

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/61068

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/65113

Object Code Verification

by

Matthew Wahab

Thesis
Submitted to the University of Warwick

for the degree of
Doctor of Philosophy

Department of Computer Science

December 1998

Abstract

Object code is a program of a processor language and can be directly executed on a machine.
Program verification constructs a formal proof that a program correctly implements its speci-
fication. Verifying object code therefore ensures that the program which is to be executed on
a machine is correct. However, the nature of processor languages makes it difficult to specify
and reason about object code programs in a formal system of logic. Furthermore, a proof ofthe
correctness of an object code program will often be too large to construct manuallybecause of
the size of object code programs. The presence of pointers and computed jumps in object code
programs constrains the use of automated tools to simplify object code verification.

This thesis develops an abstract language which is expressive enough to describe any se-
quential object code program. The abstract language supports the definition of program logics in
which to specify and verify object code programs. This allows the object code programs of any
processor language to be verified in a single system of logic. The abstract language is expressive
enough that a single command is enough to describe the behaviour of any processor instruction.
An object code program can therefore be translated to the abstract language by replacing each
instruction with the equivalent command of the abstract language. This ensures that the use of
the abstract language does not increase the difficulty of verifying an object code program.

The verification of an object code program can be simplified by constructing an abstraction
of the program and showing that the abstraction correctly implements the program specification.
Methods for abstracting programs of the abstract language are developed which consider only
the text of a program. These methods are based on describing a finite sequence of commandsas
a single, equivalent, command of the abstract language. This is used to define transformations
which abstract a program by replacing groups of program commands with a single command.
The abstraction of a program formed in this way can be verified in the same system of logic
as the original program. Because the transformations consider only the program text, they are
suitable for efficient mechanisation in an automated proof tool. By reducing the number of
commands which must be considered, these methods can reduce the manual work needed to
verify a program.

The use of an abstract language allows object code programs to be specified and verified in
a system of logic while the use of abstraction to simplify programs makes verification practical.
As examples, object code programs for two different processors are modelled, abstracted and
verified in terms of the abstract language. Features of processor languages and ofobject code
programs which affect verification and abstraction are also summarised.

i

Acknowledgements

I am grateful to Professor Mathai Joseph for suggesting the topic of this thesis andfor his
support and encouragement during the course of the work. Professor Joseph’s guidance in the
principles and issues surrounding program verification was invaluable and the thesis has bene-
fited by his comments on the contents and the text. I am also grateful to Dr. SaraKalvala for
discussions on the contents of the thesis and on the use of automated theorem provers, which
help clarify many of the issues involved. Dr Kalvala also read through drafts of the thesis which
was greatly improved by her comments.

Declaration

This thesis is the result of work carried out in accordance with the regulationsof the Univer-
sity of Warwick. This thesis is the result of my own work and no part of it has previously been
submitted for any qualification at any university.

Copyright c Matthew Wahab,1998

ii

Contents

1 Introduction 1

1.1 Object Code Verification . 3

1.2 Outline of the Thesis . 5

2 Verification and Abstraction 10

2.1 Program Verification . 11

2.1.1 Program Logics . 12

2.1.2 Proof Methods for Program Verification 13

2.2 Processor Languages . 16

2.2.1 Object Code Programs . 17

2.2.2 Processor Instructions . 18

2.2.3 Features of Processor Languages . 21

2.3 Modelling Object Code . 21

2.3.1 Instructions and Data Operations . 22

2.3.2 Program Execution . 23

2.3.3 Verification and the LanguageL . 25

2.4 Program Refinement and Abstraction . 25

2.4.1 Refinement Calculus . 26

2.4.2 Compilation . 26

2.4.3 Abstraction . 27

2.4.4 Abstraction by Program Manipulation 28

2.4.5 Abstraction and the LanguageL . 30

2.5 Automated Tools . 30

2.5.1 Processor Simulation . 31

iii

CONTENTS iv

2.6 Conclusion . 32

3 Commands 34

3.1 Expressions ofL . 35

3.1.1 Basic Model . 37

3.1.2 Syntax of the Expressions . 42

3.1.3 Semantics of the Expressions . 43

3.1.4 Equivalence Between Expressions . 47

3.1.5 Substitution . 48

3.1.6 Assignment Lists . 51

3.1.7 State Update . 54

3.1.8 Substitution Expressions . 54

3.2 Commands ofL . 59

3.2.1 Syntax of the Commands . 59

3.2.2 Correct Assignment Lists . 62

3.2.3 Semantics of the Commands . 64

3.3 Abstraction of Commands . 67

3.3.1 Sequential Composition . 68

3.3.2 Properties of Composition . 70

3.3.3 Applying Sequential Composition . 72

3.4 Proof Rules for Commands . 74

3.4.1 Example . 76

3.5 Conclusion . 79

4 Programs 82

4.1 Programs ofL . 83

4.1.1 Semantics of Programs . 85

4.1.2 Transition Relation:leads-to . 88

4.1.3 Refinement of Programs . 89

4.1.4 Simple Program Abstraction . 92

4.2 Program Transformation . 92

4.2.1 Control Flow . 95

CONTENTS v

4.2.2 Regions of a Program . 99

4.2.3 Semantics of Regions . 105

4.2.4 Transition Relation: Traces . 108

4.3 Program Abstraction . 112

4.3.1 Abstracting from Regions . 112

4.3.2 Path Transformation of a Region . 113

4.3.3 General Transformation of a Region . 116

4.4 Proof Rules for Programs . 121

4.4.1 Verifying Programs . 123

4.5 Conclusion . 126

5 Examples: Processor Languages 129

5.1 General Data Model . 130

5.1.1 Data Operations . 131

5.1.2 Memory Operations . 133

5.1.3 Example: Division of Natural Numbers 134

5.2 The Motorola 68000 Architecture . 141

5.2.1 Instructions . 141

5.2.2 Operations . 143

5.2.3 Example: Summation . 146

5.2.4 Example: Division . 153

5.3 The PowerPC Architecture . 157

5.3.1 Registers . 157

5.3.2 Instructions . 158

5.3.3 Example: String Length . 161

5.3.4 Example: Division . 166

5.4 Other Features of Processor Languages . 170

5.4.1 Multiple Data Move Instructions . 170

5.4.2 Organisation of Registers . 172

5.4.3 Delayed Instructions . 173

5.5 Conclusion . 176

CONTENTS vi

6 Examples: Proof Methods for Object Code 178

6.1 Features of Object Code Programs . 179

6.1.1 Processor Architecture . 179

6.1.2 Loops in Programs . 180

6.1.3 Sub-Routines . 182

6.1.4 Summary . 183

6.2 Verification by Data Refinement . 184

6.2.1 Data Refinement . 184

6.2.2 Application of Data Refinement . 186

6.2.3 Example: Division . 187

6.2.4 Related Work . 190

6.3 Structured Proofs . 191

6.3.1 Weakest Precondition of Regions . 191

6.3.2 Properties of the Weakest Precondition 193

6.3.3 Example: String Copy . 195

6.3.4 Verifying Regions of a Program . 198

6.4 Conclusion . 199

7 Verification of the Theory 201

7.1 The PVS System . 202

7.1.1 The PVS Specification Language . 202

7.2 Development of the Theory . 203

7.2.1 Mechanical and Mathematical Proofs 204

7.3 Verifying the Theory in PVS . 205

7.3.1 Specification of the Theory in PVS . 205

7.4 Implementing the Theory . 208

7.5 Conclusion . 209

8 Conclusion 211

8.1 Contribution of the Thesis . 212

8.2 Application . 215

8.3 Related Work . 215

CONTENTS vii

8.4 Verifying Safety Properties .217

8.5 Extending the Work . 217

8.6 Summary of Results . 219

A Functions 227

A.1 Bit-Vector Functions . 227

A.1.1 Bit-Vector Operations . 228

A.1.2 Arithmetic Operations . 228

A.1.3 Shift and Rotate Operations . 230

A.1.4 Memory Access . 232

B Processor Language Features 233

B.1 Motorola 68000: Condition Codes . 233

B.1.1 Condition Code Calculation . 235

B.1.2 Addressing Modes of the M68000 . 236

C Proofs: Commands 240

C.1 Expressions . 240

C.1.1 Lemma (3.1) . 240

C.2 Substitution . 241

C.2.1 Lemma (3.2) . 241

C.2.2 Theorem (3.1) . 242

C.2.3 Correct Assignment Lists . 246

C.2.4 Theorem (3.2) . 248

C.3 Composition . 249

C.3.1 Composition and Assignment . 249

C.3.2 Theorem (3.3) . 252

C.3.3 Theorem (3.4) . 252

C.3.4 Theorem (3.5) . 252

C.3.5 Theorem (3.6) . 253

C.3.6 Theorem (3.7) . 253

C.3.7 Theorem (3.8) . 254

C.3.8 Theorem (3.9) . 255

CONTENTS viii

D Proofs: Programs 256

D.1 Program Syntax and Semantics . 256

D.1.1 Rules of Construction for Programs . 256

D.1.2 Theorem (4.1): Program Induction . 257

D.1.3 Lemma (D.2) and Lemma (4.1) . 258

D.2 Additional Induction Schemes . 258

D.3 Transition Relations . 259

D.3.1 Theorem 4.2 . 259

D.3.2 Traces . 259

D.3.3 Lemma (4.3) . 261

D.4 Refinement . 263

D.4.1 Theorem (4.5) . 263

D.5 Control Flow Properties . 264

D.5.1 Theorem (4.6) . 264

D.5.2 Theorem (4.8) . 265

D.6 Paths . 266

D.7 Loops andmtrace . 268

D.8 Regions . 270

D.8.1 Corollary (4.5) . 271

D.9 Composition Over a Set . 271

D.10 Path Transformation . 275

D.10.1 Theorem (4.13) . 280

D.10.2 Theorem (4.14) . 281

D.11 General Transformation . 285

D.11.1 Loops . 287

D.11.2 Theorem (4.16) . 288

D.11.3 Theorem (4.17) . 289

D.11.4 Theorem (4.18) . 294

D.11.5 Theorem (4.19) . 296

D.11.6 Theorem (4.20) . 300

E Proofs: Proof Methods for Object Code 301

CONTENTS ix

E.1 Theorem (6.3) . 301

E.2 Theorem (6.4) . 302

E.3 Theorem (6.5) . 304

List of Figures

3.1 Basic Model for Data Operations . 41

3.2 Example of Expressions Modelling Data Operations 46

3.3 Rules for the Substitution Operator . 58

3.4 Summary of Syntax for Expressions and Commands ofL 61

3.5 Proof Rules for Commands ofL . 77

4.1 Reducible Loops . 94

4.2 An Irreducible Loop . 94

4.3 Flow-graph of Example (4.9) . 98

4.4 Loop-Free Regions . 104

4.5 Single Regions . 104

4.6 General Regions . 105

4.7 Proof Rules for the Programs . 122

5.1 Division: C Program . 134

5.2 Division:L Programidiv . 135

5.3 Commands of Abstractionidiv2 . 138

5.4 Addressing Modes . 142

5.5 Summation: C Program . 146

5.6 Summation: M68000 Program . 147

5.7 Summation:L Programsum . 148

5.8 Commands of Abstractionsum1 . 150

5.9 Division: M68000 . 153

5.10 Commands of Abstractionm68div2 . 155

5.11 Strlength: C Program . 160

x

LIST OF FIGURES xi

5.12 Strlength: Optimised PowerPC Program . 162

5.13 Strlength:L Programlen . 163

5.14 Commands of Abstractionlen2 . 164

5.15 Division: PowerPC . 167

5.16 Commands of Abstractionppcdiv2 . 168

6.1 Proof Rules for the Regions . 194

6.2 String Copy . 195

6.3 Abstractionstrcopy1 of strcopy . 196

Glossary of Symbols and Keywords

Expressions

Values Basic values 37
Labels Basic labels 37
Vars Basic variables 37
Regs Register identifiers 37
Names Set of all variable names .. 37
name Name constructor .37
pc Program counter ofL . 37B Interpretation of values as Booleans. .37
true, false Boolean values ofL . 37
State The type of states .38
undef Undefined elements . 38F Function identifiers .39If Interpretation of function identifiers .39
arity Arity of a function identifier . 39Fv Value functions .39F l Label functions . 39Fn Name functions . 39
equal Equality operator ofL . 39E Value expressions .42El Label expressions .42En Name expressions .42Eb Boolean expressions ofL . 42Ie Interpretation of an expression as a value 43Il Interpretation of a label expression as a label43In Interpretation of a name expression as a name.43Ib Interpretation of an expression as a Boolean 43�(I ;s) Equivalence in states under interpretationI 47�s Equivalence in states under assumed interpretation 47

xii

Glossary of Symbols and Keywords xiii�I Strong equivalence under interpretationI 47� Strong equivalence under assumed interpretation 47

Alist Assignment lists .. . 51
nil Empty assignment list .51
cons((x; e); al) Assignment list constructor . 51(x; e) � al Abbreviation ofcons((x; e); al) . 51
combine(al; bl) Combination of assignment lists . 51al � bl Abbreviation ofcombine(al; bl) . 51
combine? Recogniser for combined assignment lists 51
simple? Recogniser for simple assignment lists . 52
Slist Simple assignment lists .. 52
initial Prefix of an assignment list . 52x 2s al Membership of assignment list in states 53
find Expression associated with name in an assignment list 53
occs?, Assoc Names and values in assignment list . 62
correct? Correct assignment lists .. 62

update(s; al) Update states with assignment listal . 54
subst Substitution expression . 54e / al Substitution ofal in value, label or name expressione 54, 55bl / al Substitution ofal in assignment listbl .56

CommandsC0 Set of all commands. .59
if then else Conditional command . 59:= (al; l) Assignment command . 59l : c Labelled command .59
label(c) Label of commandc .59
regular? Regular commands. .60C Commands of the languageL . 60Ic(c)(s; t) Interpretation of commandc in statess; t 64

goto, abort Derived commands. .65
enabled Selection of command in a state . 66
halt? Failure of command . 66; Sequential composition . 68

of labelled and conditional commands . 69
of assignment commands . 69

Programs

program? Defining predicate for programs ofL . 83

Glossary of Symbols and Keywords xivP Programs ofL . 83
at Access a command of a program . 83p+ c Addition of commandc to programp . 84p1] ps Combination of programsp1 andp2 . 84

Behaviour The type of program behaviours . 86Ip(p)(�) Interpretation of programp in behaviour�86
halt? Failure of a program in a state . 87
final? Final states of a program. .87s c; t For commandc, abbreviation ofIc(c)(s; t) 88s p; t States leads to statet through programp 88c1 7�! c2 Commandc1 directly reaches commandc2 95c1 p7�! c2 Commandc1 reaches commandc2 throughp 97
path?(p; c1c2) There is a path fromc1 to c2 throughp . 266
loopfree?(p) Programp contains no loops . 103

trace Trace through a program. .109
tset Trace set of a program . 109
mtrace Maximal trace through a program. .110
rmtrace Restricted maximal trace through a program 110p1 v p2 Refinement between programsp1 andp2 90p1 �I;al p2 Programp2 data refines programp1 . 185

Regions

region? Defining predicate for regions . 99R Set of all regions .. 99
region Region constructor . 100
unit Unit region constructor . 100
unit? Unit region recogniser . 100
label(r) Label of regionr .101
body(r) Body of regionr . 101
head(r) Head of regionr . 101c 2 r Membership of a region . 101r1 � r2, r1 � r2 Subset relations between regions . 101r1 < r2 r1 is a maximal sub-region ofr2 . 192s r; t States leads to statet through regionr . 101c1 r7�! c2 Commandc1 reachesc2 through regionr 101
rest(r) Sub-regions of regionr . 102
loopfree?(r) Regionr contains no loops. .103
single?(r) Regionr is a single loop . 103

Glossary of Symbols and Keywords xv

enabled(r)(s) Regionr is enabled in states . 105
final?(r)(s) States is final for regionr . 105
halt?(r)(s) Regionr fails in states . 105Ir(r)(s; t) Interpretation of regionr in statess; t . 106r1 v r2 Refinement between regionsr1; r2 . 107c;A Generalised composition of commandc with setA 113T1 Path transformation of regions. .114

lphead? Commands beginning a loop . 116
lpheads Set of commands beginning a loop. .116
cuts Cut-points of a region . 116
lpbody Body of a loop. 117
loops Sub-regions beginning with a cut-point . 117
gtbody Abstractions of paths in a region . 118T2 General transformation of regions . 118

Assertion LanguageA Set of all assertions .. . 74:, ^, _,) In general logical operators, also defined forA748(�v : F (v)) Universal quantification inA . 74P / al Substitution in assertion ofA . 74WA Generalised disjunction over set of assertionsA 192` P Validity of assertionP .74
wp(c; Q) Weakest precondition of commandc . 75[P]p[Q] Specification of programp . 122
wp0(r; Q) Weakest precondition of a path in regionr 192
wp1(r; Q) Weakest liberal precondition of regionr . 192
wp(r; Q) Weakest precondition of regionr . 192

Expressions in Examples

Values, Vars, LabelsValues, variables and labels in examples . 41
Regs Set of register identifiers, in general .41

for Motorola 68000 processor . 141
for PowerPC processor . 157

ref General name function . 40
also generic memory access .133

loc General label function .40
not, and, or Negation, conjunction and disjunction of expressions inEb . . . 45=a Synonym for equality ofL . 39<a,�a Comparisons between expressions . 41,45+a,�a,�a General arithmetic functions . 40

Glossary of Symbols and Keywords xvixy, moda Exponentiation and modulus . 41

Byte, Word, Long Size of byte, word and long-word bit-vectors 130
mkBit Bit constructor .. . 131
bit(i)(a) Bit i of bit-vectora .131
Byte Byte constructor .131
Word , mkWord Word constructors. .131
Long, mkLong Long-word constructors . 131
mkQuad Quad-word constructor . 46
B(i)(a) Byte i of bit-vectora . 131
W(i)(a) Word i of bit-vectora . 131
ext Sign extension of bit-vectors . 132
cond(b; e1; e2) Conditional expression with testb . 171

Mem Memory access for Alpha AXP. .46
Inst Label access for Alpha AXP . 46
readl Read long-word. .133
writel Write long-word .133

mkSR Constructs value of M68000 status register 143
calcSR Calculates value of M68000 status register 145
calcCRF Calculates value of PowerPC condition register 162+sz,�sz,�sz Arithmetic on bit-vectors of sizesz. 132=sz, <sz, >sz Comparison relations between bit-vectors of sizesz. 132+32,�32,�32 Addition, subtraction and multiplication of long-words 132=32, >32 Equality and greater-than between long-words 132+64,�64,�64 Addition, subtraction and multiplication of quad-words 46=64, >64 Equality and greater-than between quad-words 46

Chapter 1

Introduction

Programs are developed to produce a behaviour from a computer which will meet some re-
quirement. A specification is a formal description of the properties required ofthe computer’s
behaviour. A program satisfies its specification, and iscorrect, if every behaviour which it pro-
duces has the properties described by the specification. Thecorrectness problemis to show that
a program satisfies its specification. This is often solved bytestingthe program on a sample of
the data it is expected to process. Testing shows that the program is correct for the test cases
and increases confidence in the program. It cannot show that a program satisfies itsspecification
since it is always possible that the test data excludes those cases which causeerrors.

Verificationis a stronger method for establishing the correctness of program which constructs
a mathematical proof that the program satisfies its specification. In verification, both the program
and its specification are described in the terms of a logic. The rules of the logic are applied to
show that the actions performed by the program produce a behaviour with the properties de-
scribed by the specification. The logical description of the program is derived from the program
text together with the semantics of the programming language. Since it is a description of the
program requirements, the program specification must be produced manually and must be in a
form which is suitable for verification. To verify a program therefore requires the program text,
a semantics for the language and a method for translating the semantics to the terms of the logic.

Programs are typically written in high-level languages. These languages are often described
informally and do not have a formally defined semantics. Informal descriptions can contain
inconsistencies or errors and may be incomplete. To verify a high-level program, assumptions
must therefore be made about the intended semantics of the high-level language. Because there
can be no guarantee that these assumptions are correct, there is no guarantee thatverifying the
program will prove its correctness. Furthermore, a program of a high-level language cannot be
directly executed on a computer but must be translated to an executable form, calledobject code,
by a compiler. If a high-level program is to be verified then it is also necessary to verify the
compiler since an error during the translation will lead to the execution of incorrect object code.

Object code is a program of a processor language and the semantics of these languages are
suitable for use in a proof of correctness. Since object code can be executed on a machine,

1

Introduction 2

verifying the object code also ensures that the executed program is correct. However, the nature
of processor languages means that it is difficult to describe, in the terms of a logic, the actions
performed by object code. The size of object code programs also makes acute a general problem
in program verification. Because the effect of each command in a program must beconsidered
during program verification, the size of a correctness proof is proportional to the numberof
commands in the program. A processor language contains a large number of highly specialised
commands (calledinstructions) which carry out relatively simple actions. These result in object
code programs which are much larger than the equivalent high-level programs. Verifying even
a simple program can require a large amount of work and the proof needed to verify a typical
object code program is too large to be carried out manually.

Automated proof tools can assist in program verification by carrying out the basicinference
and simplification steps which occur in any proof. Such tools apply the rules of the logic to the
text of logical formulas. This allows quick and efficient reasoning about the properties estab-
lished by an individual program command. However, an automated tool is less able to assist
when considering the properties established by a group of commands. This requires inferences
be drawn from the properties of the individual commands about the interaction between the
commands in the group. Theorem proving techniques have been used to construct proof tools for
verifying object code programs. However, these tools often require manual intervention to direct
the course of the proof and this is made difficult by the methods used to reason about programs.
The machine resources needed to use these tools also impose severe limits on the size of the
program which can be verified.

Proof tools developed for object code verification are also limited to the programs of a single
processor. A proof tool will have a model of a processor language, which is used to derive the
properties of the language needed to verify a program. This model and its properties will be
specialised to a single processor, because the instructions of each processor are unique to that
processor language. To verify the object code of a different processor, it would be necessary to
repeat the work carried out to construct the model and derive its properties. Because a processor
can have several hundred instructions, this will be a time-consuming task effectively restricting
the proof tool to the object code of a single processor only.

The problems posed by object code verification stem from the limitations of the methods
used in program verification. These make it difficult to describe the behaviour of object code
programs and to apply proof tools to infer properties of programs. To make object code verifi-
cation practical, it must be possible to describe an object code program in a formsuitable for a
manual proof but which also allows the application of automated tools. It must also be possible
to reduce the work which must be carried out manually, by allowing the use of an automated tool
to simplify reasoning about a group of commands. These methods must be independent of any
processor language, to avoid specialising any proof tool to a single processor. The development
of such techniques would be useful for program verification in general because the problems of
verifying object code apply equally to the verification of high-level programs.

1.1 Object Code Verification 3

1.1 Object Code Verification

This thesis describes a method for the verification of object code programs which allows the
proof of correctness to be simplified by manipulating the text of a program. By only considering
the text of a program, the method supports the use of automated proof tools during program
verification. The method is independent of any processor language and provides a means for
applying the same tools and techniques to different processor languages.

The object code programs which will be considered are sequential programs which do not
modify themselves. The verification of a program is assumed to be carried outin program logics,
logical systems such as those of Hoare (1969) and Dijkstra (1976), in which proof rules are
applied to the text of a program. The specification of a program is assumed to describe its
livenessproperties, which state that execution of the program will eventually establish some
property (Manna & Pnueli, 1991). It is also assumed that automated tools are available to assist
in verifying a program. However, the method described in this thesis is independent of any
particular proof tool. Where assumptions are made about the abilities of an automated tool, they
can be satisfied by techniques which are well enough established to be consideredstandard.

To increase confidence in the correctness of the methods for object code verification devel-
oped in this thesis, the theory described in this thesis has been verified usingthe PVS theorem
prover (Owre et al., 1993). Note, however, that the PVS theorem prover has not been used to
implement a proof tool for program verification. The techniques needed to verify the theory are
markedly different from those required to efficiently verify a program and the work with PVS
cannot easily be used for program verification. The work with PVS is only intended to verify the
theory which would be implemented by a proof tool for program verification.

Approach

The approach to object code verification followed in this thesis is to developan abstract language,
denotedL, in which to describe the object code of arbitrary processors. The languageL supports
the definition of proof rules for program logics in which to verify programs ofL. An object
code program is verified by translating the object code to a program ofL then showing that
theL program is correct. The languageL is expressive enough that a processor instruction can
be described by a singleL command. The translation from object code to a program ofL is
therefore a simple replacement of each instruction of the object code program with its equivalent
command ofL. The languageL is independent of any processor language, allowing tools and
techniques to be developed for the verification of object code independently of the processor
language in which the object code is written.

The abstract languageL provides the means for verifying object code programs but verifying
object code as a program ofL does not, in itself, simplify the proof of correctness. Because
there is a command in theL program for every instruction of the object code, the number of
commands which must be considered during the proof will not be reduced. The approach used
to simplify the verification of a programp is based on constructing anabstractionp0 of the

1.1 Object Code Verification 4

program. The abstractionp0 is a program ofL which is correct only if the original programp is
correct. The abstraction will, normally, be constructed to be simpler to verify than the programp,
with a single command of the abstractionp0 describing the behaviour of a group of commands
in programp. Because the abstraction is a program ofL, the program logics and proof methods
of proof applied to verify programs are equally applicable to the abstractions of programs. This
allows the verification of a program to be carried out in a uniform environment, regardless of
whether the program is the original or an abstraction of the original.

The abstractions of a program are constructed by applying transformations to the textof the
program. Because only the program text is used to abstract from a program, the programtransfor-
mations are suitable for efficient mechanisation. To use program transformations in verification
they must be shown to be correct: the transformations must preserve the correctness of the pro-
gram. The transformations described in this thesis will be shown to be correct, the correctness of
a program is preserved by the transformation constructing its abstraction. Inparticular, the ab-
straction of an incorrect program will also be incorrect. It will therefore be impossible to verify
an incorrect program by abstracting from the program. This ensures that it is safe to apply the
transformations during program verification.

The use of the abstract languageL to describe object code programs and the use of program
transformations to simplify the proof of correctness will allow an object codeprogram to verified
through the following steps:

1. The object code program is translated into the languageL, to obtain a programp.

2. The program specification is described in terms of a program logic for the languageL.

3. An abstractionp0 of programp is constructed from the program text, possibly with the use
of an automated proof tool.

4. The rules of the program logic are applied to show that the abstractionp0 establishes one
or more properties required by the specification.

5. Steps 3 and 4 are repeated as necessary until it is shown that all properties required by the
specification are established by the program.

With the exception of steps 1 and 3, this is the usual approach to program verification. The
methods needed to carry out steps 1 and 3 are the principal contribution of this thesis. Step 1
exploits the ability to describe and verify an object code program of any processoras a program
of L. This allows a set of tools and techniques developed for verifying programs ofL to be
applied to the object code of a wide range of processors. Step 3 allows the verification of theL
program to be simplified by using automated tools to abstract from the program. Thisapproach to
verifying a program is independent of the proof method used to prove properties of the program.
Although the method of intermittent assertions (Manna, 1974; Burstall, 1974) will be used here,
other proof methods can also be applied.

The main focus of the thesis is in the syntactic and semantic properties of the languageL and
their use to describe object code and for program abstraction. The syntax and semantics ofL are

1.2 Outline of the Thesis 5

intended to support the definition of proof rules and do not require the use of a particular program
logic or method of proof. This provides flexibility in the choice of logics and methods used to
verify a program. Furthermore, a program logic defined for the abstract languageL will be a
generic logic for reasoning about the object code of different processors. The use of an abstract
language to model object code allows the use of abstraction to simplify the task ofverifying
program. The languageL will therefore make the verification of object code both possible and
practical. Any difficulty which occurs during a proof will be because the program isdifficult to
verify and not because it is an object code program.

1.2 Outline of the Thesis

After a section describing the mathematicalNotation used, the thesis begins with the back-
ground of program verification and abstraction inChapter 2. This describes the techniques used
to reason about programs, including the standard program logics and proof methods. Processor
languages will be described with a summary of the problems which make object code difficult
to verify and the solutions which have been considered. The basis for reasoning about the rela-
tionship between a program and its abstraction will be summarised as will the approach used to
show that a program transformation correctly constructs an abstraction. Alternative methods for
verifying object code will also be considered as will alternatives to object code verification.

Commands of the languageL are used to model the instructions of a processor language.
The commands and expressions of the languageL are described inChapter 3. The syntax and
the semantics of both the expressions and the commands are described in detail. Thesyntax of
expressions and commands is used to define a transformation which abstracts fromcommands ofL and which results in a command ofL. This transformation forms the basis for transformations
which abstract from programs. Its correctness is justified from the semantics of the expressions
and commands. The chapter ends with an example of proof rules for reasoning about the com-
mands ofL.

Programs ofL are used to describe object code in a form suitable for verification. The
programs ofL and methods for their abstraction are the subject ofChapter 4. The semantics
of the programs are used to justify methods of reasoning about program execution. These,in
turn, allow comparisons to be made between programs and their abstractions. Twomethods
for constructing an abstraction are described: the first is based on the abstraction of manually
chosen commands of a program. The second method is intended for use in an automated tool
and assumes the commands are chosen mechanically. Both methods define transformations on a
program which are shown to preserve the correctness of the program. The chapter ends with an
example of a program logic which is used to verify a simple program ofL.

The languageL and the methods for abstracting programs are intended to allow arbitrary
object code programs to be modelled and verified.Chapter 5 describes simple models of the
Motorola 680000 (Motorola, 1986) and the PowerPC (Motorola Inc. and IBM Corp., 1997)
processor languages. The main interest is in the ability to model object code programs in terms

1.2 Outline of the Thesis 6

of the languageL. If this is possible then the ability to manipulate and verify object code of the
processors follows. The Motorola 68000 and PowerPC do not present any great difficulty and
simple programs for each processor are modelled in the languageL and shown to be correct.
However, processor languages can have features which make the abstractionof object programs
difficult. Some of these features and their effect on the methods used to model andverify object
code are described.

The use of an abstract language permits proof methods, defined for the abstract language,to
be applied to the object code of different processors. The abstract languageL also allows the use
of standard methods for reasoning about programs to be applied to object code programs. Pro-
gram verification has been extensively studied and there are many such techniques.Chapter 6
describes two proof methods which can be applied to programs ofL. The first is an example
of a method which can make transferring a proof of correctness between the object code of dif-
ferent processors simpler. The second is an example of the definition of a proof methodfor the
languageL which can be applied to arbitrary object code programs.

The theory described in Chapter 3 and Chapter 4 has been verified using the PVS theorem
prover (Owre et al., 1993). The theory underlying the proof methods described in Chapter 6has
also been verified with PVS. The theory defined for verification by the theorem prover closely
follows that described in Chapters 3, 4 and 6. The major differences are in theadditional defini-
tions and lemmas required to prove the theory in PVS and in the definitions of the expressions
of L. Chapter 7 describes the role played by the PVS theorem prover in the development of the
theory. The differences between the theory defined in Chapters 3, 4 and 6 and the theory as it is
defined in the PVS specification language will also be described. The proofs for Chapter 3 and
Chapter 4 are given inAppendix C andAppendix D respectively; the proofs for Chapter 6 are
given inAppendix E. The theory described in this thesis is intended to allow the implementa-
tion of a proof tool for program verification. The techniques and methods needed for such an
implementation will be briefly discussed.

The thesis concludes with a summary, inChapter 8, of the methods for verifying an object
program. The transformations for abstracting programs are intended for implementation in an
automated proof tool. Many of the issues surrounding the use of automated tools in program
verification have already been considered and will be discussed here. The proposed techniques
are related to previous work in the field and extensions to the work are considered.

Notation 7

Notation

Types: The basic types are thebooleans, theintegersand the non-negative integers. The type of
boolean values is denotedbooleanand the integers are denotedZ. The non-negative integers are
called the natural numbers, or simply thenaturals, and denotedN . The type offunctionsfrom T
to S is writtenT ! S and! associates to the right. Functions from a typeT to the booleans
are calledpredicatesonT . The cross-product of typesT andS is writtenT � S. That a variable
or constantx has typeT will be denoted(x : T). Where the type of a variable is obvious from
the context it will sometimes be omitted.

Types are defined and the definition of a typeT may be parameterised with a typeS: the
application ofT to S is writtenT (S) and is a type. WhereS can be an arbitrary type it may be
omitted:T is written forT (S) whenS may be any type. In general, types will only be given in
the mathematical definitions and formulas and may be omitted from the text.

Functions: Functions are generally named in lower-case and predicates are generallynamed
with a question mark. For example,eg names a function andeg? names a predicate. Func-
tions may be defined recursively and such a definition is either by primitive recursion or can be
transformed to primitive recursion (Kleene, 1952).

Operatorsare functions whose first argument is a cross product of types. The operator may
be identified symbolically and its type may be given with underline characters indicating the
placement of arguments. For example, the type of the addition operator on the integers iswritten+ : (Z� Z)! Z.

Logical operators: The boolean values true and false are writtentrueandfalserespectively.
The conjunction, disjunction, implication and logical equivalence operators are written^, _,)
and, respectively. The universal and existential quantifiers are8 and9 respectively. Equality

is written= and a defining equality is written
def= .

The presentation of a formula having the formA1 ^ : : : ^ An) C may be given asA1 � � � AnC
Free variables in the formula are universally quantified.

Basic operators: The operator� applied to a variablex of typeT and expressione of typeS is written �x : e and forms a function of typeT ! S. Nested lambda expressions are
abbreviated,�x1; x2; : : : xn : e

Textual substitutionreplaces variablesx1; : : : ; xn with expressionse1; : : : ; en in expressionf (where the variables occur free) and is writtenf [e1; : : : ; en=x1; : : : ; xn].
The arithmetic operatorsaddition, subtraction, multiplication, division and remainder ap-

plied to integersx andy are writtenx + y, x � y, x � y, x � y andx mod y respectively. The
remainder, mod, satisfies((x � y)� y) + (x mody) = x.

A sequenceof a typeT is a total function from the naturals toT , seq(T) def= (N ! T).

Notation 8

The suffixof a sequence� beginning at thenth element, written�n, is the sequence defined�n def= �(m : N) : �(n+m).
Sets: In a seta having typeSet(T), every member ofa has typeT anda is said to bea set

of typeT . Sets may be defined by comprehension, writtenfx : T j fg wherex is a variable
of typeT , andf is a boolean formula in whichx may occur. The empty set is writtenfg anda is a singleton set if there is an elementx such thata = fxg.The membership operator is
written 2, the union, intersection, subset and proper subset operators are written[, \, � and� respectively. The difference between setsa and b of type T is written a � b and defineda � b def= fx : T j x 2 a ^ :x 2 bg. The power-set of a seta of typeT is writtenPa, has type

Set(Set(T)) and definitionPa def= fb : Set(T) j b � ag.
The image of a functionf with type(S ! T) on a seta with typeSet(S) is a set with type

Set(T) and definition: f(a) def= fx : T j9(y : S) : y 2 a ^ x = f(y)g
Sets and types are equivalent: a seta of typeT is the subtype ofT containing only those

elements ofT which are also ina. A typeT is the set containing all elements of typeT . Sets and
predicates are also equivalent: the seta of typeSet(T) is the predicate�(x : T) : x 2 a. The
predicatep on typeT is the setfx : T j p(x)g.

The Hilbert epsilon operator is written� and its application to a seta is written �a. Whena has typeSet(T), the result of�a has typeT . Whena is not empty, the result�a is a arbitrary
member ofa, (�a) 2 a. Whena is empty anda has the typeSet(T), the result of�a is an arbitrary
constant of typeT .

Finite Sets: The finite sets of typeT have typeFiniteSet(T). The empty set is finite and
if a is finite then so isfxg [a. Any subset of a finite set is also finite as is the power-set of a
finite set. If setsa andb are finite sets of typeT andS respectively, the cross-product ofa andb,
definedf(x; y) : (T � S) j x 2 a ^ y 2 bg, is also finite (Levy, 1979). For finite seta, jaj is the
cardinality ofa satisfyingjfgj = 0 andja [fxgj = 1 + jaj for x 62 a.

Two induction schemes are assumed on finite sets. Let� be a predicate on finite sets (with
typeFiniteSet(T)! booleanfor someT).

(Finite induction) �(fg) 8b : �(b)) (8x : x 62 b) �(b [fxg))8a : �(a)
(Strong finite induction) 8b : (8c : c � b) �(c))) �(b)8a : �(a)

Finite induction follows from the definition of a finite set. Strong finite induction can be
proved from well-founded induction on the cardinality of a finite set.

Notation 9

Inductive definitions: The presentation of the theory makes use of inductive definitions of
predicates and types. The basis of the inductive definitions is described by Paulson (1994b,
1995b) and by Camilleri & Melham (1992). The inductive definition of a predicate has the usual
form. For example, the transitive closure of a relationR, writtenR+, is defined by induction. IfR is a predicate on type(X � Y) thenR+ is defined as the base and inductive cases.

(Base case) R(x; y)R+(x; y) (Inductive case) R+(x; y) R+(y; z)R+(x; z)
The reflexive transitive closure of a relationR is writtenR� and definedR�(x; y) def= x = y _R+(x; y).

Inductively Defined Types: The inductive definition of types is for the purposes of the
presentation and is intended to be equivalent to a definition in Backus-Naur form.

The inductive definition of a type is on a set ofconstructorfunctions and abasisset. The
constructors are not defined but are assumed to be such that the definition isfree (see Loeckx
& Sieber, 1987). In particular, it is assumed that induction and recursion on the structure of
elements is possible. For example, the type of lists is writtenlist(T), for some typeT . The
definition is from the basis setB = fnilg and constructor functionconsof type(T � list(T))!
list(T). The typelist(T) is defined inductively.

nil 2 list(T) x 2 T y 2 list(T)
cons(x; y) 2 list(T)

For an inductively defined typeT , a partial order� is assumed between the elements of the
type. Ifx; y have typeT thenx� y states thatx forms part of the structure ofy andx is said to
be asub-termof y. For example, the relation� on the lists,list(T), can be defined by recursion.x� nil

def= x = nilx� cons(y; l) def= x = cons(y; l) _ x� l
Graphs: A graph is a pair(V;R) whereV is a set of typeT andR is a relation, of type(V � V)! boolean. Forx; y 2 V , x reachesy through the graph iff the transitive closure ofR

is true for x andy, R+(x; y). A paththrough the graph fromx to y is a sequencev1; v2; : : : ; vn
such thatR(x; v1;), R(vn; y) and, for1 � j < n, R(vj; vj+1) are true andvi = vj iff i = j,
where1 � i; j � n andvi; vj 2 V � fx; yg. If the sequence is empty,n = 0, then the path is
made up ofx andy, R(x; y). There is a path fromx to y iff x reachesy. There is acycle in a
graph, called aloop in the setV , iff there is ax 2 V such thatR+(x; x).

Chapter 2

Verification and Abstraction

The method for object code verification described in this thesis is based on the use of the abstract
languageL. This has two functions: the first, as a description language in which the programs
of different processors can be modelled and verified. The second, as a standard form in which
to transform and abstract programs. For both purposes, only the syntax of the language is used.
For verification, the syntax of the abstract languageL must therefore support both the descrip-
tion of object code and the definition of program logics in which to verifyL programs. For
abstraction, the syntax ofLmust support the manipulation of the commands and programs ofL.
The semantics of the languageL are used to justify the rules of program logics and the correct-
ness of program transformations. This ensures that the methods used to verify and abstract from
programs are sound and therefore it is not possible to verify an incorrect program.

The requirements of the abstract languageL are those of the methods used to model, verify
and abstract programs. The particular areas of interest are:� The principles underlying program verification: modelling and specifying program be-

haviour and the proof methods for program verification.� Processor languages: the execution and data models of processors and the features which
complicate the verification of object code programs.� Abstraction of programs: methods for constructing abstractions of programs and the justi-
fication for verifying a program by verifying its abstraction.� The use of automated tools in program verification.

A number of methods for showing the correctness of object code programs have been proposed.
These include the use of theorem provers to simulate processors and methods for producing
correct object code from verified high-level programs. A common factor is the attempt to sim-
plify the verification of the program which is to be executed on the machine. Although these
methods have a number of drawbacks, some of the underlying techniques are useful for program
verification in general and these techniques will also be reviewed.

10

2.1 Program Verification 11

2.1 Program Verification

Program verification has been extensively studied; its methods are describedby Apt (1981),
Cousot (1990) and Francez (1992) among others. A mathematical treatment is given by Loeckx
& Sieber (1987). The difficulty of verifying a program is determined by the proof methods for
verification. These describe how a program is verified and also suggest how the task of verifying
programs can be simplified. To verify that a program is correct, the result of executing the
program must be shown to establish the properties required by the program specification. This
section will summarise the methods used to specify and to verify programs,beginning with the
relationship between programs and specifications. The requirements of program logics and the
methods for proving correctness will then be described.

Programs and Specifications

A program is made up of commands which evaluate expressions and assign the resultingvalues
to variables. The program is verified by reasoning about the properties of the programvariables
during the program execution. A programstateis an assignment of values to variables and a
sequence of states describes thebehaviourof the program when it is executed. Each command
beginsin a state andproduces(or ends) in a state by assigning values to variables. No (exe-
cutable) command can assign more than one value to a variable. Each program begins in an
initial state and if the program terminates then it does so in afinal state.

Execution of a program begins with theselectionof a command. This is thefirst command
of the program and, when executed, it produces either a final or anintermediatestate. If the
state is intermediate then the program execution continues, repeatedly selecting and executing
commands until a final state is produced. A command can be executed any number of times;
there is aloop in the program if one or more commands are repeatedly executed. The semantics
of the programming language determine how commands of a program are selected as wellas
the relationship between the states in which a command begins and ends. The behaviourof a
program is described by the initial state and the sequence of states produced during its execution.

A program specification is made up of aprecondition, describing the properties of the initial
state, and apostcondition, describing the properties which must be satisfied by a state during
the program execution. If the program terminates then the postcondition must be satisfied by the
final state. Any intermediate state of a non-terminating program which satisfies the postcondition
is final with respect to the specification. A program or command ispartially correct if its specifi-
cation is satisfied whenever the program terminates; a program which never terminates is always
partially correct. Fortotal correctness, the program or command must both terminate and satisfy
the specification. For example, assume the semantics of commands are defined by interpretation
functionI such that commandc begins in states and produces statet iff I(c)(s; t). Also assumeP andQ are predicates on states and thatP is the precondition andQ the postcondition of com-
mandc. Commandc is partially correct if8s; t : P (s) ^ I(c)(s; t)) Q(t) wheres; t are states.
The command is totally correct if8s : P (s)) 9t : I(c)(s; t) ^Q(t).

2.1 Program Verification 12

2.1.1 Program Logics

Verification is carried out in a program logic in which axioms and proof rules areused to show
that commands and programs satisfy a specification. The axioms and proof rules of the program
logic specify the semantics of the programming language. A program logic also providesa means
for specifying commands and programs as formulas of the logic. A program is verified byusing
the proof rules to show that the logical formula specifying the program istrue. Approaches to
defining proof rules for programs vary but the underlying principles are similar to those used for
commands. The description here will therefore concentrate on proof rules for commands.

The method used to specify commands and programs determines whether a program logic is
used to establish partial correctness or total correctness. Hoare (1969) describes a logic, based on
the work of Floyd (1967), for verifying partial correctness. In this, a commandc is specified by a
formula of the formfPgcfQg. This asserts that ifc, beginning in a state satisfying preconditionP , terminates then it produces a state satisfying postconditionQ. Manna (1974) developed a
variant of Hoare’s logic in which total correctness can be verified. Dijkstra (1976) describes a
second program logic, thewp calculus, also for verifying total correctness. This extends a stan-
dard logical system with apredicate transformer, wp. Applied to a commandc and postconditionQ, this calculates the weakest precondition,wp(c; Q), which must be satisfied for commandc to
terminate and establishQ. A specification based in thewpcalculus has the formP) wp(c; Q),
whereP is the precondition andQ the postcondition for commandc.
Proof Rules of a Program Logic

The axioms and proof rules of a program logic are determined by the semantics of the program-
ming language and by the methods used to prove a program correct. The proof rules are defined
on the syntax of the programming language; their correctness is justified from the semantics of
the language. The semantics of individual commands are, in general, specified as axioms of the
logic. Compound commands, formed by combining two or more commands, are specified in
terms of proof rules. These describe how the behaviour of the component commands establishes
the specification of the compound command.

For most commands of a programming language, the definition of proof rules requires only
the standard logical operators (conjunction, negation, etc). For example, consider theconditional
commandif b thenc1 elsec2, whereb is a test, commandc1 the true branch(executed if the test
succeeds) and commandc2 thefalse branch. The conditional command is specified with arbitrary
pre- and postconditionsP andQ by the proof rule:P ^ b) wp(c1; Q) P ^ :b) wp(c2; Q)P) wp(if b thenc1 elsec2; Q)
This rule allows the specification of the conditional command, to be established byderiving
specifications for the commandsc1 andc2 (Dijkstra, 1976).

Proof rules for commands can also require specialised operators. In particular, assignment
commandsrequire operators for manipulating the variables and expressions of the programming

2.1 Program Verification 13

language. Assignment commands are used to make changes to a machine state. The most gen-
eral form, a simultaneous assignment command, is writtenx1; : : : ; xn := e1; : : : ; en wherex1; : : : ; xn are variables ande1; : : : ; en are expressions. This simultaneously assigns to each
variablexi the result of evaluating expressionei. The assignment is specified, by its affect on an
arbitrary preconditionP , as the assignment axiom (Dijkstra, 1976):P [e1; : : : ; en=x1; : : : ; xn]) wp(x1; : : : ; xn := e1; : : : ; en; P)
This axiom uses textual substitution to model the changes made to preconditionP by the assign-
ment to the variables. An implicit requirement of the axiom is that the assignment is executable.
An assignment commands is unexecutable if a variable is assigned two distinctvalues: no state
can associate two values with a single variable. To ensure that all assignments are executable,
simple languages often exclude as syntactically incorrect assignments in which the same variable
occurs twice on the left-hand side:i 6= j) xi 6= xj.

In languages which containpointersor arrays, both the assignment axiom and the syntactic
restriction on assignment commands are invalid (Francez, 1992). Pointers are expressions which
identify a variable and which can depend on the values of variables; an arraycan be considered
a form of pointer. Pointers give rise to thealiasing problem: it is not possible to determine
syntactically whether a pointer identifies a given variable. Consequently, itis not possible to
use syntactic comparisons between variables to determine whether an assignment command is
executable. Neither is it possible to use textual substitution to define proof rules for assignment
commands, since this is also based on syntactic comparisons. Instead, proof rulesfor assignment
commands in the presence of pointers must use specialised substitution operators (Cartwright &
Oppen, 1981; Manna & Waldinger, 1981). Unexecutable commands are avoided by restricting
assignment commands to a single variable or (equivalently) by interpreting a multiple assignment
as a sequence of single assignments (Gries, 1981; Cartwright & Oppen, 1981).

The specification of programs and proof rules for programs depend on the type of program-
ming language being considered. A programming language is either astructuredor aflow-graph
language(Loeckx & Sieber, 1987). A program of a structured language is a compound command
and can be specified as a command (e.g. using Hoare formulas or thewp function). There are
a number of approaches to specifying flow-graph programs (Loeckx & Sieber, 1987; Francez,
1992). Common to all is a method for associating pre- and postconditions with the programbe-
ing specified. All proof rules for programs allow the specification of a program to beestablished
from specifications of the commands (similarly to rules for compound commands). Theproof
rules for programs also determine the proof methods which can be used to verify a program.

2.1.2 Proof Methods for Program Verification

There are two methods for verifying a program, both of which can be applied to any sequential
program which does not modify itself. The method of inductive assertions verifies the partial cor-
rectness of programs (Floyd, 1967): a program (or command) is said toestablishpostconditionQ
from preconditionP if whenever the program beginning in a state satisfyingP terminates, it does

2.1 Program Verification 14

so in a state which satisfiesQ. The method of intermittent assertions verifies the total correctness
of a program (Manna, 1974; Burstall, 1974): the program is said toestablishpostconditionQ
from preconditionP if execution of a program in a state satisfyingP eventually terminates and
does so in a state satisfyingQ. The method of intermittent assertions is equivalent to the method
of inductive assertions together with a proof that the program terminates (Cousot & Cousot,
1987).

In both proof methods, the program to be verified is broken down into sequences of com-
mands each of which is shown to satisfy an intermediate specification. These intermediate spec-
ifications are then used to establish the program specification. The proof methods describe how
the sequences of commands and their intermediate specifications must be chosen. The proof
methods also describe how the intermediate specifications are established from the sequences of
commands; the approach used suggests a method for simplifying program verification.

Proving Correctness

The method of inductive assertions and the method of intermittent assertions areboth applied
in the same way. Assume programp is to establish postconditionQ from preconditionP . Also
assume that the program terminates in a state in which afinal command is selected. As the
first step, a set ofcut-pointsare chosen such that the first command of the program is a cut-
point, the final command is a cut-point and at least one command in every loop is a cut-point.
Each cut-pointcuti is associated with an assertionAi. If cuti is the first command thenAi is
the precondition of the programP . If it is the final command, thenAi is the postcondition of
the programQ. All other assertions areintermediate assertions, chosen so that if the program
establishes the intermediate assertions then the program specification will be established as a
logical consequence. The cut-points at the loops are needed to allow the properties of loops in
the program to be established by induction on the program variables (Floyd, 1967).

Associating the cut-points with the intermediate assertions breaks down the proof that the
programp establishesQ from preconditionP to the smaller proofs of each of the statements:

From preconditionP , programp establishes assertionAi.
From assertionAi, programp establishes assertionAj

...
From assertionAk, programp establishes the postconditionQ

The assertionsAi form intermediate specifications to be satisfied by the sequences of commands
between each cut-point in the program. For each cut-pointcuti, the sequence of commands
cuti; c1; : : : ; cn is formed up to, but not including, the next cut-point: commandcn is followed
by a cut-pointcutj. The cut-points do not need to be distinct, ifcuti is cutj then the commands
are part of a loop in the program. The intermediate assertions,Ai andAj, associated with the
cut-points are the pre- and postcondition forming the specification to be satisfiedby the sequence.

Each sequence of commands,cuti; c1; : : : ; cn is shown to satisfy its specification by associ-

2.1 Program Verification 15

ating a second set of assertions,B1; : : : ; Bn, with each command in the sequence. Each pair of
assertionsBi; Bi+1 is a pre- and postcondition for commandci. The precondition forcuti is the
assertionAi and the postcondition forcn is the assertionAj. As before, assertionsB1; : : : ; Bn
are chosen so that if each command satisfies its specification then the sequence of commands
also satisfies its specification. The sequence is then verified by a proof of each of the formulas:Ai) wp(cuti; B1)B1) wp(c1; B2)

...Bn) wp(cn; Aj)
If the sequence of commands is part of a loop (which may have been broken down into more
than one sequence) then the proof will be by induction on the value of one or more variables.
To show that the loop satisfies a specification, each sequence of commands in the loop must be
shown to establish a property under each of the assumptions required for the inductionscheme.
The properties of each command in the sequence may therefore be the subject of more than one
proof attempt.

Applying the Proof Methods

To verify a program using either the method of inductive assertions or the method of intermittent
assertions requires a semantics for the programming language. This is needed to determine the
effect of executing commands in the program as well as the method used to form sequences of
commands in a program. For example, if a commandc must be shown to satisfy the specificationBi) wp(c; Bi+1), then the effect of executingc in a state satisfyingBi must be to produce a state
satisfyingBi. This can only be established from a specification of the command’s semantics.

A large part of the work needed to verify a program is due to the method used to reason
about the sequences of commands between program cut-points. Breaking down the sequences
into individual commands means that the work needed to verify the program is proportionalto
the number of program commands. However, neither the proof method of Floyd (1967) nor
that of Burstall (1974) requires that every command in the program be considered. It is only
necessary to show that the program establishes the assertions at the program cut-points. If only
these assertions are considered then the work needed is proportional to the number of cut-points.
The number of cut-points will usually be less, and at worst no more, than the total number of
program commands. It follows that transforming a program so that only the assertions at the
program cut-points need to be considered can reduce the work needed to verify the program.

The languageL has two purposes: the first, to provide a method for describing arbitrary ob-
ject code programs in a form which allows the use of the proof methods of Floyd (1967) and
Burstall (1974). The second, to support the transformation of a program so that only the asser-
tions at the program cut-points need to be considered during verification. For this, thelanguageL will allow a sequence of commands to be described as a single command ofL. This can be
used to describe a sequence of commands between program cut-points as a single commandc.

