assignment of di�erent labels to the sites with a lower interactionenergy.� The Boundary Energy Function:
Vb($t; $t0; D) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
ln �P ($t 6=$t0)�od �+ energyz }| {(Et + Et0)�oe � D22�2od if $t = $t0and $t0 = Blln �P ($t=$t0)�wd �+ energyz }| {(Et + Et0)�we � D22�2wd if $t 6= $t0and $t0 = Bl0 if $t0 6= Bl(25)where ��� are appropriate normalisation factors. The potential of theboundary process between sites t and t0 is de�ned, in a fashion sim-ilar to equation (24), by combining an energy from MFT coe�cientsand replacing the grey level di�erence Xtt0 by a `distance' measure, D,between the estimated boundary segments, shown in Figure 10. Thedistance measure is given by [8]D = k~l k(sin(�1) + sin(�2)); 0 � �1; �1 < �=2 (26)where ~l is the vector, estimated from MFT coe�cients, joining thecentroids of the boundary segments within the two blocks, �1 is the18
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~l �2�1 jj~l jj sin(�2)

Figure 10: `Distance' between boundary segmentsangle between ~l and one of the boundary segments and �2 is the anglebetween ~l and the other segment. From Figure 10, it is apparent thatthe better aligned a boundary segment pair, the smaller the �1 and�2, therefore the shorter the `distance' between them. The `energy'term in equation (25) is a negative value added to the energy functionencourage the site to be labelled as a boundary. If there is no feature,that is zero MFT coe�cients, the block energy will be zero. After thesite has been labelled as a boundary, the `energy' term and `distance'measure are used to iterate and �nd the orientation of the site.5 ExperimentsA number of trials have been conducted to test the ability of this approachto re�ne the boundary connections. To get the appropriate centroid featurefrom the MFT coe�cients, the image scale is limited at Gaussian pyramidlevel 4 and 5, giving an image size of (32 � 32) and (64 � 64). The block19



(a) Shape Image at level 3 (b) Shape Image at level 2

(a) Lena image at level 3 (b) Lena image at level 2Figure 11: The Segmentation Results
20



sizes are (8� 8) and (32� 32). The segmentation results for di�erent imagesare shown in Figure 11. From the these results, it can be seen that whileedges are represented reasonably well, there is some over-segmentation atthe sharp corners or small regions. This can be improved by adjusting theenergy function and the constraints of boundary connection.6 Conclusions And Future WorkThis work is based broadly on that of Li [8], however it is refocused on non-texture image processing. The main contribution of this work is a novelmethod of improving boundary connections after segmentation. The results,shown in Figure 11, show that edges are generally represented at an appro-priate scale. This approach is still in the initial stage and further work couldinvolve multiple levels and re�ne the boundary connection strategy.
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