2.2 Processor Languages 16

Rather than consider each command in the sequence, the specification of the sequence can then
be established by reasoning about the single commandc. This reduces the number of commands
which must be considered to the number of sequences between program cut-points. The work
required to verify a program is then proportional to the number of cut-points in the program.

For example, assume a sequence of commands,cuti; c1; : : : ; cn, beginning with cut-point
cuti must be shown to establish postconditionAi+1 from preconditionAi. This is achieved by
showing that each commandci satisfies the intermediate specification,Bj) wp(ci; Bj+1). This
requiresn + 1 different proofs, one for each individual command, to show that the sequence
satisfies its specification. By constructing a commandc which describes the behaviour of the
sequence, it is only necessary to prove thatAi) wp(c; Ai+1). The proofs for then+1 individual
commands are reduced to a proof for a single command.

To reduce the work which must be carried out manually, the transformation of a program
must be mechanised: an object code program contains too many commands to make manual
transformation practical. Since programs ofL are used to model object code, the requirements
of the languageL are determined by the features of processor languages and by the methods used
to abstractL programs.

2.2 Processor Languages

A processor language provides the means for controlling the behaviour of a machine. The lan-
guage of a processor is defined by the processorarchitecture, the specification which must be
satisfied by a hardware implementation of the processor (Hayes, 1988). A processorcan be con-
sidered an interpreter for the processor language: the action performed by an instruction is the
result of the processor interpreting the instruction. The actions which can be carried out by an
instruction are therefore determined by the actions which can be carried out byprocessor. This
allows processor languages to be considered as a group, rather than individually. Anyinstruction
(or feature) which occurs in the language of one processor could occur in any other processor.
More generally, a processor language can (in principle) include any instruction whose semantics
can be described as a function transforming the state of the machine.

Processors can haveprivilegedandunprivilegedexecution modes, which impose restrictions
on the instructions which can be executed. The privileged mode is intended for operating system
software (Hayes, 1988). It provides instructions to control the resources available to the proces-
sor and to control the behaviour of the machine when an error occurs. The privileged mode of a
processor may also allow a program to be executed in a parallel computing model. Application
programs are executed in the unprivileged mode, which provides a subset of the processor in-
structions and a sequential computing model. Only sequential programs will be considered and
object code programs will be assumed to be executed in the unprivileged mode of a processor.

2.2 Processor Languages 17

Implementation of Processor Architectures

The implementation, in hardware, of a processor architecture can use techniques, such ascache
memoryor pipelining(Wakerly, 1989; Hennessy & Patterson, 1990), to optimise program execu-
tion. These do not affect the result of executing instructions or programs: the semantics of a pro-
cessor language are constant across different implementations of the processor. For example, the
Alpha AXP (Digital Equipment Corporation, 1996) processor architecture requires thatobject
code programs appear to be executed sequentially. This permits the processor implementation to
execute instructions in parallel provided that the result is the same as executing the instructions
sequentially. Object code verification is concerned with the effect of executing programs and
not on with how the processor architecture is implemented in hardware. The techniques used to
optimise a processor implementation will therefore not be considered further.

Hayes (1988) and Hennessy & Patterson (1990) describe the design and implementation of
processors as well as the factors influencing the choice of resources provided by a processor. A
common assumption is that object code programs are produced by an optimising compiler for a
high-level language. The designs of the Alpha AXP and of the PowerPC processors are described
by Sites (1993) and Diefendorff (1994). Wakerly (1989) describes the techniques used to write
object code programs, concentrating on the Motorola 68000 processor (Motorola, 1986).

2.2.1 Object Code Programs

An object code program is made up of one or more processor instructions. Formally, object
code is the machine representation of a processor language program: each instructionis encoded
in a machine-readable form. Anassembly languageprogram is the human-readable form of a
processor program, in which instructions are represented symbolically. Thereis a mapping be-
tween an assembly language program and an object code program: anassemblertranslates from
assembly language to object code; adisassemblertranslates from object code to assembly lan-
guage (Hayes, 1988; Wakerly, 1989). Techniques for specifying the mapping between assembly
language and object code are described by Ramsey & Fernández (1997). For verification, there is
little practical difference between assembly languages and object code and nodistinction will be
made between an assembly language program and its machine representation. The term object
code will be applied to any program of a processor language, regardless of its representation.
Instructions of a processor language will be described using their symbolic forms.

Data Model

A processor operates onvalueswhich are represented on the machine asbit-vectors(see Hayes,
1988); these can be considered a subset of the natural numbers. The resources available to
a processor include themachine memoryand the processorregisters. The machine memory
is organised aslocationsindexed byaddresses. The variables of an object code program are
some subset of the memory locations (which will be calledmemory variables) and the processor

2.2 Processor Languages 18

registers. The range of values which can be stored in a memory variable or register is fixed.
Two or more (generally consecutive) memory locations can be used to store values too large
to be stored in a single location. There is at least one register known as theprogram counter
(sometimes called the instruction pointer), denotedpc, which identifies the instruction selected
for execution. The memory variables and processor registers will collectively be referred to as
program variables. For object code verification, a machinestateis an assignment of values to
the program variables.

Processor registers are eitherhidden, and used only in the semantics of instructions, or are
visibleand may be referred to by an instruction. For example, the program counter of the Pow-
erPC processor (Motorola Inc. and IBM Corp., 1997) is always hidden and occurs only in the
instruction semantics. Registers can be organised in a number of ways. In the simplest, all regis-
ters are visible at all times and each register is referred to by a uniqueidentifier. More complex
methods include registerbanksandwindows, in which only a subset of the registers are visible at
any time (Hennessy & Patterson, 1990). These methods are based on the use of hidden registers
to determine the visible registers referred to by an instruction.

Execution Model

Each instruction of an object code program is stored in one or more memory locations and is
identified by itslabel, typically the address of the first memory location. Execution of an in-
struction begins in a state and produces a new state by assigning values to program variables. An
instruction labelledl begins in a states iff the value of the program counter ins is l; the instruc-
tion is selected for execution and said to havecontrol of the machine. A program has control
when any instruction of the program is selected for execution. Each instruction (implicitly or ex-
plicitly) assigns a label to the program counter, selecting thesuccessorof the instruction. When
execution of the instruction ends, control passes to the successor instruction. Theflow of control
through the program is the order in which program instructions are selected and executed.

The assignment to the program counter is implicit for the majority of instructions:the suc-
cessor is the next instruction in memory. Instructions which explicitly select a successor are
calledjumpsand pass control to atarget instruction. The label assigned to the program counter
by a jump instruction can be the result of an operation on data; in this case, the instruction is
said to be acomputed jump. Because the selection of a successor is an action performed by each
instruction, the order in which instructions are executed is independent of the order in which they
are stored in memory. This is in contrast to high-level languages, in which the flow of control is,
generally, determined by the order in which commands appear in the program text.

2.2.2 Processor Instructions

A processor instruction performs an operation on a machine state and produces a new state by
making one or more simultaneous assignments to variables. The operation performedby the
instruction applies one or more functions tosource operands. The resulting values are stored

2.2 Processor Languages 19

in variables identified bydestination operands. The syntax of an instruction can have one or
morearguments, from which the operands are calculated. Asource argumentis used to calculate
source operands, adestination argumentis used to calculate destination operands. Theaddress-
ing modesof an instruction determine how the source and destination operands are calculated
from the instruction arguments.

Example 2.1 Assume that an instruction has source argumentsrc, destination argumentdst, and
performs an operation implementing a functionf . The addressing mode of the source argument
defines a functionIs, identifying the source operand asIs(src). The addressing mode of the
destination argument defines a second functionId to calculate the destination operandId(dst).
The result of the operation will be to store in the program variableId(dst) the result of applyingf to the source operand:Id(dst) := f(Is(src)).
Common addressing modes includeimmediate, direct, indirectandindexedaddressing. Assume
registerr, valuev and that the machine memory is represented by functionMem such that thenth
location in memory isMem(n). In immediate addressing, the instruction argument is a valuev
which is interpreted only as a source operand,Is(v) = v. In direct addressing, the instruction
argument identifies a program variable (a register or memory location) and the operand is the
value of the variable. If the argument is registerr thenr is also the operand; if the argument is
valuev then the operand is memory variableMem(v). Indirect addressing interprets a program
variable as a pointer: if registerr is an argument, then the operand is the memory location whose
address is stored inr, Mem(r). Indexed addressing interprets two arguments as a memory
address and an offset: ifr andv are the arguments then the operand isMem(r + v). 2
Instruction Categories

The instructions of processor languages can be grouped according to their intended use in an ob-
ject code program. An instruction can be considered as eitherarithmetic, program control, data
movementor input/output. The arithmetic instructions perform operations on the program data.
These include the arithmetic operations (addition, subtraction, etc.), comparisons, bit-vector op-
erations and conversions between data representations. Program control instructions (jumps)
pass control to a target instruction by assigning a label to the program counter. A jump can be
conditional on the value of one or more variables. It can also assign values to variables other
than the program counter, to supportsub-routines(Wakerly, 1989). Data movement instructions
transfer values between program variables, typically between registers and memory locations. A
data movement instruction assigns the values of one or more program variables to oneor more
program variables.

Input/Output instructions perform essentially the same operation as data movement instruc-
tions, except that the transfer is between program variables and the input-outputports of the
processor (see Wakerly, 1989). It is not necessary for a processor to provide input/output in-
structions and, when available, these instructions are often restricted to the privileged execution
mode of a processor. Input/Output instructions can be considered to be instances of the data
transfer instructions with the ports described bymemory-mapping(Wakerly, 1989): input ports

2.2 Processor Languages 20

are modelled as functions whose value is unknown and output ports as variables whose value is
never used.

Although processor languages can differ in the details, all provide instructions tocarry out
arithmetic, program control and data movement operations. The differences between these
groups of instructions (and between processor languages) are primarily in the methodsused
to calculate the values and to identify the variables to be changed. Common to all groups is
that every instruction makes an assignment to one or more variables and the changes made can
depend on the initial values of the variables. In particular, every instruction makes an assignment
to the program counter, to identify the successor of the instruction.

Example 2.2 The Alpha AXP processor language (Sites, 1992) includes an instruction, writtenaddl r 1; r 2; r 3, to store the sum of registersr 1; r 2 in registerr 3. The instruction also assigns the
label,l, of the next instruction in memory to the program counter. This is an arithmetic instruction
and can be described as a simultaneous assignment:r 3; pc := r 1 + r 2; l. A similar instruction
for the PowerPC processor (Motorola Inc. and IBM Corp., 1997) is writtenadd r 1; r2; r 3. This
stores the sum ofr 2 andr 3 in r 1, updating the program counter with labell: r 1; pc := r 2 + r 3; l.
Comparison instructions for the Alpha AXP processor store the result of a test in aregister. The
instructioncmpeq r 1; r 2; r3 tests the equality of registersr 1 andr 2. The result of the test,1 or 0
representingtrueor false, is stored in registerr 3. The program counterpc is assigned the labell
of the next instruction. This can be described as a conditional command:if r 1 = r 2 thenr 3; pc :=1; l elser 3; pc := 0; l. The Alpha AXP also includes a conditional jumpbeq r ; v which tests the
value of a register,r . If the value is1 then control passes the instruction at labelpc+v, otherwise
control passes to the next instruction in memory, at labell. This is the conditional command:
if r = 0 then pc:= pc+ v else pc:= l.
The data movement instructionmove:w #258; r@ of the Motorola 68000 (Motorola, 1986) stores
value258 in the memory location identified by registerr . In the Motorola 68000 architecture,
a memory location stores numbers in the range0 : : : 255. The number258 is stored in two
consecutive locations as the two values1 and3 (calculated from258 = ((28�1)�1)+3). Assume
the machine memory is represented, as before, byMem. The instruction can be described as:
Mem(r);Mem(r + 1); pc := 1; 3; l (wherel is the label of the next instruction). The first value,1, is stored in locationMem(r) and the second value,3, in the next location,Mem(r + 1). 2

Execution of an instruction can cause an error, for instance if a division by zero is attempted.
The result of an error is either the assignment of arbitrary (undefined) values tovariables or the
failure of the instruction, passing control out of the program. Because object code programs are
interpreted by the processor, errors are detected when an instruction is executed. A processor
language can therefore include instructions which fail in some circumstances,with the assump-
tion that the instructions will not be used in those circumstances. For example, the PowerPC
processor includes an instruction which simultaneously assigns values to any two registersr 1
andr 2. This instruction fails if the registers are not distinct (the assignment isnot executable).
However, the registers are compared only when an attempt is made to execute the instruction.

2.3 Modelling Object Code 21

2.2.3 Features of Processor Languages

Although each processor architecture has a unique language, all processor languages havetwo
basic features. The first, that every processor instruction is a state transformer: a state is pro-
duced by changing the values of one or more variables, possibly using the initial valuesof the
variables to determine the changes to be made. Every change made to a state can be described as
the simultaneous assignment of values to variables: if states differs from statet in the values of
variablesx1; : : : ; xn thens can be transformed tot by a simultaneous replacement of the values
of x1; : : : ; xn in s with the values ofx1; : : : ; xn in t. Every processor instruction is therefore be
an instance of conditional and simultaneous assignment commands. Processor languages also in-
clude the equivalent of pointers (the expressions implementing addressing modes); unexecutable
assignments are detected when an instruction is executed, allowing variables identified by point-
ers to be determined before they are compared. The second feature of processor languages is
that the selection of instructions for execution is an action carried out by theinstructions. In the
execution model of object code programs, the flow of control is determined when instructions
are executed rather than by the text of the program.

2.3 Modelling Object Code

To verify an object code program, the program and each instruction must be described in a form
which can be reasoned about in a logic. To support the definition of program transformations,
it must also be possible to manipulate programs and instructions. Methods of describing object
code vary in the approach taken to the processor language in which the program is written. This
affects the difficulty of verifying and manipulating a program.

A common approach is to consider processor languages and their instructions individually
(Gordon, 1988; Yuan Yu, 1992; Necula & Lee, 1996): each instruction is considered to be
distinct from any other instruction. To verify object code using this approach requires a proof
rule for each instruction of a processor language. Because processors have a largenumber of
instructions, treating each instruction as distinct from any other instruction leads to the repetition
of a large amount of work. For example, proof rules defined for the instructions of one processor
cannot be applied to the instructions of another processor, even if the instructions have similar
behaviours. This approach also makes program transformations dependent on the individual
processor language and can unnecessarily limit the possible transformations. Forexample, if a
program has a sequence of two instructions which carry out the assignmentsx := 1 andy := 2
then the program could be simplified by replacing the instructions with the single assignmentx; y := 1; 2. This transformation is not possible if the processor language does not include an
instruction which carries out the multiple assignment tox andy.

An alternative approach is to describe processor instructions as commands of anabstract lan-
guage. This allows the similarities in the semantics of instructions to be exploited, describing
a specific action, such as an assignment to a register, as an instance of a more general action,
such as a simultaneous assignment to variables. This approach also supports the definition and

2.3 Modelling Object Code 22

application of program transformations. Since the abstract language is not limited by a processor
architecture, it can be defined to include any construct useful for the verification or transforma-
tion of programs. The use of an abstract language is similar to the use of intermediate languages
to implement code generation and optimisation techniques (Aho et al., 1986). However, the com-
mands of these intermediate languages only describe the actions which must be implemented by
instructions. To describe an instruction in an intermediate language would needa sequence of
such commands. This is not expressive enough for verification, where (ideally) a single com-
mand of the abstract language will be enough to describe the behaviour of any instruction.

2.3.1 Instructions and Data Operations

To describe processor instructions, an abstract language must describe both the data operations
used by the instruction and the action performed with the results of the operations. The data
operations of a processor calculate values, the labels of computed jumps, the results of tests
or identify program variables. All but the last can be described in terms of the expressions
which occur in any programming language (see for example Wakerly, 1989). Operationsto
identify program variables implement the addressing modes of a processor. These are equivalent
to pointers and can be modelled in terms of arrays. Formal models of arrays and the operators
(including substitution) needed to reason about arrays in programs are described by Dijkstra
(1976) and Cartwright & Oppen (1981), among others.

To describe the action performed by an arbitrary processor instruction, an abstract language
need only include a conditional and a simultaneous assignment command. However, a simulta-
neous assignment in the presence of pointers (of arrays) means that the abstract language will
contain unexecutable commands, which assign many values to a single variable. It is necessary
to be able to detect these commands since otherwise it is possible to verify an program which is
incorrect; e.g. for partial correctness, an unexecutable command satisfiesany specification. The
aliasing problem means that it is impossible to distinguish syntactically between executable and
unexecutable commands. If the abstract language includes both simultaneous assignments and
pointers then the abstract language must also include unexecutable commands.

Unexecutable commands can be excluded if the assignment commands are restricted to a sin-
gle assignment. An instruction would then be described as a sequence of (possibly conditional)
single assignments to variables, which may be pointers or arrays. This approachis used in pro-
cessor reference manuals (e.g. see Weaver and Germond, 1994 or Motorola, 1986) to describe the
semantics of instructions. For example, the Motorola 68000 instructionmove:w #258; r@ would
be described as the sequence of three assignment commandsMem(r) := 1, Mem(r + 1) := 2
andpc := l. Proof rules for the necessary commands and syntactic constructs forming sequences
of commands are given by Hoare (1969) and Dijkstra (1976) and others. However, this approach
makes the task of verifying the program more difficult: the number of commands needed to de-
scribe an instruction will be proportional to the number of assignments made by the instruction.
If each instruction of an object code program makes an average of two assignments to variables
then the abstract program describing the object code will have twice as many commands as the

2.3 Modelling Object Code 23

object code. The work needed to verify the program will be correspondingly increased.

To describe an instruction using a single command, the abstract language must includea si-
multaneous assignment command which takes into account the presence of pointers. Theassign-
ment command will be executable only if all variables assigned to by the command are distinct.
The variables identified by pointers must be determined when the command begins execution.
The distinctness of the variables will therefore be a precondition on the state in which the as-
signment command is executed. This approach is used by Cartwright & Oppen (1981) to define
a multiple assignment command for arrays. However, this assignment command is interpreted
as a sequence of single assignments, each of which must be considered individually ina proof
of correctness. Generalising the approach to simultaneous assignments will make it possible for
an abstract language to describe arbitrary instructions as a single command andto detect the
unexecutable commands during the course of a proof.

2.3.2 Program Execution

The description of an object code program must model the selection and execution of thecom-
mands representing the program instructions. Two approaches are commonly used: the first
embeds the object code in aniteration command, which repeatedly selects and executes com-
mands. The second describes object code as a program of a language with a similar execution
model. Both methods are intended to overcome the difficulties of reasoning about a program in
which commands can be arbitrarily selected for execution. However, the choice of method can
affect the ease which programs are transformed and verified.

Embedding in an Iteration Command

The execution model of an object code program can be describing in terms of an iteration
command which repeatedly executes instructions selected by the value of a program counter
(Back et al., 1994; Fidge, 1997). Assumedo b1 ! c1 j : : : j bn ! cn od is an iteration
command which repeatedly selects and executes the commandsc1; : : : ; cn, until every testbi,1 � i � n is false. A commandci is selected if its testbi is true, if more than one test istrue
then the choice is arbitrary (Gries, 1981). Also assume that every instruction Ci of the object
code program, with labelli, is described by a commandci of the abstract language with test
pc = li. Since each instruction is stored in a unique location, and has a unique label, no two
tests can betruesimultaneously. The object code program can then be modelled as the command
do pc= l1 ! c1 j : : : j pc = ln ! cn od. This executes a commandci only if it is selected,
the preconditionpc = li is true. Proof rules for reasoning about the selection and execution of
instructions and for the behaviour of a program can be derived from the rules for the iteration
command, given by Hoare (1969) and Dijkstra (1976).

Embedding the object code in an iteration command models object code in two distinctparts.
Instructions are modelled directly, as commands of the language, while object code programs are
modelled indirectly, by the iteration command. To consider a single instructionof the object code

2.3 Modelling Object Code 24

program it is necessary to consider the whole of the iteration command, which is made up of all
instructions of the object code. This makes it difficult to concentrate on a subset ofa program.
For example, to consider a loop in an object code program, which may be made up of a few
instructions, it is necessary to consider the entire iteration command describing the object code.
The number of commands in a typical object code program make this approach too unwieldy to
be practical

Object Code as Flow-Graph Programs

A more natural model for object code is as a program of aflow-graph language (Loeckx &
Sieber, 1987). A flow-graph program is made up of a set of commands and is executed by the
repeated selection and execution of the commands. Since the execution model of aprocessor
language is that of a flow-graph language, a flow-graph program can model object code directly.
Program logics for flow-graph programs are often based on a temporal logic (Manna & Pnueli,
1981) although simpler logical systems have also been used (e.g see Loeckx & Sieber, 1987;
Gordon, 1994a). However, the flow-graph languages which have been considered in verification
are less expressive than processor languages. This causes problems when defining proof rules to
specify the execution model of processor languages. These rules must permit reasoning about
the transfer of control between commands and are characterised by the treatment of a jump
command, writtengoto, wheregotol does nothing except pass control to the command labelledl.

Proof rules for jump commands generally follow those of Clint & Hoare (1972) and de Bruin
(1981). These interpret the jump as a construct which passes control to a target butwhich does
not terminate: the jump to labell, gotol, satisfies the specificationfPggotolffalseg for anyP .
This leads to proof rules for partial correctness only, total correctness requires thegoto to ter-
minate. The interpretation isfalsefor processor languages, in which all instructions terminate:
if gotol describes a processor instruction then it must satisfyfPggotolfpc = lg. An alterna-
tive interpretation is given by Jifeng He (1983), based on ageneralised wpfunctiongwp. This
requires that a command both terminates, establishing a postconditionQ, and passes control to
a specified label. However, thegwp function separates the flow of control from the program
variables, which include the program counterpc. As a consequence thegotocommand satisfies
the specification:pc 6= l) gwp(gotol; pc 6= l). This specification of a jump isfalsefor pro-
cessor languages: a jump instruction must assign the label of the target to the program counter,
satisfyinggwp(gotol; pc= l).

A simple approach to modelling and specifying object code programs can be based on the
use of the program counterpc to select instructions. Assume that commandc describes the
action of an instruction at labell. The instruction is selected whenpc= l, the commandc must
therefore be associated with labell. Assume that(l : c) labels commandc with l and that the
weakest precondition of(l : c) satisfieswp(l : c; Q)) pc = l. This is enough to model the
selection of the instruction. Because the program counterpc is a variable, a jump instruction only
needs to make an assignment topc. A jump command is therefore an instance of an assignment

2.4 Program Refinement and Abstraction 25

command: (gotol) = (pc := l). This allows proof rules specifying the transfer of control
between commands to be derived from the proof rules for the assignment command. Using
this approach, an object code program can be described by a set of commands of the abstract
language. This allows the manipulation of subsets of the program, providing flexibilityin the
methods used to reason about and transform the program.

2.3.3 Verification and the LanguageL
Since the abstract languageL will be used to describe object code programs, it must be expres-
sive enough to describe the data operations of a processor language, the actions performed by
an instruction and the execution model of object code. This can be achieved if the languageL
is a flow-graph language with pointers, a simultaneous assignment, a conditional command and
a construct for labelling commands. The data operations of a processor will be modelled as ex-
pressions ofL, which must include pointers. The presence of pointers will also require a method
of detecting unexecutable assignment commands. The execution model ofL must follow that
of processor languages, with the value of a program counter used to select program commands.
By satisfying these requirements, it will be possible to describe any objectcode program of any
processor language by a program ofL with an equal number of commands.

The languageLmust also support the definition of proof rules, for programs and commands.
All required proof rules, except those for the assignment command, can be described in terms of
standard logical operators. Proof rules for the assignment command ofL require a substitution
operator which takes into account the presence of pointers. This substitution operator must be
provided as part of the languageL. This model for the languageL will be enough to describe
an object code program in a form which can be verified. However, theL program describing the
object code will be as difficult to verify as the object code, since the number of commands in theL program is equal to the number of instructions in the object code. To simplify the verification,
the program ofL must be transformed to reduce the number of commands to be considered
during verification. The method used to transform programs ofL places additional requirements
on the languageL.

2.4 Program Refinement and Abstraction

The work needed to verify a program is determined by the proof methods for program cor-
rectness. These require that each sequence of commands between cut-points of the program is
shown to satisfy an intermediate specification by reasoning about the individualcommands in
a sequence. The approach to simplifying verification is based on transforming aprogram to
construct anabstractionof the program. This abstraction will allow a sequence of commands
in the program to be shown to establish its intermediate specification directly, rather than by
considering each command in the sequence individually.

The basis for program abstraction is the relationship between specifications and programs.

2.4 Program Refinement and Abstraction 26

Both are descriptions of a computer’s behaviour at different levels of abstraction. A specification
is more abstract than a program, describing properties of the behaviour but not how the behaviour
is produced. A program is aconcretespecification, describing how the computer behaviour
is produced but not the properties of the behaviour. Considering specifications, and therefore
programs, at different levels of abstraction allows the result of a program transformation to be
compared with the original program. The transformation constructs an abstraction of a program
only if the result of the transformation and the original program describe the same behaviour.

2.4.1 Refinement Calculus

The relationship between specifications at different levels of abstraction is the subject of the
refinement calculus (Morris, 1987; Back & von Wright, 1989; Morgan, 1990). A partial orderv
is defined between specificationsS1 andS2. If S1 v S2 thenS2 describes a system with at least
the properties described byS1. The specificationS2 may be more concrete thanS1, giving more
detail as to how the system is to be implemented and either ofS1 or S2 can be a program. WhenS is a specification andp a program, the orderingS v p states thatp is a correct implementation
of S: every property described byS is a property of the behaviour produced byp. Programs can
also be compared by refinement: a programp1 is an abstraction of a programp2 if any property
established byp1 is also established byp2. The programs satisfy the orderingp1 v p2 and the
programp1 is a description of the behaviour of programp2.

Verifying that a programp satisfies a specificationS is equivalent to proving thatp refinesS, S v p. Refinement is transitive (Back & von Wright, 1989): ifS1 v S2 andS2 v S3 thenS1 v S3 for any specificationsS1, S2 andS3. This justifies the verification of a programp by
verifying an abstractionp0 of p, p0 v p. To show that programp is a refinement of specificationS, it is only necessary to show thep0 is a refinement ofS, S v p0. This establishes the ordering:S v p0 v p
The correctness ofp then follows by the transitivity of refinement:S v p.

The refinement calculus is often used to justify the correctness of program transformations.
These are typically used in compilers, where an high-level (abstract) programph is refined to a
low-level programpl by replacing each command inph with a sequence of low-level commands.
This is the reverse of the approach needed to simplify verification, where a transformation must
construct an abstract programph from a low-level programpl by replacing sequences of com-
mands inpl with a single command inph.

2.4.2 Compilation

A compiler translates a high-level programph into a processor language, producing an object
code programpl which is executable on a target machine. The compiler is a program transforma-
tion Tc which, applied toph produces the object code programpl: Tc(ph) = pl. The compilation

2.4 Program Refinement and Abstraction 27

is correct if the object code correctly implements the high-level program,ph v pl. In a provably
correct compiler, the translation of the programph to pl always satisfies the refinement ordering:ph v Tc(ph) for any programph (Hoare et al., 1993; Sampaio, 1993; Bowen and He Jifeng,
1994). The use of correct compilers is an alternative to object code verification. The approach is
to verify a high-level program and then to use a correct compiler to produce the (correct) object
code. Verifying the high-level program will be simpler than verifying the object code since high-
level programs have fewer commands and are easier to reason about than the equivalent object
code programs.

To prove the correctness of a compiler, the translation from the high-level language to the
processor language must be shown to be correct. This requires a semantics for both the high-level
and the processor languages. Since many high-level languages do not have a completely defined
semantics, correct compilers are often implemented for a subset of a languageonly (e.g. see
Polak, 1981). The need to verify the translation also limits the code generationtechniques which
can be used. In particular, code optimisation techniques cannot easily be applied. Bowen & He
Jifeng (1994) describe a correct compiler which optimises the object code but the optimisation
technique used is simple in comparison with those of standard compilers (see Ahoet al., 1986).
This is a serious drawback since processor languages are often designed with the assumption
that object code will be produced by optimising compilers (Sites, 1993; Weaver and Germond,
1994).

Correct compilers are expensive to build: the proof of correctness must be repeated for each
combination of a high-level language and target machine. Their advantage is that once acorrect
compiler is built, only the high-level program must be verified. This is easier than verifying
object code and may justify the cost of verifying the compiler and using less efficient object
code. However, object code programs are not necessarily produced by a compiler and correct
compilers do not solve the problem of how to verify an arbitrary object code program.

2.4.3 Abstraction

Abstraction is the reverse of compilation. Given a programpl, abstraction constructs a program
(or specification)ph such that the orderingph v pl is satisfied. A transformationTa abstracts
from a programp if the refinement orderingTa(p) v p is satisfied. The transformation correctly
abstracts from programs if the orderingTa(p) v p is satisfied for any programp. The result
of the transformationTa(p) can be a specification, a program of the same language asp or a
program of a different language. This allows a wide range of methods for constructing program
abstractions, not all of which are useful. For example, the transformation which does nothing,Ta(p) = p, constructs an abstraction ofp but does not simplify the verification ofp.

Methods for program abstraction include the reconstruction of high-level programs fromthe
object code produced by a compiler. Breuer & Bowen (1994) applied the translation rules of a
compiler to an object code program in reverse, to obtain the original high-level program. This
method is limited: the object code must be produced by the compiler and the method failswhen
code optimisation is used. Pavey & Winsborrow (1993) used a similar technique to show that

2.4 Program Refinement and Abstraction 28

the compilation of a high-level program was correct. Sequences of commands in the object
code program were matched to commands of the original high-level program by analysing the
flow of control through both programs. Although an automated tool was used, it was necessary to
perform part of the analysis manually and neither program was verified. As before,the technique
cannot be applied to the object code produced by an optimising compiler.

More general methods for abstracting programs have been developed.Symbolic executionis
a technique based on the semantics of programs (King, 1976; Clarke & Richardson, 1981) which
is used to analyse programs for code optimisation. Methods based on the text of a program can be
derived from the rules of a calculus, described by Hoare et al. (1987), for manipulating programs.
This approach is similar to the method which will be used to abstract programsof L.

Symbolic Execution

The symbolic execution of a program specifies the behaviour produced by the program as a rela-
tion between the initial and final values of the program variables (King, 1976; Clarke & Richard-
son, 1981). The relations are constructed by combining the boolean tests of the conditional
commands with assertions describing the expressions assigned to the variablesby the assign-
ment commands. The flow of control through a program determines the order in which program
commands are considered. This is limited to finite sequences of program commands forwhich
the execution order can be determined, disallowing the use of computed jumps. Symbolic exe-
cution can be applied in the presence of pointers and Colby (1996) describes a technique which
considers programs with multiple assignments to pointers. The aliasing problem is solved by
constructing a relation with a series of comparisons between pointers. The properties described
by the relation depend on the result of evaluating the comparisons between the pointers.

The use of symbolic execution in object code verification is limited since object code can
include an arbitrary number of computed jumps. Furthermore, the relations constructed by sym-
bolic execution describe the semantic properties of a sequence of commands. For object code,
these relations will be large since the properties of instructions can be complex.The work needed
to verify a program using these relations will be therefore be larger than needed for verification
in a program logic, where proof rules are applied to the syntax of commands. The separation of
semantics and syntax in a program logic also means that the formulas occurring ina proof are
simpler than the relations built up by symbolic execution. In a program logic, only theproperties
required to prove the specification need be considered; in symbolic execution, all the semantic
properties of instructions are described. In addition, the syntactic approach allows automated
proof tools to perform simplifications on commands more efficiently than would be possible
when considering logical relations.

2.4.4 Abstraction by Program Manipulation

The abstraction of a program can be constructed by manipulating the text of the program.The ba-
sis for this approach is the ability to manipulate and abstract the commands of theprogramming

2.4 Program Refinement and Abstraction 29

language. Hoare et al. (1987) describe a set of algebraic rules defining relationshipsbetween dif-
ferent combinations of commands. These rules can be applied to commandsc1 andc2 to construct
a new commandc0. This command is an abstraction ofc1 andc2: the effect of executingc0 is the
same as executingc1 followed byc2. Sincec0 is a single command, replacingc1 andc2 with c0 in
a program will simplify the verification of the program: only the commandc0 must be considered
to establish the properties ofc1 followed byc2. The algebraic rules of Hoare et al. (1987) are de-
fined on the syntax of the commands and can be applied mechanically. This makes it possible to
efficiently implement abstracting transformations as proof tools for verification, in the same way
as compiling transformations can be implemented as compilers for high-level languages.

The rules of Hoare et al. (1987) are defined for a structured language which includes a simul-
taneous assignment command but does not include pointers or jumps (computed or otherwise).
Both pointers and computed jumps make application of the rules impossible. Pointersaffect
the abstraction of assignment commands, which is based on merging the list of variables to
which assignments are made and substituting values for variables. For example, assumex; y; z
are variables ande1; : : : ; e4 are expressions. The abstraction of the two assignment commandsx; y := e1; e2 andy; z := e3; e4 (executed in sequence) results in the command:x; y; z := e1; e3[e1; e2=x; y]; e4[e1; e2=x; y]
The abstraction of the two assignment commands is a single command in which the assignments
to variablesx, y andz are carried out simultaneously. The expressionse1 ande2 assigned tox andy by the first command are substituted for the variables in the expressions of the second
command. The variabley which occurs in both commands is assignede3[e1; e2=x; y], since the
second assignment toy supersedes the first. The occurrence ofy in both assignment commands
is determined syntactically, by comparing the variables occurring in the commands. When the
assignment commands include pointers, the aliasing problem means that it is not possible to
merge the lists of variables since the variables cannot be compared syntactically.

Computed jumps cause similar problems. An abstraction of commandsc1 and c2 can be
constructed only if it is known that control will pass fromc1 to c2. Whenc1 is a computed jump, it
is undecidable whetherc2 is selected byc1: the target of a computed jump cannot be determined
from the syntax of the jump command. Both pointers and computed jumps cause difficulties
because the rules of Hoare et al. (1987) require information which is undecidable fromthe text
of commands in a language which includes pointers or computed jumps. This means that the
rules of Hoare et al. (1987) cannot be applied directly programs of the languageL, which must
contain both pointers and computed jumps to be expressive enough to model object code.

The advantage of abstracting a program by manipulating the program text is its efficiency.
Because only the program text is considered, an abstraction of the program can be constructed
more easily than is possible when abstraction is based on the semantics of theprogramming
language. In addition, transformations which manipulate the text of a program can be efficiently
mechanised (this is the basis of compilers). This allows the straightforward implementation of
tools to construct program abstractions. Although the rules of Hoare et al. (1987) cannot be
applied to the programs ofL, more general rules can be defined which take into account the
presence of pointers and computed jumps.

2.5 Automated Tools 30

2.4.5 Abstraction and the LanguageL
The abstraction ofL programs will be based on abstracting commands ofL using an approach
similar to that of (Hoare et al., 1987). There are three problems to be overcome: the use of
substitution, the manipulation of lists of assignments in the presence of pointers andthe treatment
of computed jumps. These must be solved using syntactic operations only, to ensure thatonly
the syntax of a program is needed to construct its abstraction. The syntactic operations must
be provided by the languageL, which must also include a simultaneous assignment command
(to permit the abstraction of assignment commands). To abstract from programsof L, it is
also necessary to identify the sequences of commands between cut-points in the program. The
program abstraction will then be constructed by abstracting from each sequenceof commands.

The languageL is a flow-graph language and a program ofL does not have a syntactic
structure which identifies the loops in the program. The cut-points of a program must therefore
be selected manually or by an automated analysis of the flow-graph of the program (Hecht,
1977; Aho et al., 1986). Because, processor language often support code optimisation (Weaver
& Germond, 1994) (and therefore flow-graph analysis), the use of such techniques will allow
a high degree of automation when abstracting a program. Although these techniques do not
provide a general solution, which can be applied to any program, they allow the combination of
automated and manual reasoning to simplify program verification.

2.5 Automated Tools

A number of techniques have been used to automate program analysis and verification. Fully
automatic methods include static analysers, which use the program text together with the seman-
tics of the language to predict the behaviour of a program. These can be used to automatically
analyse sections of a program, although information must often be supplied manually (Pavey
& Winsborrow, 1993). Model checking (Clarke et al., 1986; Clarke et al., 1994) is based on
generating all states that will be produced by a program. These are then verified to satisfy inter-
mediate assertions which lead to the specification of the programs. However, the large number
of states which are generated means that the size of the program which can be verified is severely
restricted.

General purpose theorem provers have been widely used in the verification of systems, using
a combination of automated and manual proof. Many theorem provers are based on higherorder
logic (Church, 1940) or on set theory, both of which are expressive enough to define the logics
used in program verification. Gordon (1988) describes the definition of Hoare logic on the HOL
theorem prover (Gordon & Melham, 1993). The HOL theorem prover has been used for a number
of studies; Melham (1993) describes its use in hardware verification and it wasalso used in the
SafeMOS project (Bowen, 1994). Other systems include PVS (Owre et al., 1993), a theorem
prover for higher order logic, and Isabelle (Paulson, 1994a), a generic theorem prover.

The techniques used in automated theorem proving are described by Bundy (1983) and Duffy

2.5 Automated Tools 31

(1991). The methods relevant to verification and abstraction include decision procedures, rewrit-
ing techniques and simplification (Duffy, 1991; Boulton, 1994). Decision procedures allow the
truth of a formula to be determined by a machine. Many of the formulas which occur in program
verification are concerned with arithmetic properties and Shostak (1977) describes a decision
procedure, based on work by (Bledsoe, 1974), for such formulas. A decision procedure for bit-
vectors is described by Cyrluk et al. (1997) and procedures also exist for quantifierfree logical
formulas (Moore, 1994). Rewriting techniques implement the rules for equality, allowing the
replacement of a term with its equivalent (ifx = y thenP (x) = P (y), Duffy, 1991). Simpli-
fication procedures apply the rules of a logic, possibly with rewriting and the use ofdecision
procedures, to reduce the size of a formula which must be proved manually.

Theorem provers can carry out a large part of the simplification and basic reasoning needed
to show that a command satisfies a specification. However, completely automating program
verification is not possible. To show that a program establishes a postcondition may require a
proof that a variable will be assigned a value or that a command will eventuallybe selected.
Both the variables referred to by pointers and the targets of computed jumps areundecidable: the
steps taken to prove such properties must be determined manually. Reasoning about the loops in
a program is also difficult to automate. A loop is shown to establish a propertyby reasoning about
an assertion which is invariant for the loop (Dijkstra, 1976). The automatic construction of such
an invariant is computationally difficult (Wegbreit, 1977), it is simpler to supply the invariant
manually. In general, it is more efficient to verify a program by a combinationof automated and
manual reasoning. In this approach, the method by which a property is to be proved and thesteps
to be taken are determined manually. When it is known how the proof is to proceed,as many
of the steps in the proof as possible are carried out mechanically, by applying simplification and
decision procedures. This method of automating proofs is described by Milner (1984).

2.5.1 Processor Simulation

An automated proof tool for verifying the object code programs for the Motorola 68000 processor
(Motorola, 1986) was built by Yuan Yu (1992); a brief description is given by Boyer & Yuan
Yu (1996). The tool uses the NQTHM theorem prover (Boyer & Moore, 1979) to simulate
the processor as it executes an object code program. Although the NQTHM theorem prover is
fully automated, the techniques used are based on a database of intermediate lemmas which are
formulated manually. Since the choice of lemmas and the order in which they areproved can
determine the success of a proof attempt, the proof is carried out under manual guidance (Yuan
Yu, 1992).

The processor simulation is based on an interpreter for the processor language, defined as a
function in the logic of the theorem prover, (Boyer & Moore, 1997). The interpreter simulates
the processor accurately enough to be able to execute an object code program and to produce
the same result as executing the program on the processor. A program is verified byshowing
that the result of applying the interpreter to the program produces the properties required by
the specification. Processor simulation is a semantic approach to verifyinga program. An object

2.6 Conclusion 32

code program is proved correct by reasoning, directly, about the states produced by theinterpreter
function. This avoids many of the problems associated with processor languages, since an object
code program is considered to be data to which the interpreter function is applied. This approach
to reasoning about object code is used by McCarthy & Painter (1967) among others (e.g. Young,
1989; Bowen & He Jifeng, 1994) to prove the correctness of compilers. The approach has
also been used to define processor languages (Windley, 1994; Müller-Olm, 1995) and in the
verification of systems other than processors (Bevier et al., 1989).

The disadvantage of simulation is that instead of verifying a programp, the verification is of
the interpreter applied top. This involves reasoning about how an instruction is interpreted as
well as the effect of executing the instruction. Verifying a processor simulation will therefore
be more complicated than verification in a program logic, which considers only theproperties
required by the specification. Simulation also limits the transformations which can be applied
to a program requiring an object code program transformation to replace instructions with other
instructions. This can prohibit simplifications such as the replacement of two assignment com-
mands with a single assignment, if the result is not a processor instruction. In particular, it
prohibits the abstraction of commands using methods such as those of Hoare et al. (1987).

Although processor simulation has been used to verify object code programs, the level of de-
tail required means that it is difficult to apply to large programs. The detailrequired also means
that it is difficult to combine manual with automated reasoning, as is possible when verifying ob-
ject code in a program logic. A program logic allows verification to consider only the properties
of the object code program needed to establish the specification. This reduces the detail which
must be considered in a proof of correctness, making verification easier to carry out.

2.6 Conclusion

The techniques for program verification provide a framework in which the properties of a pro-
gram can be compared with those required by its specification. The correctnessof a program
is established using either the method of inductive assertions or the method of intermittent as-
sertions. These break down the specification of the program into assertions to beestablished by
sequences of commands in the program. The work needed to apply the proof methods is pro-
portional to the number of commands in the program. However, the work required by the proof
methods is proportional to the number of loops in the program (which determine the number of
cut-points). Mechanically abstracting from the sequences of commands making up loopsin the
program can therefore reduce the manual work needed to verify a program.

There are two approaches to verifying and abstracting programs: either by usingthe seman-
tics of the programming language directly or by defining rules using the syntax of the language.
The semantic approach is used in processor simulation and symbolic execution. Itcan be applied
to any program but requires a large amount of detail to be considered during the course ofa proof.
In the syntactic approach, a program is verified and abstracted by applying rules to the text of the
program. This approach is efficient since only the details needed to verify or abstract a program

2.6 Conclusion 33

must be considered. However, the methods developed using this approach can only be applied
to a restricted class of program (which excludes object code). Because of the size of object code
programs, it is impractical to use the semantic approach to verify or abstract object code. It is
therefore necessary to develop methods for verifying and abstracting object code programs based
on the text of a program.

The abstract languageL is intended to model arbitrary object code programs in a form suit-
able for verification and abstraction based on the text of a program. The languageLmust describe
the execution model of object code programs as well as the behaviour of processor instructions.
To do this, the languageL will be a flow-graph language which includes pointers, computed
jumps and simultaneous assignment commands. The language will also include a conditional
command and a method of associating labels with commands. This is enough to model any
object code program as a program ofL with an equal number of commands, ensuring that the
translation toL does not increase the difficulty of verification. Proof rules forL can be defined
using the standard logical operators together with a substitution operator (for the assignment
commands). The presence of pointers means that the substitution operator must take into ac-
count the aliasing problem between variables. In addition, a method is required to detect the
unexecutable assignment commands, which cannot be excluded fromL (because of aliasing).

Program abstraction using the program text can be efficiently mechanised and results in a
program which can be verified using the same methods as any other program. Becausethe lan-
guageL contains pointers and computed jumps, information needed to abstract from a program
cannot be determined from the text of the program. For example, the target of a computed jump
and the variable referred to by a pointer are both undecidable. To support program abstraction,
the languageL must provide syntactic constructs which describe the operations needed for ab-
straction. These operations include determining the target of a jump, substitution in the presence
of pointers and merging lists of assignments to pointers. The abstraction of a program will be
constructed by program transformations which form and abstract the sequences of commands
between program cut-points. Defining these transformations for programs ofL will allow their
use to abstract any object code program. Because the languageL can model arbitrary object code
programs, the methods used to verify and abstractL programs can be used to verify and abstract
the object code programs of any processor language.

The development of the languageL will be described in two parts, beginning with the ex-
pressions and commands ofL. These must be expressive enough to model processor instructions
and must also support the abstraction of sequences ofL commands. The methods for abstracting
and reasoning about commands ofL will also be described. The second part is concerned with
the programs ofL, which model object code programs. The main interest in this part is to use
the method for abstracting from sequences of commands to define transformation which abstract
from programs. These transformations must also be shown to be preserve the correctness of a
program, to allow their use in program verification.

Chapter 3

Commands

Program verification and abstraction is based on reasoning about and manipulatingprogram com-
mands. Since an object code program is made up of processor instructions, it is necessary to be
able to reason about and abstract from processor instructions. Basing methods for verifying and
abstracting programs on the instructions of an individual processor limits the methodsto that
processor and imposes unnecessary constraints on the methods used for program abstraction.
To allow verification and abstraction of object code programs to be independent of a particular
processor, instructions are modelled by commands of the languageL. Reasoning about an in-
struction is therefore based on its model in terms ofL, requiring the ability to define proof rules
which can be applied toL commands. Abstraction is carried out by manipulating the commands
of L and requires the ability to manipulate the text ofL commands.

To ensure that the use of the languageL does not increase the difficult of verifying a program,
the languageLmust be expressive enough to model any instruction by a singleL command. An
instruction is described in terms of the action it performs with the resultof evaluating one or more
data operations. The expressions of the languageL will model the data operations of a processor
and include the equivalent of pointers, to describe the addressing modes of a processor.The
commands ofL, made up of conditional commands and simultaneous assignments, will model
the action performed by a processor instruction. Instructions implement the execution model of
processor languages. The execution model ofL is similar to that of processor languages: eachL
command includes the selection of its successor. This is based on a program counter, to identify
the selected commands, and means the languageL includes computed jumps.

The abstraction of commands will be defined by a function, on the syntax ofL commands,
which constructs the abstraction of a pair of commands. The abstraction of a sequence of com-
mands can then be obtained by repeated application of this function to commands of the se-
quence. The method used for abstraction is similar to that of Hoare et al. (1987):the principal
operations required are the ability to combine the assignments made by commands and to de-
scribe the effect of the assignments on the expressions occurring in a command. To allow ab-
straction to be carried out on the text of commands, the operations needed for abstraction must
be described syntactically. Because the languageL includes pointers, these operations must

34

3.1 Expressions ofL 35

take into account the aliasing problem (which is undecidable). The abstraction ofcommands
must also take into account the presence of computed jumps, which mean that is isundecidable
whether two commands will be executed in sequence.

Verification is based on specifying commands and defining proof rules which can be applied
to reason about the specification of commands. The operations required to define proof rules are
the standard logical operators together with a substitution operator for the expressions ofL. As
an example of proof rules for the commands ofL, a logic similar to thewp calculus (Dijkstra,
1976) will be defined. This will be based on a simple first order logic in which commands ofL
are specified by awp predicate transformer. The proof rules for the logic will allow reasoning
about commands specified in terms of thewp function. The ability to define these proof rules
ensures that the languageL provides the necessary support for specifying and reasoning about
commands in a system of logic.

This chapter is structured as follows: the expressions ofL are described, inSection 3.1, in
two parts. First, the syntax and semantics of the expressions needed to model thedata operations
of processor languages are described. This is followed by the definition of the substitution ex-
pressions needed to abstract and reason about commands ofL. The syntax and semantics of the
commands ofL are defined inSection 3.2and followed, inSection 3.3by the method used for
the abstraction of commands. The specification of commands and their proof rules aredescribed
in Section 3.4. The chapter ends with examples of the verification and abstraction of commands.

3.1 Expressions ofL
Much of the complexity of a processor language is due to the data operations provided by the
processor. These data operations will be modelled by expressions ofL. The data operations fall
into two classes: the first calculate a value by applying functions to data items. This includes
the arithmetic and comparison operations and the operations used to calculate thetarget of a
computed jump. This class of data operation can be described in terms of functions and constants,
as is usual in programming languages (Loeckx & Sieber, 1987; Gries, 1981). The second class
of data operation identifies the variables available to a program, implementing the addressing
modes of a processor. These data operations, which will be referred to asmemory operations,
are equivalent to the pointers or arrays of high-level languages.

Memory Operations

The memory operations of a processor can be described in terms of pointers or arrays. However,
the commonly used models of pointers and arrays complicate the definition and use of expres-
sions. A common approach, used by Dijkstra (1976) and others, considers an arraya as a variable
which identifies a functionf from integers to data items: theith element of the array,a(i), isf(i). Assignments to the array update the entire function: the assignment ofx to a(i), a(i) := x,
is interpreted as the assignmenta := assign(a; i; x), whereassign(a; i; x) is a function such that

3.1 Expressions ofL 36

assign(a; i; x)(j) is f(j) wheni 6= j andx wheni = j. This approach complicates the definition
of a language, which must consider both simple variables (in which a single data item is stored)
and the array variables.

An alternative approach is described by Manna & Waldinger (1981): variables areassociated
with memory locations, in which either data items or the addresses of memorylocations can
be stored. A variablex refers to a second variabley if the memory location associated withx
identifies the memory location associated withy. The model used by Manna & Waldinger (1981)
does not permit the use of expressions to identify program variables. The approach of Cartwright
& Oppen (1981) combines the models of arrays used by Dijkstra (1976) and Manna & Waldinger
(1981) with an array identifying a memory location in which a function from values to values
is stored. Because this model considers arrays to be distinct from the simple variables, it also
requires two separate approaches to reasoning about variables, complicating the expressions of a
language.

In the approach used for the languageL, memory operations of a processor will be modelled
as expressions identifying variables. These expressions will be defined in terms of functions and
constants. The constants are the identifiers of variables (the registers and memory locations)
while the functions allow identifiers to be calculated from values. Since variables are used to
store values, this is enough to provide pointers to variables and therefore to model the memory
operations of a processor language. This model is also consistent with the data operations used
to calculate values, allowing expressions which identify variables to betreated in the same way
as expressions which result in values.

Support for Verification and Abstraction

As well as modelling processor data operations, the expressions ofLmust support the abstraction
and specification of commands. Both require a substitution operation on expressions ofL, to
describe the changes made to the values of variables by the execution of commands. Because the
expressions ofL include the equivalent of pointers, the substitution operator ofL must take into
account the presence of pointers. For the abstraction of commands (which uses a methodsimilar
to that of Hoare et al., 1987), the expressions ofL must also support the combination of the lists
of assignments made by a command. The expressions ofL will support both substitution and
the combination of assignment lists by syntactic constructs whose semantic interpretation carries
out the required operations. This will allow the verification and abstractionof commands to be
carried out using only the syntax of expressions and commands.

The description ofL expressions begins with the basic model, describing the constants and
functions from which expressions are constructed. The expressions ofL are then built up in two
parts. First, the expressions modelling the data and memory operations are described. These
are used to define equivalence relations between expressions; which are required for substitu-
tion in the presence of pointers. In the second part, the substitution operator ofL is defined.
This is based on a data type which represents the assignment lists of commands and allows the
combination of assignments lists to be described syntactically.

3.1 Expressions ofL 37

3.1.1 Basic Model

The basic model of the expressions determines the constants and functions which can be used in
expressions ofL to model the data items and operations of a processor language. The data items
of an object code program are represented by a set ofvalues. A value can be stored either in a
processor register or in a memory location. Theregistersare a set of symbolic names identifying
processor registers; thememory variablesare the subset of the values containing the addresses
of the memory locations in which a data item can be stored. Thelabelsare a subset of the values
identifying the memory locations in which program instructions can be stored. The labels are
distinct from the memory variables (prohibiting self-modifying programs). An interpretation of
values as booleans will be assumed, to allow tests on the values of variablesto be defined in
terms of expressions which result in values.

The values and memory variables,ValuesandVars, serve different purposes. A value is a
data item while a memory variable is the address of a location in which a value can be stored.
BecauseVars is a subset ofValues, it is necessary to be able to distinguish between them. It is
also convenient to combine the sets of registers and variables into a single set of variablenames,
since there is no distinction between the way in which a register and a memory variable are
used. The names are distinct from the values and identify all variables whichcan occur in a
processor instruction. There is at least one name, theprogram counter pc, which will be used in
the semantics of theL commands to select commands for execution.

Definition 3.1 Constants

Values is a set of some typeT containing the data items which can be represented by the
processor. The setRegscontains the register identifiers. The setsVars : Set(Values) and
Labels : Set(Values) are subsets of the values identifying locations of the memory variables
and the commands.

Vars� Values Labels� Values

The setNamescontains elements constructed by the application of a function,name, to the
elements of the sets of variables and registers. Functionnamehas typename: (Vars[Regs)!
Namesand satisfies, forx; y 2 (Vars[Regs):

name(x) 2 Names x = y , name(x) = name(y)
The names are distinct from the values:Names\ Values= fg. There is a namepc2 Names.

There are at least two values,true; false2 Values, representing the Booleantrueandfalseand a
boolean interpretationB of typeValues! booleansatisfying:B(true) :B(false) 2

3.1 Expressions ofL 38

The definition of the basic model will depend on the processor languages to be modelled
in terms ofL. The setsValues, Vars, RegsandLabelsmust contain at least enough elements to
model the data items and registers of a processor. The program counterpc, contained in the set of
names, is required only for the semantics of the languageL. Although the namepc can be used
to model the program counter of a processor, this is not a formal requirement. The namepc is
needed only to support the selection of commands in programsL. In practice, it is useful to chose
the sets of values, names and labels to be larger than needed for a processor language’s semantics
since restrictions can be imposed on the functions which model the processor operations. This
approach provides a greater degree of flexibility when modelling processor operationsand when
reasoning about the expressions ofL.

Machine State

All data operations are evaluated in a machine state, which is a record of the values stored in the
program variables at point in a program execution. Since each program variable isidentified by
a name, inNames, astateis modelled as a function from names to values.

Definition 3.2 States

A state is a total function from the names to the values.

State
def= (Names! Values) 2

The value of a namex in a states is obtained as the result ofs(x). Because the program counter
pc is a name, each states also identifies a command by the values(pc) assigned to the program
counter; this value is assumed to be a label inLabels. The changes made to a machine states by
a command can be modelled by updating the states with the values assigned to the names.

Undefined Values

An operation may be undefined for some values, for example when a division by zero is at-
tempted. The result of such an operation is unknown and if a subsequent operation depends on
this result then the result of that operation must also be unknown. Undefined data can bemod-
elled as the result of applying the Hilbert epsilon operator to the empty set. Theresult of such an
application is always unknown.

Definition 3.3 Undefined values

Given a setS, the result of functionundef(S) is an element ofS which makesfalse= true.

undef: Set(T)! T
undef(S) def= �(fx : S j falseg) 2

3.1 Expressions ofL 39

The functionundefcan be applied to any set including the values, the names and the registers.
The result of all such applications is undefined: there is no element of a setS which satisfies
false. This approach does not allow reasoning about the undefined value (as the approach of
Barringer et al., 1984 and Grundy, 1993 does) but is enough to allow expressions ofL to model
processor data operations.

Basic Functions

The expressions ofL are built up from the values, names and labels and from the application of
functions. The functions ofL are defined by identifiers and by an interpretation of these iden-
tifiers. The function identifiers are used in the syntax of an expression while the interpretation
of the identifiers is used in the semantics of the expressions. All arguments to afunction are
interpreted as values, the domain of a function of arityn is thenth product of the setValues. The
result of a function is a value, a name or a label and each function identifier is associated with
one of the sets of values, names and labels. The result of avalue functionis a value, the result of
aname functionis a name and the result of alabel functionis a label.

Definition 3.4 Function names and interpretation

There is a set,F , of function identifiers and a total function,arity, giving the arity of each
function name,arity : F ! N . There is also an interpretation function,If , on the function
identifiers, with type:If : F ! (Values� � � � � Values)! (Values[Names)
For each of the setsValues, LabelsandNames, there is an associated set of function identifiers
called the value functions,Fv, the label functions,F l and the name functions,Fn respectively.
Each of these sets is a subset ofF : (Fv [F l [Fn) � F . The sets are defined:Fv

def= ff 2 F j 8(v1; : : : ; vm) : If (f)(v1; : : : ; vm) 2 ValuesgFn
def= ff 2 F j 8(v1; : : : ; vm) : If (f)(v1; : : : ; vm) 2 NamesgF l
def= ff 2 F j 8(v1; : : : ; vm) : If (f)(v1; : : : ; vm) 2 Labelsg

wherem is the arity of the function identifier.

An identifier,equal, with arity 2 and in the set of value functions, is interpreted as the equality
between values.

equal2 FvIf(equal)(v1; v2) def= �
true if v1 = v2
false otherwise

For anyv1; v2, equal(v1; v2) will usually be writtenv1 =a v2. 2

3.1 Expressions ofL 40

The functions ofL, identified by names in the setF , are the basis for the expressions ofL. The value functions will normally include the arithmetic operations (addition, subtraction,
etc.) and comparison functions (in addition to the equalityequal). The name and label functions
construct names and labels from values and are used to model the processor operations which
identify variables or the labels of commands. Because the labels are a subset ofthe values, the
set of label functions is also a subset of the value functions,F l � Fv. A typical definition of the
setsFn andF l contains a single identifier, of arity1, whose interpretation results in the name
or label, identified by the value argument. The result of applying a name or label function to an
argument which does not identify a valid name or location will be undefined.

Example 3.1 Basic name and label functions

The values can index the variables in memory by the use of a name function. Letref be a name
function,ref 2 Fn, with arity 1 and definition:If(ref)(v) def= �

name(v) if v 2 Vars
undef(Names) otherwise

If the argumentv (a value) identifies a location in memory in which the program can store data
thenref(v) constructs the name identifying that location. Ifv is not a variable, the result ofref(v)
is the undefined name.

The values can also index the program instructions. A label functionloc 2 F l analogous to the
name functionref can be defined:If(loc)(v) def= � v if v 2 Labels

undef(Labels) otherwise 2
The functionsref and loc will be used in the examples as the basic name and label functions
from which other functions accessing the names and labels are derived.

The basic model ofL defines the data items and operations which form the basis for all ex-
pressions of the languageL. To model the data operations of a processor language, the basic
model ofL would include the natural numbers, as the values and variables, the arithmetic op-
erations, as value functions, and simple name and label functions, to model memoryaccess. A
processor language imposes limits on the data items which are permitted in aninstruction, e.g.
limiting values to a fixed set of numbers. Such restrictions are better imposed by suitable models
of the operations as expressions ofL rather than restricting the constants and functions on which
these expressions are based.

Example 3.2 Processor data operations: basic model

A basic model in which the operations of a processor can be defined is given in Figure (3.1). The
set of values,Values, on which an object code program operates is modelled by the set of natural
numbers. The names of program variables are the memory locations, the setVars, together

3.1 Expressions ofL 41

Valuesdef= N Labelsdef= N Varsdef= N Regsdef= fpc; r0; r1; : : : gflt ; plus;minus;mult ;mod; exp g � FvIf(lt)(v1; v2) def= �
true if v1 < v2
false otherwiseIf(plus)(v1; v2) def= v1 + v2 If(mod)(v1; v2) def= v1 modv2If(minus)(v1; v2) def= v1 � v2 If(exp)(v1; v2) def= vv21If(mult)(v1; v2) def= v1 � v2

Notation:For any v1; v2, lt(v1; v2) is written v1 <a v2, plus(v1; v2) is writtenv1 +a v2, mult(v1; v2) is writtenv1 �a v2, minus(v1; v2) is writtenv1�a v2,
mod(v1; v2) is writtenv1 moda v2 andexp(v1; v2) is writtenv1v2

Figure 3.1: Basic Model for Data Operations

with the processor registers, the setRegs. Both the variables, inVars, and labels, inLabels, are
memory addresses and memory access is modelled in terms of the function identifiers ref, for
variables, andloc, for labels. Registers will be referred to by their symbolic name, e.g.r0 is the
name (inNames) constructed from registerr0.

The data operations of a processor are defined onbit-vectorsof a fixed size (Hayes, 1988).
These operations can be defined in terms of the value functions of Figure (3.1), with a bit-vector
represented as a natural number. The value functions are the basic arithmetic operations on
natural numbers. Functionslt is the less-than comparison between values inValues, functions
plus, minus andmult , are the addition, subtraction and multiplication of values. Functionsmod
andexp are the modulus and exponentiation operators, used to define the operations on fixed
sizes of bit-vectors (see e.g. Yuan Yu, 1992). A value functiondiv 2 Fv for the division of
values can also be defined in terms of the Hilbert epsilon operator:If (div)(v1; v2) def= �fv : Valuesj 9m 2 Values: m < v ^ v1 = ((v2 � v) +m)g
SinceValues= N , for anyv1; v2 2 Values, the result ofIf (div)(v1; v2) is the integer division ofv1 by v2. Note that ifv2 = 0 thenIf (div)(v1; v2) = undef(Values). 2

Unless otherwise stated, the examples in this thesis will use the name function ref, the label
function loc and the data model of Figure (3.1), including the value functions. The data model
will be extended as needed for the examples. In particular, identifiers and definitions will be
added to the set of registersRegsand the value functionsFv.

3.1 Expressions ofL 42

3.1.2 Syntax of the Expressions

The expressions ofL are built up from the constants and from the application of functions to
arguments. As with the constants and functions, the expressions are partitioned into value ex-
pressions, which are interpreted as values, andname expressionsand label expressions, inter-
preted as names and labels respectively. This allow restrictions to beimposed on the occurrence
of an expression; for example, assignments can only be made to expressions which result in a
name. The name and label expressions are subsets of the value expressions. A name expression
is interpreted as identifying a register or memory variable in which a value is stored. The labels
are a subset of the values,Labels� Values, and any label expression is also a value expression.

Substitution will be defined in terms ofsubstitution expressions. This allows the syntax
of substitution, describing the changes to be made to an expression, to be separated from its
semantics, which carries out the substitution. The definition of substitution is notstraightforward
since its semantics requires a semantics for the expressions, leading to mutual recursion over the
expressions. To simplify the development, substitution expressions will be considered separately.
The syntax of the expressions defined here will include a syntactic construct,subst, for use when
the substitution expressions are described.

The expressions ofL are defined as a setE containing the value expressions. The sets of name
and label expressions are constructed as subsets of the setE. The name expressions are those
expressions inE which are either names or the application of a name function to arguments. The
label expressions are either labels or the application of a label function. The value expressions
also provide the tests used in the languageL. These are described by the Boolean expressions ofL, defined as a synonym of the value expressions.

Definition 3.5 Syntax of the expressions

The set of value expressionsE is inductively defined:e 2 Names[Valuese 2 E f 2 F e1; : : : ; em 2 Ef(e1; : : : ; em) 2 E (m = arity(f))
A substitution expression is defined in terms of a function of typeState! Values:8(f : State! Values) : subst(f) 2 E
The set of name expressions,En, is defined:e 2 Namese 2 En f 2 Fn e1; : : : ; em 2 Ef(e1; : : : ; em) 2 En (m = arity(f))
The set of label expressions,El, is defined:e 2 Labelse 2 El f 2 F l e1; : : : ; em 2 Ef(e1; : : : ; em) 2 El (m = arity(f))
The set of boolean expressionEb is the set of value expressions:Eb def= E . 2

3.1 Expressions ofL 43

Data operations which calculate a value from arguments are modelled by value expressions.
The name and label expressions model memory operations, the name expressions identifythe
variables, either registers or in memory, available to a program. The label expressions are used,
mainly in computed jumps, to identify the label of a command. Both name and label expressions
allow restrictions to be imposed on the expressions which occur in a command ofL. Name
expressions calculate the name of a variable from one or more value expressions, restricting the
result to valid program variables. Label expressions occur in computed jumps andprovide a
means for ensuring that the target of the jump is the label of a program command.

Example 3.3 Typical value expressions include the arithmetic expressions with the function
identifiers of Figure (3.1). Assume thatx; y; z 2 Namesand l1; l2 2 Labels. The value ex-
pressions, using infix notation, include:0; 1; 2 +a 3; (2 +a 3)�a 4x; y; z; x+a 1; 3 +a x; x +a y; (x+a y)�a (z �a 2)l1; l2; l1 +a 1; l1 +a l2l1 +a x; (y �a l1)�a x
The value expressions also include the name expressions:

ref(0); ref(10); ref(x); ref(x +a 1); ref(x+a y); ref(l1); ref(l1 �a x)
The name expressions include those constructed from the names and the name functionref:
expressionsx; y; ref(0); ref(x +a y); ref(l1) are names. The result of an expressions formed
with ref may be undefined but since the result ofundef(Names) is a name, such expressions are
elements ofEn. 2
3.1.3 Semantics of the Expressions

The semantics of expressions are defined by interpretation functions which range over the sets of
values, labels and names. The value and label expressions have the same interpretation, a label
expression is constrained by its syntax to result in a label (inLabels). The interpretation of a
value expressione in a states results in a value. Ife is a variable name then it is the value of
the variable in states. The interpretation of a name expressionn as a name is eithern, if n is a
constant (inNames), or the result of applying a name function to arguments interpreted as values.
The difference in the interpretation of value expressions and name expressions corresponds to the
difference betweenr-expressionsandl-expressionsin program analysis (Aho et al., 1986).

Definition 3.6 Interpretation of expressions

The interpretation functionsIe, In andIl, on expressions, name expressions and label expres-
sions respectively, have types: Ie : E ! State! ValuesIn : En ! State! NamesIl : El ! State! Labels

3.1 Expressions ofL 44

The interpretation as a value of expressione 2 E in states is defined by functionIe.Ie(e)(s) def= 8>><>>: e if e 2 Valuesf(s) if e = subst(f)s(In(e)(s)) if e 2 EnIf(f)(Ie(a1)(s); : : : ; Ie(am)(s)) if e = f(a1; : : : ; am)
wherem = arity(f)

The interpretation as a name of the name expressione 2 En in states is defined by functionIn.In(e)(s) def= � e if e 2 NamesIf(f)(Ie(a1)(s); : : : ; Ie(am)(s)) if e = f(a1; : : : ; am)
wherem = arity(f)

The interpretation of the label expressions,Il, is the interpretation of the expressions:Il def= Ie.
The Boolean interpretation of an expression is defined by the functionIb.Ib : Eb ! State! booleanIb(e)(s) def= B(Ie(e)(s)) 2

When the interpretation functionIe is applied to an expressione, in a states, any name ex-
pressionx occurring ine is interpreted as a namex0 and replaced with the values(x0). When the
interpretation of name expressions,In, is applied to the name expressionf(a1; : : : ; an) in states, the argumentsa1; : : : ; an are interpreted as values and evaluated in states. The interpretation
of the name functionIf (f) is applied to the resulting values to obtain the result of the expression.
When either interpretation function is applied to a constante, the result ise. However, the notion
of a constant differs, a namex 2 Namesis a constant only under the interpretation as a name,In. The value ofx under interpretationIe depends on the state in which it is interpreted.

Example 3.4 Using the expressions of Example (3.3), the interpretations in a states of the value
expressions are:Ie(1)(s) = 1 Ie(2 +a 3)(s) = If(plus)(2; 3)Ie(x)(s) = s(In(x)) = s(x) Ie(x +a 1)(s) = If (plus)(s(x); 1)Ie(ref(x)) = s(In(ref(x))(s))
The interpretations as names (using functionIn) of the name expressions are:In(x)(s) = xIn(ref(x))(s) = If (ref)(Ie(x)(s)) = If(ref)(s(x))In(ref(x +a 1))(s) = If (ref)(Ie(x+a 1)(s))= If (ref)(If(plus)(s(x); 1)) 2

3.1 Expressions ofL 45

The expressions ofL are based on standard definitions for programming languages (see
Loeckx & Sieber, 1987) extended with the name expressions, which provide both pointers and
arrays. In Example (3.4), the expressionref(x) is a pointer:x is a name which is interpreted as
a valuee. This is the argument to the name functionref and if e identifies a memory variable,e 2 Vars, then the interpretation ofref(e) is also a name. Arrays can be modelled in a similar
way. An arraya is a name function inFn. If e is an expression, then the expressiona(e) will be
a name expression (identifying variables).

Boolean Expressions

The value expressions model the tests on program data performed by a processor instruction.
This uses the Boolean interpretationIb of the value expressions. For example, the equality of
valuesv1; v2 2 E in a states is tested by the expression,Ib(v1 =a v2)(s). Since the Boolean con-
stants are represented by valuestrue andfalse, the Boolean negation and conjunction operators
can be defined as value functions. This allows Boolean expressions ofL to include formulas of
a propositional (quantifier-free) logic.

Definition 3.7 Boolean operators

The negation and conjunction operators ofEb are defined as the value functionsnot andand,
with arities 1 and 2 respectively.

not 2 FvIf (not)(v) def= �
false if B(e)
true otherwise

and 2 FvIf(and)(v1; v2) def= �
true if B(v1) ^ B(v2)
false otherwise

For anyx; y, and(x; y) will be writtenx and y. 2
Since both the negation and conjunction operators are value functions, any expression formed

by their application to arguments will be a value expression (inE) and therefore inEb. Other
Boolean operators can be defined in terms of negation and conjunction. For example, the dis-
junction of Boolean expressionsor is also a Boolean expression ofL.

or : (Eb � Eb)! Ebx or y def= not (not x and not y)
The Boolean operators allow comparison functions to be derived from a small numberof ba-
sic operations. For example, the greater than or equal, writtene1 �a e2, is definede1 �ae1 def= not (e2 <a e1). Operator�a will have typeE � E ! E, constructing an expression ofE.

Example 3.5 Data and memory operations

For an example of the use of expressions ofL to model data operations, consider the arithmetic
operations of a processor which manipulates data items as bit-vectors (called quad-words), rep-
resenting numbers in the range0; : : : ; 264 � 1. All arithmetic operations of the processor must

3.1 Expressions ofL 46

Arithmetic: e1 =64 e2 def= (e1 moda 264) =a (e2 moda 264)e1 <64 e2 def= (e1 moda 264) <a (e2 moda 264)e1 +64 e2 def= (e1 +a e2) moda 264e1 �64 e2 def= (e1 �a e2) moda 264e1 �64 e2 def= (e1 �a e2) moda 264
mkQuad(e) def= e moda 264

Memory: Mem(e) def= ref(mkQuad(a�a (a moda 4)))
Inst(e) def= loc(mkQuad(a�a (a moda 4)))
wheree; e1; e2 2 E

Figure 3.2: Example of Expressions Modelling Data Operations

be performed within this range. The model of the basic arithmetic operations, as expressions ofL, is given in Figure (3.2). The arithmetic operations are written in the infix notation and for
bit-vectors of size64. e.g.e1 =64 e2 is the equality between values less than264 and is defined in
terms of the value functionequal 2 Fv of L. Since all arithmetic operators of Figure (3.2) are
defined in terms ofE, the type of each operator is(E � E) ! E . The functionmkQuad is the
conversion of an arbitrary value to value in the range which can be represented by the processor.

A processor can restrict the memory locations which can be accessed by an instruction; a com-
mon restriction is to require the address of a location to be a multiple of a constant. This can
be modelled by name and label expressions (ofEn andEl). Figure (3.2) defines name expres-
sionMem(e) 2 En and label expressionInst 2 El which restrict memory access to the locations
whose address is a multiple of4, rounding down if necessary. e.g.Mem(0) andMem(4) identify
distinct namesref(0) andref(4) respectively whileMem(0) andMem(1) are both nameref(0).
The addressing modes of a processor can be described in terms of the name expressionsref
or Mem. Consider the addressing modes described in Chapter (2) (withr0; r1 2 Regsandv 2 Values): In immediate addressing, the valuev is an expressionv 2 E (by definition). In
direct addressing, the name identified by addressv is Mem(v). For indirect addressing, the
name identified by the value stored inr0 is Mem(r0). Furthermore, the name identified by the
value stored in this variable isMem(Mem(r0)). In indexed addressing, the variable identified
by the sum ofr0 andv is Mem(r0 +64 v). Sincev is a value expression, it can be replaced
with any other value expressions. e.g. Indexed addressing can be defined with tworegisters,
Mem(r0 +64 r1). Relative addressingis a form of indexed addressing which uses the program
counter: Mem(pc+64 e) (for any e 2 E). Similar expressions can be built up for the label
expressions. For example, the label identified by the value stored in registerr0 is Inst(r0). 2

3.1 Expressions ofL 47

3.1.4 Equivalence Between Expressions

Expressions can be compared by syntactic equality or by semantic equivalence. Equality com-
pares the textual form of two expressions while equivalence compares the interpretation of the
expressions in a state. Syntactic equality is stronger than equivalence: the expression1 + 1 is
not syntactically equal to2, although it is equivalent in an interpretation which includes inte-
ger arithmetic. The difference between syntactic equality and semantic equivalence is important
when comparing name expressions, as required for substitution. To avoid the aliasing problem,
it is necessary to compare name expressions using semantic equivalence. Thisallows the names
referred to by the name expressions to be determined before the comparison is carried out.

There are two forms of equivalence: the weaker asserts that two expressions have the same
interpretation in a given state. Strong equivalence asserts that the expressions are equivalent in
all states. Because the name expressions can be interpreted as names or values, the interpretation
under which expressions are to be compared is an argument to the equivalence relations.

Definition 3.8 Equivalence

Expressionse1 ande2 areequivalentin a states and interpretationI, writtene1 �(I ;s) e2, if the
interpretation of the expressions ins are equal.e1 �(I ;s) e2 def= I(e1)(s) = I(e2)(s)
Expressionse1 ande2 arestrongly equivalentin I, writtene1 �I e2, if they are equivalent in all
states. e1 �I e2 def= 8(s : State) : e1 �(I ;s) e2 2

Because the equivalence relations are based on the semantics of the expressions, syntactically
equal expressions are also equivalent. Names which are equivalent under the nameinterpretation,In, will also be equivalent under the value interpretationIe and arguments to functions can
always by replaced with an equivalent expression.

Lemma 3.1 Properties of equivalence relations1

Assumee1; e2 2 E , n1; n2 2 En, I; I1; I2 2 fIe; Ing, f 2 F ands 2 State.

1. Syntactic equality establishes strong equivalence:e1 = e2e1 �I e2
1See the appendix for the proof of this and subsequent lemmas and theorems.

3.1 Expressions ofL 48

2. Equivalent names are equivalent as values:n1 �(In;s) n2n1 �(Ie;s) n2
3. Arguments to functions can be replaced with equivalent expressions:e1 �(I1;s) e2f(e1) �(I2;s) f(e2)
Because name expressions which are equivalent underIn are also equivalent underIe, the

interpretation function will generally not be given. For expressionse1; e2 ands 2 State, e1 �se2 will be written under the assumption that if bothe1 and e2 are name expressions then the
equivalence is underIn. If either of e1 or e2 is not a name expression then the equivalence is
under the value interpretationIe.

The ability to compare the interpretation of names is important for substitutionin the presence
of name expressions. The use of syntactic equality would result in textual substitution, which can
replace constant names only (those in the setNames). The textual substitution of an expression
for a name expressionf(e) would only replace name expressions which are syntactically equal
to f(e1). Name expressions which are equivalent tof(e1) would not be replaced.

Example 3.6 Let Id be the identify function such thatId(x) � x for anyx. The expressionsId(x) andx are not syntactically equal but are strongly equivalent. The textual substitutionof
expressione for Id(x) in x is x, x[e=Id(x)] = x. However, the textual substitution ofe for x ise, x[e=x] = e. 2
3.1.5 Substitution

The languageL must provide a substitution operator, to allow the definition of proof rules and
to abstract from programs. Substitution is used to describe the changes made to amachine state
by the commands of a program. These changes are made as values are assigned to the program
variables during the execution of a program and affect the expressions which depend onthe
values stored in the variables. Substitution allows these changes to be reflected in expressions
occurring in a specification or in the commands formed by abstraction.

For example, assume an instruction begins in states and ends in statet and that the instruction
assigns the result of evaluating expressione in states to namex 2 Names. Assume also that the
instruction makes no other assignment. The value of namex in statet is the value of expressione in states, Ie(x)(t) = Ie(e)(s)

3.1 Expressions ofL 49

If the namex occurs in expressionf then the value of expressionf in statet will differ from
its value in states, the value ofx having changed. The effect of the instruction on the value of
expressionf can be described by the textual substitution ofe for x in f :Ie(f)(t) = Ie(f [e=x])(s)

Textual substitution can be used when a language contains only constant names (inNames)
but fails in the presence of name expressions. Let the instruction evaluate a name expressiong(e1) 2 En in states and assigne to the resulting namex1 2 Names. Also assume that the
instruction makes no other assignment and letf depend on any name. Using textual substitution
to describe the changes to the value off made by the instruction will fail: the substitutionf [e=g(e1)] is not the same as the substitutionf [e=x1] (see Example 3.6).

Definition of Substitution

To overcome the problems caused by the presence of name expressions, the substitution operator
of L must be based on the equivalence of name expressions rather than on syntactic equality.
This is the approach taken when verifying programs with arrays (Dijkstra, 1976;de Bakker,
1980; Tennent, 1991; Francez, 1992). The definition which will be used here is essentially
that described by Francez (1992) (which is similar to work by de Bakker, 1980). However,
the substitution operator ofL differs from that of Francez (1992) in allowing the simultaneous
substitution of expressions for name expressions.

The substitution operator ofL is defined as a function which is applied to an expressione and
a list of assignments to form an expression ofL. The interpretation of this expression evaluatese in a state updated with the assignments in the list. Assume thatAlist is the type ofassignment
lists, where an assignment is a pair of a name expression and a value expression. The substitution
operator will be written/ (in infix notation) and has type(E � Alist)! E. For expressione and
assignment listal, the substitution expressione / al interpreted in a states is the value ofe in s
after replacing every name in assignment listal with the value it is assigned.

Example 3.7 Assume, as before, that an instruction begins in states, assigns the expressione to
the result of evaluating name expressiong(e1) in states and ends in statet. The assignment list
for the instruction contains only the pair(g(e1); e). Assume that the result of evaluating the name
expressiong(e1) in s is the namex 2 Namesand that the expressionf depends on the value ofx. The changes made to the value off by the instruction can be described as the expression(f / (g(e1); e)). Ie(f)(t) = Ie(f / (g(e1); e)))(s)
Any name expression occurring inf which is equivalent in states to g(e1) is replaced withe. 2

3.1 Expressions ofL 50

Substitution and Abstraction

The use of textual substitution to describe the changes made to the value of an expression is the
basis for abstracting commands in which only basic names occur. The rules of Hoareet al. (1987)
describe how an abstractionc of two assignment commandsc1 andc2, executed in sequence,
can be constructed from the syntax ofc1 and c2. Commandc is formed by substituting the
assignments ofc1 into the expression ofc2. The assignment lists ofc1 andc2 are then merged so
that each variable is assigned to at most once. If a variable is assigned to be both commandsc1
andc2, the later assignment, ofc2, is used.

Example 3.8 Let the assignment list ofc1 contain only(x1; e1) and(x2; e2) and let the assign-
ment list ofc2 contain only(x2; e2) and(x3; e3), wherex1; x2; x3 2 Namesande1; e2; e3 2 E .

The abstractionc is constructed by substituting the assignments made byc1 in the expressions
of c2: the updated assignments ofc2 are(x2; e2[e1; e2=x1; x2]) and(x3; e3[e1; e2=x1; x2]). The
two assignment lists are combined,x2 is assigned to by bothc1 andc2 and the assignment ofc2
is used. The commandc therefore makes three assignments:(x1; e1), (x2; e2[e1; e2=x1; x2]) and(x3; e3[e1; e2=x1; x2]). 2

The programming language considered by Hoare et al. (1987) allowed only constant names,
which could be compared by syntactic equality. This is used when merging the two assignment
lists to determine whether a variable is assigned to by bothc1 andc2. Since the languageL in-
cludes name expression, it is not possible to use this method of merging assignment lists (because
of aliasing). An alternative can be based on the fact that the assignment list of the abstractionc is
the result of combining the assignments ofc1 andc2, with a higher priority given to the assign-
ments ofc2. The merger of the assignment lists is needed only to remove duplicate assignments
to a single variable (which would result in an unexecutable command).

Both the substitution operator and the assignment commands, which must be simultaneous,
require that each variable is assigned a single value. However, both can bedefined using an
ordering on the assignments to search for the value assigned to a given name (Paulson, 1985,
defined substitution using this approach for efficiency). Ordering the assignments in a list allows
the assignments of commandc1 to be combined with the assignments of commandc2, without
the need to find and remove the variables common to both. The order is defined such that if a
variable is assigned to byc2 and byc1, then it is the assignment ofc2 which is used. The data
structure used to represent assignment lists can be used to impose the order on assignments. For
example, Paulson (1985) used association lists and the assignment used was the first to be found
by traversing the list.

Example 3.9 Using lists, as in Paulson (1985), the assignment list forc is constructed by up-
dating the expressions ofc2 with the assignments ofc1 and then constructing the list which
contains the assignments ofc2 followed by those ofc1. The assignment list forc will be (in
order)(x2; e2[e1; e2=x1; x2]), (x3; e3[e1; e2=x1; x2]), (x1; e2), (x2; e2). 2

3.1 Expressions ofL 51

The advantage of this method is that the assignment list for the abstractionc can be efficiently
constructed from the syntax ofc1 and c2. It simply requires the two assignment lists to be
appended together. However, using a list to represent the assignments made by a command
means that there can be no distinction between a correct assignment, which assigns only one
value to each variable, and an incorrect assignment, assigning two valuesto a single variable.
For example, the assignmentx; x := 1; 0 would be a valid command: only the first assignment tox would be used, making the command equivalent tox := 1. To disallow incorrect assignments,
the combination of assignment lists must allow individual assignment lists to be extracted. Each
list would then be examined to ensure that none assigns more than one value to any variable.

The approach which will be used here is based on representing the combination of assignment
lists syntactically, in terms of an operator� with type(Alist� Alist) ! Alist. Assumeal is the
assignment list of commandc1 and bl the assignment list of commandc2. The commandc
abstractingc1 andc2 will have the assignment listal � bl. This allows the individual listsal
and bl to be extracted from the assignment list ofc. Commandc is a correct assignment iff
neitheral nor bl assigns two values to the same variable. The assignment listal � bl includes
two assignments tox2 but since the first occurs inal and the second occurs inbl, this is a correct
assignment. To find the assignment made to a name in the combined listal � bl, the listbl is
first searched for an assignment tox then the listal. The value assigned tox2 will be the value
assigned inbl by c2. Furthermore, the commandx; x := 1; 0 will be incorrect since the namex
is assigned two values by the single assignment list.

The substitution operator ofL will be developed as follows: first the data structure used
to represent the lists of assignments will be described. This will be followed by the definition
of functions on assignments lists which are then used to define a state transformer, to update
a state with a list of assignments. This is followed by the syntax and semantics of the basic
substitution operator ofL. This operator can be applied to any value expression and results in
a value expression. Substitution operators for name expressions and for lists of assignments are
then derived from the basic substitution operator. Together, these provide the constructs needed
to manipulate the expressions ofL when verifying and abstracting commands.

3.1.6 Assignment Lists

The assignments made by a command are a list of name expressions and value expressions,
where each name expression is paired with the value expression it is assigned. An assignment
list can be empty, the result of adding a name-value expression pair to an assignment list or the
combination of two assignment lists.

Definition 3.9 Assignment lists

There is a setAlist and constructor functionsnil, consandcombinesatisfying:

nil 2 Alist
x 2 En e 2 E al 2 Alist

cons((x; e); al) 2 Alist
al 2 Alist bl 2 Alist

combine(al; bl) 2 Alist

3.1 Expressions ofL 52(x; e) � al will be written forcons((x; e); al) and(x; e) �nil will be abbreviated(x; e). al� bl will
be written forcombine(al; bl).
Functioncombine?is a recogniser for assignment lists constructed by combination.

combine?: Alist! boolean

combine?(al) def= 9(bl; cl : Alist) : al = bl � cl 2
The combination of assignments lists is by the use of the syntactic constructcombine. This allows
the order of assignments to be preserved. When a sequence of assignment lists is combined,
the order in which assignments to a name are made can be determined from the syntax of the
assignment lists.

The structure of an assignment list, in the setAlist, is strictly a tree. The assignment lists
occurring in processor commands would not be formed using thecombineconstructor and can
be described by the subset of the assignment lists which excludes this constructor. This subset
contains thesimpleassignment lists, corresponding to the usual list structures. The prefix of an
assignment list, up to the first combination of lists, is a simple list and anassignment list is made
up of the combination of a finite set of simple lists.

Definition 3.10 Simple lists

An assignment listal is simple, simple?(al), if no sub-list ofal is constructed bycombine.

simple?: Alist! boolean

simple?(al) def= 8(bl : Alist) : bl � al) :combine?(bl)
Slist is the set of all simple lists,Slist

def= fal : Alist j simple?(al)g.
Functioninitial constructs a simple list from the prefix of an assignment list.

initial : Alist! Slist

initial(nil) def= nil

initial((v; x) � al) def= (v; x) � initial(al)
initial(al � bl) def= nil 2

Functioninitial allows an arbitrary assignment list to be considered as a set of simple lists. This
allows the assignments made by an individual list to be examined separately from the remainder
of an assignment list.

Example 3.10 With assignment listsal; bl 2 Alist and name-value pairs,a; b 2 (En � E), the
set of assignment lists,Alist, includesa � (al � bl) anda � b � ((b � al) � bl). Neither of these
would occur in an command nor would they be formed to describe a sequence of instructions.
The result of applying the functioninitial to the first list is the simple lista �nil and to the second
is the simple lista � b. 2

3.1 Expressions ofL 53

Finding Assignments in Lists

An assignment list associates name expressions with the value expressions which they are as-
signed. Name expressionx is associated in states with a valuev by an assignment listal if there
is a pair(x0; e0) 2 (En�E) in al such thatx �s x0 andv �s e0. The value associated with a namex in a states by al is found by traversing the assignment list. If the assignment list is constructed
from the addition of a pair(x1; e1) to an assignment listbl thenx1 is compared (in states with x)
before searchingbl. If the assignment list is constructed from the combination of two assignment
lists (bl � cl) then the listcl is searched before the listbl (the choice is arbitrary).

Definition 3.11 Membership and find

For an assignment listal and states, the namex 2s En is a member ins of al iff there is a name
expression inal which is equivalent ins to x.2 : (En � State� Alist)! booleanx 2s nil

def= falsex 2s (x1; e1) � al def= (x �s x1) _ (x 2s al)x 2s (al � bl) def= x 2s al _ x 2s bl
Functionfindsearches an assignment list for the value expression assigned to a name expression.

find : (En � Alist)! State! E
find(x; nil)(s) def= x

find(x; (x1; e1) � al)(s) def= � e1 if x �s x1
find(x; al) otherwise

find(x; (al � bl))(s) def= �
find(x; bl)(s) if x 2s bl
find(x; al)(s) otherwise 2

Given a name expressionx, assignment listal and states, the result offind(x; al)(s) is the
value expression associated with namex in al, if x is a member ins of al. If x is not a member
in x of al, the result is the name expressionx.

Example 3.11 Let x1; x2; x3 be name expressions,e1; e2; e3; e4 be expressions,s a state,al the
assignment list(x1; e2) � (x2; e2) andbl the assignment list(x2; e3) � (x3; e4). Assume thatx1; x2
andx3 are distinct ins: x1 6�s x2, x2 6�s x3 andx1 6�s x3.
The expressions associated withx1; x2 andx3 in al are

find(x1; al)(s) = e1; find(x2; al)(s) = e2; find(x3; al)(s) = x3
The values associated withx1; x2 andx3 in al � bl are

find(x1; al � bl)(s) = e1; find(x2; al � bl)(s) = e3; find(x3; al � bl)(s) = e4
the assignment listbl being searched before the assignment listal. 2

3.1 Expressions ofL 54

3.1.7 State Update

A states is a record of the values assigned to each name: when a commandc assigns values to
names, the state is updated with the new values of the names. The value assignedto a name may
the result of evaluating an expressione and the name may be the result of evaluating an name
expressionx. Both expressionse andx are evaluated in the states. The change made to the state
is therefore the assignment ofIe(e)(s) to In(x)(s). Assume the assignments made by commandc are given as an assignment listal. To find the value of a namex after the commandc has been
executed, the expression associated byal with x in states must be found and evaluated in states.
This defines how a state is updated with the assignment list of a command.

Definition 3.12 State update

For assignment listal and states, update(al; s) is a state which differs froms only in the assign-
ments given inal.

update: (Alist� State)! State

update(al; s) def= (�(x : Names) : Ie(find(x; al)(s))) 2
Any namex which is not assigned a value by the commandc will not be a member of the

assignment listal and the value ofx in the updated state will be its value ins. If the name
is assigned an expressione by commandc then its value in the updated state is the value ofe in states. This definition of a state update is a generalisation of the definition of Francez
(1992), which considers names-value pairs individually and interprets a multiple assignment as
a sequence of single assignments.

3.1.8 Substitution Expressions

A substitution is made up of an expressione and an assignment listal and replaces ine the names
occurring inal with their assigned value. This is equivalent to evaluatinge in a state updated
with the assignments ofal. The substitution operator ofL constructs a substitution expression
using the constructsubst(see Definition 3.5). This requires a function of typeState! Values,
which will define the semantics of substitution. For expressione and assignment listal, this can
be formed, using the functionupdate, as�(s : State) : Ie(e)(update(al; s)).
Definition 3.13 Substitution

For assignment listal and expressione, the substitution ofal in e is a value expression inE
writtene / al and defined:/ : (E � Alist)! Ee / al def= subst(�(s : State) : Ie(e)(update(al; s))) 2

3.1 Expressions ofL 55

The interpretation of a substitution expression is that of the constructorsubstof the setE (see
Definition 3.5 and Definition 3.6). Fore 2 E, al 2 Alist ands 2 State, the result ofIe(e / al)(s)
isIe(e)(update(al; s)). Note that although substitution is a value expression (inE), if it is applied
to a label expression (e 2 El) then the result will also be a label expression. The setEl contains
only basic labels or expressions constructed from label functions. Any name which occurs in a
label expression can do so only as an argument to a label function.

Example 3.12 Let s be a state andal the assignment list(x1; e1) � (x2; e2) wherex1 6�s x2.
Assumex 2 Names, e 2 E , l 2 Labelsand label functionf 2 F l . Assume thatx �s x2. The
substitution ofal in the expressions is:(x / al) �s e2 (l / al) �s l (f(e) / al) �s f(e / al) 2
Substitution in Name Expressions

Substitution must be applied to name expressions as well as to value expressions:the interpre-
tation of a name expression also depends on the state in which it is evaluated. It is possible
to extend the name expressions with a substitution expression which is interpreted as a name.
This would restrict the substitution operator to assignment lists which replace name expres-
sions with name expressions. The interpretation, as a name, of the resulting operator would
beIn(subst(e; al))(s) = In(e)(update(al; s)). However, this approach separates the assignment
command from the substitution operator since an assignment is a replacement of name expres-
sions with value expressions.

The approach used here is to define substitution as a function on the syntax of name ex-
pressions. This applies substitution to the value expressions which occur as arguments to name
functions. It is not equivalent to substitution as a name expression, where names are replaced
with names, but retains the association with the assignment command.

Definition 3.14 Substitution in name expressions

The substitution of assignment listal in the value expressions occurring in name expressionx is
writtenx / al. / : (En � Alist)! Enx / al def= � x if x 2 Namesf(e1 / al; : : : ; em / al) if x = f(e1; : : : ; em)
wheref 2 Fn, m = arity(f) ande1; : : : ; em 2 E . 2

The effect of performing the substitutions in assignment listal on a name expression is equiv-
alent (using the interpretationIn) to updating a state withal.

3.1 Expressions ofL 56

Lemma 3.2 For name expressionx 2 En, assignment listsal; bl 2 Alist and states,In(x / al)(s) = In(x)(update(al; s))
The interpretation of substitution in a name expression is consistent with itsinterpretation as

a value. If substitution is applied to a constant name then the name is unchanged. If substitution
is applied to a function application then the arguments to the function are evaluated in the updated
state.

Example 3.13 Let s be a state andal an assignment list. Letx be a name inNames, e an
expression andf a name function. The substitution ofal in the namex and name expressionf(e) (interpreted as names) isx / al �(In;s) x f(e) / al �(In;s) f(e / al) 2
Substitution in Assignment Lists

The assignment lists inAlist are used both for the substitution expression and to describe the
lists of assignments made by a command. The abstraction of assignment commands requires the
ability to apply substitution to the assignment lists of the commands (to model thechanges made
to a machine state). A particular application of substitution in assignment lists is to describe
syntactically the changes made by executing two assignment commands in succession. The
correctness of this application justifies the method of abstracting from assignment commands
and is established from the semantic interpretation of substitutions.

Substitution is applied to the expressions in an assignment list by applying the substitution
for name expressions and the substitution for value expressions to each name-valuepair in the
assignment list.

Definition 3.15 Substitution in assignment lists

The substitution of assignment listbl in assignment listal is writtenal / bl and defined:/ : (Alist� Alist)! Alist

nil / bl def= nil((x; e) � al) / bl def= (x / bl; e / bl)) � (al / bl)(cl � dl) / bl def= (cl / bl)� (dl / bl) 2
The effect of substituting assignment listbl in assignment listal and then evaluating an ex-

pressione of al in states is equivalent to evaluatinge in the states updated withbl. The substi-
tution of assignment lists together with the combination operator allows the effect on a state of
two assignment commands executed in sequence to be described as a single assignment list.

3.1 Expressions ofL 57

Theorem 3.1 Basis for abstraction

For assignment listsal; bl and states,
update(al; update(bl; s)) = update(bl � (al / bl); s)

Theorem (3.1) is the semantic basis for the abstraction of commands by manipulating the
text of the commands. If a commandc1 begins in a states and has the assignments in listal, it
will end in stateupdate(al; s). If a second commandc2 begins in this state and has assignment
list bl, it will end in stateupdate(bl; update(al; s)). From Theorem (3.1), the effect of the two
commands on the states is described by the assignment list(al � (bl / al)). This assignment
list can be constructed from the syntax of the commands and used to construct an abstraction of
commandsc1 andc2. The commandc with assignment list(al � (bl / al)) beginning in states
will produce the same state as the execution ofc1 followed byc2. Commandc is therefore the
abstraction ofc1 followed byc2 and can be constructed from the text ofc1 andc2. For example,
if expressione is interpreted in the state produced after by the execution of bothc1 andc2 then its
value (relative to states) is Ie(e)(update(bl; update(al; s)). This can be described syntactically
as the expressione / (al � (bl / al)).
Rules for Substitution

Rules for simplifying the expressions formed by the substitution operator are givenin Fig-
ure (3.3), their proof is given in Section C.2.2 of the appendix. In Figure (3.3), every substitution
expression is the substitution of value expressions (Definition 3.13). Rules (sr1) to(sr5) are the
standard rules for substitution. Rules (sr6) and (sr7) describe substitution whenthe expression is
a name function: the substitution is applied to the arguments; the function is evaluated to obtain
a namex and the assignment list is searched forx. If x is a member of the list then its asso-
ciated value is the result, otherwise the result isx. Rules (sr8) to (sr11) describe substitution
and the combination of assignment lists: the substitution is carried out on the arguments to any
functions; the name expressions are reduced to a namex and the assignment list is searched for
a value assigned tox.

Example 3.14 Let s be a state andal the assignment list(x1; v1) � (x2; v2). Assume thatx1 is
a basic name,x1 2 Namesand is distinct fromx 2 Names, x1 6= x. Since bothx1 andx are
constant,In(x1)(s) = x1 andIn(x)(s) = x. The substitutionx / al is therefore equivalent tox / (x2; v2).
Assume the registers and memory variables are distinct,Regs\ Vars = fg, and thata 2 Fn
constructs a name from the memory variables only,If(a)(v) = name(v) if v 2 Vars. Also
assume thatx is constructed from a register,r 2 Regsandx = name(r). For anyv 2 Values,If (a)(v) 6= x and, for all expressionse 2 E , a(e) 6�s x. If x1 = a(e) thenx / al � x / (x2; v2).
However, ifx is the name expressiona(v) ande � v thenx / al � v1. 2

3.1 Expressions ofL 58

e / nil � e (sr1) v / al � v (sr2)x �s tx / ((t; r) � al) �s r (sr3)
x 6�s tx / ((t; r) � al) �s x / al (sr4)f 62 Fnf(a1; : : : ; an) / al � f(a1 / al; : : : ; an / al) (sr5)f 2 Fn f(a1 / ((t; r) � al); : : : ; an / ((t; r) � al)) �s tf(a1; : : : ; an) / ((t; r) � al) �s r (sr6)f 2 Fn ^ v1 �s a1 / ((t; r) � al) ^ : : : ^ vn �s an / ((t; r) � al)^ f(a1 / ((t; r) � al; : : : ; an / ((t; r) � al) 6�s tf(a1; : : : ; an) / ((t; r) � al) �s f(v1; : : : ; vn) / al (sr7)

x �s tx / (bl � ((t; r) � al) �s r (sr8)
x 6�s tx / (bl � ((t; r) � al) �s x / (bl � al) (sr9)f 2 Fn f(a1 / (bl � (t; r) � al); : : : ; an / (bl � (t; r) � al)) �s tf(a1; : : : ; an) / (bl � (t; r) � al) �s r (sr10)f 2 Fn ^ v1 �s a1 / (bl � (t; r) � al) ^ : : : ^ vn �s an / (bl � (t; r) � al)^ f(a1 / (bl � (t; r) � al; : : : ; an / (bl � (t; r) � al) 6�s tf(a1; : : : ; an) / (bl � (t; r) � al) �s f(v1; : : : ; vn) / (bl � al) (sr11)

where v; v1; : : : ; vn 2 Values; x 2 Names; f 2 F ;t 2 En; r 2 E ; e 2 E; a1; : : : ; an 2 E ; s 2 State; al; bl 2 Alist;
Figure 3.3: Rules for the Substitution Operator

3.2 Commands ofL 59

3.2 Commands ofL
The commands of the abstract languageL describe the actions performed by the instructions in
an object code program. The abstract languageL has alabelling, aconditionaland anassignment
command. The labelling command associatesL commands with labels; the value of the program
counterpc in a states determines whether a labelled command is selected for execution ins. The
conditional command evaluates a Boolean expression and, depending on the result, executes one
of two branches. The assignment command ofL is a simultaneous assignment. This simplifies
the description of instructions and is also necessary to support the abstractionof commands.
However, it requires a method for detecting the unexecutable commands, which assign different
values to a single name.

The three commands ofL are sufficiently expressive to describe the result of abstracting
from a sequence of commands. The changes made to a state by a sequences of assignments can
be described by assignment lists and by substitution, as a consequence of Theorem (3.1). The
tests on program variables which are carried out by a sequence of conditional commands can
also be described in terms of conditional commands. The method used to abstract asequence of
commands is based on an operator for sequential composition. This is defined on the syntaxofL commands and constructs the abstraction of a pair of commands. Repeated application of the
sequential composition operator can then be used to abstract from a sequence of commands. Note
that only commands are considered in this chapter; the identification of sequences ofcommands
in a program is a matter for program transformations. The abstraction of commandssimply
provides the tools necessary for abstracting from programs.

The development of the commands ofL will be as follows: the syntax of the commands
will be defined first. The semantics of the assignment commands require a method fordetecting
unexecutable assignments. This will be described and followed by the definition ofthe semantics
of the commands. The abstraction of commands will be described in Section 3.3.

3.2.1 Syntax of the Commands

The commands ofL are defined as a set of commandsC0 of which only a subset is needed to
model processor instructions. This is to simplify the development of the language and its prop-
erties. The setC0 is inductively defined from labelling, conditional and assignment commands.

Definition 3.16 Syntax of the commands ofL
There is an inductively defined setC0 and functions:

if then else : (E � C0 � C0)! C0:= ; : (Alist� El)! C0: : (Labels� C0)! C0

3.2 Commands ofL 60

The setC0 is defined:e 2 E c1; c2 2 C0(if e then c1 elsec2) 2 C0 al 2 Alist l 2 El:= (al; l) 2 C0 l 2 Labels c 2 C0(l : c) 2 C0
The assignment command ofL is := (al; l), the conditional command isif b then c1 elsec2 and
the labelling command is(l : c) whereal 2 Alist; l 2 El; b 2 Eb andc; c1; c2 2 C0. The label of a

labelled command(l : c) is l, label(l : c) def= l. Thesuccessor expressionof assignment command:= (al; l) is l (a label expression).

An assignment command made up of a simple list will be written using infix notation. e.g. The
command:= ((x1; e1) � � � (xn; en) � nil; l) will be writtenx1; : : : ; xn := e1; : : : ; en; l. 2

All commands ofC0 contain at least one assignment command and every assignment com-
mand assigns a value to the program counter, to select the next command for execution. An
assignment commandc is made up of an assignment listal and a label expressionl. The com-
mand assigns the label expressionl to the program counterpc simultaneously with assignments
of al. The full list of assignments made by the commandc is therefore the list(pc; l) � al. (In
effect, the assignment commandx := y; l is short-hand forx; pc := y; l.)

The commands ofL used to model the instructions of an object code program are labelled
commands inC0. The set containing these commands is denotedC. Commands of the setC0 can
be labelled with two or more different labels. If a command has two distinctlabels,l1 : (l2 : c)
andl1 6= l2, then the command cannot be executed: A command is selected by the value of the
namepcand the namepccannot have two values. These commands are excluded from the setC.

Definition 3.17 Commands ofL
A commandc 2 C0 is regular if all labelled commands occurring inc have the same label.

regular? : C0 ! boolean

regular?(c) def= �8(l1; l2 :Labels; c1; c2 : C0) :(l1 : c1)� c ^ (l2 : c2)� c) l1 = l2
The setC is the subset ofC0 containing only labelled, regular commands:C def= f(l : c) j (l : c) 2 C0 ^ regular?(l : c)g 2
A commandc which is selected in a states can fail if it attempts an impossible assignment or it
is labelled with two distinct labels. The labels of a command can be distinguished by syntactic
equality and commands with distinct labels are excluded from setC. This ensures that if a
command inC fails, it does so because of an incorrect assignment.

3.2 Commands ofL 61

value ::= any element of the setValues
name ::= any element of the setNames
label ::= any element of the setLabels

value function ::= any element of the setFv
name function ::= any element of the setFn
label function ::= any element of the setF lE ::= hvaluei j hvalue functioni(hEi; : : : ; hEi)j hEni j hEli j hEi / hAlistiEn ::= hnamei j hname functioni(hEi; : : : ; hEi) j hEni / hAlistiEl ::= hlabeli j hlabel functioni(hEi; : : : ; hEi) j hEli / hAlisti

Alist ::= nil j (hEni; hEi) � hAlisti j hAlisti � hAlisti
com ::= if hEi then hcomi elsehcomi j := hAlisti; hEliC0 ::= hcomi j hlabeli : hcomiC ::= hlabeli : hcomi

Figure 3.4: Summary of Syntax for Expressions and Commands ofL
Example 3.15 Assume assignment listsal; bl 2 Alist, distinct labelsl1; l2 2 Labels, label ex-
pressionl 2 E and Boolean expressionb 2 Eb.
The commands ofC0 include::= (al; l); := (bl; l1); := ((pc; l1) � al; l2)

if b then l1 : (:= (al; l)) else := (bl; l1)l2 : if b then l1 : (:= (al; l)) elsel2 : (:= (bl; l1))l1 : l2 : (:= (al; l))l1 : (:= (al; l)); l2 : (:= (bl; l1))
Of these, the regular commands are::= (al; l); := (bl; l1); := ((pc; l1) � al; l2)

if b then l1 : (:= (al; l)) else := (bl; l1)l1 : (:= (al; l)); l2 : (:= (bl; l1))
The commands which are also inC arel1 : (:= (al; l)) andl2 : (:= (bl; l1)). 2

3.2 Commands ofL 62

Basic Commands ofL
A summary of the syntax of the commands and expressions ofL is given in Figure (3.4). The
syntactic categoryC describes the commands of the setC, which will be used to model the
instructions of an object code program. These are the commands labelled with a single label.
The syntactic categoryC0 of Figure (3.4) describes the commands of the setC0, which will be
used when deriving and manipulating commands ofL.

3.2.2 Correct Assignment Lists

The assignment command ofL is a simultaneous assignment and its semantics require a means
for detecting impossible assignments. The assignment command:= (al; l) can be executed only
if it does not assign two different values to the same name. The assignment list of the command,(pc; l) �al, is said to becorrectiff every name is assigned at most one value. Because every name
expression in the assignment list of a command is evaluated in the state in which the command
begins execution, the correctness of the assignment depends on this state.

An assignment listal can be constructed from the combination of assignment lists. However,
it is only necessary for the simple lists occurring inal to be correct. If a name is assigned
two different values by two different simple lists, only one of the assignmentswill be used.
The correctness of an assignment listal is therefore established by considering each simple list
which occurs inal. A simple assignment list is correct in a states iff all values associated
with a namex are equivalent ins. This allows a variable to be assigned the same value any
number of times and is needed to accommodate name expressions. For example, the assignment
ref(x); y := 1; 1 would be otherwise be incorrect whenref(x) �s y even though the assignment
would be equivalent ins to y := 1, a valid assignment.

Definition 3.18 Correct assignment lists

The name-value expressions pair(x; v) 2 (En�E) occurs in assignment listal in states, written
occs?((x; v); al)(s), iff there is a pair(x1; v1) in al such thatx1 is equivalent tox and v1 is
equivalent tov.

occs?: ((En � E)� Alist)! State! boolean

occs?((x; e); nil)(s) def= false

occs?((x; e); (x1; e1) � al)(s) def= (x �s x1 ^ e �s e1) _ occs?((x; e); al)(s)
occs?((x; e); (al � bl))(s) def= occs?((x; e); al)(s) _ occs?((x; e); bl)(s)

The set of values associated with a namex in a states by an assignment listal, Assoc(x; al)(s)
contains all valuese such that(x; e) occurs inal in states.

Assoc: (En � Alist)! State! Set(E)
Assoc(x; al)(s) def= fe : E j occs?(x; e)(al)(s)g

3.2 Commands ofL 63

There is a predicatecorrect?on assignment lists and states with typeAlist ! State! boolean
such that assignment listal is correct in states iff correct?(al)(s) is true.

Predicatecorrect?satisfies the following:
Simple lists: If al is a simple list,simple?(al), and every name is associated byal with at most
one value in a states thenal is correct.

correct?(al)(s), � 8(x : Names) :9(e : E) : 8(e1 : E) : e1 2 Assoc(z; al)(s)) e �s e1�
Assignment lists: For any listal, if the initial prefix ofal is correct in states and every combina-
tion of lists inal is correct in states thenal is correct in states.

correct?(al)(s), 0@ correct?(initial(al))(s)^8(bl; cl : Alist) :(bl � cl)� al) correct?(bl)(s) ^ correct?(cl)(s) 1A 2
A definition for the predicatecorrect?is given in Appendix C. In a correct assignment list,

each name is associated with at most one value by each simple list combinedwith the� operator.
The correctness of a combined assignment list,al � bl, depends on the correctness ofal andbl
independently of each other. The names inal are not considered when checking the listbl.
This follows from the intended use of the combination construct to describe a sequenceof state
updates:bl describes the changes to the state which has been updated withal.
Corollary 3.1 For anys 2 State,x 2 En, e 2 E andal; bl 2 Alist,

1. The empty assignment list is always correct: correct?(nil)(s).
2. A single assignment is always correct: correct?((x; e) � nil)(s)
3. If correct?(al)(s) and correct?(bl)(s) then the combination ofal and bl is correct ins:

correct?(al � bl)(s).
Proof. Straightforward, from definition ofcorrect?. 2

Corollary (3.1) describes simple cases which occur frequently. In particular, items (2) and (3)
will be applicable to the assignment lists which result from the combination of commands. The
correctness of an assignment listal in a states updated with assignment listbl is preserved in
states when the assignment listbl is substituted intoal. (This is needed to allow the abstraction
of assignment commands using the property of Theorem 3.1.)

Theorem 3.2 For assignment listsal; bl 2 Alist and states,
correct?(al)(update(bl; s)), correct?(al / bl)(s)

3.2 Commands ofL 64

The predicatecorrect? is a precondition which must be satisfied by the state in which an
assignment command begins execution. For processor languages, the majority of commands
have assignment lists which are correct in any state. The means that, when verifying object code,
the correctness of assignment lists in all states only needs to be established once. In general,
it is not necessary to re-establish the correctness of an assignment listduring the course of a
verification proof.

Example 3.16 For v1; v2 2 En and expressionse1; e2 2 E , the assignment list(n1; e1) � (n2; e2)
is correct in states if n1 6�s n2, or if n1 �s n2 ande1 �s e2. If n1 6�s n2 for any states then the
assignment list(n1; e1) � (n2; e2) is correct in any state.

For assignment listsal andbl and states, if bothal andbl are correct ins then so isal� bl. Also,
if al is correct ins andbl is correct inupdate(al; s) thenal � (bl / al) is also correct ins. 2
3.2.3 Semantics of the Commands

The semantics of the commands ofC0 (and thereforeC) are defined by an interpretation func-
tion Ic which relates the state in which a command begins with the state it produces.A com-
mandc begins execution in states and produces statet by assigning values to names. A command
labelled withl can begin only if it is selected: the namepc must have the valuel in states. A
conditional command with testb, true branchct and false branchcf will executect if the expres-
sion b is true in s; if b is falsethencf is executed. An assignment command produces statet
by updating states with the assignment list; if the assignment list is not correct, the assignment
command fails.

Definition 3.19 Semantics of the commands

The interpretation function on commands has type:Ic : C0 ! (State� State)! boolean

The semantics of the commands are defined byIc as follows:
Conditional commands:Ic(if b then c1 elsec2)(s; t) def= � Ic(c1)(s; t) if Ib(b)(s)Ic(c2)(s; t) otherwise

Labelled commands: Ic(l : c)(s; t) def= Ie(pc)(s) = l ^ Ic(c)(s; t)
Assignment commands:Ic(:= (al; l))(s; t) def= correct?((pc; l) � al)(s) ^ t = update((pc; l) � al; s) 2

3.2 Commands ofL 65

The commands ofL are deterministic: if commandc beginning in states produces statet or
stateu thent = u. Because of this, the relations defining the semantics of the commands can
also be considered to be functions transforming states.

Lemma 3.3 Determinism

For all commandsc 2 C0 and statess; t; u 2 State,Ic(c)(s; t) Ic(c)(s; u)t = u
Proof. Straightforward, by induction on the commandc. 2
Example 3.17 Assume commandc1 = (:= ((x1; v1) � (x2; v2); l)). Also assume thatx1 2 En is
distinct fromx2 2 En in every states, x1 6�s x2 andpc is distinct from bothx1 andx2 in any
states. The assignment list ofc1 is correct in any state. Ifc1 begins in states and produces statet, Ic(c1)(s; t), then the value ofx1 in t is the value ofv1 in s, Ie(x1)(t) = Ie(v1)(s). The value
of x2 in t is the value ofv2 in s, Ie(x2)(t) = Ie(v2)(s).
Let c2 = if b then ct elsecf . If b is equivalent ins to true, b �s true, thenc2 is equivalent toct,Ic(c2)(s; t) = Ic(ct)(s; t). 2
Derived Commands

The setC0 contains the basic commands of the abstract language. Other commands, which
describe a particular action, can be defined in terms of those in the setC0. In particular, the jump
command,goto, and the command which always fails, writtenabort, can be derived from the
assignment command. Both are useful when defining the semantics of processor instructions:
a jump instruction occurs in most processor languages while the commandabort models the
failure of an instruction to terminate.

The jump andabort commands are defined in terms of assignments to variables. Command:= (al; l) updates the program counter with the label expressionl. If Ic(:= (al; l))(s; t) thent = update((pc; l) � al; s) and the value ofpc in t is Il(l)(s). An assignment command of the
form := (nil; l) is therefore a computed jump: the value of expressionl is assigned topc. If the
assignment listal of command:= (al; l) is incorrect for all states then the command always fails
to terminate and is the commandabort.

Definition 3.20 gotoandabort

The computed jump,goto l, is the assignment command with successor expressionl. The com-
mand which always fails,abort, is the assignment command which is always incorrect.

goto : El ! C0
goto l def= := (nil; l) abort : C0

abort def= (pc; pc := true; false; undef(El)) 2

3.2 Commands ofL 66

From the semantics of the assignment command, the assignment list ofgoto l beginning in
statess must satisfycorrect?((pc; l) �nil)(s). From Corollary (3.1), this istrue in all states. Since
abort assigns bothtrue andfalseto the program counter,abort can never be executed.

Commands ofL are labelled and a commandc can begin in a states iff the value ofpc in s
is the label ofc. Following Lamport (1994), the commandc is said to beenabledin s. When
a commandc of L is selected in states, c must either terminate and update states or fail to
terminate. Ifc fails to terminate then it is said tohalt in states.
Definition 3.21 Enabled and Halts

A labelled command is enabled iff it is selected for execution.

enabled: C ! State! boolean

enabled(c)(s) def= Ie(pc)(s) = label(c)
Commandc halts in states if c is enabled ins and there is no state in whichc can terminate.

halt? : C ! State! boolean

halt?(c)(s) def= enabled(c)(s) ^ 8(t : State) : :Ic(c)(s; t) 2
For any labell, the command(l : abort) halts whenever it is enabled. The command(l :

goto l) never halts: if it is enabled in states then it will terminate and the state it produces iss.
The value of the program counterpc in s is l and the command updatess with the assignment ofl
to pc, producing no change ins. The commandl : goto l is therefore equivalent to the command
skipwhich terminates but does nothing (Gries, 1981).

Example 3.18 Processor instructions

The semantics of a processor instruction can be described in terms ofL either directly or through
the use of derived commands, such asgoto. For the example, the instructions described in
Chapter 2 will be modelled inL. Assumer 1; r 2; r 3 are any distinct registers inRegs; also assumev 2 Valuesandl 2 Labels. The label expressionloc(pc+a 1) will be used to informally identify
the next instruction in memory (the exact expression will differ between processors).

Arithmetic and comparison instructions:The Alpha AXP instructionaddl r 1; r 2; r 3 can be mod-
elled by theL commandr 3 := r 1 +a r 2; loc(pc+a 1). The PowerPC instructionadd r 1; r 2; r 3
is modelled by theL commandr 1 := r 2 +a r 3; loc(pc +a 1). The Alpha AXP instructioncmpeq r 1; r 2; r 3, testing the equality ofr 1 and r 2 is theL commandif r 1 =a r 2 then r3 :=1; loc(pc+a 1) else r3 := 0; loc(pc+a 1).
Program control instructions:The conditional jump instruction of the Alpha AXP,beq r ; v, can
be modelled as the conditional commandif r =a 1 then goto loc(pc+a v) else goto(pc+a 1).
Many jump instructions can be described in terms of thegoto command. For example, a simple
branch instruction of the Motorola 68000 processor,jmp v, passes control to the instruction

3.3 Abstraction of Commands 67

labelledv; this is theL commandgoto loc(v). Note that, by definition, this is the assignment
command:= (nil; loc(v)). Program control instructions can be more complex. For example, the
Alpha AXP instructionjmp r ; v, assigns the label of the next instruction to registerr and passes
control to the labelloc(v): r := loc(pc+a 1); loc(v).
Data movement:The Motorola 68000 data movement instruction,move:w #258; r@, is simply
an assignment to two memory variables. These will be identified in termsof ref. TheL com-
mand modelling the instruction is:ref(r); ref(r +a 1) := 1; 3; loc(pc+a 1). Note that this is a
simultaneous assignment to name expressions and these name expressions implement the indi-
rect addressing modes of the instruction. The assignment toref(r) andref(r +a 1) is correct in
any state because ther andr +a 1 are distinct in any state (by definition ofref).

The commands ofL are not limited by the instructions of a processor and can model instructions
formed by combining the features of different processor languages. For example, AlphaAXP
processor does not permit arithmetic operations to refer to memory variables. However, these can
easily be modelled inL. For example the addition of memory variables identified by registers is
the assignment:ref(r 3) := ref(r 1) +a ref(r 2); loc(pc+a 1). This action is not supported by the
Alpha AXP processor design, which restricts arithmetic operations to registers and values. 2
3.3 Abstraction of Commands

A commandc is an abstraction of the twoL commandsc1 andc2 if it produces the same state
produced byc1 followed byc2. Formally, for any statess andt, c must satisfy:9(u : State) : Ic(c1)(s; u) ^ Ic(c2)(u; t)Ic(c)(s; t) (3.1)

Becausec2 does not necessarily followc1, which may select any command,c must also have the
property that ifc1 does not selectc2 thenc has the same behaviour asc1.Ic(c1)(s; t) pc 6�t label(c1)Ic(c)(s; t) = Ic(c1)(s; t) (3.2)

Any command which has both these properties can replacec1 in a program. While this will not
reduce the number of commands of the program, it will reduce the number of commands which
must be considered during a proof of correctness.

The sequential composition operator, used in structured languages (Loeckx & Sieber, 1987),
is used to combine two commands. In a structured language, this operator is a syntactic construct
which constructs a compound command, writtenc1; c2, from the commandsc1 and c2. The
interpretation of this construct would be defined:Ic(c1; c2)(s; t) = 9u : Ic(c1)(s; u) ^ Ic(c2)(u; t) (3.3)

which satisfies Property (3.1) but not Property (3.2). Forc1 = goto l1, c2 = l2 : goto l1 andl1 6= l2, the interpretation would never hold.

3.3 Abstraction of Commands 68

The interpretation of sequential composition using Equation (3.3) assumes that the language
does not contain labelled commands. When labelled commands are included, the interpretation
can be defined, using Property (3.1) and Property (3.2), as follows:Ic(c1; c2)(s; t) def= 8>><>>:9u :Ic(c1)(s; u)^ labelled?(c2) ^ enabled(c2)(u)) Ic(c2)(u; t)^ labelled?(c2) ^ :enabled(c2)(u)) u = t^ :labelled?(c2)) Ic(c2)(u; t)

(wherelabelled?(c) = true, (9l0; c0 : c = (l0 : c0))) (3.4)

This definition of sequential composition is consistent with that used in languages without jumps
and labels. However, it does not construct an abstraction of the two commandsc1 andc2. This
form of composition is simply a syntactic device for the combination of commands. The interpre-
tation of this form of composition depends on the interpretation of the two individual commands.
To verify that the composed commands establish a property, each command must therefore be
considered separately.

To construct an abstraction which reduces the verification task, sequentialcomposition must
result in a single command. The sequential composition operator is defined here as a function on
commands ofL which ranges over the commands. This function is based on the algebraic laws
described by Hoare et al. (1987), extended to take into account name expressions and computed
jumps. The substitution expressions ofL and the combination of assignment lists provide the
operations on name expressions. To treat the flow of control correctly, the sequential composition
of commandc1 andc2 uses the label ofc2 to guard execution ofc2. A conditional command is
formed which compares the program counter with the label ofc2. If the two are equal thenc1; c2
is the command satisfying Property (3.1) otherwise it is the command satisfyingProperty (3.2).

3.3.1 Sequential Composition

The sequential composition of commandsc1 andc2 is writtenc1; c2 and defined by recursion over
the commands of the setC0. For simplicity, the definition will be given in a number of steps.

Definition 3.22 Type of the sequential composition operator

The composition operator; is a function from a pair of commands to a single command.; : ((C0 � C0)! C0) 2
If c1 is a labelled command,c2 is composed with the command being labelled. Whenc1 is

a conditional, both branches are composed withc2. Whenc1 is an assignment command, the
definition is by recursion overc2.

3.3 Abstraction of Commands 69

Definition 3.23 Labelled and conditional commands

The composition ofl : c1 andc2 is defined:(l : c1); c2 def= l : (c1; c2)
The composition of command(if b then c1 elsec2) with commandc is the composition of the
branches withc. (if b then c1 elsec2); c def= if b then (c1; c) else(c2; c) 2
The properties of composition of a labelled or conditional commands are straightforward from
the semantics of the commands. Ifc is any command, the composition of a labelled command(l : c1) with c, (l : c1; c), has labell and is enabled in a states iff (l : c1) is enabled ins. The
composition of a conditional commandif b then ct elsecf with c is equivalent to(ct; c) whenever
testb succeeds and is equivalent to(cf ; c) whenever testb fails.

Composition and Assignment

An assignment command updates the state in which it starts with new values for some of the
names. Any commandc following an assignment will begin in the updated state and any expres-
sion inc is evaluated in the updated state. This is equivalent to substituting the values assigned to
the names in the expressions ofc. When the assignment command is composed with a labelled
command(l1 : c), the commandc can be executed only if the successor expression of the as-
signment command is equivalent tol. The command formed by sequential composition uses the
equality operator ofE , equal, to test the equivalence of the program counter and the successor
expression in a state.

Corollary 3.2 Equality operator ofL and equivalence

For expressionse1; e2 2 E and states: Ib(e1 =a e2)(s), e1 �s e2.
Proof. Immediate, from definitions. 2

When an assignment command:= (al; l) is composed with a conditional command, the
Boolean test is updated with the assignment list and the assignment command is composed with
each branch of the conditional.

Definition 3.24 Assignment with labelled or conditional commands

The composition of an assignment with a labelled command is defined:(:= al; l); (l : c) def= �
if (l =a l1) then (:= al; l); c

else(:= al; l)

3.3 Abstraction of Commands 70

The composition of an assignment with a conditional command is defined:(:= al; l); (if b then c1 elsec2) def= �
if b / ((pc; l) � al) then (:= al; l); c1

else(:= al; l); c2 2
The composition of two assignment commands:= (al; l1) and:= (bl; l2), is obtained by: sub-

stitutingl1 for every occurrence of the program counterpc in the expressions ofbl; substituting
each expression inal for its associated name when it occurs in the expressions ofbl; combining
the two resulting lists. This yields the assignment list of Theorem (3.1), whichdescribes the
changes made by the two commands to a state.

Definition 3.25 Composition of assignment commands

The composition of two assignment commands:= (al; l1) and := (bl; l2) is the assignment
command which updates the states with the assignments made by:= (al; l1) followed by :=(bl; l2).:= (al; l1); (bl; l2) def= (((pc; l1) � al)� ((pc; l2) � bl / (pc; l1) � al); l2 / ((pc; l1) � al)) 2

The semantics of the assignment command require that the assignment list of:= (al; l1); :=(bl; l2) is correct:

correct?((pc; l2 / ((pc; l1) � al)) � (((pc; l1) � al)� ((pc; l2) � bl / (pc; l1) � al)))
From the rules for predicatecorrect?(Corollary 3.1), it is enough to show the correctness ofal,
of bl/((pc; l1)�al) and of(pc; l2/((pc; l1)�al))�nil. Assume that the first command begins in states and ends in stateu and that the second command begins in stateu and ends in statet. Assume
also that:= (al; l1); := (bl; l2) begin and ends in states andt respectively. The assignment listal is correct in states since:= (al; l1) begins ins and terminates. The correctness of assignment
list (bl / (pc; l1) � al) in states is equivalent to the correctness ofbl in u and follows from the
semantics of:= (bl; l2) and the correctness of(pc; l2 / ((pc; l1) � al)) � nil is immediate.

3.3.2 Properties of Composition

Since a command ofL is a labelled, regular command ofC0, the composition of commandsc1; c2 2 C is also inC iff c1; c2 is a regular command. This is ensured by the composition of an
assignment with a labelled command which replaces the labelling construct with a conditional
command.

3.3 Abstraction of Commands 71

Theorem 3.3 The result of composition of a regular command(l : c) 2 C0 with any commandc2 2 C0 is a regular command.

regular?(l : c1)
regular?((l : c1); c2)

Sequential composition satisfies Property (3.1) and Property (3.2). For any two commandsc1; c2 2 C0 and statess; u; t, if c1 begin in states and ends in stateu andc2 begins in stateu and
ends in statet thenc1; c2 begins in states and ends in statet.
Theorem 3.4 Property (3.1)

For any commandsc1; c2 2 C0 and statess; t,9(u : State) : Ic(c1)(s; u) ^ Ic(c2)(u; t)Ic(c1; c2)(s; t)
For any commandsc1 2 C0; c2 2 C and statess; t, if c1 begins in states and ends in statet

andc2 is not enabled int thenc1; c2 begins in states and ends in statet.
Theorem 3.5 Property (3.2)

For any commandsc1; c2 2 C0, label l 2 Labels and statess; t 2 State,Ic(c1)(s; t) pc 6�t lIc(c1; (l : c2))(s; t) = Ic(c1)(s; t)
Assumec is the result of composing any two commandsc1 andc2. The interpretation ofc

in statess andt implies that either there is an intermediate state in whichc1 terminates andc2
begins orc1 begins in states and ends int.
Theorem 3.6 For commandsc1; c2 2 C0 and statess; t,Ic(c1; c2)(s; t)(9(u : State) : Ic(c1)(s; u) ^ Ic(c2)(u; t)) _ Ic(c1)(s; t)

Theorem (3.6) is a general result which relates the interpretation ofc1; c2 to the effect of
attempting to executec1 followed by c2. Either both are executed and there is an intermediate
state betweenc1 andc2 or onlyc1 is executed to produce statet. It is not possible to state thatc2 is
not enabled int sincec2 (which is inC0) may have more than one label. Because the composition
function translates the labelling construct into conditionals, with the failure of the test leading
to the behaviour ofc1, it is possible forc2 to be enabled int but never executed. For example,
composing any commandc with l1 : l2 : c0 wherel1 6= l2 results in the command:

if pc= l1 then (if pc= l2 then c; c0 elsec) elsec
Sincel1 6= l2, one or both of the tests will fail and result in a command which behaves asc.
When the commands are regular, every label occurring in the command must be the same and
Theorem (3.6) can be strengthened.

3.3 Abstraction of Commands 72

Theorem 3.7 For regular commandsc1; c2 2 C and statess; t,Ic(c1; c2)(s; t)(9(u : State) : Ic(c1)(s; u) ^ Ic(c2)(u; t)) _ (Ic(c1)(s; t) ^ pc 6�t label(c2))
Theorems (3.4) to (3.7) describe the behaviour of composition when both commands are

executed and terminate. Composition also preserves the failures of the commands: if the com-
position of commandsc1 andc2 halts then eitherc1 or c2 must also fail to terminate.

Theorem 3.8 For commandsc1; c2 2 C and statess; t; u 2 State,

halt?(c1; c2)(s)
halt?(c1)(s) _ (9u : Ic(c1)(s; u) ^ halt?(c2)(u))

Conversely, if either commandc1 or c2 halts then so does(c1; c2).
Theorem 3.9 For commandsc1; c2 2 C and statess; t 2 State,

1. If c1 halts ins then so doesc1; c2.
halt?(c1)(s)

halt?(c1; c2)(s)
2. If c1 beginning in states ends in a stateu andc2 halts inu thenc1; c2 halts ins.Ic(c1)(s; t) halt?(c2)(t)

halt?(c1; c2)(s)
Theorems (3.8) and (3.9), together with the earlier theorems, show that if the compositionc1; c2 establishes a property then so will the two commandsc1 andc2 executed in sequence. If

the composition(c1; c2) cannot be executed or cannot establish the property then neither can the
two commands considered individually. Verification based on(c1; c2) is therefore equivalent to
and simpler than consideringc1 andc2 individually because any properties of the two commands
executed in sequence can be established directly from the single command(c1; c2).
3.3.3 Applying Sequential Composition

The commands which result from sequential composition can be complex. For example, to en-
sure that composition has Property (3.2), an assignment commandc1 composed with labelled
commandl : c2 results in a conditional command in which bothc1 and (c1; c2) occur. How-
ever, the result of sequential composition can, in some circumstances, be simplified using the
properties of the expressions and commands.

3.3 Abstraction of Commands 73

The simplification of a commandc must ensure the resultc0 is equivalent toc in all states,Ic(c)(s; t) = Ic(c0)(s; t). This is possible by the replacement of expressions in the command
with strongly equivalent expressions. This can then be followed by the replacement of com-
mands with equivalent commands. The conditions for strong equivalence between expressions
can often be determined from the syntax of the commands; in these cases, the simplifications
can be carried out mechanically. For example, assumel1 = l: in the conditional command
if (l1 =a l) then c1; c2 elsec1, the expression(l1 =a l) can be replaced withtrue. From the
semantics of the conditional command, the result is a command equivalent to(c1; c2).

A second method, essentially that of symbolic execution (King, 1971), uses the properties of
the commands to determine the values of expressions. e.g. Assumex 2 Namesandv 2 Values
and commandsct; cf . FromIc(if x =a v then ct elsecf)(s; t) it follows that if x occurs inct
then it can be replaced withv and wherex occurs incf , x will not have valuev.

Example 3.19 Assume namex 2 Names, valuesv1; v2 2 Values, labelsl; l1 2 Labelsand
expressionse1; e2 2 E. Let a 2 Fn be defined such that for allv 2 Valuesands 2 State, a(v) is
distinct fromx in s. Also assume forv1; v2 2 Valuesthata(v1) �s a(v2) iff v1 = v2.
The assignment command:= ((x; e1) / (a(e2); v2); l) is equivalent to:= (x; e1 / (a(e2); v2); l).
The assignment command:= ((x; v1) / (a(e2); v2); l) is equivalent to:= ((x; v1); l).
The expressionref(a(x)) / (a(v2); v1) is equivalent toref(v1) whenx has the valuev2. The
conditional command:

if x =a v2 then (ref(a(x)) / (a(v2); v1) := e1; l)
else(ref(a(x)) / (a(v2); v1) := e2; l)

is equivalent to the command:

if x =a v2 then (ref(v1) := e1; l)
else(ref(a(x) / (a(v2); v1) := e2; l)) 2

A property of sequential composition with labelled commands is that it is not associative (as
it is in structured languages). The composition of commandl1 : c1 with c2, (l1 : c1); c2 has labell1 and is enabled iffl1 : c1 is enabled. The composition of any commandc with (l1 : c1); c2,c; ((l1 : c1); c2), will select((l1 : c1); c2) iff c selectsl1 : c1 and will behave asc otherwise. Even
if c selectsc2, c2 will not be executed since it can only followl1 : c1. The composition ofc withl1 : c1 then withc2, (c; l1 : c1); c2 has a different behaviour. Firstc is executed then, ifl1 : c1 is
enabled, the commandl1 : c1; c2 is executed. Ifl1 : c1 is not selected andc selectsc2 thenc2 will
be executed.

Example 3.20 Let l1; l2; l3; l4 2 Labelsbe distinct. The commandgoto l2; (l1 : goto l3; l2 :
goto l4) is equivalent togoto l2. However, the command(goto l2; l1 : goto l3); l2 : goto l4 is
equivalent togoto l2; l2 : goto l4. 2

3.4 Proof Rules for Commands 74

3.4 Proof Rules for Commands

A program logic provides a means for reasoning about the the commands of a language. The
proof rules of the logic are used when verifying a program, to show that the commands of the
program satisfy some specification. Because the commands of the languageL are used to model
processor instructions, proof rules forL commands can be applied to any processor instruction
which is described in terms ofL.

Proof rules are defined for a program logic and are applied to logical formulas describing
the specification of commands. The rules for commands ofL will be defined for a logic made
up of assertions on states. The specification of a command will be based on awp function
(Dijkstra, 1976) for commands in the setC0. This will allow the total correctness of commands
to be established. The proof rules for the commands will be based on the manipulation of the
specifications formed by thiswp function.

Assertions

The properties of states will be specified in terms of an assertion language,denotedA. An
assertion is a predicate on states; the setA is made of the assertions, the operators of a first
order logic and the Boolean expressionsEb. The logical operators of the assertion language
include the negation, conjunction and universal quantifier. The assertion language alsoincludes
a substitution operator for the expressions ofL.

Definition 3.26 Assertion language

Assertions have typeA, defined as the functions from states to Booleans.A def= State! boolean

An assertionP is valid if it is true for all states. A valid assertion is writteǹP .` : A! boolean` P def= 8(s : State) : P (s)
The negation and conjunction of assertions are defined: : A! A:P def= �(s : State) : :P (s) ^ : (A�A)! AP ^Q def= �(s : State) : P (s) ^Q(s)
The disjunction,_, and implication,), operators can be defined in terms of the negation and
conjunction.

The universal quantifier is defined on functions from values to assertions.8 : (Values!A)!A8F def= �(s : State) : 8(v : Values) : F (v)(s)

3.4 Proof Rules for Commands 75

Substitution in assertions is equivalent to updating the state./ : (A� Alist)! AP / al def= �(s : State) : P (update(al; s))
The Boolean expressionsEb are taken to be assertions;e 2 Eb) Ib(e) 2 A. For e 2 Eb, the
assertionIb(e) will be writtene. 2

The setA describes a first order logic which can be used to reason about the properties of
the program variables. Proof rules for the logic are defined in terms of valid formulas, as usual
in logical systems (e.g. see Paulson, 1995a or Gordon, 1988). To distinguish the assertions ofA from the logical formulas used in the presentation, universally quantified assertions ofA will
be written using lambda notation. For example, withv 2 Values, 8(�v : v +a 1 >a v) is an
assertion ofA which is true for any state:` 8(�v : v +a 1 >a v). Assumex; y 2 Names,
the assertion8(�v : x =a v) v >a y), is true for any state in which the assertionx >a y is
true: ` (x >a y)) 8(�v : x =a v) v >a y). The existential quantifier ofA can be defined9F def= :8(�v : :F (v)), whereF : Values!A.

Weakest Precondition of Commands

The commands ofL are specified in terms of awp predicate transformer (Dijkstra, 1976) which
defines the weakest precondition necessary for a command to terminate and establish a postcon-
dition. Thewp transformer for the commands ofL is writtenwp and satisfies, for postconditionQ, commandc and statess; t:

wp(c; Q)(s) = 9t : Ic(c)(s; t) ^Q(t)
The weakest precondition required for commandc to establish postconditionQ is calculated
from the weakest precondition required by each command occurring inc.
Definition 3.27 Weakest precondition

For assertionQ, commandsc; c1; c2 and states; t, wp is defined

wp : (C0 �A)! A
wp(l : c; Q) def= pc=a l ^ wp(c; Q)

wp((:= al; l); Q) def= �
correct?((pc; l) � al)^Q / (pc; l) � al

wp(if b then c1 elsec2; Q) def= � b) wp(c1; Q)^:b) wp(c2; Q) 2

3.4 Proof Rules for Commands 76

The rules for the weakest precondition are given in Figure (3.5). The assignment rule (tl1)
is similar to that of Cartwright and Oppen (1981) (except that the assignment is simultaneous)
and requires that the assignment list of the command be correct. The label rule (tl2) requires
that a labelled command is selected before it is executed. Rules (tl3) and(tl4) are the standard
rules for conditional commands and for the composition of commands. The proof of the rules is
straightforward by induction on the commands.

There is no rule for sequential composition since it is not a primitive construct ofthe lan-
guageL. The result of combining commands by sequential composition is a single command
made up of the labelling, conditional and assignment commands, to which the rules of Fig-
ure (3.5) can be applied. The rule for the sequential composition operator of structured languages
(Dijkstra, 1976) is: ` P) wp(c1; R) ` R) wp(c2; Q)` P) wp(c1; c2; Q)
This rule can be obtained as an instance of Theorem (3.4). However, the rule increases the
difficulty of a proof, requiring commandsc1 andc2 to be considered individually. The simpler
approach is to reason about the single command which results from(c1; c2). The sequential
composition operator ofL abstracts fromc1 andc2 allowing the truth of̀ P) wp(c1; c2; Q) to
be established directly, without the need for the intermediate assertionR.

3.4.1 Example

Specifying commands in terms of logical formulas, as in thewpcalculus, allows the verification
to be based on the properties required of the commands. Reasoning about commands specified
using thewp function is similar to reasoning in anywp calculus (e.g. see Dijkstra, 1976 or
Gries, 1981). The examples here will consider the features specific to the languageL. For the
examples, assumeP;Q 2 A,c; c1 2 C0, x; y; z 2 Names, v; v1; v2 2 Values, e1; e2 2 E andl; l1; l2 2 Labels. Also assumex; y; z and the program counterpcare all distinct.

Assignments:The assignment commandx; y := v1; v2; l can be shown to establish postconditionx =a v1: ` true) wp((x; y := v1; v2; l); x =a v1). First, the precondition is strengthened with
the assertionx =a v1 / (pc; l) � (x; v1) � (y; v2), which requires a proof of̀ x =a v1 / (pc; l) �(x; v1) � (y; v2)) true. This can be established using the substitution rules of Figure (3.3) and
Lemma (3.1) (for the properties of the equivalence relation). The substitution is pushed into the
equality (sincev1 2 Values) to obtain` x/ (pc; l) � (x; v1) � (y; v2) =a v1. Sincex is distinct from
bothy andpc, this reduces tò v1 =a v1, which is trivially true. The specification to be proved
is then` x =a v1 / (pc; l) � (x; v1) � (y; v2)) wp((x; y := v1; v2; l); x =a v1). This is immediate
from the assignment rule (tl1) (the assignment list is always correct since the names are distinct).

Flow of control: The selection of commands for execution is determined by the labelling com-
mand and the program counterpc. For labelled commandl : c 2 C to satisfy the specification` P) wp(l : c; Q), the preconditionP must satisfỳ P) pc =a l (from the label rule tl2).
For commandc1 to selectl : c as a successor,c1 must assignl to the program counter. Ifc

3.4 Proof Rules for Commands 77

Assignment: ` P / (pc; l) � al) correct?((pc; l) � al)` P / ((pc; l) � al)) wp(:= (al; l); P) (tl1)

Label: ` P) pc=a l ^ wp(c; Q)` P) wp(l : c; Q) (tl2)

Conditional: ` P ^ b) wp(c1; Q)` P ^ :b) wp(c2; Q)` P) wp(if b then c1 elsec2; Q) (tl3)

Strengthening: ` R) Q ` P) wp(c; R)` P) wp(c; Q) (tl4)

Weakening: ` P) R ` R) wp(c; Q)` P) wp(c; Q) (tl5)

wherec; c1; c2 2 C0, l 2 El, b 2 Eb, al 2 Alist andP;Q;R 2 A
Figure 3.5: Proof Rules for Commands ofL

satisfies̀ P) wp(c; Q) andQ is the precondition forl : c then` Q) pc=a l. This must be
established using the assignment rule (tl1), sincepc is a name. Ifc1 is := (al; l) then the proof is
of the assertions̀ P) Q/ (pc; l) � al (for the strengthening rule tl4) and̀Q) Q/ (pc; l) � al
(for the assignment rule tl1).

Derived commands:Reasoning about derived commands is based on their definition. The com-
mandgoto l can always be shown to satisfy the specification` P / (pc; l)) wp(goto l; P). The
truth of this follows by definition ofgoto, which reduces the specification tòP / (pc; l))
wp(:= (nil; l); P), and from the assignment rule (tl1). The commandabort satisfies the specifi-
cation` false) wp(abort; Q), for any postconditionQ 2 A. By definitionabort = (pc; pc :=
true; false; undef(El)). Since the assignment list is never correct in any state, the commandabort
can never terminate.

Instructions: Processor instructions are specified in terms ofL commands. The Alpha AXP
instructionaddl r 1; r 2; r 3 is modelled as the commandr 3 := r 1 +a r 2; loc(pc+a 1). Using
the assignment rule (tl1), the instruction can be shown to satisfy the specification: ` P)
wp(r 3 := r 1 +a r 2; loc(pc +a 1); r 3 =a r 1 +a r 2 ^ pc =a loc(pc +a 1)), for anyP 2 A.
The specification of the Alpha AXP jump instructionjmp r ; v can also be derived from the
assignment rule. The instruction is modelled by theL commandr := pc; loc(v) and specified:` P ^ pc =a l) wp((r := pc; loc(v)); r =a l ^ pc =a loc(v)), for anyP 2 P . Note that

3.4 Proof Rules for Commands 78

because the value of the program counter changes, the constant labell must be used to fix the
value ofpcwhich is to be assigned tor .

Abstraction

To see the effect on verification of abstracting commands, assume the commandsgoto l and(l : x; y := e1; e2; l1) are executed in sequence. To show that the commands establishy =a e2
requires a proof of the two assertions:` true) wp(goto l; pc=a l)` pc=a l) wp((l : x; y := e1; e2; l1); y =a e2)
Abstracting from the commands replaces these two assertions with a single specification. Letc = (goto l; (l : x; y := e1; e2; l1)). By definition, this is the commandif pc / (pc; l) =al then x; y := e1; e2; l1 else gotol. Becausepc / (pc; l) =a l is true in any state, commandc
can be simplified tox; y := e1; e2; l1. The specification to be proved is therefore:` true)
wp((x; y := e1; e2; l1); y =a e2), which is straightforward from the assignment rule (tl1).

For a second example, consider the following sequence of Alpha AXP instructions:l1 : addl r3; r2; r3l2 : cmpeq r3; r4; r0l3 : beq r0; v
The labelsl1; l2; l3 are assumed to satisfyl2 � loc(l1 +a 1) andl3 � loc(l2 +a 1). The sequence
is verified by replacing each instruction with its equivalent command ofL. To show that the
sequence passes control to labelloc(v), if execution begins in a state satisfyingr3 �a r2 =a r4,
requires a proof of the assertions:`pc=a l1 ^ r3 �a r2 =a r4) wp((l1 : r3 := r3 +a r2; loc(pc+a 1)); pc=a l2 ^ r3 =a r4)`pc=a l2 ^ r3 =a r4) wp((l2 : if r3 =a r4 then r0 := 1; loc(pc+a 1)

else r0:= 0; loc(pc+a 1)); pc=a l3 ^ :r0 =a 1)`pc=a l3 ^ r0 =a 1) wp(l3 : if r0 =a 1 then goto loc(v) else goto loc(pc+a 1); pc=a loc(v))
The proof of each assertion is straightforward. However, the proof of the sequencecan be sim-
plified by abstracting from theL commands.

Let c1; c2; c3 be theL commands modelling the instructions labelledl1; l2; l3 respectively.
The abstractionc of the sequence is obtained by the composition ofc1 and c2, followed by
composition withc3: c = (c1; c2); c3. After simplification, this is the command:l1 : if r3 +a r2 =a r4 then r3; r0 := r3 +a r2; 1; loc(v)

else r3; r0 := r3 +a r2; 0; loc(l3 +a 1)

3.5 Conclusion 79

The specification of the sequence can then be verified as a specification of the command:`pc=a l1 ^ r3 =a r4) wp(l1 :if r3 +a r2 =a r4
then r3; r0 := r3 +a r2; 1; loc(v)
else r3; r0 := r3 +a r2; 0; loc(l3 +a 1);pc=a loc(v))

The proof of this specification is straightforward from the precondition and the proof rules. The
specifications to be established in the proof based on the individual commands were mainly con-
cerned with propagating properties through the sequence of commands. For example, whether pc
was assignedloc(v) in commandc3 depended on the result of the test in commandc2. Because
many of these properties could be determined from the syntax of commands, constructing and
simplifying an abstraction of the sequence leads to a simpler proof. The abstraction describes
all the properties established during the execution of the sequence. The final proof istherefore
concerned only with the pre- and postcondition of the sequence and not with the intermediate
assertions established by commands in the sequence.

3.5 Conclusion

To model and abstract object code in terms ofL, the commands ofLmust be expressive enough
to model any processor instruction and to support the abstraction of commands. To verify ob-
ject code modelled in terms ofL also requires the ability to define proof rules of a program
logic which can be applied to the commands ofL. The principal difficulty when considering
processor instructions is the undecidability introduced by pointers and computed jumps. Apro-
cessor instruction carries out data operations and makes possibly conditional assignments to one
or more program variables, which may be identified by pointers. These assignmentsare simulta-
neous, requiring a method of detecting unexecutable commands in the presence of pointers. To
define proof rules for the commands requires a substitution operator which takes into account
the aliasing problem. The abstraction of commands must consider both the aliasing problem,
when considering lists of assignments, and computed jumps, when determining whether two
commands are executed in sequence.

To model the behaviour of processor instructions, the languageL contains a conditional,
a labelling and an assignment command. The data operations of a processor are modelled as
expressions ofL, which are defined in terms of constants and functions. These include the
name expressions, which are a more general model of pointers than those commonly used (e.g.
Dijkstra, 1976, Manna & Waldinger, 1981). The name expressions ofL provide flexibility when
modelling processor memory operations and allow pointers and simple (constant) variables to be
treated equally. The assignment command ofL is a simultaneous assignment and is expressive
enough to describe any state transformation. This allows any processor instruction to be modelled
by a singleL command. The approach used to detect unexecutable assignments is similar to that
of Cartwright & Oppen (1981). However, Cartwright & Oppen (1981) restricted the expressions
which could be assigned to variables to exclude substitutions; these restrictions are not required

3.5 Conclusion 80

for the commands ofL. Instructions implement the execution model of a processor, by selecting
instructions for execution. The execution model ofL is based on the use of a program counterpc
to select a command for execution. Each command ofL assigns a value to the program counter
and this value can be the result of an expressions. The languageL is therefore a flow-graph
language which includes computed jumps.

The abstraction of commands is based on manipulating the syntax ofL commands to con-
struct a new command. For this approach, sequential composition was defined as a function on
commands ofL. This differs from the usual treatment of sequential composition as a primitive
syntactic construct which represents the combination of commands. The definition of sequential
composition here extended the rules of Hoare et al. (1987) to the commands ofL, a language
which includes pointers and computed jumps. To abstract from assignment commands required
both substitution and the combination of assignment lists in the presence of name expressions.
The approach used separates the syntactic constructs, representing the operations of substitution
and combination, from the semantics of these constructs, which carry out the operations in a
given state. This overcomes the undecidability of pointers and computed jumps by allowing the
result of the operations to be determined as part of a correctness proof. The syntactic constructs
allow the abstraction of assignment commands to be described (and constructed) from the text of
the commands. The abstraction of computed jumps uses the conditional command and the pro-
gram counterpc to guard the execution of commands. This ensures that the flow of control from
one command to another is accurately described in the abstraction of the two commands. Con-
sequently, sequential composition can be applied to any two commands: the resultwill always
be an abstraction of the commands.

To specify and reason about commands ofL, a wp predicate transformer was defined to
construct an assertion on a state. Proof rules are defined using the specifications formed by
this wp function, following the approach of Dijkstra (1976). The majority of the proof rules of
Figure (3.5) are standard rules for commands (e.g. Gries, 1981). However, the proof rule for
the assignment command ofL required the use of the substitution operator ofL, which can be
applied in the presence of name expressions. Reasoning about substitution expressions based
on the syntax of expressions is possible using the rules of Figure (3.3). The languageL differs
from the flow-graph languages usually considered in verification (see e.g. Clint& Hoare, 1972,
Loeckx & Sieber, 1987 or Francez, 1992) in that the program counterpc is a program variable.
This allows its use when specifyingL commands and simplifies the proof rules (for the labelling
and assignment commands) which describe the execution model ofL.

The main contribution of this chapter is the development of the commands ofL which can
be used to model processor instructions and the definition of a method of abstracting arbitraryL
commands. The languageL is independent of any processor: no distinction is made between in-
structions of the same processor and instructions of different processors. This ispossible because
processor instructions have a similar semantics. Modelling instructions in terms ofL provides
the ability to simplify verification by abstracting from the commands of a program. The abstrac-
tion of commands is constructed from the text of the commands, an approach which allows for
efficient mechanisation. This reduces the manual work needed to verify a programby providing

3.5 Conclusion 81

a means for the use of automated tools to abstract and simplify sequences of commands in the
program.

Chapter 4

Programs

An object code program is verified by showing that states which are produced during its execu-
tion have the properties required by the program specification. The execution of an object code
program is based on the execution of the program’s instructions. Both the selectionof instruc-
tions for execution and the states produced during execution are determined by the actions of the
program instructions; the object code program only determines the instructions which are avail-
able for execution. Object code is verified in terms of its model as a program of the languageL,
to allow the methods of verification and abstraction to be independent of the processor language.
The translation from a processor language to the languageL is straightforward: a program ofL
which models object code is simply the set ofL commands modelling the instructions.

A program ofL is verified by reasoning about the individual program commands and the ver-
ification is simplified by abstracting from the program. The main difficulty with programs ofL is
the abstraction of programs, which will be constructed by applying program transformations. To
use these transformations in verification they must be shown to preserve thecorrectness of a pro-
gram. The correctness of a transformation is established by reasoning about the changes made
by the transformation to the program behaviour. The techniques used in verification to reason
about program transformation generally assume that the programming language imposes asyn-
tactic structure on programs which can be used to define transformations. Theselanguages also
allow comparisons to be made between the behaviour of programs without the need to consider
the behaviour of individual program commands, simplifying reasoning about transformations.
Programs ofL do not have a syntactic structure with which to define transformations and the
behaviour ofL programs must be compared by considering the effect of each program command
individually. To define and reason about transformations on programs ofL therefore requires an
extension of the methods used in program verification.

The abstraction ofL programs will be based on the sequential composition operator of Chap-
ter 3. The simplest method of abstraction is to apply sequential composition to manually chosen
program commands. Any program can be abstracted in this way but the size of objectcode pro-
grams means that this approach is not enough to reduce the work needed to verify a program.
A second approach is to use the flow of control through a program to mechanically find the se-

82

4.1 Programs ofL 83

quences of commands which are to be abstracted by sequential composition. This approach can
be described in terms of program transformations which can be efficiently automated, the tech-
niques required are common in code optimisation. However, it requires a method for showing
that the program transformations are correct. A framework will be describedin which the cor-
rectness of a program transformation can be established. The framework is based on a method for
using the flow-graph of a program to impose a syntactic structure on the program. This structure
can then be used to define and reason about program transformations.

To verifyL programs, a program logic suitable for reasoning about the liveness properties of
a program will be described. This is based on the assertion languageA of Chapter 3, extended
with a specification operator for programs. Proof rules for this specification operator allow the
programs ofL to be verified using the method of intermittent assertions (Manna, 1974; Burstall,
1974). The properties of program commands can be specified and verified using thewp function
and proof rules of Chapter 3. The proof rules for programs will also support the abstraction of a
program to simplify its verification and an approach to using program abstraction when verifying
programs will be described.

The chapter begins with the definition inSection 4.1of the syntax and semantics ofL pro-
grams. This includes a refinement relation between programs ofL and a method for program
abstraction based on individually chosen commands.Section 4.2describes the framework used
to define and reason about the transformations for program abstraction. Transformations are
defined on aregionof a program: a group of commands with a structure defined by their flow-
graph. The transformations on regions, used to abstract programs, are defined and their properties
described inSection 4.3. The specification and verification ofL programs is described inSec-
tion 4.4. The method used to verify a program will be described and a small program verified as
an example.

4.1 Programs ofL
An object code program has a finite number of instructions, each of which is stored in amemory
location identified by a unique address (the label of the instruction). Instructions can be added
to an object program by storing an instruction at an address which does not identify any other
instruction. These properties are preserved by programs ofL, which are finite sets of uniquely
labelledL commands. This is enough to model a program of a processor language since a
command ofL can model an instruction. Program commands are indexed by the labels: if a
programp contains commandl : c then the labell uniquely identifies that command and is
enough to obtain commandl : c from p.

Definition 4.1 Programs

A finite setp of labelled commands is a program ofL iff program?(p) is true.

program?: FiniteSet(C)! boolean

program?(a) def= 8(c; c1 2 a) : label(c) = label(c1)) c = c1

4.1 Programs ofL 84

The setP contains all programs ofL.P def= fp : FiniteSet(C) j program?(p)g
If there is a commandc in programp with labell thenc is the command ofp at l.

at : (P � Labels)! C
at(p; l) def= �fc : C j c 2 p ^ l = label(c)g 2

Functionat obtains a command identified by a label from a program: the command labelledl
in a programp is at(p; l). Note that every subset of a program is also program; the subset of a
programp will also be called asub-programof p. In particular, the empty set is a program and a
sub-program of every program.

A program ofL does not have a structure nor does it identify an initial command: execution
can begin with any command and a program can contain commands which cannot be or are never
executed. The command which begins the program must be identified by the precondition of the
program, which must state the initial value of the program counter. Moreover, theorder in which
commands of the program are executed is independent of any ordering of the labels.

Example 4.1 Assumel1; l2; l3 2 Labelssuch thatl1 + 1 = l2 andl2 + 1 = l3. The labels of
the commands in programfl1 : goto l3; l2 : goto l1; l3 : goto l2g are orderedl1 < l2 < l3 while
the commands of the program are executed in the sequencel1; l3; l2. The setfl1 : goto l1; l2 :
goto l2g is also a program sincel1 6= l2 but only one of its commands will be executed. 2

A program can be extended with a commandc to form a programp [fcg provided that no
command inp shares a label withc. A program can also be constructed by the combination
of two programsp1 andp2. The programp0 constructed by combiningp1 with p2 contains all
commands ofp2 and the commands ofp1 which do not share a label with a command ofp2.
When there are commandsc1 2 p1 andc2 2 p2 which share a label,label(c1) = label(c2), only
commandc2 occurs in programp0.
Definition 4.2 Program construction

If there is no command in a programp having the labellabel(c) thenp + c is theaddition of
commandc to p, otherwise it isp.+ : (P � C)! Pp+ c def= � p [fcg if 8(c1 2 p) : label(c1) 6= label(c)p otherwise

The combinationof programsp1; p2 2 P is the union ofp2 with the subset ofp1 containing
commands whose labels are distinct from those ofp2.] : (P � P)! Pp1] p2 def= p2 [fc1 2 p1 j 8c2 2 p2 : label(c1) 6= label(c2)g 2

4.1 Programs ofL 85

Since the empty set is a program, a program can be constructed by the addition of commands
to the empty set. The definition of addition ensures that a programp is only extended with a
command(l : c) if no command inp is labelled withl. The combination of programsp1 andp2
is equivalent to the addition of the individual commands ofp1 to p2. Typically, the combination
operator will be applied whenp2 is a program derived from a subset ofp1.
Example 4.2 Let l1; l2; l3 be distinct labels and assume programp = fl1 : c1; l2 : c2; l3 : c3g.
Programp can be constructed from the empty set by the addition, in any order, of its commands:p = fg + l2 : c2 + l3 : c3 + l1 : c1. Furthermore, programp can also be constructed from any
subset ofp by the addition of all of its commands:p = fl1 : c1; l3 : c3g+ l2 : c2+ l3 : c3+ l1 : c1.
Let p0 be the program derived fromp by the sequential composition ofl1 : c1 andl3 : c3 and the
removal ofl3; c3: p0 = f(l1 : c1; l3 : c3); l2 : c2g. Note that the label of(l1 : c1; l3 : c3) is l1.
The combination ofp andp0, p] p0, is the program which contains the commandsat(p0; l1) and
at(p; l3): p] p0 = f(l1 : c1; l3 : c3); l2 : c2; l3 : c3g. 2
Induction on Programs

The set of programs,P, is closed under addition: every program can be formed from the empty
set and the addition of a finite number of commands. This defines an induction scheme for
programs. A second, for strong induction, is derived from the Strong Finite Induction scheme
(see page 8) on the set of commands which form a program.

Theorem 4.1 Induction schemes

For any property�, with typeP ! boolean,

1. Induction: �(fg) 8(p : P) : �(p)) 8(c : C) : �(p+ c)8(p : P) : �(p)
2. Strong induction: 8(p : P) : (8(p0 : P) : p0 � p) �(p0))) �(p)8(p : P) : �(p)

The induction schemes can be used to reason about the syntactic properties of a program. In
general, these are the properties of the set of commands making up the program.

4.1.1 Semantics of Programs

A program is executed by the repeated selection and execution of its commands.Execution
begins in an initial states in which the value of the program counter identifies a command. This

4.1 Programs ofL 86

command is executed and, if it terminates, produces a new statet. The value of the program
counter in statet identifies the next command to be executed and the selection and execution of
commands is then repeated. Abehaviour� is an infinite sequence of states and� is a behaviour
of a programp iff � can be produced as the result of executingp beginning in the initial state�(0).
Definition 4.3 Semantics of programs

A behaviour is an infinite sequence of states.

Behaviour
def= seq(State)

Interpretation functionIp applied to programp and behaviour� is true iff � is a behaviour ofp.Ip : P ! Behaviour! booleanIp(p)(�) def= 8(n : N) : 9(c 2 p) : Ic(c)(�(n); �(n+ 1)) 2
Sequences of states are commonly used to model the behaviour of sequential and parallel

programs (Loeckx and Sieber, 1987; Cousot, 1990; Manna and Pnueli, 1991). They are also
used to define the semantics of temporal logics, used for program specification andverification
(Manna and Pnueli, 1981; Lamport, 1994). Both liveness and safety properties can be defined
in terms of program behaviours (Manna & Pnueli, 1991).Liveness propertiesof the programp
require that a state in the program behaviour satisfies some assertionP 2 A: if Ip(p)(�) then9(i : N) : P (�(i)). Safety propertiesof the program require that every state in the behaviour of
programp satisfies some assertionP 2 A: if Ip(p)(�) then8(i : N) : P (�(i)).

Every state in a program behaviour is the result of executing commands of the program.
Because the commands ofL are deterministic, a behaviour� of programp is defined by the
initial state�(0) and the commands ofp. Fori > 0, state�(i) is said to beproducedby programp from the initial state�(0). Since a behaviour� of a program is an infinite sequence, every
sub-sequence�i, i � 0, is also a behaviour of the program.

Corollary 4.1 For any programp, behaviour� and i 2 N , if � is a behaviour ofp then so is
every sub-sequence of�: Ip(p)(�)) Ip(p)(�n).
Proof. From definition ofIp(p)(�), for every j 2 N there is a commandc 2 p such thatIc(c)(�(j); �(j + 1)). From the definition of the suffix of a behaviour,�n(i) = �(n+ i) and the
proof ofIp(p)(�n) follows fromIp(p)(�) with j = n + i. 2

A programp terminates when a state is produced in which no command ofp can begin
execution. Because a behaviour is an infinite sequence of states, there is no behaviour� and
terminating programp such thatIp(p)(�). However, a terminating program can be transformed
to a non-terminating program by the addition of commands to form an infinite loop. In general,

4.1 Programs ofL 87

no distinction will be made between (non-terminating) programs for which there isa behaviour
and (terminating) programs for which there is no behaviour. Whether a program terminates is
not decidable from the syntax of the program commands and when deriving an abstraction of a
program only the syntax will be considered.

Example 4.3 Let l1; l2; l3 be distinct labels andb a boolean expression,b 2 Eb. If programp has
the commandsl1 : goto l2 andl2 : if b then gotol3 else gotol1. thenp terminates ifb = true
since there is no command inp with label l3. Programp can be extended to a non-terminating
programp0 by the addition ofl3 : goto l3, p0 = p+ l3 : goto l3.
Let b = true and� be a sequence of states in whichIl(pc)(�(0)) = l1, Il(pc)(�(1)) = l2 andIl(pc)(�(2)) = l3. If for everyn > 2, �(n) = �(2) then� is a behaviour of programp0. The
first command of the program is labelledl1 and relates�(0) to �(1) and the second command
is labelledl2 relating states�(1) and�(2). After the second command terminates, the only
command that is selected isl3 which repeatedly selects itself. 2
Properties of Programs

Programs of the languageL are sequential: only one command of a program can be selected in
any state. If� is a behaviour of programp andl the value of the program counter in state�(0),
the command atl in p is executed in�(0), Ic(at(p; Ie(pc)(�(0))))(�(0); �(1)). A programp
terminates in a states if no command ofp is enabled ins; states is final for p. If there is a
commandc of programp which is enabled ins andc halts then programp also halts ins. No
other command ofp can be executed ins, since each command is uniquely labelled, and no
successor to commandc can be selected.

Definition 4.4 Final states and program failure

A states is final for a seta of commands iff no commandc 2 a is enabled ins.
final? : Set(C)! State! boolean

final?(a)(s) def= 8(c : C) : c 2 a) :enabled(c)(s)
Programp halts in states iff is there is a commandc 2 p which halts ins.

halt? : P ! State! boolean

halt?(p)(s) def= 9(c 2 p) : halt?(c)(s) 2
Programsp; p0 2 P are equivalent,Ip(p)(�) = Ip(p0)(�) for � 2 Behaviour, iff programsp and p0 produce the same states in the same order. For every commandc 2 p which can

be executed there is an equivalent commandc0 2 p0. Conversely, transforming a programp
by replacing commands ofp with equivalent commands will result in a programp0 which is
equivalent top.

4.1 Programs ofL 88

Lemma 4.1 For any programsp; p0 2 P and behaviour�,8(s; t : State) : 9(c 2 p) : Ic(c)(s; t), 9(c0 2 p0) : Ic(c0)(s; t)Ip(p)(�) = Ip(p0)(�)
A useful transformation using the property of Lemma (4.1) is the systematic replacement of

the program counterpcwith the label of the command in which it appears.

Example 4.4 Let l1; l2; l3 be distinct labels andc1 be some command. The programp = fl1 :c1; l2 : abortg halts for all states in whichl2 : abort is enabled and also for all statess; t such
thatIc(l1 : c1)(s; t) andenabled(l2 : abort)(t).
The states in whichpchas the valuel3 is final for programp: no command inp is labelledl3.
The programfl : gotopcg is equivalent to the programfl : goto lg since the commandl :
gotopc is equivalent to the commandl : goto l.
The programfl : if true then goto pcelse abortg is equivalent to the programfl : goto lg since
the commandl : if true then goto pcelse abortis equivalent tol : gotopc. 2
4.1.2 Transition Relation: leads-to

To verify the liveness properties of a program it is only necessary to show that eventually the
program produces a statet satisfying a postcondition from a states satisfying a precondition. A
program relates the state in which it begins execution to the states which are produced during
the execution. If execution of programp begins in states and produces statet then s leads
to t throughp and the program defines atransition relationbetween the two states. Transition
relations are common in program verification and analysis (e.g. Manna, 1974; Cousot, 1981;
Gordon, 1994b). The simplest transition relation, calledleads-to, can be used to reason about
the liveness properties of a program by relating the initial states to a statet produced by the
program. Theleads-torelation between states is the transitive closure, restricted to aprogramp,
of the interpretation functionIc on the commands ofp.

Definition 4.5 Leads to

The leads-torelation from states to statet through the seta of commands is writtens a; t and
is inductively defined: c 2 a Ic(c)(s; t)s a; t s a; u u a; ts a; t
For any commandc 2 C0 and statess; t 2 State, if Ic(c)(s; t) thens leads tot through com-
mandc. The interpretation of a commandIc(c)(s; t) will also be writtens c; t. 2

The leads-torelation extends the interpretation function of commands to consider the cu-
mulative effect of commands of a programp. If p beginning in a states leads to a statet then

4.1 Programs ofL 89

the commands ofp establish a relationship between the two states. Theleads-torelation also
allows the liveness properties of a subset of a program to be related to the program. If programp
produces a statet from t then any program of whichp is a subset will also producet from s.
Lemma 4.2 For setsa; b 2 Set(C) of commands and statess; t 2 State,a � b s a; ts b; t
Proof. Straightforward, by induction and from the definition. 2

The leads-torelation determines the states that are produced during the execution of a pro-
gram, without requiring the intermediate states produced by the program to be considered. If
programp beginning in states leads tostatet then statet will eventually appear in a behaviour
of the program.

Theorem 4.2 For programp, statess andt, behaviour� andn;m 2 N ,Ip(p)(�) s = �(0) s p; t9m : m > 0 ^ t = �(m)
As a consequence of Theorem (4.2), to verify a liveness property of a program it is only

necessary to consider the states related byleads-to. The property,P , is established by showing
that the program beginning in states eventually produces a statet satisfyingP . Any behaviour� of the program such that there is a�(i) = s, i � 0, will also have a state�(j) = t, j > i,
satisfying propertyP .

Example 4.5 Let p be a program with commandsc1; c2; c3 2 C and lets1; s2; s3; s4 be states
such thats1 c1; s2 c2; s3 c3; s4 c1; s2.
States1 leads to each of the statess2; s3 ands4 through programp. Commandc1 is executed once
to produces2 from s1. Since states2 leads tos2, commandsc2; c3 andc4 can be executed any
number of times. Any behaviour� of p such that�(i) = s1, i � 0, will have states�(i + 1) =s2; �(i+ 2) = s3; �(i+ 3) = s4 and�(i+ 4) = s2. 2
4.1.3 Refinement of Programs

A programp is refined by programp0, writtenp v p0, if every state produced byp is also produced
by p0. Refinement between programs allows programp to be substituted forp0 in a proof of
correctness. Programp is an abstraction ofp0 and, to show thatp0 produces a statet satisfying an
assertion, it is enough to show thatt can be produced by programp. The replacement ofp0 withp cannot lead to an incorrect proof: programp0 can produce more states than the abstractionp
but attempting to show thatp produces a state it does not can only lead to failure of the proof.

4.1 Programs ofL 90

A refinement relation is needed to show that a programp is abstracted by a second programp0, p0 v p. (Here, the abstractionp0 would be obtained as the result of transformingp in some
way.) The refinement relationv between programs ofL is defined using the relationleads-toto
compare the states produced by programs.

Definition 4.6 Refinement

Programp1 is refined byp2, writtenp1 v p2, if wheneverp1 beginning in states leads tot thenp2 beginning in states also leads to statet.v : (P � P)! booleanp1 v p2 def= 8(s; t : State) : s p1; t) s p2; t 2
This refinement relation is weaker than those for structured languages (Back& von Wright,

1989), where refinement is based on the semantics of programs. AssumeI is the interpretation
of a structured program such thatI(p)(s; t) is true iff structured programp beginning in states
terminates in statet. LetvSP be the refinement relation between structured programs satisfying,
for structured programs,p andp0, p vSP p0 , I(p)(s; t)) I(p0)(s; t). Because this compares
the states in which the programs begin and end, this refinement relation does not dependon the
number of commands in the programsp andp0. This relation can also be used to establish the
equivalence of structured programs: ifp vSP p0 andp0 vSP p thenI(p)(s; t) = I(p0)(s; t) for
all s; t 2 State. This is not true for the refinement relationv of L (Definition 4.6). AssumeL
programsp1; p2 2 P satisfyp1 v p2 andp2 v p1. It is not the case thatIp(p1)(�) = Ip(p2)(�),
for behaviour�. Programsp1 andp2 can produce a different number of intermediate states or
produce states in a different order, depending the commands used to produce the states.

A refinement relationvB based on the behaviour of a program ofL would satisfyp1 vBp2 , 8� : Ip(p1)(�)) Ip(p2)(�). This would have the propertyp1 vB p2 ^ p2 vB p1)Ip(p1)(�) = Ip(p2)(�). However, this form of refinement is too restrictive since it requiresp2
to produce the same states asp1 (to ensure that their behaviours are equal). For each commandc1 2 p1 this would require a commandc2 2 p2 such thatIc(c1)(s; t)) Ic(c2)(s; t). This
forbids the replacement of a sequence of commands inp2 with a single command inp1, limiting
the abstraction of programs. Refinement can be based on a program behaviour, by showing
that a behaviour� of a programp1 can be transformed (by some functionf) to be a behaviour
of the refinementp2 (Abadi & Lamport, 1991). However, this approach complicates reasoning
about the abstraction of a program since the changes made to the program behaviour must be
considered (see Lamport, 1994, for a logic using this approach to refinement).

Refinement between programs is intended to compare the states produced by a program,
rather than the commands needed to produce those states. For example, refinement isoften
used to justify compilation rules which replace a single command with a sequence of simpler
commands (Hoare et al., 1993; Bowen and He Jifeng, 1994). Definition (4.6) is based on this
approach to refinement between programs. The use of theleads-torelation allows the commands

4.1 Programs ofL 91

in the programs to be ignored in favour of the states produced by the program. This leads to a
refinement relation which is sufficient for reasoning about the liveness properties of programs. If
programsp1 is refined byp2 then any state produced byp1 must also be produced byp2 and will
appear in the behaviours of bothp1 andp2 (Theorem 4.2). This simplifies the replacement of a
program with its abstraction during a verification proof.

Example 4.6 Assume programp is specified by assertionsP;Q 2 A such thatP specifies
the state in which program execution begins andQ is a postcondition to be established by the
program. Programp eventually establishesQ from P if for every states such thatP (s), there is
a statet such thats p; t andQ(t).
Assumep0 v p and9t : s p0; t ^Q(t). Sincep0 v p, 9t : s p; t ^Q(t) is true. Also assume that� is a behaviour ofp, Ip(p)(�) such that�(0) = s. From Theorem (4.2), there is aj > 0 such
that�(j) = t andQ(�(j)). 2
Properties of Refinement

Refinement has a number of basic properties, for verification the most useful is transitivity. If p1
is an abstraction ofp2 andp2 is an abstraction of programp then verifyingp1 will also verify p.

Theorem 4.3 For programsp1; p2; p3 2 P ,p1 v p2 p2 v p3p1 v p3
Proof. Straightforward, from definition of refinement and transitivity ofleads-to. 2

The refinement relation allows the replacement of a programp in a proof of correctness with
an abstraction ofp. However, the abstraction ofp must be chosen with care since any program is
a refinement of the program which always fails.

Theorem 4.4 For any programsp1; p2 2 P and statess; t:8s; t : :(s p1; t)p1 v p2
Proof. Straightforward, by definition ofv. 2

A trivial method of program abstraction is to replace a programp with the empty set since, by
Theorem (4.4), the orderingfg v p can always be established. For verification, such abstractions
are not useful, a program which always fails cannot be used to verify the liveness property of a
program with commands. Instead, the abstraction of a program must be constructed sothat the
abstraction can be shown to have the properties ofp which are of interest.

4.2 Program Transformation 92

4.1.4 Simple Program Abstraction

A simple method for abstracting from a programp is to apply sequential composition to com-
mands ofp. The correctness of this method is based on three properties of sequential composition
and refinement. The first, that combining the sequential composition of program commandswith
the program forms an abstraction. The second, that the abstraction of any subset of aprogramp is an abstraction ofp. The last, that combining a programp with its abstraction forms an
abstraction ofp.

Theorem 4.5 Abstraction of programs

For programp; p1; p2 2 P and commandsc1; c2 2 C
1. Composition of commands: c1 2 p c2 2 p(p] fc1; c2g) v p
2. Refinement and sub-programs: p1 v p2 p2 � pp1 v p
3. Programs and abstraction: p1 v p2(p1] p2) v p2
The properties of Theorem (4.5) allow an abstraction to be constructed for any programp ofL by manipulating commands or subsets ofp. The method is to choose two commandsc1; c2 ofp and then apply sequential composition,c1; c2. This forms the singleton setf(c1; c2)g, which is

an abstraction offc1; c2g (as a consequence of Theorem 3.6). The singleton set is combined with
programp to form the abstractionp] f(c1; c2)g v p. Note that(p] fc1; c2g) is equivalent to(p�fcg)[fc1; c2g, replacing commandc1 with c1; c2. Becausec2 may be the target of a computed
jump, it is neither replaced nor removed (the target of a computed jump is undecidable).

This method can be repeated any number of times; because refinement is transitive, the result
will always be an abstraction of the original program. Because sequential composition always
abstracts from its arguments (Theorem 3.5 and Theorem 3.6), there is no restriction on the choice
of commandsc1 andc2 The choice would normally be made to simplify the verification and by
following the order in which the commands are executed.

4.2 Program Transformation

Program abstraction using the method of Section (4.1.4) requires the manual choice of thepro-
gram commands to be abstracted. Because of the size of an object code program, manually
choosing the commands is too time-consuming to be practical. A more efficient approach is to
automate the program abstraction by implementing a program transformationT which abstracts
from any programp to which it is applied:T (p) v p. The transformation must ensure that
verifying T (p) is simpler, at worst no more difficult, than verifyingp.

4.2 Program Transformation 93

The sequential composition operator can be used by a program transformation to abstract
from program commands. The main difficulty is therefore the selection of the program com-
mands to be abstracted. Commands are selected for abstraction in the order inwhich they may
be executed. This is the flow of control through a program, which can be determined usingthe
techniques of code optimisation (Hecht, 1977; Aho et al., 1986). These construct a flow-graph of
the program from the syntax of the program commands. In a flow-graph, there is an edge from
commandc1 to commandc2 iff control can pass fromc1 to c2, this will be writtenc1 7�! c2.
The choice of commandsc1; c2 of a program will require, at least, thatc1 passes control toc2:c1 7�! c2; the proof methods for verification impose additional constraints.

Consider a simple transformationTS, based on the properties of Theorem (4.5), which con-
siders only the flow of control from one command to another. Assumep is a program to be trans-
formed byTS. The abstractionTS(p) is obtained by first choosing any two commandsc1; c2 2 p
such thatc1 7�! c2 and then forming the abstraction ofp as the programTS(p) = p] fc1; c2g.
The result of this transformation is not necessarily useful for verificationsince it can hide proper-
ties needed to verify the program. In particular, it fails to preserve the loops in a program (which
must be verified by induction on the values of variables; Floyd, 1967). To apply the transforma-
tion to a programp, each cut-point in a loop must first be identified manually and removed from
the sub-program ofp which is transformed.

For example, assumec1 = (l1 : x := 1; l2), c2 = (l2; x := 0; l2) and let programp befc1; c2g.
Assume that program execution begins withc1 and that the postcondition to be established by
the program requires control to pass to commandc2 with x >a 0. The transformation results in
programTS(p) = f(c1; c2); c2g. By composing the commandsc1 andc2, the first execution of the
commandc2 is hidden by the execution ofc1; c2. When control passes toc2, (the only command
labelledl2), the value ofx will be 0 and will remain0. The postcondition of the programp
cannot be established from the abstractionTS(p). This can be avoided by manually identifyingc2 as a cut-point in a loop and removing it from the program. However, loops in object codecan
be made up of a large number of instructions and it is not practical to manually identify all the
cut-points of loops which must be preserved.

To construct an abstraction which is useful for verification, a transformation must identify
and preserve the cut-points of a program which are part of loops in the program. The cut-points
of a program are determined by the loops in the program (Floyd, 1967). To find loops in a
program requires a more sophisticated analysis of the program’s flow-graph than ispossible by
considering only two commands since a loop can be made up of any number of commands.

Program Optimisation

Techniques for code optimisation can be used as a basis for program abstraction. Code optimisa-
tion is based on analysing a program’s flow-graph to determine the changes which can be made
to the program. The flow-graph analysis can be used to identify the loops in a program which are
needed by the proof methods for program correctness. However, optimising transformations can
require techniques which cannot be used in program abstraction. For example, anode copying

4.2 Program Transformation 94rrrc3c2
c1 r

r
rrc4

c1
c3c2

Figure 4.1: Reducible Loops

r
rrr

c1 c2c3c4
Figure 4.2: An Irreducible Loop

transformation is often used to restructure the flow-graph of a program, makingit more suitable
for the analysis techniques (Hecht, 1977). This constructs a refinementT (p) of a programp,p v T (p), by adding one or more commands top. Since the new commands ofT (p) can begin
in a state in whichp halts (they do not share labels with any command ofp) the programT (p) is
not an abstraction ofp. Such techniques make it difficult to show that a transformation constructs
an abstraction of the program, satisfyingT (p) v p.

The methods used in code optimisation to analyse a flow-graph can also limit theapplication
of a transformation. These techniques often assume that all loops in a program arereducible
(Aho et al., 1986): any two loops are either entirely distinct or one occurs entirely within the
other (see Figure 4.1). This isfalse for flow-graph programs, such as object code, which can
containirreducible loops(also calledinterleaving loops, Loeckx & Sieber, 1987). These consist
of two loops neither of which is entirely contained within the other (see Figure 4.2).Irreducible
loops can be transformed (by node-copying) to reducible loops (Aho et al., 1986), but this com-
plicates the transformation of a program. Methods of analysing programs with irreducible loops
have been proposed (e.g. Sreedhar et al., 1996) although the interpretation of a loop can vary
between techniques (Wolfe, 1991). These methods can be used with transformationTS, to select
the program commands to be abstracted. However, transformationTs abstracts from only two
commands in a single application and is less efficient than a transformation which abstracts from
a group of commands in one application.

Using the techniques of code optimisation to abstract from a program also makes the cor-
rectness of a transformation difficult to prove. Code optimisation techniques are conservative,
exploiting relatively simple properties of the program text. The correctness ofan optimising
transformation is established by showing that the properties of the text of the transformed pro-
gram are those of the original. The correctness of an abstracting transformation, for verification,
must be established from the states produced by the program and its abstraction. Themeth-
ods used in code optimisation are not suitable for establishing the correctness of an abstracting
transformation since the states produced by the program are not considered.

4.2 Program Transformation 95

Abstraction by Program Transformation

The method used here to abstract from programs is based on transformingregionsof a program
where a region is a subset of the program which has a structure defined by its flow-graph. The ab-
straction of a region will follow the approach used by the proof methods for verification (Floyd,
1967; Burstall, 1974): the cut-points of the region will be found and the sequences of commands
between each cut-point will be abstracted by sequential composition. The abstraction of a pro-
gram is obtained by combining the transformed region with the original program. The useof
regions of a program means that a transformation can consider a group of program commands,
rather than only two commands as is the case with the method of Section 4.1.4 and transforma-
tion Ts. The region transformations will be shown to be correct, as will the result ofcombining
a transformed region with the original program.

The definition of regions is based on the flow of control through a program. A region trans-
formation can be defined by primitive recursion (Kleene, 1952), ensuring that a transformation
always terminates. The regions will be given a semantics and a refinement relation will be de-
fined. This allows the behaviour of a transformed region to be compared with the original region.
Reasoning about the semantic properties of a region is based on an analysis of atracethrough the
region. Traces are used to show that transformations are correct by comparingthe states produced
at the cut-points of a region with those produced at the cut-points of the transformed region. This
provides the framework in which to define the transformations for program abstraction; these
transformations will be described in the Section 4.3.

4.2.1 Control Flow

The flow of control through a programp during the program execution is the order in which the
commands ofp are executed. The flow of control is determined by the commands ofp and the
initial states in which program execution begins. Since the commands can include computed
jumps, the actual flow of control during a program execution is undecidable. An alternative,
which is used in program analysis and is based on the syntax of program commands, describes
the possible flow of control through the program (Hecht, 1977)

The flow of control through a programp is defined by a successor relationship between
commands. If it is possible for commandc1 to select commandc2 thenc1 reachesc2. Commandc1 can select, and reaches, commandc2 if there is a state in which the expression assigned to the
program counterpcby commandc1 is equivalent to the label ofc2.
Definition 4.7 Reaches

The reachesrelation, 7�!, between commands has type(C0 � C) ! booleanand is defined by
recursion over the commands.

4.2 Program Transformation 96(:= al; le) 7�! c def= 9(s : State) : le �s label(c)(if b then ct elsecf) 7�! c def= ct 7�! c _ cf 7�! c(l : c1) 7�! c def= c1 7�! c
If c1 7�! c2 thenc1 is said todirectly reachc2 andc2 is animmediate successorof c1. 2

Thereachesrelation between commands of a programp defines the edges in the flow-graph
of p. Because thereachesrelation compares the successor expressions with the labels of com-
mands, a command which reachesc also reaches any command sharing a label withc.
Corollary 4.2 For commandsc1; c2 and c3, if c1 7�! c2 and c2 and c3 have the same label,
label(c2) = label(c3), thenc1 7�! c3.
Proof. Straightforward, by induction on the commandc1. 2

The definition of thereachesrelation allows the possible flow of control through a program
to be determined from the syntax of the commands. If commandc1 assigns expressione to the
program counter ande is not strongly equivalent to the label ofc2, e 6� label(c2) thenc1 does
not reachc2. However, ife is a basic label,e 2 Labels, syntactically equal to the label ofc2,e = label(c2) or if e is strongly equivalent to such a label , thenc1 must selectc2.
Example 4.7 Let commandc1 be the assignment command with assignment listal. Commandc1 reaches commandc2 2 C whenever the successor expression ofc1 contains a variable. Assumex 2 Names, l1 2 Labelsandle 2 El such that a name occurs inle::= (al; x) 7�! c2 := (al; pc) 7�! c2 := (al; le) 7�! c2
If c1 assigns onlyundef(El) to the program,c1 = (:= (al; undef(El))), thenc1 cannot reach
any command. If the successor expression ofc1 is a basic label the relation is decidable: forl 2 Labels, (:= (al; l) 7�! c2) iff l = label(c2). 2

Sequential composition preserves the reaches relation between commands. Thecomposition
of commandsc1 and c2 results in a labelled, conditional command in which the false branch
is c1: if c1 reachesc3 then so willc1; c2. The result ofc1; c2 will have the same label asc1 and if
commandc3 reachesc1 then it will also reachc1; c2. Conversely, ifc1; c2 reachesc3 then eitherc1 or c2 will reachc3.
Theorem 4.6 Reaches and composition

For commandsc1; c2 2 C0 andc3 2 C,

1. Composition: (Left) c1 7�! c2c1; c3 7�! c2 (Right) c1 7�! c2c1 7�! c2; c3
2. Reverse: c1; c2 7�! c3c1 7�! c3 _ c2 7�! c3

4.2 Program Transformation 97

Reaches Through a Program

The reaches relation between commands determines whether a command can select another for
execution. When considering the flow of control in a programp, it is necessary to determine
whether control can eventually pass from a commandc1 2 p to a commandc2 2 p through
any number of intermediate commands. Commandc1 reachesc2 through programp, writtenc1 p7�! c2 iff there is a sequence of commands ofp, beginning withc1 and ending withc2, such
that each command can pass control to the next command in the sequence. Thereachesrelation
through a program is defined as the transitive closure of the reaches relation between commands.

Definition 4.8 Reaches through a program

A commandc1 reaches a commandc2 through a seta 2 Set(C) iff the transitive closure of the
reaches relation restricted toa is true.c1; c2 2 a c1 7�! c2c1 a7�! c2 c1 a7�! c2 c2 a7�! c3c1 a7�! c3
If c1 a7�! c2 thenc1 is said to reachc2 througha. 2
The set through which a command reaches another need not be a program ofL. It is not necessary
for every command to be uniquely labelled, only for there to be a sequence of commands through
which control could pass fromc1 to c2.

In general, when a commandc1 is said to reachc2, it will be assumed that it does so through
some set of commands. A seta through whichc1 reachesc2 contains commands which are
required to establishc1 a7�! c2. A commandc0 2 a is necessaryfor c1 to reachc2 if c1 does not
reachc2 througha � fc0g. A property of thereachesrelation is thatc1 a7�! c2 iff there is a path
througha from c1 to c2 (see Section D.6 of the appendix). The set through which a command
reaches another can always be extended. If commandc1 reaches commandc2 through seta then
it will do so through any superset ofa.

Theorem 4.7 Extending thereachesset

For commandsc1; c2 2 C and setsa; b 2 Set(C),a � b c1 a7�! c2c1 b7�! c2
Proof. Straightforward, by induction on

a7�!. 2
Every commandc in a programp begins a flow-graph made up of the commands ofp which

can be reached fromc. However, there is no requirement that a command in a program can be
reached from another command. A program can have commands which will never be selected
for execution or which depend on the command which is selected in the initial state.

4.2 Program Transformation 98

s
sssc2 c3c4

c1

Figure 4.3: Flow-graph of Example (4.9)

Example 4.8 Let l1 and l2 be distinct labels, the programfl1 : goto l1; l2 : goto l2g has two
distinct flow-graphs. If execution begins with the command labelledl1 then the command la-
belledl2 will never be selected and the flow-graph contains the single commandl1 : goto l2. The
flow-graph beginning with the command labelledl2 contains the single commandl2 : goto l2. 2

The reaches relations describe the possible flow of control through a program while a transi-
tion relation describes the actual flow of control. It follows that theleads-torelation is stronger
than thereaches. If commandc1 of a programp is enabled in states, commandc2 2 p is enabled
in statet ands p; t then eventually control will pass fromc1 to c2 andc1 reachesc2 in p.

Theorem 4.8 reachesand leads-to

For programp 2 P, commandsc1; c2 2 C and statess; t 2 State,

1. Immediate successors. 9s; t : s c1; t ^ enabled(c2)(t)c1 7�! c2
2. Reaches through a program.s P; t enabled(c1)(s) enabled(c2)(t) c1; c2 2 pc1 p7�! c2

Since the relationreachesis weaker than the relationleads-to, it is safe to usereacheswhen
analysing the flow of control through a program. That a commandc1 does pass control to a
commandc2 is undecidable. Thatc1 may pass control toc2 can be established syntactically and
also by showing that execution ofc1 does eventually lead to the selection ofc2.

4.2 Program Transformation 99

Example 4.9 Let p be the program containing the commandsl1 : goto l2l2 : if b1 then gotol1 else gotol3l3 : if b2 then gotol2 else gotol4l4 : goto l1
Let c1; : : : ; c4 be the commands ofp labelledl1; : : : ; l4 respectively; the flow-graph ofp is given
in Figure (4.3). Commandc2 is the only immediate successor ofc1 and hasc1 andc3 as immediate
successors. As a consequence, commandc1 reachesc1 throughp, forming a loop in the flow-
graph. Commandc1 also reachesc3 through the pathc1 7�! c2 7�! c3.
The immediate successors of commandc3 arec2 andc4. Because commandc1 reachesc3, c1 also
reachesc4. Commandc4 hasc1 as an immediate successor and this forms a second loop through
the flow-graph from commandc1 to itself. Becausec1 cannot reachc3 except through commandc2, c2 is necessary for bothc1 p7�! c3 andc1 p7�! c4. 2
4.2.2 Regions of a Program

The selection for execution of a commandc of a program partitions the program into those
commands to whichc may pass control and those to whichc cannot pass control. Commandc
begins aregionof the program, containing only those commands which can be reached fromc
through the program. The region has an identified initial command,c, and a structure defined by
the flow-graph formed by thereachesrelation between commands. This structure can be used to
define transformations which abstract from regions.

Definition 4.9 Regions

A regionr is a pair(l; p) wherep is a program andl the label of a commandc 2 p beginning the
region. Every other command inp is reachable fromc throughp.

region?: (Labels� P)! boolean

region?(l; p) def= 9(c 2 p) : label(c) = l ^ 8(c1 2 p) : c = c1 _ c p7�! c1R is the set of all regions. R : Set(Labels� P)R def= f(l; p) j region?(l; p)g 2
A region(l; p) can be considered a form of program with an initial command, identified by

the labell. Equally, it can be considered a (compound) command which begins execution when
the program counter has the value of the region’s labell. Transformations on a region can be

4.2 Program Transformation 100

defined using the control flow through the region to determine the order in which commands of
the region may be executed. A similar approach is used in program analysis in which programs
are partitioned intobasic blocksor intervals(see Muchnick and Jones, 1981; Aho et al., 1986).
The analysis of the program follows the order in which the commands of the basic block or
interval may be executed.

Example 4.10 For the programp of Example (4.9), assume thatc1 is the first command to se-
lected. The largest region ofp beginning atc1, (l1; p) contains all commands which can be
reached byc1 and identifies the first command (c1) by the labell1.
A region can be formed from any subset ofp. The region(l2; fc2; c3g) begins atc2 and contains
the loop formed byc2 andc3. Each command also forms a region:(l4; fc4g) is a region. 2
Region Operators

A region is made up of a labell and a programp: the region is said to be labelled withl and the
bodyof the region isp. A region is constructed either from a single command or from the subset
of a program. Ifp is a program and commandc 2 p is labelledl then the region,r, of programp beginning withc is labelledl and the body ofr is the subset ofp which is reachable fromc.
When a region is constructed from a single commandc, the label of the region is the label ofc
and the body is the singleton setfcg.
Definition 4.10 Region constructors

If p is a program andl is the label of a command inp, the result ofregion(l; p) is the region ofp
beginning atl.

region : (Labels� P)!R
region(l; p) def= (l; p0)
wherep0 def= fc 2 p j 9(c1 2 p) : l = label(c1) ^ c1 = c _ c1 p7�! cg

A unit region is constructed, by functionunit, from a single command. For regionr, unit?(r) is
true iff r is a unit region.

unit : C ! R
unit(c) def= (label(c); fcg) unit? : R ! boolean

unit?(r) def= 9(c : C) : r = unit(c) 2
The label of a region identifies the command which begins the region, this command is the

headof the region. Syntactic comparison of two regions is by the subset relation, extended to
the body of a region, or by the equality of the label-program pairs. Thereachesrelation and the
leads-torelation for regions are defined on the body of a region.

4.2 Program Transformation 101

Definition 4.11 Region components and operators

For regionr = (l; p), the label of r is l and thebodyof r is p. The head of regionr is the
command in the body ofr whose label is that of the region.

label : R ! Labels

label(l; p) def= l body: R ! P
body(l; p) def= p head: R ! C

head(r) def= at(body(r); label(r))
Commandc is a member of a regionr iff it is a member of the body ofr: c 2 r def= c 2 body(r).
A regionr1 is asubset, or sub-region, of regionr2 iff the body ofr1 is a subset of the body ofr2.
Regionr1 is aproper subsetof r2 iff the body ofr1 is a proper subset of the body ofr2.� : (R�R)! booleanr1 � r2 def= body(r1) � body(r2) � : (R�R)! booleanr1 � r2 def= body(r1) � body(r2)
Regionsr1 andr2 are syntactically equal iff both the labels ofr1 andr2 are the same and both
contain the same commands.= : (R�R)! booleanr1 = r2 def= label(r1) = label(r2) ^ body(r1) = body(r2)
A states leads to statet through regionr if s leads tot through the body ofr. Commandc1
reaches commandc2 through regionr if c1 reachesc2 through the body ofr.s r; t def= s body(r); t c1 r7�! c2 def= c1 body(r)7�! c2 2

Since no region can have an empty body, a unit region is the smallest possible region.The
functionregionconstructs the largest region of a programp. Assuming that there is a commandc 2 p labelled withl, the regionregion(l; p) contains all commands ofp which can be reached
by commandc.
Corollary 4.3 From programp 2 P , commandsc; c1 2 C andl 2 Labels,

1. The body of a region constructed from a programp and labell by the function region is
always a subset ofp, body(region(l; p)) � p.

2. If c 2 p thenc 2 region(label(c); p) and head(region(label(c); p)) = c.
3. If c p7�! c1 thenc1 2 region(label(c); P).
4. If c 2 p andc1 2 region(label(c); p) then eitherc = c1 or c p7�! c1.

Proof. Straightforward, from definitions. 2

4.2 Program Transformation 102

The body of a region is a program and the proper subset relation,�, on regions is well-
founded. There is therefore a strong induction scheme on regions, derived from the induction
scheme for programs of Theorem (4.1).

Theorem 4.9 Induction on regions

For any property�, with typeR ! boolean,8(r : R) : (8(r0 : R) : r0 � r) �(r0))) �(r)8(r : R) : �(r)
To prove a property of regionr using the induction scheme of Theorem (4.9) requires a method
for extracting a proper sub-region fromr. The sub-regions which begin with the immediate
successors of the head ofr and constructed from thebody(r)�fhead(r)g are proper sub-regions
of r.
Definition 4.12 Immediate sub-regions of a region

The result ofrestapplied to regionr is the set ofimmediate sub-regionsof r.
rest : R ! FiniteSet(R)
rest(r) def= fr0 : R j 9(c : C) : c 2 p ^ head(r) 7�! c ^ r0 = region(label(c); p)g
wherep def= body(r)� fhead(r)g 2

The set of regions inrest(r) are uniquely labelled since each region is constructed from a com-
mand which is uniquely labelled. In addition, the sub-regions of a regionr which are members
of rest(r) are also proper subsets ofr.
Corollary 4.4 For regionsr andr0, r0 2 rest(r)) r0 � (r).
Proof. Immediate, from definition and Corollary (4.3). 2

If r0 is a sub-region of regionr such thatr0 2 rest(r) then the head ofr0 is an immediate
successor of the head ofr, head(r) 7�! head(r0). This can be used, with the induction scheme
of Theorem (4.9), to relate the property assumed of the sub-regionr0 with the property to be
proved ofr. Because there is a path from the head of a regionr to any other commandc 2 r
(whenc 6= head(r)), eitherunit?(r) or there is a regionr0 2 rest(r). This provides the cases
for proofs by induction on a region. The sub-regions of a regionr in rest(r) can also be used to
define a transformationT by primitive recursion on a region. If the result ofT (r) is defined in
terms ofT (r0), for r0 2 rest(r), then the recursion is well-founded, and will eventually terminate,
sincer0 is a proper subset ofr (Kleene, 1952).

4.2 Program Transformation 103

Loops in Regions

The method used to abstract from a region depends on identifying the loops in the region. The
presence of loops in a program, such as the body of a region, is determined using the flow of
control through the program. A programp contains a loop if there is a commandc 2 p which
can reach itself throughp, c p7�! c. Conversely, a programp is loop-free iff there is no commandc 2 p such thatc p7�! c.
Definition 4.13 A programp is loop-free if no command inp can reach itself.

loopfree?: Set(C)! boolean

loopfree?(A) def= 8(c 2 A) : :(c A7�! c) 2
A programp contains a loop iffloopfree?(p) is false: there is at least one commandc such

that c p7�! c. A commandc2 of p is necessaryfor a loop inp if p � fc2g is loop-free. e.g. Ifc 2 p andc p7�! c but notc p�fc2g7�! c thenc2 is necessary for the loop containingc. A cut-point for
the loop containingc is a command,c1, such thatc1 p7�! c. The cut-pointc1 is part of the loop,c1 p7�! c1, and can be reached byc, c p7�! c1.

Classes of region can be defined by the number and type of commands necessary for loops
in a region. In aloop-freeregion there is no command which can reach itself and therefore no
command is necessary for a loop. In asingle loop, the region contains at least one loop and the
head of the region is necessary for every loop in the region.

Definition 4.14 Classes of region

A region isloop-freeiff its body does not contain a loop.

loopfree?: R ! boolean

loopfree?(r) def= loopfree?(body(r))
A region is asingle loopif the body of the region excluding the head is loop-free.

single?: R ! boolean

single?(r) def= loopfree?(body(r)� fhead(r)g) 2
Thegeneral loopsare regions which are neither loop-free nor a single loop. These contain at

least one loop which is independent of the head of the region,:loopfree?(body(r)�fhead(r)g).
There is an ordering between the classes of region: the class of general loops includes all regions
and the single loops include all loop-free regions.

loopfree?(r)) single?(r)

4.2 Program Transformation 104sss
c1c2c3

s
s ss sc1c2c3 c4c5

sss sc2c3
c1

c4
Regionr1 Regionr2 Regionr3

Figure 4.4: Loop-Free Regionssssc3c2
c1

s
sssssss

c1c2c3c4c5 c6
c7c8ssss

c1c2 c3c4
Regionr1 Regionr2 Regionr3

Figure 4.5: Single Regions

A single region is simpler than a general region, for abstraction or verification, since the only
command necessary for all loops is the head of the region. The only cut-point needed for a single
loop regionr is therefore the head ofr.

The methods of Floyd (1967) and Burstall (1974) for program verification can be described
in terms of general and single regions. In both, a programp is broken down into sequences of
commands between cut-points and there is an identified command which begins the program.
The programp forms a general region and each sequence of commands forms a single loop
region, beginning with a cut-point and constructed from the subset ofp of which excludes all
other cut-points. To verify that the general region satisfies the program specification, each of the
single regions is shown to satisfy an intermediate specification.

Example 4.11 The head of each region of Figure (4.4), Figure (4.5) and Figure (4.6) is the
commandc1. The regions of Figure (4.4) are loop-free: there is no command that can reach itself
through the region. The regions of Figure (4.5) are single loops. No command in any region
can reach itself without passing through the head of the region. The regions of Figure (4.6)are

4.2 Program Transformation 105ss
s

ssss ss
sssss

c1c2
c3

c1c2c3c4c5 c6c7
c1c2c3c4c5

Regionr1 Regionr2 Regionr3
Figure 4.6: General Regions

neither loop-free nor single loops. Each region has a command which can reach itself without
passing through the head of the region. 2
4.2.3 Semantics of Regions

A region is a component of a program which is executed when control passes to the region’s
head. The region isenabledwhen the head of the region is selected for execution. Continuing
execution of the program requires the execution of commands of the region. As each command
of the region is selected and executed it produces a new state. The region terminates, passing
control out of the region when a state is produced in which no command of the region is selected;
this state isfinal for the region. If a command of regionr fails in a states or regionr, beginning
in s, produces a state in which a command of the region fails, then the regionhalts in states.
Definition 4.15 Enabled, final and halt

Regionr is enabledin a states if the head ofr is enabled ins. A state is final for regionr if it is
final for the body ofr.

enabled: R ! State! boolean

enabled(r)(s) def= Ie(pc)(s) = label(r) final? : R ! State! boolean

final?(r)(s) def= final?(body(r))(s)
Regionr halts in states if the body(r) halts ins or in a state produced byr from s.

halt? : R ! State! boolean

halt?(r)(s) def= halt?(body(r))(s) _ 9t : s r; t ^ halt?(body(r))(t) 2
A regionr of a programp will normally be considered separately fromp: any changes made

to r by a transformationT will have no affect onp. The abstraction ofp is obtained by combining

4.2 Program Transformation 106

the body of the transformed region withp: p] body(T (r)). To ensure that this preserves the
correctness ofp, the result of transforming the regionr of p must preserve the correctness ofr.
This requires a semantics for the regions to allow the effect of a transformation on the region to
be compared with the original behaviour of the region.

A region can be interpreted as a (possibly terminating) program or as a compound command.
The interpretation ofr as a program considers all states produced byr. The interpretation of
a region as a compound command is stronger. Regionr relates statess and t if r is enabled
in s, r producest andt is final for r. This describes the external behaviour of regions: statess and t are the states in whichr begin and ends. The internal behaviour of the region, made
up of the intermediate states needed to producet from s, is hidden. This is consistent with the
interpretation of commands ofL and will be used for the semantics of regions.

Definition 4.16 Semantics of regions

A regionr begins in states and produces statet if r is enabled ins, producest andt is final forr.
The semantics of the regions is defined by interpretation functionIr.Ir : R ! (State� State)! booleanIr(r)(s; t) def= enabled(r)(s) ^ s r; t ^ final?(r)(t) 2

States which are produced by a regionr but which are not final forr are intermediate states
of the execution ofr and are hidden by the interpretation,Ir, of regions. Unlike a command, a
regionr which does not terminate does not necessarily halt. The region may contain a loop which
never terminates but continuously produces (hidden) intermediate states. The interpretation of
regionr is falsefor all pairs of states:Ir considers only the external states of a region.

Refinement of Regions

To show that a transformation constructs an abstraction of a region, it must be possible to show
that the original region is a refinement of the transformed region. Two forms of refinement can be
defined between regions. When the regions are a considered as compound commands, regionr0
is refined by regionr if Ir(r0)(s; t)) Ir(r)(s; t), for statess; t. This is the refinement relation
of structured programs (Back & von Wright, 1989). The second form of refinement considers
a region as a program: the refinement relation is interpreted as program refinement between the
region bodies,body(r) v body(r0). This compares the internal behaviour of the regions and
ensures that the abstracting a region of a programp results in an abstraction ofp. However, this
interpretation does not require the regions to terminate in the same state. This is too weak since
it would allow a region to contain a non-terminating loop which is not present in its abstraction.

Both forms of refinement will be used: the refinement relation,v , between regions
interprets a region as both a command and a program. Regionr1 is an abstraction of regionr2 iff
bothIr(r1)(s; t)) Ir(r2)(s; t) (for all s; t 2 State) andbody(r1) v body(r2).

4.2 Program Transformation 107

Definition 4.17 Refinement

Regionr1 is refined by regionr2, r1 v r2, iff r1 andr2 have the same label, the body ofr1 is
refined by the body ofr2 and every final state produced byr1 is also final forr2.v : (R�R)! booleanr1 v r2 def= �

label(r1) = label(r2) ^ body(r1) v body(r2)^8(s; t : State) : s r1; t ^ final?(r1)(t)) final?(r2)(t) 2
This definition of refinement is stronger than is needed for verification, for whichonly the

external behaviour of regions is strictly required. However, it exposes the internal behaviour of
regions which would be hidden if only the interpretation of regions,Ir, was considered. This
allows the effect of a transformation on the internal behaviour (and therefore the loops) of a
region to be considered. A regionr0 abstracts a regionr, r v r0, only if all loops inr are present
in r0 andr0 begins and ends wheneverr0 begins and ends.

Refinement between regions is a partial order (a regionr1 refines itself) and has the basic
property of transitivity.

Corollary 4.5 Refinement between regions is transitive. For regionsr1; r2; r3 2 R,r1 v r2 r2 v r3r1 v r3
Refinement between regions is stronger than refinement between programs. If regionsr1 andr2
refine each other than they are equivalent.

Theorem 4.10 Equivalence

For regionsr1; r2 2 R and statess; t 2 State,r1 v r2 r2 v r1Ir(r1)(s; t) = Ir(r2)(s; t)
Proof. From the definition ofv, label(r1) = label(r2) andr1 is enabled ins iff r2 is enabled
in s. Frombody(r1) v body(r2) andbody(r2) v body(r1), s r1; t iff s r2; t. Sinces r1; t ands r2; t, t is final for r1 iff it is final for r2. 2

A region r2 which is semantically equivalent to regionr1 does not necessarily refiner1.
Refinement of regions requires that the body ofr2 is a refinement of the body ofr1, body(r1) v
body(r2). Semantic equivalence requires only that interpretation of the two regions is the same,Ir(r1)(s; t) = Ir(r2)(s; t), and does not consider the intermediate states which can be produced
by the regions. As with programs, a region which always fails can be refined by any other region.

4.2 Program Transformation 108

Theorem 4.11 For any regionsr1; r2 and states,8s : halt?(r1)(s)r1 v r2
A consequence of Theorem (4.11) is that if the transformation of regionr results in a regionr0 which always fails thenr0 is a valid abstraction ofr. A transformationT can be shown to
construct a useful abstraction of a regionr if the result ofT (r) fails in a states only if the regionr fails in s.
Example 4.12 Assumex 2 Namesand distinct labelsl; l1; l2 2 Labelsand statess; t 2 State.
Let r1 be the regionunit(l : (x := 2; l2)) andr2 be the region(l; fl : (x := 1; l1); l1 : (x :=x + 1; l2))g.
The regionsr1 andr2 are semantically equivalent:Ir(r1)(s; t), Ir(r2)(s; t). Both are enabled
in the same states, end in the same states (in which the program counter has the valuel2) and
assign the value2 to the namex.

Regionr1 is not a refinement ofr2 since the body ofr1 is not a refinement of the body ofr2.
Assume thatl1 : (x := x + 1; l2) is enabled ins0 ands0 r2; t. The only command inr1 is not
enabled ins0 and therefores0 r1; t is false. 2
4.2.4 Transition Relation: Traces

The refinement relations for programs and for regions do not consider the size of programs and
regions being compared. A regionr1 can be refined by regionr2, r1 v r2, even ifr1 contains
more commands thanr2. This is because refinement is based on theleads-torelation, which
considers the states produced by a program but not how the states are produced. This makes
establishing a refinement relationship between programs (and therefore regions) difficult. For
regionr1 to be refined by regionr2, every state produced byr1 must be produced byr2. Regionr1 can produce a state by executing one or more loops, which may be made up of any number
of commands. Theleads-torelation considers either a single command or all commands of the
region. To show that a loop inr2 eventually produces a state requires the states produced by
each iteration of the loop to be considered. This can require an arbitrary numberof commands
(making up the body of the loop) to be considered. Theleads-torelation does not allow induction
on a loop, only on a program. It cannot, therefore, be used to compare the behaviour of arbitrary
regions (or programs).

For example, assumeT is a transformation which must abstract from any regionr. To showT (r) v r, it is necessary to show that for any statess; t, s T (r); t) s r; t. Any number of loops
either inT (r) or r may be executed to produce statet from s. Assume there is a single commandc 2 T (r) such thats c; t, the proof of abstraction must show thats c; t) s r; t. Commandc
may form a loop inT (r), while the equivalent loop inr may require several commands inr. The
leads-torelation does not allow these commands to be considered: it is only possible to show
that a loop inr producest from s if the loop inr is also made up of a single command.

4.2 Program Transformation 109

The behaviour of regions can be compared by considering the states produced by loop-free
sequences of commands in the regions (this is the basis of the methods of Floyd, 1967, and
Burstall, 1974). Informally, a statement thats r; t (for regionr) is broken down into the loop-
free sequences of commands, calledtraces, needed to produces from t. A trace describes the
states produced by a loop-free sequence of commands, such as those which make up a loop. The
behaviour of a loop in the region can then be established from the states produced by the traces
through the loop.

A trace through a program is a transition relation between states produced by one or more
commands of the program, each of which is executed at most once. The subset ofp containing
the commands necessary to establish a trace froms to t is thetrace setof p from s to t.
Definition 4.18 Traces

There is a trace from states to statet through programp iff predicatetrace(p; s; t) is true. The
predicatetracehas type(P � State� State)! booleanand is inductively defined:c 2 p s c; t

trace(p; s; t) c 2 p s c; u trace(p� fcg; u; t)
trace(p; s; t)

The trace settset(p; s; t) is the subset of commands of programp necessary to establish a trace
from s to t.

tset: (P � State� State)! Set(C)
tset(p; s; t) def= 8<: fc 2 p j s c; tg[fc 2 p j 9(u : State) : s c; u ^ trace(p� fcg; u; t)g[fc 2 p j 9(c1 2 p; u : State) : s c1; u ^ c 2 tset(p� fc1g; u; tg 2

There is a trace from states to statet through programp iff there is a trace through the trace
settset(p; s; t).
Lemma 4.3 For statess; t 2 State and programp 2 P,

trace(p; s; t), trace(tset(p; s; t); s; t)
If there is a trace though programp from states to statet and commandc 2 p is enabled in

statet, then eitherc is used to establish the trace froms to t, c 2 tset(p; s; t); c halts in statet orc can extend the trace to a stateu, t c; u. If commandc is necessary to establish the trace froms to t, c 2 tset(p; s; t), then the trace cannot be extended and there is amaximal tracefrom states to statet throughp. A restricted maximal traceis a maximal trace through programp which
begins with any command inp but which does not execute any other command in a given seta.

4.2 Program Transformation 110

Definition 4.19 Maximal traces

For programp and statess; t, a trace is maximal ifft is final forp� tset(p; s; t).
mtrace: (P � State� State)! boolean

mtrace(p; s; t) def= trace(p; s; t) ^ final?(p� tset(p; s; t))(t)
There is a maximal trace restricted in seta from states to statet through a programp iff there is
a maximal trace froms to t through(p� a) [fcg wherec 2 p is enabled ins.

rmtrace: Set(C)! (P � State� State)! boolean

rmtrace(a)(p; s; t) def= 9c 2 p : enabled(c)(s) ^mtrace((p� a) [fcg; s; t) 2
A maximal trace,mtrace, describes the states produced by executing the largest number of

commands of a program without repeating any command. Maximal trace relations allow the
semantic properties of a program to be established by reasoning about the longest (loop-free)
paths through the flow-graph of the program. Typically, these paths consist of the commands
between the cut-points in a program. This is similar to the use of paths in program verification
and in analysis to reason about the changes made to the program variables by iteration of a loop
(e.g Floyd, 1967; Tarjan, 1981; Aho et al., 1986).

Example 4.13 Let p be a program with commandsc1; c2; c3 2 C and lets1; s2; s3; s4 be states
such thats1 c1; s2 c2; s3 c3; s4 c1; s2.
There is a trace from states1 to states4 through programp, trace(p; s1; s2), with trace setfc1; c2; c3g. There are also traces froms1 to s2, from s2 to s2 and froms1 to s3.
There is a maximal trace froms1 to s4: c1 begins the trace in states1 and is enabled in states4.
The other maximal traces are froms2 to s2, from s3 to s3 and froms4 to s4.
Let a = fc2g. There is a restricted maximal trace froms1 to s2 throughp, rmtrace(a)(p; s1; s2).
There is also a restricted maximal trace froms2 to s2, rmtrace(a)(p; s2; s2). 2
Properties of Traces

The trace relations are used to establish the semantic properties of regiontransformations. The
formal description of the properties of the traces are given in Appendix D (as part of the cor-
rectness proofs for region transformations). The properties needed when reasoningabout region
transformations relate the behaviour of a region with the states established bymaximal traces.
Two properties of the maximal trace,mtrace, are important: the first relates a maximal trace with
commands beginning a loop. Assume programp and statess; t such thatmtrace(p; s; t) and a
commandc 2 p is enabled int. Because there is a maximal trace froms to t, commandc begins

4.2 Program Transformation 111

a loop inp. Commandc must have been executed in the trace froms to t andc is the first com-
mand to be re-selected for execution. The tracemtrace(p; s; t) therefore describes the behaviour
of p up to the first repetition of a command.

A second property is an equivalence between the semantics of regions and the transitive clo-
sure of a maximal trace. If the head ofr is enabled ins andt is final forr, then the interpretation
of r is equivalent to the transitive closure of the maximal trace throughr:Ir(r)(s; t) = enabled(r)(s) ^mtrace+(body(r); s; t) ^ final?(r)(t) (4.1)

Equation (4.1) allows the behaviour of a regionr to be broken down to maximal traces throughr, each of which ends with a command beginning a loop. Informally, this allows a transfor-
mationT on a regionr to be shown to satisfyIr(T (r))(s; t)) Ir(r)(s; t)) by showing that
mtrace(body(T (r)); s0; t0)) mtrace(body(r); s0; t0) (for anys; s0; t; t0 2 State).

To show refinement between regions,T (r) v r, it is also necessary to compare the in-
ternal behaviour of the regions, to establishbody(T (r)) v body(r). This uses an equiva-
lence between the reflexive transitive closure of a maximal trace and theleads-torelation: for
any r 2 R; s; t; u 2 State, s r; t iff mtrace�(body(r); s; u) ^ trace(body(r); u; t). RegionT (r) can therefore be shown to abstract from regionr, body(T (r)) v body(r), by establish-
ing the truth ofmtrace(body(T (r)); s; t)) mtrace(body(r); s; t) andtrace(body(T (r); s; t))
trace(body(r); s; t), for anys; t 2 State. When the regionr is a single loop,single?(r), the head
of r begins and ends each maximal trace (sincehead(r) is the only command needed for each
loop in r). The semantic properties of the single regionr can then be established by induction
on the maximal traces and the traces throughr beginning with the head ofr.

Whenr is a general region, a loop can begin at any command ofr and these commands are
hidden bymtrace(which requires the commands to executed at least once before they are de-
tected). The restricted maximal trace describes a maximal trace up to but not including identified
commands. Ifa is a set of cut-points chosen for a regionr thenrmtrace(a)(body(r); s; t) is a
maximal trace which may begin with a cut-point but cannot otherwise use any cut-point. When
all commands beginning a loop are chosen as cut-points, the propertiesrmtraceare similar to the
themtracerelation. Ifa is the set of command in a regionr which begin loops inr then:c 2 a enabled(c)(s)

mtrace+(body(r); s; t) = rmtrace+(body(r); s; t) (4.2)

Equation (4.2) and Equation (4.1) allow the behaviour of any region to be broken down into a
series of loop-free sequences. The comparison of regions can therefore be based on the behaviour
of the loops in the regions rather than on the states that each region produces. The properties of
a trace (describing a sequence of commands through a program) can be established by induction
on the relationtrace. The properties of loops in the region can be established by induction on the
transitive closure ofmtrace. This is consistent with the approach used by Floyd (1967) to verify
a program by partitioning the program into a set of loop-free sequences of commands, allowing
properties of the loops to be established by induction on the sequences of commands.

4.3 Program Abstraction 112

4.3 Program Abstraction

The abstraction of a programp is formed by abstracting a regionr of p. The regionr would
be constructed during the verification of programp, beginning with some program command of
interest, such as a program cut-point or a command identified by an intermediate assertion. The
result of abstracting regionr will be a regionr0 satisfyingr0 v r. The abstraction ofp is the
result of combining the commands ofr0 with the programp, body(r0)] p v p. This uses the
property of Theorem (4.5) together with the fact that abstracting a region of a programresults in
an abstraction of the program.

Theorem 4.12 For r0; r 2 R, p 2 P andl 2 Labels,r0 v r body(r) � p
body(r0) v p

Proof. From the definition ofr0 v r, body(r0) v body(r) and the proof is immediate from
Theorem (4.5). 2
Basing program abstraction on a region allows a transformation to be defined on the region’s
structure, determined by the flow of control through the region. The region also has an identified
initial command (the head of the region) which can be used to analyse the flow of control through
the region, to detect the loops in the region.

4.3.1 Abstracting from Regions

The method used here to abstract from regions is based on the application of two transformations.
The first, apath transformationT1, abstracts from single regions (satisfying predicatesingle?).
The second, ageneral transformationT2, is defined in terms ofT1 and can be applied to any
regionr; the result ofT2(r) is an abstraction ofr. The method of abstracting fromr is similar to
the approach used in the proof methods for program verification (Floyd, 1967; Burstall, 1974):
the abstraction of a region is formed by abstracting the sequences of commands between cut-
points in the region.

The two transformations,T1 andT2, abstract a regionr as follows: the general transforma-
tion, T2, finds the loops inr and forms the set of cut-points,cuts(r). Each command incuts(r)
is either the head ofr or begins a loop inr. The sequences of commands between cut-points are
formed as a set of regions,loops(r). Each regionr1 2 loops(r) is a single region,single?(r),
which begins with a cut-point ofr and excludes all other cut-points. The regionr1 contains all
sequences of commands from a cut-point up to but excluding any other cut-point. Each of these
sequences describes a path through the flow-graph of the regionr. The path transformationT1
is applied to each region inloops(r), resulting in a set of commands. Each of these commands
is the abstraction of sequences of commands between cut-points ofr. The result ofT2(r) is the
region constructed from this set of commands.

4.3 Program Abstraction 113

The description of the transformations will begin with the definition of path transformationT1 and a description of its properties. This will be followed by the definition of the general
transformationT2 and a description of its properties. The required properties of the transforma-
tions are that both abstract from their argument. Additional properties of the transformations
strengthen the refinement relation between a region and its abstraction. Finally, factors limiting
the use of the general transformation to abstract from regions will be discussed.The proofs of
the properties for both transformations are given in Appendix D.

4.3.2 Path Transformation of a Region

The path transformationT1 constructs an abstraction of a single loop regionr by applying se-
quential composition to the commands ofr in the order in which they may be executed. The
transformation is defined by recursion onr. Whenr is a unit region, there are no commands inr
other thanhead(r) and the result ofT1(r) is head(r). Whenr is not a unit region, the commands
which follow the head ofr form the regions ofrest(r). The transformationT1 is applied to each
of the regions inrest(r) to obtain a seta of commands. The head ofr is then composed with
each command in the seta. This results in a commandc which is equivalent to a path inr and
the abstraction ofr is the unit regionunit(c).

To compose the head of the region with a set of commands, the sequential composition oper-
ator is generalised to allow its application to a command and a finite set ofcommands.

Definition 4.20 Composition over a set

There is a functionchooseof typeSet(T)! T satisfying, for any typeT and setS : Set(T):S 6= fg
choose(S) 2 S

The composition of a commandc with a finite seta of commands is defined by recursion overa.; : (C � FiniteSet(C))! Cc; a def= � c if a = fg(c; a� fc0g); c0 otherwise
wherec0 = choose(a) 2

Composition ofc with a set of commandsA, (c;A), has properties similar to the sequential
composition operator between commands, provided that no command in setA is selected for
execution by another command in the set.

Example 4.14 Let c1; c2 and c3 be commands such that:(c2 7�! c3), :(c3 7�! c2) and
label(c2) 6= label(c3). The result of composingc1 with fc2; c3g, c1; fc2; c3g, is eitherc1; c2; c3 orc1; c3; c2. Fors; t 2 State, Ic(c1; fc2; c3g)(s; t) is true iff there is a stateu such thatIc(c1)(s; u)

4.3 Program Abstraction 114

and eitherIc(c2)(u; t) or Ic(c3)(u; t) or neitherc2 nor c3 are enabled inu andu = t (Theorem
3.7). Becauselabel(c2) 6= label(c3), the result ofIc(c1; fc2; c3g)(s; t) is equivalent to one ofIc(c1)(s; t), Ic(c1; c2)(s; t) or Ic(c1; c3)(s; t). There cannot be a stateu such thatIc(c1; c2)(s; u)
andIc(c3)(u; t), since this would contradict:(c2 7�! c3). 2

The path transformationT1 uses the structure of a region, defined by thereachesrelation, to
select and compose the region’s commands. The result of applyingT1 to a regionr, T1(r), is the
command which results from the composition of the head ofr with the set of commands formed
by applyingT1 to each region inrest(r).
Definition 4.21 Path transformation

The path transformation,T1, of a regionr is defined by recursion over the region.T1 : R ! CT1(r) def= �
head(r) if unit?(r)
head(r); (T1(rest(r))) otherwise 2

The selection of commands by transformationT1 is determined by the flow of control through
the region. If control passes to the head of a regionr then any commandc1 which may be selected
by head(r) will form a regionr1 2 rest(r) andhead(r) 7�! head(r1). The regionr1 will contain
every command which is reachable fromhead(r1) in r and, ifsingle?(r), will also be loop-free
(sincehead(r) 62 body(r0)). The application ofT1 to r0 will repeat this process: composing the
commands which are reachable fromhead(r0) in the order in which they may be executed. The
result is a single command which abstracts from every path through the region beginning with
the head of the region.

Example 4.15 The abstraction of regionr1 of Figure (4.4) by the path transformationT1 is as
follows. The flow of control throughr1 is: c1 7�! c2 7�! c3. The sub-regionr01 2 rest(r)
is formed fromc2: r0 = region(l2; fc2; c3g). A second sub-regionr00 2 rest(r0) is formed:r00 = region(l3; fc3g). Applying T1 to r00 results inT1(r00) = c3. Applying T1 to r0 results inT1(r0) = (c2; c3). The result ofT1(r) is thereforeT1(r) = c1; (c2; c3).
Consider regionr2 of Figure (4.4). The effect of applyingT1 to r2 is to construct the sub-region
beginning at commandc2, r02 = region(l2; fc2; c3; c4g). The setrest(r02) is funit(c3); unit(c4)g
and the result ofT1(rest(r02)) is the setfc3; c4g. The result ofT1(r2) is thereforec1; (c2; fc3; c4g).
The result of applying the transformation to a single loop is similar. Consider regionr1 of Figure
(4.5). The application ofT1 to r1 constructs the region beginning atc2, r01 = region(l2; fc2; c3g).
The regionr01 does not includec1, the head of regionr1 and the result of the transformation is
the commandc1; (c2; c3). 2

4.3 Program Abstraction 115

Properties of the Path Transformation

The result of applying the path transformationT1 to a single regionr is a commandc. This
command describes the iteration-free behaviour of the regionr but is not an abstraction ofr. The command is equivalent to a maximal trace throughr beginning with the head ofr:Ic(T1(r))(s; t) = enabled(r)(s) ^ mtrace(body(r); s; t). The single regionr, single?(r) can
contain any number of loops (all of which must begin with the head ofr). The states produced
by r can therefore result from the repeated iteration of loops throughr. SinceT1(r) is a com-
mand, it can be executed at most once to produce a statet from states. To allow the repeated
execution ofT1(r), a unit region must be constructed,unit(T1(r)). This allows the command to
be executed any number of times to producet from s: Ir(unit(T1(r)))(s; t). This unit region,
unit(T1(r)), is the abstraction ofr.
Theorem 4.13 Path refines abstraction

For any regionr, which is a single loop, unit(T1(r)) is an abstraction ofr.
single?(r)

unit(T1(r)) v r
As well as being an abstraction of a single loopr, unit(T1(r)) is semantically equivalent tor.

If r is loop-free then executingr is equivalent to executingT1(r), no sequence of commands is
executed more than once. Ifr contains a loop then the loop begins with the head ofr and an
execution ofr is made up of one or more iterations of the loop.T1(r) is equivalent to a single
iteration of the loop andunit(T1(r)) is equivalent to the repeated iteration of the loop.

Theorem 4.14 Path is equivalent to abstraction

For regionr and statess; t,
single?(r)Ir(unit(T1(r)))(s; t) = Ir(r)(s; t)

Both Theorem (4.13) and Theorem (4.14) are based on the property that any state produced by
unit(T1(r)) is produced by one or more maximal traces through regionr: if r0 = unit(T1(r))
thens r0; t iff mtrace+(body(r); s; t). These two theorems establish the relationship between the
regions when both terminate.

The path transformation constructs a proper abstraction of a regionr by preserving the fail-
ures ofr: regionr halts in a states in which it is enabled iffunit(T1(r)) halts ins.
Theorem 4.15 Path transformation preserves failure

For regionr and states
single?(r) enabled(r)(s)

halt?(unit(T1(r)))(s), halt?(r)(s)

4.3 Program Abstraction 116

Theorem (4.13) states that if the abstractionunit(T1(r)) of regionr establishes a property
then so willr. Theorem (4.14) states the reverse: ifr beginning in a states produces a final statet in which some assertion istrue, then so willunit(T1(r)). A consequence of Theorem (4.13) and
Theorem (4.14) is that a specification can be proved fromIr(r)(s; t) iff it can be proved fromIr(unit(T1(r)))(s; t). Although such specifications describe a subset of the properties which may
be proved of a region, they include the fact that a region terminates. Theorem (4.15) ensures that
the abstraction is not based on Theorem (4.11): the transformed region fails in a states iff the
original regionr also fails ins.
4.3.3 General Transformation of a Region

The general transformation,T2, of an arbitrary regionr breaks downr, which can contain any
number of loops, to a set of sub-regions,loops(r) each of which begins with a cut-point ofr.
The abstractionT2(r) is obtained by applyingT1 to each of the regions inloops(r). The principal
operations carried out by transformationT2 find the cut-points of a region, by finding the loops
in a region, and form a region from the result of applying the path transformationT1.
Extracting Loops of a Region

The cut-points of a regionr are the head ofr and the commands which begin a loop inr. A
commandc of r begins a loop inr if either c is the head ofr andc r7�! c, or there is a patha � body(r) from head(r) to c (head(r) a7�! c), a pathb � body(r) from c to c (c b7�! c) and
the only command common to botha andb is c (a \ b = fcg).
Definition 4.22 Loop heads

For regionr and commandc, predicatelphead?(c; r) is true iff c is the head of a loop inr.
lphead?: (C �R)! boolean

lphead?(c; r) def= (c = head(r) ^ c r7�! c_(9a : a � body(r) ^ head(r) a7�! c ^ c b7�! c)
whereb = (body(r)� a) [fcg

For any regionr, the setlpheads(r) contains all commands beginning a loop inr.
lpheads: R ! P
lpheads(r) def= fc 2 r j lphead?(c; r)g

The cut-points of regionr are the head ofr and the commands which begin a loop inr.
cuts: R ! P
cuts(r) def= lpheads(r) + head(r) 2

4.3 Program Abstraction 117

Note that lpheads(r) + head(r) is equivalent tolpheads(r) [fhead(r)g: if head(r) 62
lpheads(r) then no other command inlpheads(r) can share a label withhead(r). The predi-
catelphead?identifies the commands beginning loops inr; these, together with the head ofr,
are the cut-points of the region (see Theorem D.6 of Appendix D). The method used here tofind
the commands beginning loops is more general than those used in program optimisation (Aho
et al., 1986; Wolfe, 1991) since it can be applied to any region, regardless of the structure of the
region’s flow-graph.

When a cut-pointc is identified, the body of the loop is made up of the commands which can
be reached fromc without passing through the head of the region or through any other cut-point.

Definition 4.23 Loop bodies

The body of a loop beginning atc in a regionr is constructed from a cut-pointc and the subset
of r which excludes all other cut-points.

lpbody: (C �R)! P
lpbody(c; r) def= (body(r)� lpheads(r)) + c

For regionr, loops(r) is the set of sub-regions ofr which begin with a cut-point ofr and which
exclude all other cut-points.

loops: R ! FiniteSet(R)
loops(r) def= fregion(label(c); lpbody(c; r)) j c 2 cuts(r)g 2

The sub-regions constructed from the cut-points ofr are single loops. Ifr0 is a loop inr,r0 2 loops(r), then any sub-region ofr0 which contains a loop would also contain a cut-pointc
of r. If c was not the head ofr0 then, by the definition ofloopsand oflpbody, c could not be a
member ofr0.
Theorem 4.16 For regionsr; r0 2 R, r0 2 loops(r)

single?(r0)
The property of Theorem (4.16) ensures that the result of applying transformationT1 to eachr1 2 loops(r) is an abstraction ofr1. TransformationT1 preserves the labels of the regions

and the commands incuts(r) share labels with commands in the setT1(loops(r)). The labels
of the cut-points are preserved to ensure that any loop inr is also preserved by the abstractions
constructed fromT1(loops(r)).

The cut-points incuts(r) are for use in the transformation of regionr and are independent
of any cut-points used for verification. If a proof begins with a programp and the property to

4.3 Program Abstraction 118

be established is that eventually control reaches a commandc, thenc is a cut-point for the veri-
fication. If an abstractionp0 is constructed fromp, by constructing and transforming a regionr,
the commandc may not appear inp0 since it is not necessarily a cut-point for the transformation.
However, the region can be constructed to excludec and the abstractionp0 will then includec.
Example 4.16 In the single loopr3 of Figure (4.5), the only cut-point is the head of the region.
Although there is a command other thenhead(r3) which reaches itself throughr3, head(r3) is
necessary for each such loop. The only cut-point ofr3 is head(r3), cuts(r3) = fhead(r3)g,
lpbody(head(r3); r3) = body(r3) andloops(r3) = fr3g.
In a general loop, there may be one or more loops which are independent of the head of the
region. In regionr1 of Figure (4.6), commandc2 is a cut-point of the region. There is a patha = fc1; c2g such thathead(r1) a7�! c2, and a subsetp = fc2; c3g such thatc2 p7�! c2. The
only command which occurs in botha andp is c2. By contrast, commandc3 is not a cut-point.
Although there is a subsetp0 = fc3; c2g such thatc3 p7�! c3, there is no seta such thata\p = fc3g
andhead(r3) a7�! c3. The cut-points ofr1 arefhead(r1); c2g. The set of sub-regionsloops(r)
contains the regionunit(head(r1)) and the regionregion(l2; fc2; c3g) only.

In regionr3 of Figure (4.6), there are three cut-points,cuts(r3) = fhead(r3); c2; c3g. Forc2, there
are setsa = fc1; c2g andp = fc2; c3; c4g such thathead(r3) a7�! c2, c2 p7�! c2 anda\ p = fc2g.
For c3, the sets area = fc1; c2; c3g andp = fc3; c4; c5g. The loops inr3 areunit(head(r3)),(l2; fc2; c3g) and(l3; fc3; c4; c5g). Note that a path fromc2 to c2 must pass through the region
beginning withc3. 2
Transforming a Region

Once the cut-points of a regionr are found and used to construct the sub-regions ofloops(r),
the general transformationT2 constructs the abstraction ofr. First the path transformationT1
is applied to each sub-region inloops(r) to obtain a set of a commands from which a region is
constructed. This region is the result of the transformation,T2(r).
Definition 4.24 General transformation

The body of the abstraction of a regionr is constructed from the setgtbody(r) obtained by
applyingT1 to the sub-regions ofr beginning with a cut-point ofr.

gtbody: R ! P
gtbody(r) def= fT1(r1) j r1 2 loops(r)g

The general transformation of a regionr is the region beginning with the label ofr and con-
structed fromgtbody(r). T2 : R ! RT2(r) def= region(label(r); gtbody(r)) 2

4.3 Program Abstraction 119

For any regionr, the result ofT2(r) is region in which each command is an abstraction of a
sequence of commands fromhead(r) to a cut-point ofr, from a cut-point tohead(r) or from a
cut-point to another cut-point. Each command inT2(r) is formed by applyingT1 to a regionr0 in
loops(r) and, by Theorem (4.16), regionr0 is a single loop,single?(r0). The interpretation of a
commandc 2 r, Ic(c)(s; t), is therefore equivalent to a maximal trace throughr, beginning with
a cut-point ofr and excluding all other cut-points. This is described as the restricted maximal
trace,rmtrace(lpheads(r))(body(r); s; t). The properties of the general transformation are based
on the relationship between the commands ofT2(r) and the regionr, described in terms of

the restricted maximal traces. In particular, ifr0 = T2(r) andenabled(r0)(s) thens r0; t iff
rmtrace+(lpheads(r))(body(r); s; t) (see Lemma D.42 and Lemma D.49 of Appendix D).

TransformationT2 is a generalisation of the path transformation to arbitrary regions. The
properties ofT2 are similar to those ofT1 but do not impose constraints on the region to be
transformed. The most important property is that the general transformationT2 constructs an
abstraction of any regionr.
Theorem 4.17 Abstraction

TransformationT2 constructs an abstraction of any regionr:T2(r) v r
As with the path transformation, the result of applyingT2 to regionr is a region which is seman-
tically equivalent tor.
Theorem 4.18 Equivalence

For any regionr and statess; t:Ir(T2(r))(s; t) = Ir(r)(s; t)
The transformationT2 also preserves the failures of a region. Regionr fails in a states in which
it is enabled iffT2(r) also fails ins.
Theorem 4.19 General transformation preserves failure

For any regionr and states,
enabled(r)(s)

halt?(T2(r))(s), halt?(r)(s)
TransformationT2 is a generalisation ofT1 and the result of applying the general transforma-

tion T2 to a single regionr is the regionunit(T1(r)).

4.3 Program Abstraction 120

Theorem 4.20 Transformation of single regions

For any regionr,
single?(r)T2(r) = unit(T1(r))

Theorem (4.17) and Theorem (4.18) allow the general transformationT2 to be applied to
any regionr, the result will be both an abstraction of and equivalent tor. Theorem (4.19)
ensures that the abstraction is not trivial, regionT2(r) fails only whenr fails. A consequence of
Theorem (4.18) is that it is only necessary to applyT2 to a regionr; if r is is a single region then
the result will be as if the path transformation had been applied.

Applying the General Transformation

The result of applying the general transformationT2 to a regionr of a programp will be used to
abstract fromp. Whether the verification ofp is simplified by its abstraction therefore depends on
the changes which can be made by the general transformation to the regionr. There are practical
limits to the effect of applying the transformationT2 to a region; in some cases, applyingT2 to a
regionr will not make any changes,T2(r) = r. For example, assume a commandc of regionr
selects a successor by a label expression, which depends on some variable. Becausec can reach
any command ofr, it is possible, in the worst case, to form a loop beginning with any command
in r. Consequently, every commandc 2 r will be a cut-point ofr and no changes will be made
to r, T2(r) = r, since the cut-points ofr are preserved byT2.

This limitation is caused by the need to determine the control flow through a programfrom
the syntax of the commands. For many processor languages, the majority of instructionswill
select a successor using a basic label (inLabels) or can be transformed to such a program, using
Lemma (4.1). In such processor languages, an abstraction of a program can be obtainedby
constructing regions only from the commands which use a basic label to select a successor.
Transforming these regions will, generally, reduce the number of commands. The commands
which select a successor by a function on a name can then be considered separately, by a step in
the proof to demonstrate that the command has some property. Alternatively, the commands can
be abstracted individually (using Theorem 4.5) to form abstractions ofp.

Processor languages in which each instruction selects a successor by a labelexpression (not
in Labels) must be considered individually. Each such language will have an execution model
which determines how an object program is executed. This model will generally support the
definition of areachesrelation with which to determine the flow of control through a program
(such relations are required for program optimisation). An alternative is to define transformations
which form regions suitable for abstraction usingT2. For example, a transformation based on
constant propagation(Aho et al., 1986) would attempt to calculate the labels of each command
in a region, possibly using information obtained from the program specification. The result of
such a transformation would be a region in which each command identified its successor by a
constant label. Such a region would be suitable for abstraction by the general transformation.

4.4 Proof Rules for Programs 121

Example 4.17 Assume commandsc1; c2; : : : ; c5 2 C such thatc1 7�! c2 7�! c3 7�! c4 7�! c5
andc4 7�! c2. Also assume functionf 2 F l , namex 2 En, labell 2 Labelsand commandl :
gotof(x) such thatc5 7�! l : gotof(x). Let p be the programfc1; c2; c3; c4; c5; l : gotof(x)g
and assumec1 is the first command to be executed. Letr be the largest region ofp beginning
with commandc. r = (label(c1); fc1; c2; c3; c4; c5; l : gotof(x)g)
Sincel : gotof(x) 7�! c for every commandc 2 r, every command inr is a cut-point ofr. For
example, there is a patha from the head of region,c1 to c3, a = fc1; c2; c3g and a pathb fromc3 to c3, b = fc3; c4; c5; l : gotof(x)g and the only command common toa andb is c3. The
transformationT2 therefore constructs the set of unit regions:funit(c1); unit(c2); unit(c3); unit(c4); unit(c5); unit(l : gotof(x))g
The application ofT1 to each unit regionunit(c) is c and the result of the transformation is the
regionr, T2(r) = r.
An alternative approach, which results in an abstractionp0 of p, is to exclude the commandl : gotof(x) from the region. Letr be the region beginning withc1 but excludingl : gotof(x).r = (label(c1); fc1; c2; c3; c4; c5g)
The only command beginning a loop inr is c2 andT2(r) applies the path transformationT1 to
the sub-regions: r1 = (label(c1); fc1g) r2 = (label(c2); fc2; c3; c4; c5g)
The transformationT1 results in the commandsT1(r1) = c1 andT1(r2) = c2; c3; c4; c5. The
abstractionp0 is obtained by combining the programfT1(r1); T1(r1)g with p. The commandl : gotof(x) can then be combined with any command ofp0. Sincec5 7�! l : gotof(x) andc5
occurs inr2, the most useful abstraction is likely to result fromT1(r2); l : gotof(x). 2
4.4 Proof Rules for Programs

The verification of a program ofL is carried out in a program logic by applying proof rules to
programs and commands. The logic which will be used here extends the assertion languageA
(defined in Chapter 3), with an operator for specifying the liveness properties ofprograms. This
operator and its proof rules will allow a program to be verified using the method of intermittent
assertions. It will also allow reasoning about the refinement relation between programs, to sim-
plify the verification of a program. In particular, it will support the replacement of a program
with its abstraction during a proof of correctness.

More expressive logics can be defined which also allow the safety propertiesof program to
be considered. Examples of such logics include those of (Manna & Pnueli, 1981) and (Lamport,

4.4 Proof Rules for Programs 122

Programs: c 2 p ` p) wp(c; Q)` [P]p[Q] (tl6)

Refinement: p1 v p2 ` [P]p1[Q]` [P]p2[Q] (tl7)

Transitivity: ` [P]p[R] ` [R]p[Q]` [P]p[Q] (tl8)

Induction: i; j; n 2 N j < i ` [F (j)]p[Q]` [F (i)]p[Q]` [F (n)]p[Q] (tl9)

Weakening (programs): ` P) R ` [R]p[Q]` [P]p[Q] (tl10)

Strengthening (programs) ` R) Q ` [P]p[R]` [P]p[Q] (tl11)

wherec 2 C, p; p1; p2 2 P, P;Q;R 2 A andF 2 (N ! A)
Figure 4.7: Proof Rules for the Programs

1994). Formulas for these logics specify the properties of a program behaviour (inBehaviour).
However, reasoning about refinement in these logics is complicated (see Abadi& Lamport, 1991,
or Lamport, 1994). The logic defined here will be sufficient to verify the liveness properties
of sequential programs. The specification operator for programs will be based on theleads-to
relation. The liveness properties established in the logic can therefore be established in a logic
based on program behaviours (Theorem 4.2).

Specification of Programs

A programp is specified by an assertion (inA), written [P]p[Q] and constructed from precondi-
tionP 2 A and postconditionQ 2 A. Each specification states that if the execution of programp begins in a state satisfyingP thenp will eventually produce a state satisfyingQ.

Definition 4.25 Program specification operator

For assertionsP;Q 2 A and programp 2 P , the specification operator constructs a triple

4.4 Proof Rules for Programs 123[P]p[Q] as an assertion on a state.[] [] : (A�P �A)!A[P]p[Q] def= �(s : State) : P (s)) 9(t : State) : s p; t ^Q(t) 2
The program specification operator describes the total correctness of a program with respect to a
specification. IfP 2 A is the precondition andQ 2 A the postcondition of programp then the` [P]p[Q] asserts thatp beginning in any state satisfyingP will eventually establishQ.

The program logic for verifying programs ofL is made up of the proof rules for commands
(Figure 3.5 of Chapter 3) and the proof rules for programs of Figure (4.7). These proof rules are
similar to rules defined by Francez (1992) for the intermittent assertions. Rule (tl6) describes
the effect of a program command: ifP) wp(c; Q) thenc will terminate in a state satisfyingQ; therefore programp will establishQ. The refinement rule (tl7) states that any postcondition
established by programp will also be established by a refinementp0 of p and rule (tl8) is a
restatement of the transitivity ofleads-to. Rule (tl9) defines the induction scheme for program
specifications. The proofs for the rules are straightforward from the definitions.The proof of
the induction rule (tl9) is immediate from induction on the natural numbers. Proof rules for
regions are not required since a region is primarily a means for constructing abstractions of a
program. The refinement rule (tl7) is the main mechanism for simplifying a program: it allows
the replacement of a programp with its abstractionp0. This abstraction can be constructed by
abstracting from any subset of programp (Theorem 4.5).

4.4.1 Verifying Programs

A programp satisfies a specification made up of preconditionP 2 A and postconditionQ 2 A
if ` [P]p[Q] is true. To verify the program, it must be shown that beginning in a state satisfyingP , programp will eventually establishQ. Using the proof rules for programs, commands of
the program are individually shown to establish assertions from which the programspecification
can be established. This is the reverse of the top-down approach used in the programlogics for
structured languages (Hoare, 1969; Dijkstra, 1976) in which the program specificationis broken
down into assertions to be established by commands.

The verification of a program using the proof rules of Figure (4.7) is based on the method of
intermittent assertions (Manna, 1974; Burstall, 1974). This is a consequence of the definition of
the specification operator, which requires that a program eventually establishes a postcondition.
The transitivity rule (tl8) allows the specification of a programp, ` [P]p[Q], to be established
from a series of intermediate specifications:` [P]p[A1]; : : : ;` [Ai]p[Ai+1]; : : : ;` [An]p[Q],
whereP;Q;A1; : : : ; An 2 A. The rule for programs (tl6), allows each intermediate specifi-
cation to be established from a sequence of commands:` Ai) wp(c1; B1); : : : ;` Bn)
wp(cn; Ai+1) wherec1; : : : ; cn 2 p andB1; : : : ; Bn 2 A. The choice of intermediate assertions,A1; : : : ; An andB1; : : : ; Bn, is determined by the proof method as are the commandsc1; : : : ; cn
(which will normally be a sequence beginning with a program cut-point).

4.4 Proof Rules for Programs 124

The refinement rule (tl8) allows the verification of a program to be simplifiedby abstracting
from the program. The program can be abstracted at any point in the verification. For example,
before beginning a proof, replacing̀[P]p[Q] with ` [P]p0[Q] wherep0 v p, or when establish-
ing an intermediate specification, replacing` [Ai]p[Ai+1] with ` [Ai]p0[Ai+1]. The abstraction
of the program can be constructed either by applying sequential composition to individually
selected program commands or by applying transformationT1 or T2 to a region of the program.

The approach to verifying programs which will be used here is based on constructingan
abstraction of a program before beginning the proof of correctness. A programp 2 P with
preconditionP 2 A and postconditionQ 2 A will be shown to satisfy the specificationP 2 A,` [P]p[Q], in the following steps:

1. The first command of the program (which must be identified by preconditionP) will be
used to construct a regionr of p. Regionr will be made up of all commands inp which
identify a successor by a basic label.

2. TransformationT2 will be applied tor to construct the abstractionT2(r).
3. The abstractionp1 of p will be formed by combining the regionT2(r) with p: p1 = p]

body(T2(r)).
4. Sequential composition will be selectively applied to the commands ofp1, to abstract from

commands which were excluded from regionr (because of a successor expression de-
pending on a variable). The result will be an abstractionp2 of p. If there are no suitable
commands inp1 thenp2 = p1.

5. Programp2 will verified using the method of intermittent assertions:` [P]p2[Q].
These steps simplify a program before verification based on the method of intermittent asser-
tions. The correctness of the steps is therefore a consequence of the correctness ofthe proof
method and the transformations used to abstract from a program. Proof tools to simplify the
verification would automate the construction and transformation of a region (steps 1 and 2) and
would simplify the result of sequential composition (step 4).

Example

For an example of the verification and abstraction of a program, assumex; y; z 2 Namesare
distinct and programp 2 P has the following commands:l1 : x := 10; l2l2 : y := 0; l3l3 : if x =a 0 then gotol6 else gotol4l4 : x := x�a 1; l5l5 : y := y +a 1; l3l6 : goto loc(z)

4.4 Proof Rules for Programs 125

Programp is intended to illustrate the abstraction of a program and does not carry out any use-
ful function. The program will be shown to satisfy a simple specification whichrequires the
program, beginning at the command labelledl1, to eventually pass control to the label stored in
variablez.

The precondition for the program,Pre(l), states that execution begins atl1 and the value ofz
is some labell. The postcondition,Post(l), requires control to pass to the label stored inz.

Pre : label!A
Pre(l) def= z =a l ^ pc= l1 Post: label! A

Post(l) def= z =a l ^ pc=a l
The specification of the program is,` [Pre(l)]p[Post(l)] (for any l 2 Labels). This requires the
namez to have the same value when the program begins and ends. The commands ofp labelledl1; : : : ; l6 will be referred to asc1; : : : ; c6 (i.e. ci = at(p; li)).

The flow-graph ofp is made up of a path fromc1 to labelc2, a loop, betweenc3 andc5, and a
path fromc3 to c6. First an abstractionp1 of p is constructed from the regionr beginning atc1 and
containing all commands exceptc6 (which is a computed jump),r = region(l1; p � fc6g). The
general transformation is applied tor; the cut-points ofr arec1 (the head ofr) andc3 (beginning
the loop inr): cuts(r) = fc1; c3g. Two regions,r1 andr2, are constructed fromr beginning at
each cut-point and excluding the other cut-point, these form the loops ofr:r1 = region(l1; fc1; c2g)r2 = region(l3; fc3; c4; c5g)

loops(r) = fr1; r2g
The path transformation is applied to each region inloops(r) to form the set of commands
gtbody(r), containing the abstractions of the single regions. The result ofT2(r) is the region
constructed from this set:

gtbody(r) = fT1(r1); T1(r2)gT2(r) = region(l1; gtbody(r))
Note that since composition preserves the reaches relation,T1(r1) 7�! T1(r2), the body ofT2(r)
is gtbody(r). The abstractionp1 2 P of p is formed by combining the body ofT2(r) with p:p1 = p] fT1(r1); T1(r2)g. By Theorem (4.12), this satisfies the refinement orderingp1 v p.

An abstractionp2 of p1 is then constructed by the sequential composition ofT1(r2) with
commandc6, which was excluded from regionr. Programp2 is formed asp1] f(T1(r2); c6)g.
This also satisfies the refinement orderingp2 v p1 (and thereforep2 v p). The programp
is verified by showing thatp2 is correct:` [Pre(l)]p2[Post(l)], for any l 2 Labels. Only two
commands ofp2 are required in the proof of correctness,T1(r1) and (T1(r2); c6). These will
be referred to asC1 andC2, C1 = T1(r1) andC2 = T1(r2); c6. The two commands, after
simplification, are: C1 =l1 : x; y := 10; 0; l3C2 = l3 : if x =a 0 then x; y := x�a 1; y +a 1; loc(z)

elsex; y := x�a 1; y +a 1; l3

4.5 Conclusion 126

The simplifications can be carried out mechanically using the text of the commands.

The proof of correctness is straightforward and only the main steps will be described. Be-
cause commandC2 forms a loop,C2 7�! C2, the proof requires induction on the value ofx.
This uses an invariantInv(v; l) for the loop, wherev is the value ofx andl the label stored inz:

Inv : (N � Labels)!A
Inv(v; l) def= v = x ^ l = z

The steps of the proof are as follows, for anyl 2 Labels:

1. Precondition establishes invariant,` [Pre(l)]p2[pc=a l3 ^ Inv(10; l)].
This can be established directly fromC1, with a proof of` (pc =a l1 ^ Pre(l)))
wp(C1; pc=a l3^Inv(10; l)). Note thatC1 is selected by the preconditionPre(l) (pc=a l1)
and ends in a state in whichC2 is enabled (pc=a l3).

2. Invariant establishes postcondition,` [pc=a l3 ^ Inv(v; l)]p2[pc=a l] (for anyv 2 N).

The proof is by induction onv, the value of namex, using the induction rule (tl9). Since
pc=a l3, commandC2 is selected. Furthermore, only commandC2 needs to be considered
to establish the intermediate specification. There are two cases to consider, whenv = 0
and whenv > 0.

(a) Base case,̀ [pc=a l3 ^ Inv(0; l)]p2[pc=a loc(z)].
This can be established from the rule for programs (tl1) and from the truth of` pc=al3 ^ Inv(0; l)) wp(C2; pc=a loc(z)).

(b) Inductive case,v > 0 and` [pc=a l3 ^ Inv(v; l)]p2[pc=a loc(z)].
This is established from the inductive hypothesis (see rule tl9) by establishing the
specificatioǹ [pc =a l3 ^ Inv(v; l)]p2[pc =a l3 ^ Inv(v � 1; l)]. As with the base
case, this can be established from the rule for programs (tl1) and the property of
commandC2: ` pc=a l3 ^ Inv(v; l)) wp(C2; pc=a l3 ^ Inv(v � 1; l)).

These steps are used to show the correctness of programp2 by combining the intermediate as-
sertions. From̀ [Pre(l)]p2[pc =a l3 ^ Inv(10; l)] and` [pc =a l3 ^ Inv(v; l)]p2[pc =a loc(z)]
(for any v), the transitivity rule (tl8) establishes̀ [Pre(l)]p2[pc =a loc(z)]. The refinement
rule (tl7) andp2 v p (and the definition ofPost), can then be used to prove the correctness ofp:` [Pre(l)]p[Post(l)].
4.5 Conclusion

Object code is more general than the programs of structured languages, which are usually consid-
ered in program verification. A structured program is a compound command (Loeckx & Sieber,

4.5 Conclusion 127

1987) and can be transformed or verified as a single command. To reason about object code,
the program must be considered a collection of individual instructions, which can be executed
in any order. This means that object code must be verified by reasoning about the individual
instructions. For refinement and abstraction, it also means that all statesproduced by a program
must be considered, not only the states in which a program begins and ends. To transform an ob-
ject code program it is therefore necessary to consider the behaviour of the program instructions
individually. This requires techniques more similar to those used in code optimisation to manip-
ulate groups of instructions than those used in program verification and refinement tomanipulate
structured programs.

The languageL provides a means for verifying and abstracting the object code programs
of arbitrary processors. Since any processor instruction can be modelled by a command ofL,
any object code program (of any processor language) can be modelled as a program ofL. This
allows object code programs to be verified in a single program logic, defined for the languageL.
Because an instruction can be modelled by a singleL command, the difficulty of verifying object
code is not increased by the translation to a program ofL. This approach considers object code
as a program, which can be verified using the methods of Floyd (1967) and Burstall (1974).
It differs significantly from other approaches to verifying object code which require that the
program instructions are embedded in a structured program (Back et al., 1994) or whichconsider
instructions as data for a processor simulation (Yuan Yu, 1992; Boyer & Moore, 1997). Both
these approaches complicate reasoning about and transforming object code programs since either
the data or the execution model of object code is simulated in terms of a less expressive language.

Abstraction is intended to reduce the number of program commands which must be consid-
ered during verification. Two methods were described for the abstraction ofL programs. The
first applies sequential composition to manually chosen program commands. This method can be
applied to any program ofL (and therefore any object code program) but is difficult to mechanise.
The second method is based on applying program transformations which analyse the program
flow-graph to identify the sequences of commands to be abstracted by sequential composition.
This approach is similar to techniques used in code optimisation. However, themethods used
to define and reason about code optimising transformations cannot be used to define abstract-
ing transformations. Instead, a framework for transforming programs ofL was developed based
on regions of a program. This included methods for reasoning about the syntactic and semantic
properties of regions, allowing a transformation to be defined and shown to abstract from regions.
This framework was used to define and reason about transformationsT1 andT2 which abstract
from regions.

The path transformationT1 is a straightforward application of sequential composition to se-
quences of commands in a region. The general transformationT2 is more complicated since it
must analyse the flow-graph of the region. The analysis used is more general than thoseof code
optimisation: it is not restricted by the structure of the regions flow-graph. The result of applyingT2 to a regionr is an abstraction ofr which preserves the liveness properties ofr: any specifica-
tion which can be established byr can be established by its abstraction. Abstracting a programp by abstracting a region of the program therefore results in an abstraction with the liveness

4.5 Conclusion 128

properties ofp. Because the abstraction of a program ofL is also a program ofL, the methods
for abstraction can be repeatedly applied. This is used in the verification method described in
Section 4.4. It is not possible using other approaches to abstraction, such as symbolic execution
(King, 1971), which require that a program and its abstraction are treated separately. Construct-
ing abstractions asL programs allows the same methods for verification and abstraction to be
applied to a program and its abstraction.

The main contribution of this chapter is the ability to model object code as programsofL and to abstract and verify these programs. The use of techniques based on the flow-graph
of a program to abstract from the program is new for verification. Since the requirements of the
transformations are the same as for code optimisation (principally requiring the ability to analyse
the flow-graph of a program), mechanising the transformations is straightforward. Furthermore,
since the methods for abstraction can be applied to any program ofL, they can be used to abstract
the object code programs of any processor language. This allows any object code program to be
verified in a program logic and also allows the manual work needed to verify the program to be
reduced by applying automated tools to simplify the program.

Chapter 5

Examples: Processor Languages

There are two approaches to considering object code verification. The first is interms of the
processor language: the problem is to develop methods for reasoning about the instructions and
programs of a processor language. The second is in terms of the object code as a program,
without considering the processor language: given methods for reasoning about programs of a
processor language, the problem is to exploit particular features of object code to simplify their
verification. The main emphasis of this thesis is on the problem of reasoning about programs
of processor languages since this is needed to treat object code as a program. This chapter will
consider the verification of object code for particular processor languages, by considering the
translation from a processor language to the languageL. The object code programs considered
in this chapter will be verified, in terms of their model inL, using the method described in Sec-
tion 4.4. The approach used in this thesis to simplify verification is based on program abstraction,
which does not exploit features of object code. The treatment of object code as programs with
particular features will be considered in the next chapter.

A processor architecture defines the instructions which can occur in an object codeprogram
and also determines the data operations and the variables which may be used by aninstruction.
To model an object code program as a program ofL, the languageL must be able to describe
the behaviour of each processor instruction. This, in turn, requires the ability to describe the data
operations of the processor as expressions ofL. Examples of the data operations and instructions
of different processors will be considered and their definition in terms ofL described. This will
be based on a general data model which includes the expressions ofL needed to model common
data operations of processors. As an example of the use of this data model, a program ofL to
implement division will be defined and verified. The use made by this program of the general data
model, defined inL, reflects the use made by object code of the data operations of a processor.

A processor language is defined by the processor architecture which follows eithera complex
instruction set (CISC) design or a reduced instruction set (RISC) design (Hennessy & Patterson,
1990). As an example of the use of the languageL to model processor instructions, two processor
architectures will be considered: the Motorola 68000 (Motorola, 1986), a CISC processor, and
the PowerPC (Motorola Inc. and IBM Corp., 1997), a RISC processor. These two processors are

129

5.1 General Data Model 130

of interest since their instructions are representative of the instructions found in many processor
languages. If the languageL can model arbitrary instructions then it should be able to model the
instructions of the Motorola 68000 and the PowerPC processors. To illustrate the useof L for
object code verification, programs will be defined and verified for both the Motorola 68000and
the PowerPC processors. The difficulty of modelling object code in the languageL is determined
by the complexity of the instructions and the data operations. These are influenced by thedesign
of the processor architecture and can lead to a processor language having featureswhich are
difficult to model inL. Some of these features and their model in terms ofL will be described.

This chapter is structured as follows:Section 5.1describes the model, inL, of data items
and operations commonly used in processor languages. A program ofL using this model to
implement the division of natural numbers, will be defined and verified. This will befollowed by
the description of two processor languages, in terms ofL. The first, inSection 5.2is the language
of the Motorola 68000 processor. This includes the verification of two object code programs,
one of which is the Motorola 68000 implementation of the program for division.Section 5.3
describes the PowerPC processor language. This also includes the verificationof two object
code programs, one of which is the PowerPC implementation of the division program. Some
features of processor languages which complicate the model of object code programs will be
described inSection 5.4.

The program logic defined in Chapter 4 is the basis for all verification proofs described in this
chapter. The processor language semantics defined in this chapter are intended as examples of
the use of the abstract languageL. The processor functions and instructions defined are generally
chosen for their use in the example programs and the description of the processor languages is
not intended to be complete.

5.1 General Data Model

A processor represents and manipulates data items asbit-vectors(Hayes, 1988). Abit is an
element of the setf0; 1g. A bit-vector of sizen is a finite sequence ofn bits and can be considered
a function of type(fx : N jx < ng ! f0; 1g); theith bit of bit-vectorb is b(i). A bit-vectorb can
be interpreted as natural number (inN) by assigning to each bit a weight relative to its position
in the sequence. The bit in positioni of b has weight2i and the interpretation of the bit-vector isPi<n b(i) � 2i. A bit-vector of sizen can represent and be represented by a natural number in
the range0; : : : ; 2n � 1. This allows the data items of a processor language to be modelled by
the set of natural numbers,N .

The least significant bitof a bit-vector of sizen is at position0 and themost significant bit
is at positionn � 1. Three sizes of bit-vectors will be assumed: abyteis a bit-vector of size8;
a word is a bit-vector of size16 and along-word(or simply long) is a bit-vector of size32. The
terms used by the semantics of processor languages to refer to bit-vectors of size16 and32 vary.
Where there is ambiguity, the term used by the processor semantics will alsobe given. Constants

5.1 General Data Model 131

Byte, WordandLongwill identify the size of the byte, word and long-word bit-vectors:

Byte
def= 8 Word

def= 16 Long
def= 32

The model inL of a processor’s data operations will be based on natural numbers, as in the
examples of Chapter 3. The data model of Figure (3.1) will be assumed; in particular, the set
of values and variables will beN : Values= N andVars = N . The set of registersRegswill
depend on the processor language but will include the program counter ofL: pc 2 Regs. The
value functions of Figure (3.1) as well as the label and name functionsloc andref will also be
used. The expressions defined in Chapter 3 and used here include the arithmetic operatorsx+ay,x�a y, x�a y, x moda y andxy and the comparison relationsx =a y, x <a y andx >a y.

5.1.1 Data Operations

The data operations provided by a processor manipulate and compare bit-vectors or implement
arithmetic functions. The data operations are modelled by expressions ofL, defined in terms of
arithmetic operations on natural numbers and functions manipulating bit-vectors. The functions
of L (in addition to those of Chapter 3) needed to model the data operations are defined in
Section A.1 of the appendix. Where an expression models an operation on a data type common
in processor languages, the name of the data type may be used. For example, the termbit-vector
may be used rather than the termvalue expression.

Bit-Vector Operations

To model processor operations on bit-vectors, the expressions ofL must allow the manipulation
of bits and bit-vectors. This can be defined in terms of accessor and constructorfunctions. For
any i 2 Valuesanda 2 E , the expressionbit(i)(a) is an accessor function which results in
the ith bit of bit-vectora. The least significant bit of bit-vectora has index0, bit(0)(a); the
most significant bit of a long-word bit-vectora has index31, bit(31)(a). Bit constructormkBit
applied to argumenta results in0 iff a is equivalent tofalseand is1 otherwise.

Long-words, words and bytes are constructed from elements of the setValues: a byte is
constructed from the application ofByte, a word is constructed byWord and a long-word by
Long. These functions have type(E ! E) and definition:

Byte(a) def= a moda 28 Word(a) def= a moda 216 Long(a) def= a moda 232
Let a; b; c; d 2 E . ExpressionmkWord (a; b) 2 E constructs a word in which themost significant
byteis Byte(a) and theleast significant byte isByte(b). ExpressionmkLong(a; b; c; d) 2 E con-
structs a long-word in which themost significant wordis mkWord (a; b) and theleast significant
word is mkWord (c; d).

mkWord (a; b) def= (Byte(a)�a 28) +a Byte(b)
mkLong(a; b; c; d) def= (mkWord (a; b)�a 216) +a mkWord (c; d)

5.1 General Data Model 132

Accessor functions extract bytes and words from bit-vectors. FunctionB applied to valuei
and a bit-vectora results in theith byte ofa. The least significant byte of bit-vectora is B(0)(a)
and the most significant byte of a long-worda is B(3)(a). The accessor functionW applied to
valuei and bit-vectora results in theith word ofa. The least significant word ofa is W(0)(a)
and the most significant word of a long-worda is W(1)(a).

B(3)(mkLong(a; b; c; d)) � a B(0)(mkWord (a; b)) � b
W(1)(mkLong(a; b; c; d)) � mkWord (a; b) W(0)(Byte(a)) � Byte(a)

Bit-Vectors of size32 are the largest that will be considered therefore accessor functions are not
needed for long-words.

Processor languages providerotate andshift operations to alter the position of the bits in
a bit-vector (Wakerly, 1989). A rotate or shift left operator applied to bit-vectora results in a
bit-vectorb such that every bit ofa in positioni is equal to the bit ofb in positioni + 1. A
rotate or shift right operator applied to bit-vectora results in a bit-vectorb such that every bit ofa in positioni is equal to the bit ofb in positioni � 1. Shift and rotate operations differ in the
treatment of the least and most significant bits of the argument. The rotate operations store the
least or most significant bits of the arguments, typically in the result. The shift operations do not
preserve these bits. Expressions ofL for common shift and rotate operations on bit-vectors are
described in Section A.1.3 of the appendix.

Arithmetic Operations

Arithmetic functions of processor languages are defined for bit-vectors of a given size. The
general form of an arithmetic expression (ofE) on a bit-vector will bef(sz)(a1; : : : ; an) wheref is the function name,sz2 Valuesthe size of the bit-vectors anda1; : : : ; an 2 E the arguments
to the function. The result of applying the arithmetic functions can be represented in a bit-vector
of sizesz. An arithmetic function on bit-vectors interprets its arguments either asintegers, the
function is said to besigned, or as naturals, where the function isunsigned.

Integers are commonly represented in a processor language using the two’s complement sys-
tem (see Hayes, 1988 or Wakerly, 1989). A bit-vectora of sizen is interpreted as an integer by
assigning to the most significant bit,a(n� 1), the weight�2n�1. The integer represented by the
bit-vectora is given by(�2n�1 � b(n � 1)) +Pi<n�1 b(i) � 2i and the integers which can be
represented by a bit-vector of sizen arefx : Z j � 2n�1 � x � 2n�1 � 1g. Note that since
the bit-vectors are represented as the natural numbers,Values= N, theL model described here
represents an integer by an interpretation of a natural number.

The addition, subtraction and multiplication of bit-vectorsx; y of size sz will be writtenx +szy, x �szy andx �szy respectively. For example, the addition of bit-vector of size 32
(long-words) will be writtenx +32 y. The operations are defined in Section A.1 of the appendix
and generalise the operations of Figure (3.2) to bit-vectors of a given sizesz. However, addition
and subtraction are defined using two’s complement arithmetic for both signed and unsigned

5.1 General Data Model 133

data. Signed addition has the same definition as unsigned addition; subtraction is signed and is
defined by addition and the negation of an argument (x� y = x+ (�y), for x; y 2 Z).

The comparison of bit-vectors also takes the size of the bit-vectors into account. The equality
between bit-vectors of sizeszwill be writtenx =szy and the less-than relation is writtenx <szy.
Other comparison functions can be defined in terms of the equality and the less-than operators.
In particular,x >szy will be written for the greater-than relation between bit-vectors of sizesz.
These relations have type(E � Values� E)! Eb and definition:x =szy def= (x mod2sz) =a (y mod2sz)x <szy def= (x mod2sz) <a (y mod2sz)x >szy def= y <szx

The size of the bit-vector by which an integer is represented can be increased by sign exten-
sion. Bit-vectora of sizen is extended to a bit-vector of sizem � n by assigning to the bits
in positionsn to m the valuebit(a)(n �a 1) (the sign ofa). The interpretation as an integer
of the resulting bit-vector is that of bit-vectora. This operation is modelled by the expression
ext(n;m; a) which sign-extends bit-vectora of sizen to sizem. When the interpretation ofa as
an integerx is not negative,x � 0, ext(n;m; a) � a.

5.1.2 Memory Operations

Processor languages define addressing modes which determine how a program may access the
machine memory. The memory model depend on the semantics of the processor but typically
a processor stores a single byte in each location in memory; words and long-words arestored
in two or four consecutive locations respectively and each memory location is identified by a
long-word. The name functions used here will range over the memory variablesVars and are
base on the name functionref, defined in Chapter 3. When describing processor instructions, the
functionref will also be used as a generic description of a memory operation.

The data items stored in a number of memory locations can be combined to construct asingle
bit-vector. Assuming that each memory location stores a single byte, a long-word can be read
from memory addressx 2 Varsby accessing the four consecutive locations beginning withx.
Value functionreadl applies the name functionref and the constructormkLong to the argumentsa; a+ 1; a+ 2; a+ 3. Functionreadl has typeE ! E and definition:

readl(a) def= mkLong(ref(a); ref(a+32 1); ref(a +32 2)ref(a+32 3))
To store a long-word in the memory locations beginning at addressa, each of which can store
a single byte, the long-word must be broken down to four bytes. The functionwritel applied to
expressionsa; e 2 E, constructs an assignment list in which the locations between addressa anda+32 3 are assigned byte3 to byte0 of long-worde.

writel (a; e) = (ref(a);B(3)(e)) � (ref(a+32 1);B(2)(e))�(ref(a+32 2);B(1)(e)) � (ref(a +32 3);B(0)(e))

5.1 General Data Model 134

unsigned int div (n, d, r)
unsigned int n, d;
unsigned int *r;f

unsigned int c=0;
while (n>d)f

c=c+1;
n=n-d;g

*r=n;
return cg

Figure 5.1: Division: C Program

For anya; e 2 E , the memory variables updated bywritel (a; e) are used to calculate the value of
readl(a). Substitutingwritel (a; e) for readl(a) will always result in the expressione written to
addressa, readl(a) / (writel (a; e)) � e. Any substitution inwritel can be applied directly to its
arguments,writel (a; e) / (x; v) � writel (a / (x; v); e / (x; v)).
5.1.3 Example: Division of Natural Numbers

As an example of the use of data operations in object code, a program for the division of natural
numbers will be defined and its verification described. The program is derived from the object
code implementing the program of the language C (Kernighan & Ritchie, 1978), given in Fig-
ure (5.1). The C program is a function with parametersn; d andr which calculatesn � d and
storesn modd in the variable identified by pointerr.

The program of Figure (5.1) was compiled to produce an object code program for the Al-
pha AXP processor (Digital Equipment Corporation, 1996). This was simplified (by removing
unnecessary assignments) to the Alpha AXP program of Figure (5.2). TheL programidiv of
Figure (5.2) was derived from this object code program and assumes the set of registers sat-
isfiesfr0; r1; : : : ; r30g � Regs. TheL programidiv will be used as an example of the use
of data operations and the verification of programs. It is not intended to be an accurate model
of the Alpha AXP program. However, the only significant difference between a modelof the
Alpha AXP program and programidiv is in the command labelledl10. The Alpha AXP stores
long-words in four consecutive memory locations: an accurate model would have the command:= (writel (r2; r18); l11) at labell10.

TheL programidiv begins at the command labelledl1, with argumentn stored in register
r16, argumentd stored in registerr17 and argumentr in registerr18. The label to which control

5.1 General Data Model 135

div..ng: bis $31, $31, $0 l1 : r0 := 0; l2
zapnot $16, 15, $2 l2 : r2 := r16; l3
zapnot $17, 15, $3 l3 : r3 := r17; l4
cmplue $2, $17, $1 l4 : if r2 <32 r17 then r1 := 1; l5 else r1:= 0; l5
bne $1, $35 l5 : if not r1 =32 0 then gotol6 else gotol10

$36: addl $0, 1, $0 l6 : r0 := r0 +32 1; l6
subl $2, $17, $2 l7 : r2 := r2 �32 r17; l8
cmpule $2,$3, $1 l8 : if r2 <32 r3 then r1 := 1; l9 else r1:= 0; l9
beq $1, $36 l9 : if r1 =32 0 then gotol6 else gotol10

$35: stl $2, 0($18) l10 : ref(r18) := r2; l11
ret $31, ($26) l11 : goto loc(r26)

Alpha AXP Program L Programidiv

Figure 5.2: Division:L Programidiv

is to return, at the end of the program, is stored in registerr26. The program begins by assigning0 to registerr0 (which implements the C variablec) and the contents of registersr16 andr17 to
registersr2 andr3 respectively. Ifr2 is less thanr17 (n < d), control is passed to the instruction
labelledl6 otherwise control passes to the instruction labelledl10.

The loop implementing thewhile statement of the C program begins at labell6. Registerr0
is incremented by1 (c = c+1); r2 is decremented by the value ofr17 (n = n�d) and compared
with r17. If r2 is not less thanr3 (n < d), control passes to labell6, beginning another iteration
of the loop. Ifr2 is less thanr17, control passes to the instruction labelledl10. This stores the
value ofr2 in the memory location identified byr18, implementing the assignment�r = n. The
program then ends, passing control to the instruction identified by registerr26. The result of the
program (the C variablec) is stored in registerr0.

Specification ofidiv

The specification of programidiv requires that for any natural numbern and d, d > 0, the
program terminates with the quotient assigned to registerr0 and the remainder stored in the
memory locationa, identified by registerr18. When the program terminates, control must pass
to the labell stored in registerr26. Forn; d; a; l 2 N , the precondition of programidiv is the

5.1 General Data Model 136

assertionPre(n; d; a; l) 2 A and the postcondition is the assertionPost(n; d; a; l) 2 A:

Pre(n; d; a; l) def= d >a 0 ^ n �a 0 ^ r16 =32 n ^ r17 =32 d ^ r18 =32 a ^ r26 =32 l
Post(n; d; a; l) def= n �a 0 ^ d >a 0 ^ r26 =32 l ^ r18 =32 a ^ n =32 (r0 �32 d) +32 ref(r18)

The program begins when the command labelledl1 is selected for execution in a state satisfying
Pre(n; d; a; l). Eventually the programidiv must establishPost(n; d; a; l) and pass control to the
command labelledl:` [pc=32 l1 ^ Pre(n; d; a; l)]idiv[pc=32 l ^ Post(n; d; a; l)] (for n; d; a; l 2 N)
Verification of idiv

Programidiv is verified by showing that it satisfies intermediate specifications at the program
cut-points. The intermediate specifications are then used to establish the program specification.
Since there is a loop at labell6, the cut-points of the program are labelledl1 (the first command),l6 and the command labelledl (at which execution must end). The property of the loop in the
program, atl6, is verified by induction on the value ofr16. The invariant for the loop (Floyd,
1967; Burstall, 1974) specifies the values of the quotient and the remainder at each iteration of
the loop. The invariant,Inv(q; n; d; a; l) 2 A, is defined:

Inv(q; n; d; a; l) def= 8>><>>: n �a 0 ^ d >a 0 ^ q =32 r16^l =32 r26 ^ a =32 r18 ^ d =32 r3 ^ d =32 r17^(r0 �32 r17) +32 r16) =32 n^(pc=32 l) ref(r18) =32 r16)
When the program terminates (withpc=32 l), the loop invariant,Inv, establishes, forq 2 N , the
postcondition of the program:̀ pc=32 l^q =32 (n modd)^ Inv(q; n; d; a; l)) Post(n; d; a; l).

The commands ofidiv labelledl1; : : : ; l11 will be referred to asc1; : : : ; c11. Given the pre-
condition, the postcondition and the loop invariant, the verification ofidiv is in three steps. The
first and second to show that either commandc1 establishes the postcondition orc1 establishes
the invariant in a state in whichc6 is selected for execution. The third to show, by induction, that
commandc6 establishes the loop invariant and that the loop terminates.

1. Precondition establishes postcondition:` [pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d]idiv[pc=32 l ^ Post(n; d; a; l)]
2. Precondition establishes invariant:` [pc=32 l1 ^ Pre(n; d; a; l) ^ :n <32 d]idiv[pc=32 l6 ^ Inv(n; n; d; a; l)]
3. Invariant establishes postcondition, the proof is by induction onq (rule tl9):` [pc=32 l6 ^ Inv(q; n; d; a; l)]idiv[pc=32 l ^ Post(n; d; a; l)] for anyq 2 N

5.1 General Data Model 137

(a) Base case,r16�32 r17 <32 r3:`[pc=32 l6 ^ Inv(q; n; d; a; l ^ r16�32 r17) <32 r3]
idiv[pc=32 l ^ Post(n; d; a; l)]

(b) Inductive case,:(r16�32 r17 <32 r3):`[pc=32 l6 ^ Inv(q; n; d; a; l) ^ :r16�32 r17) <32 r3]
idiv[pc=32 l ^ Post(n; d; a; l)]

Using the approach to verifying programs described in Chapter 4, programidiv is verified
by constructing an abstraction ofidiv. This reduces the number of commands which must be
considered in the proof of correctness. To verify programidiv directly, without constructing an
abstraction, complicates the proof since each of the commands in the program must be considered
individually. For example, to establish the postcondition from the precondition (Step 1), each of
the following command specifications must be established:`(pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d)) wp(c1; pc=32 l2 ^ Pre(n; d; a; l) ^ r0 =32 0)`(pc=32 l2 ^ Pre(n; d; a; l) ^ n <32 d ^ r0 =32 0)) wp(c2; pc=32 l3 ^ Pre(n; d; a; l) ^ n <32 d ^ r0 =32 0 ^ r2 =32 r16)`(pc=32 l3 ^ Pre(n; d; a; l) ^ n <32 d ^ r0 =32 0 ^ r2 =32 r16)) wp(c3;pc=32 l4 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17)`(pc=32 l4 ^ Pre(n; d; a; l) ^ n <32 d ^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17)) wp(c4;pc=32 l5 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17 ^ r1 =32 0)`(pc=32 l5 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17 ^ r1 =32 0)) wp(c5;pc=32 l10 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17 ^ r1 =32 0)`(pc=32 l10 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17 ^ r1 =32 0)) wp(c10; pc=32 l11 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17 ^ r1 =32 0 ^ ref(r18) =32 r2)`(pc=32 l11 ^ Pre(n; d; a; l) ^ n <32 d^ r0 =32 0 ^ r2 =32 r16 ^ r3 =32 r17 ^ r1 =32 0 ^ ref(r18) =32 r2)) wp(c11; pc=32 l ^ Post(n; d; a; l)
Each of the remaining steps in the proof would also require commands to be consideredsepa-
rately. To establish the invariant from precondition (Step 2) requires reasoning about commandsc1; c2; c3, c4; c5; c10; c11. To establish the postcondition from the invariant (Step 3), the commands
which must be considered in both cases arec6; c7; c8; c9; c10; c11. Although the proof that each
command establishes it specification is straightforward, the number of commandswhich must

5.1 General Data Model 138C1 = l1 :if r16 <32 r17
then r0; r1; r2; r3; ref(r18) := 0; 1; r16; r17; r16; loc(r26)
else r0; r1; r2; r3 := 0; 0; r16; r17; l5C2 = l6 :if not r2 �32 r17 <32 r3
then r0; r1; r2 := r0 +32 1; 0; r2 �32 r17; l6
else r0; r1; r2; ref(r18) := r0 +32 1; 1; r2 �32 r17; r2 �32 r17; loc(r26)

Figure 5.3: Commands of Abstractionidiv2
be considered and the detail required makes the verification of the program complicated. Con-
structing an abstraction of the program simplifies the verification by describing the operations
performed by a group of commands as a single command, reducing the detail which must be
considered.

Abstraction of idiv

An abstraction of the programidiv is obtained by constructing and transforming regions of the
program. The abstraction ofidiv begins with the construction of a regionr beginning withc1
and containing all commands with a constant successor expression. Since onlyc11 is a computed
jump (to the label stored inr26), regionr contains all commands exceptc11: r = region(l1; idiv�fc11g).

An abstraction of regionr is obtained by applying transformationT2. The cut-points ofr are
commandsc1 (the head ofr) andc6 (from the pathc6 7�! c7 7�! c8 7�! c9). These are used to
construct regionsr1 andr2: r1 = region(l1; fc1; c2; c3; c4; c5; c10g)r2 = region(l6; fc6; c7; c8; c9; c10g)
Bothr1 andr2 are abstracted by the application ofT1 to construct the set of commandsgtbody(r):T1(r1) = (c1; c2; c3; c4; c5; c10)T1(r2) = (c6; c7; c8; c9; c10)

gtbody(r) = fT1(r1); T1(r2)g
The result of abstracting regionr is T2(r) = region(l1; gtbody(r)), this contains the two com-
mandsT1(r1) andT1(r2). The first abstractionidiv1 of programidiv is obtained by combining
the commands ofT2(r) with idiv: idiv1 = idiv] fT1(r1); T1(r2)g. This satisfies the ordering
idiv1 v idiv.

5.1 General Data Model 139

To verify idiv it is only necessary to verifyidiv1, of which only three commands are re-
quired: T1(r1), T1(r2) andc11. A second abstractionidiv2 of idiv can be obtained by compos-
ing T1(r1) andT1(r2) with c11: idiv2 = idiv1] f(T1(r1); c11); (T1(r2); c11)g. The commands(T1(r1); c11) and(T1(r2); c11) will be referred to asC1 andC2 respectively,C1; C2 2 idiv2. The
two commands, after simplification, are given in Figure (5.3). Programidiv2 satisfies the ordering
idiv2 v idiv1. By the refinement rule (tl7), to verifyidiv, it is enough to verifyidiv2.
Verification of idiv2
The verification of programidiv2 is carried out using the same steps as for programidiv. How-
ever, the only commands ofidiv2 which must be considered areC1 andC2. To establish the
postcondition from the precondition (Step 1), it is enough to show that commandC1 satisfies the
specification:` (pc=32 l1 ^ Pre(n; d; a; l) ^ n32d)) wp(C1; pc=32 l ^ Post(n; d; a; l))
By the rule for programs (tl6), this establishes` [pc=32 l1^Pre(n; d; a; l)^n <32 d]idiv2[pc=32l ^ Post(n; d; a; l)]. From idiv2 v idiv and the refinement rule (tl7), this establishes` [pc =32l1 ^ Pre(n; d; a; l) ^ n <32 d]idiv[pc =32 l ^ Post(n; d; a; l)]. The remaining steps are similar.
To show that the precondition establishes the invariant (Step 2), only commandC1 must be
considered. To show that the invariant establishes the postcondition (Step 3), only commandC2
is required.

The proof of Step (1) is representative of the way in which a proof is carried out using the
proof rules for programs and for the commands. The proof for Step (1) will be given here; proofs
for the other steps are similar.

Step (1):Precondition establishes postcondition.` [pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d]idiv2[pc=32 l ^ Post(n; d; a; l)]
Sincepc=32 l1, commandc1 of programidiv2 is selected and, by rule (tl6), the assertion to prove
is that the assumptions satisfywp(C1; pc=32 l^Post(n; d; a; l)). From rule (tl3), the fact thatc1
is a conditional command and the assumptionsn <32 d andr16 =32 n ^ r17 =32 d (definition
of Pre), it follows that the precondition must satisfy:` (pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d)) wp((r0; r1; r2; r3; ref(r18) := 0; 1; r17; r17; r16; r26); pc=32 l ^ Post(n; d; a; l))
The assumptions can be weakened (rule tl5) with the postcondition updated by the assignments
of C1. To apply the weakening rule requires a proof that the precondition establishes the updated
postcondition:` (pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d))(pc=32 l ^ Post(n; d; a; l)) / (pc; r26) � (r0; 0) � (r1; 1) � (r2; r17)� (r3; r17) � (ref(r18); r16) (5.1)

5.1 General Data Model 140

That this istruecan be shown from the definitions and by substitution:` pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d (assumptions)` Pre(n; d; a; l)) n �a 0 ^ d >a 0 ^ r26 =32 l ^ r18 =32 a^ r16 =32 n ^ r17 =32 n (definitionPre)` Pre(n; d; a; l) ^ n <32 d) n =32 (0�32 d) +32 n (n <32 d))` Pre(n; d; a; l) ^ n <32 d) n =32 (0�32 d) +32 r16 (r16 =32 n)` Pre(n; d; a; l) ^ n <32 d) (n =32(r0 �32 d) +32 ref(r18))/(pc; r26) � (r0; 0) � (r1; 1) � (r2; r17)� (r3; r17) � (ref(r18); r16) (substitution)` Pre(n; d; a; l)) (pc=32 l)/(pc; r26) � (r0; 0) � (r1; 1) � (r2; r17)� (r3; r17) � (ref(r18); r16) (substitution andl =32 r26)` Pre(n; d; a; l) ^ n <32 d) (pc=32 l ^ Post(n; d; a; l)) / (pc; r26) � (r0; 0)� (r1; 1) � (r2; r17)� (r3; r17) � (ref(r18); r16) (definition ofPost)

By rule (tl1), Assertion (5.1) establishes the weakest precondition of the assignment. It follows
that the precondition establishes the postcondition whenr3 <32 r17. This is enough to prove the
intermediate specification of Step (1).

Proof of Program idiv

The correctness of programidiv2 is established by combining the intermediate specifications of
each of the steps. Assumen; d; a; l 2 N . Whenn < d, Step (1) establishes:` [pc=32 l1 ^ Pre(n; d; a; l) ^ n <32 d]idiv2[pc=32 l ^ Post(n; d; a; l)]
Whenn >a d the proof is by the transitivity rule (tl8), the Steps (2) and (3) establish` [pc=32 l1 ^ Pre(n; d; a; l) ^ :n <32 d]idiv2[pc=32 l6 ^ Inv(n; d; a; l)]` [pc=32 l6 ^ Inv(n; d; a; l)]idiv2[pc=32 l ^ Post(n; d; a; l)]
The correctness ofidiv2 follows, by cases ofn <32 d and transitivity (rule tl8), establishing:` [pc=32 l1 ^ Pre(n; d; a; l)]idiv2[pc=32 l ^ Post(n; d; a; l)]
By the refinement rule (tl7), this also establishes the correctness ofidiv:` [pc=32 l ^ Pre(n; d; a; l)]idiv[pc=32 l ^ Post(n; d; a; l)] 2

5.2 The Motorola 68000 Architecture 141

Verifying idiv2, rather than programidiv, reduces the size of the proof by reducing the number
of commands which needed to be considered. The main differences between programsidiv and
idiv2 are the actions carried out by the commands. In programidiv, each command models a
processor instruction and therefore performs a simple action. In programidiv2, commandsC1
andC2 perform actions which are equivalent to the behaviour of a group of commands. Verifying
programidiv2 is therefore simplified by constructing and reasoning about a small number of
commands, each of which performs a more complex action than the individual instructions.

5.2 The Motorola 68000 Architecture

Two processor languages will be considered, as examples of the ability to describeprocessor
instructions in terms ofL. The first processor language is that of the Motorola 68000 (which
will be referred to as the M68000). The M68000 is a 32 bit microprocessor with a largenumber
of instructions each of which can perform a number of operations on data (Motorola, 1986).
Descriptions of the M68000 are given by Ford & Topp (1988) and Wakerly (1989). A formal
definition of the semantics of a large subset of the M68000 instructions is given by Yuan Yu
(1992). The values which can be represented by the M68000 are the natural numbers up to232. Each location in memory is identified by a value and each location stores asingle byte.
An instruction can be stored in one or more consecutive locations. The memory locations are
addressed by the values (up to232).

The M68000 has 16 general purpose registers organised as 8data registersand 8address
registers. The data registers are namedD0; : : : ;D7 and store the arguments to, and results of,
data operations. The address registers are namedA0; : : : ;A7 and store the addresses in memory
of data or instructions. fD0; : : : ;D7;A0; : : : ;A7;PC;SRg � Regs

The program counter of the processor,PC, identifies the currently executing instruction and a
status register,SR, is assigned a value to reflect the result of an operation. The program counter
of L can be considered synonymous with that of the M68000,pc = PC. All registers store
long-words although a processor instruction can also manipulate a register as a byteor a word.

Address registerA7 is used as a stack pointer, storing the address of the top of the stack. The
stack grows from the top to the bottom of memory: ifx is the address of the top of the stack andy the address of the second item on the stack thenx < y. The address registerA6 is typically
used by programs as aframe pointer, holding the address of a section of local memory to be used
by a routine of the program.

5.2.1 Instructions

An instruction of the M68000 implements one or more operations, each of which is the result
of applying some function to one or more arguments. The general form of an instruction is

5.2 The Motorola 68000 Architecture 142

Syntax L expression Description#x x Immediatex ref(x) Absolute addressing
Dn Dn Data register direct
An An Address register direct
An@ ref(An) Address register indirect
An@+ ref(An) Address register

with post-increment
(An := An +32 sz)

An@� ref(An �32 sz) Address register with
pre-decrement
(An := An �32 sz)

An@(x) ref(An +32 x) Address register indirect
with displacement

An@(d1; r : sz; sc) ref(An +32 ext(sz; Long; d1)+32 ext(sz; Long; r)�32 sc) Address register indirect
with index

An@(d1)@(d2; r : sz; sc) ref(readl(An +32 ext(sz; Long; d1))+32 (ext(sz; Long; r)�32 sc)+32 ext(sz; Long; d2)) Memory indirect
post-indexed

An@(d1; r : sz; sc)@(d2) ref(readl(An +32 ext(sz; Long; d1)+32 ext(sz; Long; r))+32 ext(sz; Long; d2)) Memory indirect
pre-indexed

wherex 2 Values, displacementsd1; d2 2 Values, sizesz2 fLong;Word;Byteg and
scalesc2 Values.

Figure 5.4: Addressing Modesinst:sz src; dst. The instruction identifier isinst, szis the size of the operation,src is a source
argument anddst is a destination argument. The instruction arguments are used to calculate the
source and destination operands to the operation implemented by the instruction. Instructions
operate on data of size byte, word or long-word and an instruction is said to be of size byte, word
or long-word. The sizeszof an instruction is represented asb, w or l for operations on bytes,
words and longs respectively. An instruction canread fromor write to the memory variables and
the registers and the size of the instruction determines the size of the bit-vector which is read or
written.

5.2 The Motorola 68000 Architecture 143

Addressing Modes

Figure (5.4) describes the addressing modes for instructions of the M68000; a full description of
the addressing modes is given in Section B.1.2 of the appendix. Each addressing mode is deter-
mined by the syntax of the instruction arguments; the correspondingL expression (in Figure 5.4)
describes the general form of the definition inL. As well as accessing memory locations, the
address register with post-incrementandaddress register with pre-decrementmodes also update
operands. In the post-increment mode, the registerAn is incremented by the size of the instruc-
tion after the operation defined by the instruction has been completed. In the pre-decrement
mode, the registerAn is decremented by the size of the instruction before the operation defined
by the instruction begins.

An instruction argument using an addressing mode which is interpreted as a name expression
of L can appear as either a source or destination argument. For example, theabsoluteand the
data register directmodes are defined by name expressions (Figure 5.4). An argument which is
interpreted only as a value expression can occur only as a source argument, e.g. theimmediate
addressing mode is a value expression only.

Interpretation of Results

The status register,SR, stores information about the result of operations. The five least signifi-
cant bits of registerSRare flags indicatingcondition codesand are set according to functions on
the arguments to and the result of an operation. The rules used to calculate the condition codes
depend on the particular instruction. There are five condition codes:x, theextendflag, n, the
negativeflag,z, thezero, v, theoverflowandc, thecarry flag. The extend flag is general purpose:
it is used by rotate operations to extend a bit-vector and is set by arithmeticoperations to corre-
spond to the carry flag. The negative flag is set when the result of an operation, interpreted as a
two’s complement number, is less than0 and the zero flag is set when the result of the operation
is equal to0. When the result of the operation is too large to be represented, the overflow flag is
set. The carry flag is set by the arithmetic operations to reflect the carry out of an addition; other
operations clear the carry (set the flag to0).

A function mkSR is defined in Section B.1 of the appendix and constructs a bit-vector of
five bits. The status register can be updated with the result of an operation by the assignment
SR := mkSR(x; n; z; v; c), wherex, n, z, v, c are the extend, negative, zero, overflow and carry
flags respectively. The status registerSR is used by testing the individual bits; e.g. to determine
the value of the zero flagz, the test is the expressionbit(2)(SR).
5.2.2 Operations

The instructions of the M68000 implement operations to move data between names, to perform
arithmetic or comparison operations on data and to perform operations on the flow of control.
Some instructions have specialised forms which carry out the operation with greater speed or

5.2 The Motorola 68000 Architecture 144

which use less memory than the more general form. Instructions may also assign values to the
status registerSRby setting the condition codes to reflect the result of an operation. An example
of how instructions calculate the condition codes is given in Section B.1.1 of the appendix.

Data Movement

Data movementinstructions store the value of the source operand in the name given by the
destination operand. These instructions may also update the status register to the result of testing
the source operand, e.g. whether it is zero or negative. The M68000 has a general instruction for
moving data between variables as well as more specialised instructions.

The generalmoveinstruction, writtenmove:sz src; dst, assigns to the destinationdst, the value
of sizeszobtained from the source argumentsrc. If the sizeszis less than a long-word then only
the byte or word of the destination is altered. e.g. A move of size byte to a register will alter only
the first byte of the register:move:b #1;D0 sets the first byte of the data registerD0 to 1. This
can be modelled by theL command:

D0 := mkLong(B3(D0);B2(D0);B1(D0); 1)
Note that the successor expression for the instruction is simplypc+32 4, selecting the next in-
struction in memory. To simplify the presentation, the successor expressionfor theL commands
modelling instructions will not be given where the expression simply increments the program
counter to the next instruction in memory.

The load effective addressinstruction, writtenlea src;An, is a specialised data movement
instruction. The destination operand is an address register which is assigned the address obtained
from the source argument. This can be modelled as theL command:An := src. The link and
allocate instruction,link An;#x, is also a specialised instruction, intended to implement the
function call of a high-level language. The valuex, interpreted as an integer, is added to the stack
pointer,A7, with the effect of allocating area on the stack for use by the function. The instruction
pushes the value of the address registerAn onto the stack, stores the address of the top of the
stack inAn and addsx to the stack pointerA7.

A7;An; ref(A7�32 4) := (A7�32 4) +32 x;A7�32 4;An (whenAn 6= A7)

Theunlink and de-allocate memoryinstruction,unlk An, is the reverse of thelink instruction.
The stack pointer,A7, is assigned the value ofAn and the address registerAn is assigned the
value at the top of the stack.

A7;An := An +32 4; readl(An) (whenAn 6= A7)

Arithmetic Instructions

The arithmetic instructions provide addition, subtraction, multiplication and division on signed
and unsigned bit-vectors of size byte, word and long-word. The arithmetic instructions have a
common semantics in which only the operation (of addition, subtraction, etc) varies.

5.2 The Motorola 68000 Architecture 145

In theaddition instruction,add:sz src; dst, the destination operand is assigned the value of
src+szdst. When the destination is an address register, the status register is unchanged.When
the destination operand is not an address register, the status register is assigned a value calculated
from an interpretationf .

dst;SR := src+szdst; f(src+szdst)
The comparisoninstruction,cmp:sz src1; src2, subtracts the first source operandsrc1 from

the second source operandsrc2 and sets the status register to reflect the result. Comparison
instructions do not retain the result of the subtraction and the only changes made are to the value
of the status register. When the instruction is of sizeLong, the comparison can be calculated by
the following functioncalcSR:

calcSR: (E � E)! E
calcSR(x; y) def= 8>>>><>>>>:mkSR(bit(4)(SR); bit(31)(x�32 y); (x�32 y) =32 0;(bit (31)(y) =a bit(31)(x�32 y)

and not bit(31)(x) =a bit(31)(y));((bit(31)(y) or bit (31)(x�32 y)) and not bit(31)(x))
or (bit(31)(y) and bit(31)(x�32 y)))

The result of a comparison betweensrc1 andsrc2, whensz= Long, is to assign the result of
calcSR(src2; src1) to the status register,SR := calcSR(src2; src1).
Program Control

The flow of control through a program is controlled by assigning values to the program counter
PC. This is an operation performed byjumpandbranchinstructions. The M68000 also includes
instructions which support the implementation of sub-routines. The address to which control is
to be returned is stored at the top of the stack before control passes to the sub-routine. When
the sub-routine terminates, the value at the top of the stack is interpreted asthe label to which
control returns.

The jump instruction,jmp src, unconditionally passes control to the instruction at location
src, this is theL commandgotosrc. Thebranchinstruction,Bcc src, passes control to the in-
struction at addresssrc if a test on the status register succeeds. The condition codeccdetermines
the test to be performed and the individual bits of the status register which are to be tested. If the
test fails, control is passed to the next instruction in memory. For example,when the condition isCS the test is that the carry flag is set (bit 0 ofSR is 1), assume the next instruction is at labell:

if bit (0)(SR) then gotosrcelse gotol
A jump to sub-routineinstruction,jsr src, stores the addressl of the next instruction in

memory on the top of the system stack and control is then passed to labelsrc. The stack pointer,
registerA7, is decremented by the size of an address (4 bytes).

ref(A7�32 4);A7;PC := l;A7�32 4; src

5.2 The Motorola 68000 Architecture 146

sum(unsigned int n, int *a, int *b)f
unsigned int i=1;
b[0]=a[0];
while(i!=n)f

b[i]=a[i]+b[i-1];
i=i+1;gg

Figure 5.5: Summation: C Program

Thereturn from sub-routine, rts, ends a sub-routine by passing control to the label at the top of
the stack. The stack pointer is incremented by the size of an address.

A7;PC := A7 +32 4; ref(A7)
Summary

The M68000 processor language is based on a small number of data and address registers to-
gether with specialised registersPC andSR to select instructions and perform tests. The M68000
instructions can make use of a large number of addressing modes to access memory variables.
The majority of the variables in a program of the M68000 will therefore be memory variables
rather than registers. The M68000 also provides implicit support for a stack and, through the
use of frame pointers, for the implementation of high-level functions. The instructions of the
M68000 are relatively straightforward and their description in terms of commands ofL does not
pose any great difficulty. The greatest complexity in modelling M68000 instructionsis therefore
in the model of the data operations of the M68000 as expressions ofL. The basic requirement of
the languageL is that it can be used to model both the data operations and the instructions of the
M68000. This requirement is satisfied, allowing the object code programs of the M68000 to be
modelled and verified as programs ofL.

5.2.3 Example: Summation

The C program of Figure (5.5) stores a running total of the sum of elements of arraysa andb in
arraya. In the C language, an array is represented as an address in memory. The arguments to
functionsumare the number of integersn, the address of the first element of the array of integers,a, and the address of the first element of the array in which the results are to bestored,b. A local

5.2 The Motorola 68000 Architecture 147

sum:
link a6, #0 ; pushA6 onto stack,A6:=A7
movel d2, sp@- ; pushD2 onto stack
movel a6@(8), d1 ;D1 is n
movel a6@(12), a1 ;A1 is a
movel a6@(16), a0 ;A0 is b
moveq #1, d0 ;D0 is i, D0:=1
movel a1@, a0@ ; b[0]:=a[0]
cmpl d0, d1 ; compare i against n
jeq L3 ; if n=i then goto L3

L4:
movel a1@(d0:l:4), d2 ;D2 := a[i]
addl a0@(-4,d0:l:4), d2 ;D2 := D2+b[i-1]
movel d2, a0@(d0:l:4) ; b[i]:=D2
addql #1, d0 ; i=i+1
cmpl d0, d1 ; compare i against n
jne L4 ; if n6=i then goto L4

L3:
movel a6@(-4), d2 ; popD2 from stack
unlk a6 ;A7:=A6, popA6 from stack
rts ; return from routine

Figure 5.6: Summation: M68000 Program

variablei is used as a counter and is initially set to1. The first element of arrayb is assigned the
integer stored in the first element of arraya, b(0) := a(0). While i 6= n (the C expressioni!=n),
the ith element ofb is assigned the sum of thei � 1th element ofb andith element ofa. The
function completes execution wheni = n.

Object Code Program

The C program of Figure (5.5) was compiled with the GNU compiler to produce the object code
program of Figure (5.6). The assembly language program includes synthetic instructionsjeq
andjne which are aliases for M68000 instructions. For the programsum, these are equivalent
to the branch on condition instruction,bcc. The instructionjne branches to a label if the result
of the last comparison was an inequality. Instructionjeq branches to a label if the result of the
last comparison was an equality. The syntax of the instructions in the program of Figure (5.6)
also combines the operation size with the instruction name. For example,movel is themove
instruction on operands of sizeLong.

5.2 The Motorola 68000 Architecture 148l1 : := (A6;A7�32 4) � (A7;A7�32 4) � writel (A7�32 4;A6); l2l2 : := (A7;A7�32 4) � writel (A7�32 4;D2); l3l3 : D1 := readl(A6 +32 8); l4l4 : A1 := readl(A6 +32 12); l5l5 : A0 := readl(A6 +32 16); l6l6 : D0 := mkLong(0; 0; 0; 1); l7l7 : := writel (A0; readl(A1)); l8l8 : SR := calcSR(D1;D0); l9l9 : if bit (2)(SR) then gotol16 else gotol10l10 : D2 := readl(A1 + (D0�32 4)); l11l11 : D2; := readl(A0 + (D0�32 4)�32 4) +32 D2; l12l12 : := writel (A0 +32 (D0�32 4);D2); l13l13 : D0 := D0+32 1; l14l14 : SR := calcSR(D1;D0); l15l15 : if not bit (2)(SR) then gotol10 else gotol16l16 : D2 := readl(A6�32 4); l17l17 : A7;A6 := A6 +32 4; readl(A7); l18l18 : A7 := A7 +32 4; readl(A7)
Figure 5.7: Summation:L ProgramsumL Program sum

The M68000 program is translated to the languageL by replacing the instructions of Figure (5.6)
with L commands. The result is theL programsumof Figure (5.7). All memory accesses in
the M68000 program are as long-words and modelled by theL functions readl and writel .
In the M68000 processor language, the majority of instructions update the status register SR.
When the arithmetic operations are on unsigned integers, the only use of the status register is in
the conditional branch instructions. All operations are assumed to be on unsigned integers and
assignments to the status register which do not affect the execution of the program have been
removed from theL programsum.

The data operations used in the programsumlead to a large proof of correctness, which will
not be given here. However, the program is straightforward and, other than the length of the
proof, the verification causes no difficulties. The steps needed for abstracting and constructing a
proof of correctness will be described. The commands of theL programsumlabelledl1; : : : ; l18
will be referred to asc1; : : : ; c18.

5.2 The Motorola 68000 Architecture 149

Specification ofsum

The specification is of the function implemented by the program and will not consider the system
dependent operations. For example, the commandsc1 andc2, which obtain the arguments and
store data, are required to satisfy the constraints imposed by the operating system. Similarly,
commandsc16, c17 and c18 restore the state of the registers before passing control out of the
program. The specification is of the behaviour of the program between commandsc3 andc16 and
the program is considered to terminate when control reaches commandc16.

The precondition,Pre, requires that the long-word stored in locationA6+32 8 is greater than1 (n > 1). The address of the first element of arraya is stored in locationA6 +32 12 and the
first element of arrayb is in locationA6 +32 16. Each element is a long-word, stored in four
consecutive bytes, and the arrays must be distinct.

Pre(n; a; b) def= 8>><>>: (A6 +32 8) =32 n ^ n >32 1^(A6 +32 12) =32 a ^ (A6 +32 16) =32 b^8(�v : n >32 v)(a+32 (v �32 4) >32 b +32 (v �32 4))_ (b+32 (v �32 4) >32 a+32 (v �32 4)))
The postcondition,Post, requires that every elementi of array b is the sum of the firsti

elements of arraya.

Post(n; a; b) def= 8<: 8(�x :(n >32 x))ref(b+32 (x�32 4))=32 (ref(b +32 (x�32 1)�32 4) +32 ref(a+32 x�32 4)))
The program is correct if beginning in a state satisfying the precondition, execution of the

program eventually leads to the establishment of the postcondition at commandc16.` [Pre(n; a; b) ^ pc=32 l3]sum[Post(n; a; b) ^ pc=32 l16] (for n; a; b 2 Values)

Abstraction of sum

An abstractionsum1 of programsumcan be obtained by constructing a region beginning at
commandc3 and excluding commandsc16; c17 and c18: r = region(l3; sum� fc16; c16; c18g).
Sincec3 does not reach either commandc1 or commandc2, these are excluded fromr by the
definition ofregion.

An abstraction is constructed fromr by applying transformationT2. The cut-points ofr arec3, the head of the region, andc10, which begins a loop inr, and two regions are constructed
from these commands. r1 = region(l3; fc3; c4; c5; c6; c7; c8; c9g)r2 = region(l10; fc10; c11; c12; c13; c14; c15g)

5.2 The Motorola 68000 Architecture 150C1 = l3 : if readl (A6 +32 8)�32 1 =32 1
then := ((D1; readl(A6 +32 8)) � (A1; readl(A6 +32 12))� (A0; readl(A6 +32 16)) � (D0; 1)� (SR; calcSR(readl(A6 +32 8)); 1);�writel (readl(A6 +32 16); readl(A6 +32 12)); l16)
else := ((D1; readl(A6 +32 8)) � (A1; readl(A6 +32 12))� (A0; readl(A6 +32 16)) � (D0; 0)� (SR; calcSR(readl(A6 +32 8)); 1)� writel (readl(A6 +32 16); readl(A6 +32 12)); l10)C2 = l10 : if not D1 �32 (D0+32 1) =32 0
then := ((D2; readl(A0 +32 (D0�32 4)) +32 readl(A1 +32 (D0�32 4)))� (D0;D0+32 1) � (SR; calcSR(D1;D0+32 1))� writel (readl(A0 +32 (D0�32 4));

readl(A0 +32 (D0�32 4)) +32 readl(A1 +32 (D0�32 4)));l10)
else := ((D2; readl(A0 +32 (D0�32 4)) +32 readl(A1 +32 (D0�32 4)))� (D0;D0+32 1) � (SR; calcSR(D1;D0+32 1))� writel (readl(A0 +32 (D0�32 4));

readl(A0 +32 (D0�32 4)) +32 readl(A1 +32 (D0�32 4)));l16)
Figure 5.8: Commands of Abstractionsum1

Both r1 andr2 are single loops and are transformed by applyingT1 to obtain the setgtbody(r).T1(r1) = (c3; c4; c5; c6; c7; c8; c9)T1(r2) = (c10; c11; c12; c13; c14; c15)
gtbody(r) = fT1(r1); T2(r2)g

The commandsT1(r1) andT1(r2), will be referred to asC1 andC2: C1 = T1(r1) andC2 =T1(r2). CommandsC1 andC2, after simplification, are given in Figure (5.8). The simplifications
are straightforward since there is only one assignment to a memory variable,writel , in each
region and the name expression can be distinguished syntactically. Note that the expression
bit(2)(SR) of commandsc9 andc15 reduces, after substitution, toD1�32 D0 =32 0.

CommandC1 is the head of regionT2(r) and, sinceC1 7�! C2, C2 is in the body of regionT2(r), body(T2(r)) = gtbody(r). The abstractionsum1 is obtained by combining the body ofT2(r) with sum.

sum1 = sum] body(T2(r))

5.2 The Motorola 68000 Architecture 151

For the preconditionpc =32 l3 ^ Pre(n; a; b) and postconditionpc =32 l16 ^ Post(n; a; b) only
commandsC1 andC2 are required. CommandC1 is enabled whenpc =32 l3 and selects either
commandc16 or commandC2. CommandC2 forms a loop and is enabled whenpc =32 l10.
Execution ofC2 selects eitherC2, to perform a second iteration, or selectsc16, terminating the
loop.

Verification of sum1
Programsum1 is correct if, for anyn; a; b 2 Values, with execution beginning with the command
labelledl3 in a state satisfying the precondition, control reaches the command labelledl16 and
establishes the postcondition.` [Pre(n; a; b) ^ pc=32 l3]sum1[Post(n; a; b) ^ pc=32 l16]

CommandC2 forms a loop and the proof is by induction on the difference between the num-
ber of elementsn and the value of the counter (i of the C program). The invariant,Inv, for the
loop atC2 is applied to four arguments, the arraysa andb, the number of elementsn and the
differenced betweenn and the value of the counter,D0. The invariant requires thatD1 =32 n
and the address of the first elements of arraya andb are stored in registerA1 andA0 respectively.
The arrays must be distinct and the value stored inb(x) for x <a D0 must beb(x�32 1)+32 a(x).
When the counterD0 is equal ton, d = 0, the loop terminates and control passes to commandc16.

Inv : (Values� Values� Values� Values)! A
Inv(d; n; a; b) def= 8>>>>>>>><>>>>>>>>:

d =32 n�a D0^ n =32 D1^ a =32 A0 ^ b =32 A1^8(�x :(D0 >32 x))ref(b +32 (x�32 4))=32 (ref(b+32 (x�32 1)�32 4) +32 ref(a+32 x�32 4)))^8(�v : n >32 v)(a+32 (v �32 4) >32 b +32 (v �32 4))_ (b+32 (v �32 4) >32 a+32 (v �32 4)))^(d =32 0) pc=32 l16)
The verification is in two parts: the first is to establish the invariant from the precondition.

The initial difference,d, betweenn andD0 is n� 1 sinceD0 =32 1 when the loop atl10 begins
and the assertion to be established in the first step is, for anyn; a; b, Inv(n� 1; a; b). The second
step is to show that, for anyd 2 Values, the invariantInv(d; n; a; b) establishes the postcondition
Post(n; a; b) and that control will be at commandc16. The proof is in the following steps:

1. Precondition establishes invariant:` [Pre(n; a; b)^pc=32 l3]sum1[Inv(n�1; n; a; b)^pc=32 l16] From the definition ofPre,n >32 1 andreadl(A6 +32 8) =32 n. By the conditional rule (tl3), the proof is based on
the false branch of commandC1 and is straightforward from application of the rules and
by substitution.

5.2 The Motorola 68000 Architecture 152

2. Invariant establishes postcondition:` [Inv(d; n; a; b) ^ pc=32 l10]sum1[Post(n; a; b) ^ pc=32 l16]
The proof is by the induction ond with the inductive hypothesis that fori < d and precon-
dition Inv(i; n; a; b), sum1 establishesPost(n; a; b).
The proof is based on the commandC2, which is enabled whenpc=32 l10. There are two
cases to consider: the base case, whenD1 =32 D0 +32 1, establishes the postcondition
directly, and the inductive case establishes the assumptions of the inductive hypothesis by
showing that whenD1 =32 D0+32 1, sum1 establishesInv(d� 1; n; a; b).
(a) Invariant establishes postcondition (base case):` [Inv(d; n; a; b) ^ pc=32 l10 ^ D1 =32 D0+32 1]sum1[Post(n; a; b) ^ pc=32 l16]

From the assumption,Inv(d; n; a; b), D1 =32 n and therefored =32 1. The commandC2 assignsD0 +32 1 to D1 and the postcondition for this case can be strengthened
with Inv(0; n; a; b).` Inv(d; n; a; b) ^ pc=32 l10 ^ D1 =32 D0+32 1) wp(C2; Inv(0; n; a; b))
From the definition ofInv, ` Inv(0; n; a; b)) pc=32 l16. The remainder of the proof
for this case is to show that the invariant, withd =32 0, establishesPost.` Inv(0; n; a; b)) Post(n; a; b)
This is straightforward from the definitions ofInv andPost.

(b) Invariant establishes inductive hypothesis (inductive case):` [Inv(d; n; a; b)^pc=32 l10^:D1 =32 D0+321]sum1[Inv(d�1; n; a; b)^pc=32 l16]
CommandC2 is selected and the proof is by establishing the weakest precondition
for invariantInv(d� 1; n; a; b) from the assumptions.`Inv(d; n; a; b) ^ pc=32 l10 ^ :D1 =32 D0+32 1) wp(C2; Inv(d� 1; n; a; b) ^ pc=32 l16)
SinceD1 =32 D0+32 1 is false, the true branch ofC2 is chosen. This assignsl10 to
the program counter, establishingpc=32 l10, and the proof ofInv(d�1; n; a; b) is ob-
tained by substitution of the assignments and from the assumptionInv(d; n; a; b). The
inductive hypothesis can then be used to establish the postconditionPost(n; a; b) ^
pc=32 l16, completing the proof.

By showing that the invariant establishes the postcondition and that the precondition estab-
lishes the invariant, the proof follows from the transitivity rule.` [Pre(n; a; b) ^ pc=32 l3]sum1[Inv(n� 1; n; a; b) ^ pc=32 l10]` [Inv(d; n; a; b) ^ pc=32 l10]sum1[Post(n; a; b) ^ pc=32 l16] (for all d 2 Values)` [Pre(n; a; b) ^ pc=32 l3]sum1[Post(n; a; b) ^ pc=32 l16] (Transitivity, tl8)

5.2 The Motorola 68000 Architecture 153

div: link a6,#0 l1 : :=(A6;A7�32 4) � (A7;A7�32 4)� writel (A7�32 4;A6); l2
movel a6@(8),d1 l2 : D1 := readl(A6 +32 8); l3
movel a6@(12),a0 l3 : A0 := readl(A6 +32 12); l4
movel a6@(16),a1 l4 : A1 := readl(A6 +32 16); l5
clrl d0 l5 : D0 := Long(0); l6
cmpl d1,a0 l6 : SR := calcSR(A0;D1); l7
jcc L8 l7 : if not bit (2)(SR) then gotol12 else gotol8

L9: addql #1,d0 l8 : D0 := D0+32 1; l9
subl a0,d1 l9 : D1 := D1�32 A0; l10
cmpl d1,a0 l10 : SR := calcSR(A0;D1); l11
jcs L9 l11 : if bit (2)(SR) then gotol8 else gotol12

L8: movel d1,a1@ l12 : := writel (D1;A1); l13
unlk a6 l13 : A7;A6 := A6 +32 4; readl(A7); l14
rts l14 : A7 := A7 +32 4; readl(A7)

M68000 program L programm68div

Figure 5.9: Division: M68000

This completes the proof for programsum1. 2
The verification is of the function implemented by the program. To show that the program

operates correctly, the specification must be strengthened with assertionson the state of the
machine. The properties described by these assertions will be those required forthe correct
operation of the program and will vary between machines and operating systems. For example,
the object program of Figure (5.6) terminates when control passes to the address at thetop of the
stack,readl(A7). To ensure that the program returns control to the correct instruction, the value
of the expressionreadl(A7) must be maintained by the program. However, this property does
not affect the result of the function implemented by the program.

5.2.4 Example: Division

The processor language determines the variables and data operations available toa program;
these affect the implementation of programs for the processor. Because the M68000 processor
provides a limited number of registers, programs of the M68000 make extensive use of the mem-
ory variables. However, this does not significantly affect the difficulty of verifying a program.

5.2 The Motorola 68000 Architecture 154

For an example of the effect of the processor language, the C program of Figure (5.1) for division
was compiled for the M68000 processor to produce the object code program of Figure (5.9). This
was translated into theL programm68divof Figure (5.9), which will be shown to implement the
division of natural numbers.

The major differences between programidiv (of Figure 5.2) and programm68divare in the
use of registers and memory variables. Parameters to programidiv are passed in registers and
the result is stored in a register. Parameters to programm68divare passed on the machine stack,
which is implemented as memory variables identified by registerA7; the result ofm68divis also
stored in a register. Other differences include the use of the status register SR to record the result
of comparisons and the use of the stack to store the label to which control is to return. These
differences are a consequence of the instructions provided by the M68000 processor language.
The differences betweenidiv andm68divdo not affect the approach to verifying the programs.

Specification ofm68div

The specification of programm68divis essentially that ofidiv, the only changes required are to
reflect the use of different variables. The C variablen is passed tom68divin address(A7+32 4),
variabled is passed in address(A7+32 8) and variabler is passed in address(A7+32 12). When
the program terminates, it must return control to the labell stored in the location identified byA7.
At the end of the program, the result must be stored in registerD0. The precondition ofm68div
is m68Pre(n; d; a; l) 2 A and the postcondition ism68Post(n; d; a; l) 2 A (wheren; d; a; l 2 N):

m68Pre(n; d; a; l) def= d >a 0 ^ n �a 0 ^ readl(A7 +32 4) =32 n ^ readl(A7 +32 8) =32 d^ readl(A7 +32 12) =32 a ^ readl(A7) =32 l
m68Post(n; d; a; l) def= n �a 0 ^ d >a 0 ^ readl(A7) =32 l ^

A1 =32 a ^ n =32 (D0�32 +32readl(readl(A7 +32 12)))
The verification ofm68div is by induction on the loop beginning at labell8 to establish

an invariant from which the postcondition follows. The assertionm68Inv(q; n; d; a; l) (whereq; n; d; a; ; l 2 N) is the invariant for the loop inm68divat labell8:
m68Inv(q; n; d; a; l) def= 8>><>>: n �a 0 ^ d >a 0 ^ q =32 D0^l =32 readl(A6 +32 4) ^ a =32 A1 ^ d =32 A0^^(D0�32 D1) +32 D0) =32 n^(pc=32 l) readl(A1) =32 D1)

As with the pre- and postcondition, the invariant form68divis that ofidiv, with changes made to
reflect the variables used.

The specification to be satisfied bym68divis, for anyn; d; a; l 2 N :` [pc=32 l1 ^m68Pre(n; d; a; l)]m68div[pc=32 l ^m68Post(n; d; a; l)]
The steps needed to verifym68divare similar to those foridiv and a proof of correctness for
m68divwill not be given. The abstraction of programm68divand the steps needed to verify the
abstraction will be briefly described.

5.2 The Motorola 68000 Architecture 155C1 = l1 :if not mkBit (readl(A6 +32 12)�32 readl(A6 +32 8))
then :=(A7;A7 +32 4) � (D1; readl(A6 +32 8))� (A0; readl(A6 +32 12)) � (A1; readl(A6 +32 16)) � (D0; Long(0))� (SR; calcSR(readl(A6 +32 12); readl(A6 +32 8)))� (writel (readl(A6 +32 8); readl(A6 +32 16))� (writel (A7�32 4;A6)); readl(A7)
else :=(A6;A7�32 4) � (A7;A7�32 4) � (D1; readl(A6 +32 8))� (A0; readl(A6 +32 12)) � (A1; readl(A6 +32 16)) � (D0; Long(0))� (SR; calcSR(readl(A6 +32 12); readl(A6 +32 8)))� (writel (A7�32 4;A6)); l8C2 = l8 :if mkBit (A0�32 (D1�32 A0))
then := (D0;D0+32 1) � (D1;D1�32 A0) � (SR; calcSR(A0; (D1�32 A0)); l8
else :=(D0;D0+32 1) � (D1;D1�32 A0) � (SR; calcSR(A0; (D1�32 A0)))� (A7;A6 +32 8) � (A6; readl(A7)) � writel (D1�32 A0;A1); readl(A6 +32 4)

Figure 5.10: Commands of Abstractionm68div2
Abstraction of m68div

The abstraction ofm68div is constructed in two parts. First the general transformationT2 is
applied to a region which is constructed from all commands ofm68divwhich have a constant
successor expression. These are all commands except the command atl14. The result is com-
bined withm68divto form the first abstractionm68div1 v m68div. The command atl14 is then
composed with commands ofm68div1 to form the second abstractionm68div2. The command
of m68divlabelledli will be referred to asci; e.g.c1 is the command labelledl1.

To construct the first abstractionm68div1: regionr is constructed asr = region(l1;m68div�fc14g). There are two cut-points inr: commandc1 (the head ofr) and commandc8. These
form two regionsr1 and r2 in r: r1 = region(l1; fc1; c2; c3; c4; c5; c6; c7; c12; c13g) and r2 =
region(l8; fc8; c9; c10; c11; c12; c13g). The result of abstractingr, T2(r), is the region containing
commandsT1(r1) andT1(r2). These are combined withm68divto obtain the first abstraction:
m68div1 = m68div] fT1(r1); T1(r2)g.

The second abstraction,m68div2 is obtained by composing commandc14 with the two trans-
formed regions. LetC1 = (T1(r1; c14) andC2 = (T1(r2); c14). The abstraction ofm68div1 is
programm68div2 = m68div1] fC1; C2g andm68div2 v m68div. Only commandsC1; C2 2
m68div2 need to be considered during the proof of correctness. CommandsC1 andC2, after
simplification, are given in Figure (5.10).

5.2 The Motorola 68000 Architecture 156

Verification of m68div2
Programm68div2 is an abstraction ofm68div: verifying m68div2 is enough to verifym68div.
The specification to be established is therefore, for anyn; d; a; l 2 N :` [pc=32 l1 ^m68Pre(n; d; a; l)]m68div2[pc=32 l ^m68Post(n; d; a; l)]
The steps required to verifym68div2 are those required to verifyidiv:

1. Precondition establishes postcondition:` [pc=32 l1 ^m68Pre(n; d; a; l) ^ n <32 d]m68div2[pc=32 l ^m68Post(n; d; a; l)]
This follows from: `(pc=32 l1 ^m68Pre(n; d; a; l) ^ n <32 d)) wp(C1; pc=32 l ^m68Post(n; d; a; l))

2. Precondition establishes invariant:` [pc=32 l1 ^m68Pre(n; d; a; l) ^ :n <32 d]m68div2[pc=32 l8 ^m68Inv(n; n; d; a; l)]
This follows from: `(pc=32 l1 ^m68Pre(n; d; a; l) ^ :n <32 d)) wp(C1; pc=32 l8 ^m68Inv(n; n; d; a; l))

3. Invariant establishes postcondition, the proof is by induction onq 2 N (rule tl9):` [pc=32 l8 ^m68Inv(q; n; d; a; l)]m68div2[pc=32 l ^m68Post(n; d; a; l)]
This is in two cases, in both only commandC2 is required

(a) Base case,(D1�32 A0) <32 A0. This is by a proof of:`(pc=32 l8 ^m68Inv(q; n; d; a; l) ^ (D1�32 A0) <32 A0)) wp(C2; pc=32 l ^m68Post(n; d; a; l))
(b) Inductive case,not (D1�32 A0) <32 A0. This follows from:`(pc=32 l8 ^m68Inv(q; n; d; a; l) ^ not D1�32 A0 <32 A0)) wp(C2; pc=32 l ^m68Post(n; d; a; l))

Each of these steps establishes an intermediate specification form68div2 which can be combined,
as for programidiv, to establish the specification ofm68div2. The correctness ofm68divthen
follows by the refinement rule (tl7). Note that althoughm68divwas obtained by translating
a program for the M68000 processor language, the specification and verification ofm68divis
similar to the programidiv. This is a consequence of the use of the languageL to model object
code, which allows the syntactic differences between programs to be ignored infavour of the
actions performed by the programs.

5.3 The PowerPC Architecture 157

5.3 The PowerPC Architecture

The languageL is intended to be independent of any processor language and must be able to
model the instructions of processors other than the M68000. As an example of the ability to
model the object code of different processors, instructions and programs of the PowerPC proces-
sor will be described in terms ofL. The PowerPC is a processor architecture based on a reduced
instruction set design (Motorola Inc. and IBM Corp., 1997). The architecture is implemented as
a 32 bit processor and as a 64 bit processor. The two implementations differ mainlyin the size of
the bit-vector which can be manipulated as single unit (bit-vectors of size 32 and 64 respectively).
The description given here is of a subset of the language of the 32 bit processor.

The terms and conventions used by the PowerPC language differ from those used to describe
the M68000 processors. The PowerPC reference manual (Motorola Inc. and IBM Corp., 1997)
defines abyte to be a bit-vector of 8 bits, ahalf-word to be a bit-vector of 16 bits and aword
to be a bit-vector of 32 bits. The naming of the PowerPC instructions reflects these terms. In
the PowerPC processor language, the most significant bit of a bit-vector of sizen is said to be
a position0, and the least significant bit at positionn � 1. This is reflected in the instructions
whose arguments include the position of a bit in a bit-vector. The terms and conventions used in
the description here will be as before: a bit-vector of 16 bits will be called aword, a bit-vector
of 32 bits along-word, the most significant bit is at positionn � 1 and the least significant at
position0.

The values which can be represented by the PowerPC are the natural numbers up to232.
Each address is a value and each memory location stores a byte. An instruction of the PowerPC
is stored in4 consecutive locations and the label of each instruction must be a multiple of4.
When control passes to labell (goto l) andl is not a multiple of4, the two least significant bits
are ignored. For example, values0, 1, 2 and3 are interpreted as the location0.

5.3.1 Registers

The PowerPC has 32 general purpose integer registers,r0 to r31, acondition register, CR, and a
link register, LR . Other registers including a special purpose registerXER and acount register
CTR. Although there is no program counter visible to the object code programs of the PowerPC,
a program counter is assumed in the definition of the semantics given in the processor manual
(Motorola Inc. and IBM Corp., 1997). The set of registers for the PowerPC will include the
identifierpc to act as the program counter of the languageL.fr0; r1; : : : ; r31;CR; LR ;XER;CTR; pcg � Regs

All registers store values as bit-vectors of length32. The general purpose registersr0 to r31 store
addresses in memory for instructions which move data between the registersand memory. The
general purpose registers also store the arguments to and results of the operationsimplemented
by the processor instructions. The link registerLR is used to implement sub-routines and stores
the address to which control is to return.

5.3 The PowerPC Architecture 158

The condition register,CR, is organised as8 fieldsof 4 bits each. Each field reflects the result
of an operation on data and is similar to the status register,SR, of the M68000. Bit0 of a field
indicates that the result of an operation was a negative number (using two’s complement repre-
sentation); bit1 indicates that the result was a positive number (greater than0); bit 2 indicates
that the result was0 and bit3 indicates that an overflow occurred. An instruction may specify
the field of the condition register to be used, when the field is not specified, field0 is assumed.

The XER register is also used to store information about data. The two most significant
bits of the register indicate that an operation generated an overflow, the third most significant bit
indicates that an operation generated a carry. The least significant byte of theregister is used
by some instructions as a counter. The count register,CTR, is used together with some forms
of the jump instruction to implement iteration and stores the number of iterations be performed.
The count register is also used in some instructions to store the label of the instruction to which
control is to pass.

5.3.2 Instructions

The general form of a PowerPC instruction isinst dst; src1; src2 whereinst is the instruction
name,dst is the destination argument andsrc1; src2 are the source arguments. Each instruction
operates on data of a given size and this determines the instruction name. For example, the
instructions namedlbz andlwz implement the same operation but operate on a byte and a long-
word (a PowerPC word) respectively.

When the general purpose registers,r0; : : : ; r31 occur as an argument to an instruction, they
are denoted by the numbers0 to 31. Whether an instruction argument such as1 is interpreted
as a register or as a value is determined by the semantics of the instruction. Here, instruction
arguments which are registers will be writtenr ; r0; : : : and values will be denotedv; v0; : : : . The
instructions may interpret a valuev as either a signed or an unsigned number.

Data Movement

There are two types of data movement instruction: aloadmoves data from the memory variables
to the registers, astoremoves data from the registers to memory. For both operations, a number
of instructions are defined to operate on different sizes of data and to use the different addressing
modes of the PowerPC.

In theregister indirectaddressing mode, the operand is in memory at the location determined
from a registerr . In theregister indirect with immediate indexmode, an argument is writtenv(r)
and the address of the operand is obtained by the addition ofv to the registerr . In theregister
indirect with indexmode there are at least two source registersr1 and r2 and the address is
obtained by the addition ofr1 andr2. All addressing modes for the data movement instructions
interpret the registerr0 as the value0. For either of the indexed addressing modes, the instruction
may also update a register with the calculated address.

5.3 The PowerPC Architecture 159

The load word and zero with update indexed, written lwzux r1; r2; r3, operates on a long-
word (a PowerPC word) and uses register indirect with index addressing. Register r1 andr2 are
destination arguments and the source argument is registerr3. The sum ofr2 andr3 identifies a
location in memory in which a valuev is stored. Registerr1 is assigned the valuev and register
r2 is assigned the address ofv.

r1; r2 := ref(r2 +32 r3); r2 +32 r3 (if r1 6= 0)
The PowerPC reference manual defines the instruction in whichr1 = r2 to be invalid. This
ensures that the assignment tor1 andr2 is always correct.

Thestore half-word with updateinstruction, writtensthu r1; v(r2), stores the16 bit value (a
PowerPC half-word) contained in the lower half of the registerr1 in the memory location whose
address is the sum ofv andr2. Registerr2 is updated with this address.

ref(r2 +32 ext(Long;Word; v)); r2 := mkWord (r1); r2 +32 ext(Long;Word; v)
Program Control

A branchinstruction passes control to a target location and may be conditional on the value of
the registerCR. The target of the branch is a constant or is obtained from the link registerLR or
the count registerCTR.

An unconditional branchhas a single argument from which the target of the jump is cal-
culated. Theabsolute branchinstruction,ba v, passes control to the instruction at addressv,
goto loc(v). Thebranch and linkinstruction,bl v, stores the address of the next instruction in
memory in the link register. The target of the branch is the instruction whose address is calculated
from pc+ v (wherev is interpreted as a signed number).

LR ; pc := pc+32 4; loc(pc+32 v)
The instructionbranch to link register, blr, implements a return from sub-routine: control is
passed to the address stored in the link register,goto loc(LR).

Conditional branchinstructions have the formbc a; b; v wherea; b � 31 arecontrol argu-
mentsandv is the target address. Argumenta 2 Valuesdetermines how the result of the test is
to be interpreted and argumentb 2 Valuesdetermines the bit of the condition registerCR to be
tested. Argumenta may also provide information to allow the processor to predict the result of
the test. This allows the processor to perform some optimisations but does not otherwise affect
the execution of the program.

In thebranch conditionalinstruction,bc 4; 6; v the first argument,4, indicates that the tested
bit must not be0. The second argument indicates that the test is of bit6 of the condition register
CR (bit 2 of field 1 of the condition register). Argumentv is the address, relative to the current
instruction, to which control passes.

if not bit (6)(CR) then goto loc(pc+32 v) else gotol

5.3 The PowerPC Architecture 160

int strlength(char *a)f int c;
c=0;
while(*(a+c)!=0)f c=c+1;g
return c;g

Figure 5.11: Strlength: C Program

Arithmetic and Comparison Instructions

The arithmetic operations include addition, subtraction, multiplication and division on bytes,
words and long-words. The arithmetic instructions are typically of the forminst r0; r1; r2
and implement the operationr0 := f(r1; r2), wheref is a function on the values. Theadd
instruction,add r0; r1; r2, assigns tor0 the sum ofr1 andr2. Theadd immediateinstruction,addi r0; r1; v, assigns tor0 the sum ofr1 andv 2 Values.add r0; r1; r2 r0 := r1 +32 r2addi r0; r1; v r0 := r1 +32 v

Comparison instructionsset the flags of the registersCR andXER to reflect the difference
between the operands. Thecompareinstruction is writtencmp a; r0; r1 and the comparison is by
the subtraction ofr1 from r0. Fielda, for a < 8, of the condition registerCR is set to reflect the
result of the comparison. One of bits0, 1 and2 of field a is set and the remainder are cleared.

Summary

The PowerPC processor language is based on a large number of general purpose registers. There
are only three addressing modes and only data movement instructions can transferdata between
registers and memory variables. The PowerPC supports sub-routines by providing the link regis-
terLR but does not otherwise support facilities such as stack or frame pointers. The instructions
of the PowerPC are generally simpler than those of the M68000. For example, both the M68000
and the PowerPC have instructions to add two variables. However, the PowerPC addition instruc-
tion can only make use of the registers while the M68000 instruction can also access memory
variables using a range of addressing modes. The simplicity of the PowerPC instructions and
the memory operations of the processor mean that the model of instructions in the languageL is
straightforward. This model also illustrates the ability of the languageL to describe the instruc-
tions of different processors. The complexity of the model inL depends on the complexity of the
instructions and data operations of the processor. The languageL does not, therefore, introduce
additional complexity in the model of processor instructions.

5.3 The PowerPC Architecture 161

5.3.3 Example: String Length

For an example of the verification of a PowerPC program in terms of its model inL, consider the
C program of Figure (5.11) which finds the length of a string. In the C language, a string is an
array of characters terminated by the null character; a characterv is a natural number such thatv < 256 and the null character is the value0. The argumenta to the program is the address in
memory of the first element of the string. The integer variablec, initially 0, counts the number
of elements of the string preceding the null character. While the element stored in locationa+ c
is not0, the value ofc is incremented by1. When the null character is found, the value ofc is
returned as the result of the program.

Object Code Program

The program of Figure (5.11) was compiled with the GNU C optimising compiler to obtainthe
program of Figure (5.12). Two instructions used in the program,mr andli, are synonyms for
PowerPC instructions. Theload immediateinstruction,li r ; v, assigns the wordv to register
r , r := Word(v). Themove registerinstruction,mr r1; r2, assigns the value of registerr2 to
registerr1, r1 := r2. The instructions of the object program are assumed to be aligned correctly
and there are four bytes between each instruction. For example, the second instruction is assumed
to be stored at the address:strlength + 4. This requirement is typically implemented by the
assembler which translates the assembly language program of Figure (5.12) to the object code of
the processor.

The program of Figure (5.12) begins with the command labelled:strlength. Registerr3
contains the address of argumenta of the C program and this address is assigned to register
r9. Registerr3 is then assigned the value0 and implements variablec of the C program. The
first element of the array, stored at the address ofr9, is assigned to registerr0. Registerr0 is
compared against0 and the results of the comparison are stored in field1 of the condition register.
If r0 =32 0 (bit 6, or bit 2 of field 1, of the condition register is set) then the program terminates
immediately, transferring control to the label stored in the link register LR .

The command labelledL::4 begins the loop implementing thewhile command of the C
program. Registerr3 is incremented by1 and the byte at the addressr9 + r3 is stored in register
r0. This is compared against the null character, integer0, and the result stored in field1 of the
condition register. If the byte is not0 then control passes to the command labelledL::4. If the
byte is equal to0, the program terminates and passes control to the address stored in the link
register and the result of the program is the value stored in registerr3.L Program len

The object code program of Figure (5.12) was translated intoL to obtain theL programlen of
Figure (5.13). The PowerPC program of Figure (5.12) uses only field 1 of the condition register
CR. In theL programlen field 1 of registerCR is represented as a registerCRF 2 Regs. Bit 6

5.3 The PowerPC Architecture 162

.strlength:
mr 9, 3 ; r9:=r3
li 3, 0 ; r3:=0
lbz 0, 0(9) ; r0:=ref(r9+0);
cmpwi 1, 0, 0 ; compare r0 with 0, results in CR field 1 (r0=0)
bclr 12, 6 ; return if bit 6 of CR (bit 2 of field 1) is set

L..4:
addi 3, 3, 1 ; r3:=r3+1
lbzx 0, 9, 3 ; r0:=ref(r9+r3)
cmpwi 1, 0, 0 ; compare r0 with 0, results in CR field 1
bc 4, 6, L..4 ; branch to L..4 if bit 6 of CR is set (r0=0)
blr ; branch to address in link register (return from routine)

Figure 5.12: Strlength: Optimised PowerPC Program

of the condition registerCR corresponds to bit2 of the first condition register field,CRF. The
testbit (2)(CRF) is equivalent to the boolean expressionr0 =32 0.

A function, calcCRF, to construct the bit-vector of registerCRF is defined in terms of the
function mkSR. FunctioncalcCRF is similar to the functioncalcSRdefined for the M68000
processor language. The function is applied to an argumentx and the values of the condition
codes are determined by the rules for the comparison instruction. There are four bits in the
bit-vector ofCRF and the fifth argument tomkSR is undefined.

calcCRF : E ! E
calcCRF(x) def= mkSR(undef(Values); bit(31)(XER); x =32 0; x >a 0; 0 >a x)

wherex =32 0 andx >a 0 are the comparisons for signed numbers. The equality=32 is used
for this example since the program is defined for natural numbers. Note that for anyx 2 E,
bit(2)(calcCRF(x)) � (x =32 0) andbit (1)(calcCRF(x)) � x >a 0.

The labels of programlen arel1; l2; : : : ; l10 2 Labels. The commands of the programlen at
labelsl1; l2; : : : ; l10 will be referred asc1; c2; : : : ; c10 respectively. The commands are assumed
to be stored in sequence and, since each PowerPC instruction is stored in fourbytes, for1 �i � 9, li+1 = li + 4. In addition, it is assumed that labell stored in the link register is not
one of l2; : : : ; l10. The program does not store values in memory and only registers occur in
assignment commands. Since each command updates a single register, the assignment lists for
each command are correct in any state.

5.3 The PowerPC Architecture 163l1 : r9 := r3; loc(l2)l2 : r3 := Long(0); loc(l3)l3 : r0 := mkLong(0; 0; 0; ref(r9)); loc(l4)l4 : CRF := calcCRF(r0); loc(l5)l5 : if bit (2)(CRF) then goto loc(LR) else goto loc(l6)l6 : r3 := r3 +32 1; loc(l7)l7 : r0 := mkLong(0; 0; 0; ref(r9 +32 r3)); loc(l8)l8 : CRF := calcCRF(r0); loc(l9)l9 : if not bit (2)(CRF) then goto loc(l6) else goto loc(l10)l10 : goto loc(LR)
Figure 5.13: Strlength:L Programlen

Specification oflen

The precondition of the program,Pre(a; n; l), requires that the link register has the valuel,
registerr3 the addressa of the first element and that the index of the first null character isn.

Pre(a; n; l) def= � a =32 r3 ^ l =32 LR ^ ref(r3 +32 n) =32 0^8(�y : n >32 y) :ref(r3 +32 y) =32 0))
The program terminates when control passes to the label stored in the link register LR and

this must be the labell with which execution began. The index of the first element of the string
which is a null character is stored in registerr3. All elements of the string at indexy <a r3 must
be non-zero.

Post(a; l) def= �
ref(a+32 r3) =32 0^l =32 LR ^ 8(�y : r3 >32 y) :ref(a+32 y) =32 0)

Programlen begins execution when control passes to the command atl1 and ends when
control passes to the labell of the link register. Iflenbegins in a state satisfying the precondition
then eventually the postcondition is established.` [Pre(a; l) ^ pc=32 l1]len[Post(a; l) ^ pc=32 LR] for a 2 Values; l 2 Labels

Abstraction of len

The abstraction of programlen is constructed in two steps. The first constructs and abstracts
a regionr of len in which all commands have constant successor expressions. This is used to

5.3 The PowerPC Architecture 164C1 = l1 : if ref (r3) =32 0
then (:= ((r9; r3) � (r3; 0) � (CRF; calcCRF(ref(r9)))); loc(LR))
else(:= ((r9; r3) � (r3; 0) � (CRF; calcCRF(ref(r9)))); l6)C2 = l6 : if not ref (r9 +32 r3 +32 1) =32 0
then := (((r3; r3 +32 1) � (r0; ref(r9 +32 r3 +32 1))� (CRF; calcCRF(r9 +32 r3 +32 1))); l6)
else := (((r3; r3 +32 1) � (r0; ref(r9 +32 r3 +32 1))� (CRF; calcCRF(r9 +32 r3 +32 1))); loc(LR))

Figure 5.14: Commands of Abstractionlen2
form the programlen1 such thatlen1 v len. The commands oflen1 are then composed with the
commands excluded fromr. This forms the programlen2 which abstractslen1, len2 v len1. The
abstractionlen2 will be the program which is verified.

Programlen1 is obtained by abstracting from regionr = region(l1; len�fc5c10g) of program
len. The general transformationT2 is applied tor. The cut-points ofr are commandsc1 andc2.
These form two regions,r1 andr2, of r, to which the path transformation is applied to construct
the setgtbody(r). r1 = region(l1; fc1; c2; c3; c4g)r2 = region(l6; fc6; c7; c8; c9g)

gtbody(r) = fT1(r1); T1(r2)g
The result ofT2(r) is the regionregion(l1; fT1(r1); T1(r2)g). The body ofT2(r) is combined
with len to form the abstractionlen1: len1 = len] fT1(r1); T1(r2)g.

The abstractionlen2 of len1 is obtained by composing commandT1(r1)with c5 and commandT1(r2) with c10. Let C1 = (T1(r1); c5) andC2 = (T1(r2)). CommandsC1 andC2, after sim-
plification, are given in Figure (5.14); a consequence of the transformations is that the condition
registerCRF is no longer used in the tests of the conditional commands. The programlen2 is
obtained by combining the commandsC1 andT1(r2); c10 with len1.

len2 def= len1] fC1; C2g
Note that the simplification of the commands removes bit-vector constructors when possible,
e.g. the expressionmkLong(0; 0; 0; ref(r9)) is replaced withref(r9) andmkLong(0; 0; 0; 0) is
replaced with0. The programlen2 satisfies the refinement orderinglen2 v len1 and therefore
satisfies the orderinglen2 v len.

Only two commands oflen2 are needed to verify the program: the first,C1, describes the
path inlen from c1 to the loop atc6. The second,T1(r2); c10, describes the loop inlenbeginning
at c6. The loop terminates when control is passed to the label stored in the link registerLR .

5.3 The PowerPC Architecture 165

Verification of len2
The verification proof for programlen2 follows a similar pattern to that for the programidiv of
Section 5.2.4 and only the main steps of the proof are described here. The proof is based onthe
induction rule (tl9). An assertionInv is shown to be established by the preconditionPre, to be
invariant for the loop atT1(r2); c10, and to establish the postcondition.

The induction is on the difference between the value ofr3 at the beginning of the loop and
the index of the first null character. The invariantInv is applied to valuesd; a; n 2 Valuesandl 2 Labels. As in the precondition,a is the address of the first element,n the index of the first
null character andl the label stored in the link register. Valued is the difference betweenr3 andn; whend =32 0, control passes to the labell. No element of the string stored at the addresses
from a up to but excludinga +32 r3 is the null character.

Inv : (Values;Values;Values; Labels)!A
Inv(d; a; n; l) def= 8<: d =32 r3 �32 n ^ a =32 r9 ^ ref(a +32 n) =32 0^ l =32 LR^ 8(�y : r3 >32 y) :ref(a +32 y) =32 0)

The registerCRF does not occur in the assertionsPre, Inv andPostnor is it used as a value
in the commands of Figure (5.14). For clarity, the assignments to the registerCRF made by the
commands will be removed from the substitution expressions which occur in the proof.

The proof is in two steps: the first considering the precondition of the program and the second
considering the invariant. There are two cases for each step. If the programbegins with the null
character in the first element ofa, ref(r3) =32 0, then the program establishes the postcondition.
Otherwise, the program is shown to establish the invariant. The proof for both cases is similar
and only the second will be considered. For the second step, the proof is by induction and the
base case begins in a state in whichr3+32 1 is the address of the null character. For this case, the
invariant is shown to establish the postcondition directly. In the inductivecase,ref(r3 +32 1) is
not the null character and the proof is by establishing the inductive hypothesis. The verification
of len2 is in the following steps:

1. Precondition establishes invariant:` [Pre(a; n; l) ^ pc=32 l1 ^ :(ref(r3) =32 0)]len2[Inv(n; a; n; l) ^ pc=32 l5]
2. Invariant establishes postcondition:` [Inv(d; a; n; l) ^ pc=32 l6]len2[Post(a; n; l) ^ pc=32 loc(LR)]

The proof is by induction, in the following steps:

(a) Invariant establishes postcondition: (Base case):` [Inv(d; a; n; l) ^ pc=32 l6 ^ ref(r9 +32 r3 +32 1) =32 0]len2[Post(a; n; l) ^ pc=32
loc(LR)]

(b) Invariant establishes postcondition (Inductive case):` [Inv(d; a; n; l) ^ pc=32 l6 ^ :ref(r9 +32 r3 +32 1) =32 0]len2[Inv(d� 1; n; a; l) ^
pc=32 l2]

5.3 The PowerPC Architecture 166

The proof for last step is representative of the use of the proof rule for induction (tl9) and will be
given here. The proofs for the remaining steps are similar.

Invariant establishes postcondition, inductive case (Step 2b):` [Inv(d; a; n; l) ^ pc =32 l6 ^:ref(r9 +32 r3 +32 1) =32 0]len2[Inv(d� 1; n; a; l) ^ pc=32 l2]
The command oflen2 enabled whenpc =32 l6 is T1(r2); c10 and the proof is based on the

weakest precondition of the command.`Inv(d; a; n; l) ^ pc=32 l6 ^ :ref(r9 +32 r3 +32 1) =32 0) wp((T1(r2); c10); Inv(d� 1; n; a; l) ^ pc=32 l2)
From the assumption thatref(r9 +32 r3 +32 1) =32 0 is falseand the conditional rule (tl3),
the true branch of the command is chosen. This is an assignment command and, removing the
assignment toCRF, the assertion needed for the weakening rule (tl5) and assignment rule (tl1)
is the result of updating the invariant with the assignments.`(Inv(d; a; n; l) ^ pc=32 l6 ^ :(ref(r9 +32 r3 +32 1) =32 0)))

Inv(d� 1; a; n; l) ^ pc=32 l6) / (pc; l6) � (r3; r3 +32 1) � (r0; ref(r9 +32 r3 +32 1))
The proof of this assertion is straightforward from the definitions. Sinced� 1 < d, the inductive
hypothesis establishes the postcondition (Induction rule, tl9).` [Inv(d� 1; a; n; l) ^ pc=32 l6]len2[Post(a; n; l) ^ pc=32 LR]
This completes the proof for this case.

By showing the precondition and invariant establish the postcondition in all cases, the pro-
gramlen2 is verified. Since the programlen2 is an abstraction of the programslen1 andlen, both
of these are also verified. 2

The verification of programlen followed the approach described in Section 4.4: an abstrac-
tion of the program is constructed and shown to satisfy the specification. This approach is inde-
pendent of the processor language and was also used to verify the programs of the M68000. It
is therefore an example of the use of the languageL to generalise methods for verifying object
code across different processor languages. The approach of Section 4.4 can be used to verify the
different object code programs of different processor languages, provided that the object code is
described in terms of the languageL
5.3.4 Example: Division

The PowerPC processor is based on RISC design, which encourages the use of registers rather
than memory locations. A program for the PowerPC will therefore make greater use of the regis-
ters than the equivalent program for a processor such as the M68000, which is based on a CISC
design. However, these differences do not affect the approach used to verifya program. For an

5.3 The PowerPC Architecture 167

.div: cmplw 1,3,4 11 : CRF := calcCRF(r4 �32 r3); l2
li 0,0 l2 : r0 := Long(0); l3
bc 4,5,L..8 l3 : if not bit (1)(CRF) then gotol8 else gotol4

L..9: subf 3,4,3 l4 : r3 := r3 �32 r4; l5
cmplw 1,3,4 l5 : CRF := calcCRF(r4 �32 r3); l6
addic 0,0,1 l6 : r0 := r0 +32 1; l7
bc 12,5,L..9 l7 : if bit (1)(CRF) then gotol4 else gotol8

L..8: stw 3,0(5) l8 : := writel (r3; r5); l9
mr 3,0 l9 : r3 := r0; l10
blr l10 : goto loc(LR)

PowerPC program L programppcdiv

Figure 5.15: Division: PowerPC

example of this, consider the C program of Figure (5.1) for the division of natural numbers. This
was compiled to produce the object code program for the PowerPC processor of Figure (5.15)
which was then translated to theL programppcdiv of Figure (5.15), by replacing processor
instructions with their equivalentL commands.

The parameters to programppcdivare stored in the processor registers as is the result of
executing the program. This is contrast to programm68div, for the M68000 processor, in which
the parameters are stored on the machine stack (implemented by memory variables). As with
programm68div, the specification and properties to be established byppcdivare those of program
idiv. The only differences are in the variables used by the programs. In programppcdiv, the C
variablen is stored in registerr3, variabled is stored in registerr4 and variabler is register
r5. When the program ends, the result must be stored in registerr0 and control must pass to the
labell stored in the link registerLR . The precondition ofppcdivis the assertionppcPre(n; d; a; l)
(wheren; d; a; l 2 N). The postcondition is the assertionppcPost(n; d; a; l).

ppcPre(n; d; a; l) def= d >a 0 ^ n �a 0 ^ r3 =32 n ^ r4 =32 d ^ r5 =32 a ^ LR =32 l
ppcPost(n; d; a; l) def= n �a 0 ^ d >a 0 ^ LR =32 l ^ r5 =32 a^ n =32 (r0 �32 d) +32 readl(r5)

The specification of programppcdivis, for anyn; d; a; l 2 N :` [pc=32 l1 ^ ppcPre(n; d; a; l)]ppcdiv[pc=32 l ^ ppcPost(n; d; a; l)]
The verification ofppcdivfollows the steps used foridiv and is based on the loop inppcdiv

5.3 The PowerPC Architecture 168C1 = l1 :if not r4 >32 r3
then CRF; r0 := calcCRF(r4 �32 r3); Long(0); l8
else :=(CRF; calcCRF(r4 �32 r3)) � (r3; r0)�writel (r3; r5); loc(LR)C2 = l8 :if r4 >32 (r3 �32 r4)
then r3;CRF; Br0 := r3 �32 r4; calcCRF(r4; r3 �32 r4); r0 +32 1; l4
else :=(r3; r3 �32 r4) � (CRF; calcCRF(r4 �32 r3)); (r3; r0)

writel (r3 �32 r4; r5); loc(LR)
Figure 5.16: Commands of Abstractionppcdiv2

beginning at labell4. The properties of the loop are established by induction on the value of
registerr3, using proof rule (tl9). The invariant for the loop is the assertionppcInv(q; n; d; a; l):

ppcInv(q; n; d; a; l) def= 8<: n �a 0 ^ d >a 0 ^ q =32 r3 ^ l =32 LR^a =32 r5 ^ d =32 r4 ^ (r3 �32 d) +32 r0) =32 n^(pc=32 l) readl(r5) =32 r3)
As with programm68div, the verification ofppcdiv is similar to that ofidiv and will not

be given here. However, the abstraction of programppcdivand the steps required to verify the
abstraction will be described.

Abstraction of ppcdiv

Because programppcdivhas a computed jump command (at labell10), the abstraction ofppcdiv
is in two parts. The first constructs an abstractionppcdiv1 by applying the general transfor-
mation T2 to the regionr containing all commands except the computed jump. The com-
mands ofppcdiv labelledl1; : : : ; l10 will be referred to asc1; : : : ; c10. Regionr begins with
commandc1, r = region(l1; ppcdiv� fc10g). Applying the general transformationT2(r) con-
structs two regionsr1 andr2, beginning withc1 (the head ofr) andc4 (the head of a loop inr): r1 = region(l1; fc1; c2; c3; c8; c9g) andr2 = region(l4; fc4; c5; c6; c7; c8; c9g). The path trans-
formationT1 is applied to both these regions and the result of the general transformation is a
region containing commandT1(r1) andT1(r2). These are combined withppcdivto form the first
abstraction:ppcdiv1 = ppcdiv] fT1(r1); T1(r2)g.

The two commandsT1(r1) andT1(r2) are composed withc10 to form the second abstraction
ppcdiv2. Let C1 = (T1(r1); c10) andC2 = (T1(r2); c10)). Programppcdiv2 is obtained by
combiningC1 andC2 with ppcdiv1: ppcdiv2 = ppcdiv1] fC1; C2g. The commandsC1 andC2 after simplification are given in Figure (5.16). Programppcdiv2 is an abstraction ofppcdiv,
ppcdiv2 v ppcdivand verifyingppcdiv2 is enough to establish the correctness ofppcdiv.

5.3 The PowerPC Architecture 169

Verification of ppcdiv2
The specification which must be satisfied byppcdiv2 is that ofppcdiv:` [pc=32 l1 ^ ppcPre(n; d; a; l)]ppcdiv2[pc=32 l ^ ppcPost(n; d; a; l)]
The steps required to show the correctness ofppcdiv2 are those required foridiv:

1. Precondition establishes postcondition:` [pc=32 l1 ^ ppcPre(n; d; a; l) ^ n <32 d]ppcdiv2[pc=32 l ^ ppcPost(n; d; a; l)]
This is established by commandC1: `(pc=32 l1 ^ ppcPre(n; d; a; l) ^ n <32 d)) wp(C1; pc=32 l ^ ppcPost(n; d; a; l))

2. Precondition establishes invariant:` [pc=32 l1 ^ ppcPre(n; d; a; l) ^ :n <32 d]ppcdiv2[pc=32 l4 ^ ppcInv(n; n; d; a; l)]
This requires:̀ (pc=32 l1 ^ ppcPre(n; d; a; l) ^ :n <32 d)) wp(C1; pc=32 l4 ^ ppcInv(n; n; d; a; l))

3. Invariant establishes postcondition, the proof is by induction onq 2 N (rule tl9):` [pc=32 l4 ^ ppcInv(q; n; d; a; l)]ppcdiv2[pc=32 l ^ ppcPost(n; d; a; l)]
The two cases can be established from the commandC2:
(a) Base case,r3 �32 r4 <32 r4:`(pc=32 l4 ^ ppcInv(q; n; d; a; l) ^ (r3 �32 r4) <32 r4)) wp(C2; pc=32 l ^ ppcPost(n; d; a; l))
(b) Inductive case,:r3 �32 r4 <32 r4:`(pc=32 l4 ^ ppcInv(q; n; d; a; l) ^ :(r3 �32 r4) <32 r4)) wp(C2; pc=32 l ^ ppcPost(n; d; a; l))

These steps are similar to those needed to verify programm68divfor the M68000 processor. The
greatest difference between programsppcdivandm68div, apart from the variables used, is the
number of commands in the program. The M68000 programm68divhas more commands than
ppcdivsince it must transfer the parameters of the program from memory to registers. However,
the verification of both programs is based on constructing abstractions of the programs and only
the paths between the cut-points of the program are considered when abstract a program. Since
both programm68divand programppcdivhave similar flow-graphs (based around a single loop),
both have the same number of cut-points. Consequently, the same number of commands are
considered during the verification of both programm68div2 and programppcdiv2.

5.4 Other Features of Processor Languages 170

5.4 Other Features of Processor Languages

Processor languages often include features which are not easily reasoned about or manipulated.
These include instructions or data operations which are intended for a particular application or
an execution model in which the flow of control is always determined by label expressions. An
instruction which performs a complex operation can result in the need to reason about a large
number of basic expressions. A processor can organise the registers or memory variables in such
a way that a name is always determined by calculating an expression. This will lead to reasoning
about a large number of expressions when verifying a program. A complex model for selecting
instruction can complicate the abstraction of a program and require additional techniques to
determine the flow of control through a program.

The models, in the languageL, of a class of specialised instructions, a method for organ-
ising the registers and an execution model based on label expressions will be described. The
instructions implement operations to copy many items of data between names. The method of
organisation of registers is similar to that of the SPARC processor (Weaver & Germond, 1994)
and requires registers to be identified by name expressions. The execution model is for delayed
execution of instructions and the example is also based on the selection rules ofthe SPARC
processor.

5.4.1 Multiple Data Move Instructions

A multiple data move instruction copies a number of items of data between locations in memory
or between memory and the registers. The operation performed is similar toa simultaneous
assignment ofi > 0 values toi names. The number of data items to be moved may be determined
by the value of a register or memory variable. Typical applications of multiple move instructions
include storing and restoring the values of registers and copying sections of memory.

An instruction which moves data between the registers and the memory variables will typ-
ically assign the values of a subset of the registers to consecutive locationsin memory. The
registers to be copied are calculated from a source argumentsrc and a destination argumentdst
identifies the address of the first location in memory. The contents of the registers are copied to
the memory locations in a defined order, allowing the implementation of the reverse operation,
copying the contents of the locations to the registers, to be simplified.

Instructions which copy data between locations in memory obtain the location of the first
item to be copied from a source argumentsrc1, the number of items to be copied from a source
argumentsrc2 and the location in which the first item is to be stored from a destination argument
dst. The data is copied between location by a series of assignments of the form (for byte sized
operations)ref(src2 +a f2(i)) := ref(src1 +a f1(i)) wherei is the index of theith element,f1(i)
is the location relative tosrc1 from which the value is obtained andf2(i) the location relative to
src2 to which the value is assigned.

The semantics of a multiple move instruction can be defined as a single assignment command

5.4 Other Features of Processor Languages 171

in which the assignments are determined from the arguments to the instruction. Alternatively the
instruction can be defined by iteration, with each assignment calculated from a decreasing index.
The first method, although complex, results in a more accurate model of the behaviour of the
instruction. The second method results in a loop in anL program which is not present in the
equivalent object code.

Both approaches cause problems when verifying the program since proof rules depend on
the substitution in an assertion of the assignments made by a command. Because themultiple
data move instruction performs a large number of assignments, the task of performing the sub-
stitutions manually becomes difficult. This problem will occur however the semantics of the
instruction are defined, because the basic operation is to make a large number of assignments.
However, once the semantics of the instruction are defined it is possible to derive proof rules for
the particular instruction from the standard rules for assignment command. Thesemay be used
in the construction of automated tools which are specialised for the particular processor language
and which simplify the manipulation of the instructions.

Example 5.1 For an example of the definition of a multiple data move instruction using the first
method, assume a processor language in which there are32 registersr0; : : : ; r31. Also assume a
multiple move instruction, with operation sizeByte, which copiesi consecutive registers, begin-
ning with r0, to consecutive locations in memory. The source argument,src, of the instruction
determines the number of registers to be moved,src = i. The destination argument,dst, is the
address of the first location in memory.

The semantics of the instruction will be defined as a single assignment command inwhich a name
is assigned a value conditional on the result of a test. The conditional expression isdefined, in
Appendix A of the appendix, as the value function with namecond and arity3. For expressionsb; e1; e2 2 E and states, cond(b; e1; e2) satisfies:

cond(b; e1; e2) �s e1 if b �(Ib;s) true
cond(b; e1; e2) �s e2 if b �(Ib;s) false

The assignment list of the command is constructed from assignments to individual locations.
The first register is stored in locationdst, the second atdst+32 1, etc. Each assignment is
conditional on the value of a decreasing argument: theith register is stored in memory if the
result of(src mod32)+32�i is greater than0. With successor expressionl 2 El, the assignment
command for the multiple move is::= ((ref(dst+32 0); cond((src moda 32) +a 32�a 0) >32 0; r0; ref(dst+32 0))� (ref(dst+32 1); cond((src moda 32) +a 32�a 1) >32 0; r1; ref(dst+32 1))� (ref(dst+32 2); cond((src moda 32) +a 32�a 2) >32 0; r3; ref(dst+32 2))

...� (ref(dst+32 31); cond((src moda 32) +a 32�a 31) >32 0; r31; ref(dst+32 31));l)

5.4 Other Features of Processor Languages 172

The effect of assignment(ref(dst+32 i); cond((src moda 32)+a 32�a i) >32 0; r i; ref(dst+32 i))
is to update theith destination location with theith register,r i, if the register is to be copied. If
the register is not to be copied, the condition,cond((src moda 32) +a 32 �a i) >32 0, is false
and the location is assigned its original value. The definition of the instruction will therefore
construct an assignment list with an assignment for each of the32 locations beginning at address
dst. The firstsrc locations are assigned the value of the firstsrc registers and the remaining
locations are assigned their original value. 2
5.4.2 Organisation of Registers

The organisation of a processor’s registers can include the use of expressions to calculate the
register to be used by an instruction. The registers used by an instruction arereferred to in terms
of a register function, a function ranging over the names constructed from elements of the set
Regs. Register functions are a subset of the name expressions,En, and the verification techniques
for a processor languages with register functions are those used for a language without.

Example 5.2 Theregister windowsof the SPARC processor (Weaver & Germond, 1994) are an
example of registers organised using expressions to determine the register to beused.

For a register model similar to that of the SPARC processor, assumeValues= Vars= N and that
the registers, here called theprocessor registers, are identified by the set of negative integers.

Regs
def= fx : Z j x < 0g

The registers are distinct from the values, and therefore the variables, sinceValues= N . This
ensures that a namex 2 Namesconstructed from a variable ofVars is distinct from a name
constructed from the registers.

There are eightglobal registers: g0; g1; : : : ; g7. Registersg0; : : : ; g7 are defined as the names
name(�2); name(�3); : : : ; name(�9) respectively. Aregister windowcontains24 registers and
there arenrw, 3 � nrw � 32, register windows. Thecurrent window pointer, cwp, is the name
name(�1) and has the range of values0; : : : ; nrw. The current window pointer identifies which
of the register windows is referred to by an instruction. An instruction mayuse either a global
register or one of the24 window registersof the register window referred to bycwp; the global
registers and the window registers are distinct.

Window registers are mapped to processor registers by an index relative tocwp. For0 � i � 23,
theith window register relative tocwpis the processor register�(9+((cwpmodnrw)�24)+i);
calculated from the8 global registers, thecwp register and24 window registers. This is defined
in terms ofL as a name functionreg with arity 2; the first argument is the window registeri 2 Valuesand the second the valuev 2 Valuesof cwp.

reg2 FnIf (reg)(i; v) def= �
name(�(9 + ((v modnrw)� 24) + i)) if i < 24
name(undef(Regs)) otherwise

5.4 Other Features of Processor Languages 173

The processor register referred to by theith window register is obtained by the name expression
reg(i; cwp).
A register window is changed by addition and subtraction on the registercwp(modulo the num-
ber of windows). e.g. Thesaveandrestoreinstructions of the SPARC processor perform addition
on window registers1 and2, alter the register window then store the result of the addition in reg-
ister3 of the new window. The save instruction can be modelled by incrementing the register
window pointer:

cwp; reg(3; (cwp+a 1) moda nrw)) := (cwp+a 1) moda nrw; reg(1; cwp) +a reg(2; cwp)
The restore instruction is modelled by decrementing the register window pointer:

cwp; reg(3; (cwp�a 1) moda nrw) := (cwp�a 1) moda nrw; reg(1; cwp) +a reg(2; cwp)
An instruction refers to a global register or to a window register. For example, the addition of
global registerg0 to the8th window register, storing the result in the0th window register, can be
modelled as an assignment command with the registers identified byreg:

reg(0; cwp) := g0+a reg(8; cwp)
If this is followed by a save or a restore instruction, the register referred to byreg(0; cwp) will
differ from that assigned to by the addition instruction.

The window register model defined by the SPARC processor language is based on overlapping
windows. Theith window shares8 registers with each of thei + 1th window and thei � 1th
window. This can be modelled by defining the functionreg to map thei window register to the
processor register identified by�a(9 + ((cwpmodnrw)� 16) + i).

reg(i; v) = name(�(9 + ((cwpmodnrw)� 16) + i))
A full description of register windows and their use is given in the SPARC processor man-
ual (Weaver & Germond, 1994). 2
5.4.3 Delayed Instructions

The execution model of a processor language can allow the execution of an instruction to be
delayed. An instruction isdelayedif the changes made to the state by the instruction do not take
effect until after the execution of one or more other instructions; typically the delay is for one
instruction (see Hennessy & Patterson, 1990). There are two basic types of delayed instruction:
adelayed loadand adelayed branch.

A delayed load assigns a valuev to a namex and the assignment is delayed until the instruc-
tion immediately following the load has finished execution. The implementation of a delayed
load is such that an object program can be modelled in the same way as an object program with

5.4 Other Features of Processor Languages 174

no delayed load instructions. For example, a processor language can require that the instruction
immediately following a delayed load does not use any register or variable assigned a value by
the load. A delayed load ofv to namex, x := v, followed by an instructionx1 := f(x) would
cause an error and would not appear in an object program. Other processors may implement the
delayed load by inserting a null instruction after the load. In either case, a delayed loadx := v
followed by instructionx1 := f(x) would behave as if the load was not delayed.

Delayed Branching

In a delayed branch, a jump to a target at locationl is delayed until after the instruction immedi-
ately following the branch has been executed. The execution of the sequence(l1 : goto l); (l2 : c)
is in the order(l1 : c); (l2 : goto l): instructionc is executed before the delayed branch command.

An example of a language with delayed branching is that of the SPARC processor (Weaver &
Germond, 1994). The execution model of the SPARC processor is based on delaying the execu-
tion of most instructions and, as a consequence, the majority of jump instructions in the SPARC
processor language are delayed. The execution model is based on two program counters: the
program counter, pc, stores the label of the currently executing command and thenext program
counter, npc, stores the label of the successor command. Ifl1 : c1 is the currently executing
command andl2 : c2 the next command to be executed thenpc =a l1 andnpc =a l2. Each
instruction updates both program counters: for instructions which are not jump commands,pc is
assignednpcandnpc is assigned the label of the next instruction in memory. Each instruction of
the SPARC processor is stored in4 bytes andnpc is assigned the expressionnpc+ 4.

For example, let three instructions make the assignmentsx1 := v1, x2 := v2 andx3 := v3 and
assume labelsl1; l2; l3; l4; l5 and initial valuespc=a l1 andnpc=a l2. The instructions together
with the assignments to the program counters form the sequence:l1 : x1; npc; pc := v1; npc+a 4; npcl2 : x2; npc; pc := v2; npc+a 4; npcl3 : x3; npc; pc := v3; npc+a 4; npc

The instructions are executed in the orderl1, l2 thenl3.
When an instruction is a jump to a targetl, the registernpc is generally assigned the labell

of the target. Letjump be the command defined:

jump (l) def= npc; pc := l; npc

Becausel is assigned to the next program counter,npc, the jump is delayed by one instruction.
For example, assume initial valuespc=a l1, npc=a l2. The sequence:l1 : jump (l)l2 : x2; npc; pc := v2; npc+a 4; npc

is executed in the orderl1; l2; l. After the command atl1 is executed,pchas the valuel2 andnpc
the valuel. The command at labell2 is executed and assignsnpc to pc passing control to the
command at labell.

5.4 Other Features of Processor Languages 175

The SPARC processor language includes jump instructions whichannulthe delay: control is
immediately transfered to the target. Letjumpi be the immediate jump command defined:

jumpi (l) def= npc; pc := l +a 4; l
After execution ofjumpi (l), the program counter is assigned the target of the jump and the next
program counter is assigned the label of the instruction following the target. The sequence of
commands: l1 : jumpi (l)l2 : x2; npc; pc := v2; npc+a 4; npc

is executed in the orderl1; l. Control passes to the command labelledl and the command at labell2 is not executed.

Simplifying Programs

The use of two program counters means that the majority of instruction select a successor by the
use of the label expressionnpc. Such an instruction,c1, can always reach another instructionc2,c1 7�! c2, since there is always a state in whichnpc=a label(c2). As a consequence, applying
the transformationT2 to a SPARC object code program will have no effect since every instruction
is potentially a cut-point of a region. This will occur however thereachesrelation is defined: to
decide whetherc1 can reachc2, the values which may be assigned tonpcmust be known and this
is a function of the state in whichc1 begins.

An abstraction of a program can be obtained, without applying transformationsT1 or T2, by
the sequential composition to individual commands of the program. For example, if a programp
contains the commands: l1 : jump (l)l2 : x2; npc; pc := v2; npc+a 4; npc

then a programp0 such thatp0 v p can be obtained by replacing the command atl1 with the
composition of the two commands:l1 : (jump (l); l2 : x2; npc; pc := v2; npc+a 4; npc)

Additional or alternative transformations may be defined which are specialised to the execu-
tion model. These can be applied to regions of a program either to construct an abstraction of
the program or to construct a region to which transformationT2 can be applied. Such transfor-
mations can exploit the fact that thenpc is a program counter and its value must be known when
the program begins.

When the initial value ofnpc is known, a transformation based onconstant folding(Aho
et al., 1986) can be used to determine the value ofnpc for a subset of the program. The initial

5.5 Conclusion 176

value l of npc is substituted into the first commandc of the program, at labelpc. If the ex-
pressions assigned topc andnpcby commandc do not contain any other name then they may
be reduced to constants. These provide new values forpc andnpcand the process is repeated
until an expression which depends on a name other thanpc or npc occurs. The result of this
transformation is a subset of the program in a form to whichT2 can be applied.

For example, if the initial value arepc=a l1 andnpc=a l2 then the commands:l1 : x1; npc; pc := v1; npc+a 4; npcl2 : x2; npc; pc := v2; npc+a 4; npcl3 : x3; npc; pc := v3; npc+a 4; npc

can be replaced with the commands:l1 : x1; npc; pc := v1; l3; l2l2 : x2; npc; pc := v2; l3 +a 4; l3l3 : x3; npc; pc := v3; l3 +a 8; l3 +a 4
Sincel2 andl3 are constants, the relationreacheswill describe the control flow through the pro-
gram. A region of the program can then be constructed to which the transformationT2 can be
applied to obtain an abstraction of the region. Other techniques for transforming aprogram in-
clude those used in code optimisation. These can be applied to programs of the SPARC processor
language and, therefore, may be used to determine the possible flow of control through a program
in a form suitable for transformationsT1 andT2. Such techniques would be a necessary part of
an automated tool which mechanised the abstraction of object programs with an execution model
similar to that of the SPARC processor.

5.5 Conclusion

The processor architecture defines the instructions and data operations which are available for use
in an object code program. Any instruction can be modelled as a single commands ofL, since the
semantics of every instruction can be described as a state transformer.The difficulty of verifying
an object code program is therefore determined by the number of instructions in the program and
by the data operations carried out by each instruction. Because the data operations ofa processor
are simple (by comparison with those of high-level languages), an object code programis made
up of a large number of instructions. Abstracting from theL program modelling the object
code reduces the number of commands which must be considered. Abstraction combines the
operations performed by individual instructions, resulting in a single command ofL performing
the data operations of a sequence of instructions. The difficulty of a verification proofand the
complexity of theL commands therefore depend on the data operations used by the instructions.

Two processor architectures were considered, representing the two commonly used designs.
The Motorola 68000 is a CISC processor: it supports a large number of instructions which carry
out complex data operations. The PowerPC is a RISC processor, it has relatively few instructions

5.5 Conclusion 177

and provides simple data operations. Modelling the instructions and data operations of both
processors in terms ofL is straightforward. Since object code is translated intoL by replacing
each instruction with its model inL, this demonstrates the ability of the languageL to model the
object code of different processors. The main difference between the processor languages is the
number of operations carried out by an instruction. Instructions of the PowerPC carry out fewer
operations than instructions of the M68000 and are therefore simpler to model and verify than
those of the M68000. Not all features of a processor are straightforward to model in terms ofL,
this is principally because the features are complex, rather than any deficiency in the languageL.
For example, it will always be difficult to model and reason about a single instruction which
moves large amounts of data.

While a processor language affects the approach used to implement a program it has little
affect on the approach used to verify the program. A processor can provide instructions to sup-
port operations commonly used in object code, for example thelink andunlk instructions of
the M68000. Whether these instructions are used depends on the source of the object code.
The programs considered in this chapter were all produced by a compiler. The design ofthe
programs followed the programming conventions of the compiler and of the target operating sys-
tem. These determined how the variables and operations of the C programs were implemented in
the processor language and the structure of the programs. Although each processor had a differ-
ent set of programming conventions, this did not affect the method used to verify the programs.
All programs, whether a high-level or an object code program, are verified using themethod of
Floyd (1967) or Burstall (1974): by reasoning about the paths between program cut-points. For
example, the implementations of natural division on the M68000 and the PowerPC processors
(programsm68divandppcdiv) both have a similar structure, based around a single loop. The
verification of these programs is based on the structure of their flow-graphs and therefore fol-
lows a similar pattern for both programs. The difference in the data operationsprovided by the
two processor languages does not affect the approach used to verify the two programs.

This chapter considered the verification of object code programs of different processor lan-
guages. The approach used to verify the programs in this chapter is based on the method of
Burstall (1974) (and is described in Section 4.4). The same approach was used to verify each of
the object code programs: the object code is modelled as a program ofL and abstractions of theL program are constructed and verified. For the object code programs considered in thischap-
ter, this approach greatly simplified the proof of correctness. For example, thefirst step in the
verification of programidiv (of Figure 5.2) required seven different commands to be considered.
The same step for the abstractionidiv2 of idiv only required a single command to be considered.
The approach used to verify the programs reflects the main benefit of the languageL: methods
for verifying programs ofL can be applied to any object code program described in terms ofL.
In particular, the methods of abstracting programs ofL can be applied to the programs of any
processor language. This allows the object code programs of different processors to verified in a
single program logic using the same approach to carry out the proof of correctness.

Chapter 6

Examples: Proof Methods for Object Code

Program verification is based on the method of inductive assertions (Floyd, 1967) or the method
of intermittent assertions (Burstall, 1974). The application of these proof methodsmust take into
account the features of the programs to be verified. Program verification generally considers the
programs of high-level, structured languages only. The techniques used in program verification
are therefore developed for programs with more restrictive data and execution models than object
code programs. This means that features of object code may not be considered by the approach
used to verify a program, making the task of verifying object code programs more difficult than
necessary. It may also be desirable to develop techniques for verificationwhich exploit features
of object code programs which do not occur in high-level programs.

Techniques for verifying programs can be developed to exploit features of the processor
language in which an object code program is written to simplify verification ofthe program.
Many features of processor languages affect only the implementation of a program rather than
the difficulty of verifying a program and this approach is unlikely to lead to generally applicable
methods. A second approach is to develop verification methods which can be appliedto all object
code programs, independently of the processor language. In this approach, general proof meth-
ods are specialised to exploit some feature common to all object code programs. These methods
are generally based on proof rules which can be applied during a proof of correctness.The lan-
guageL supports this approach to developing verification methods by providing the operators
needed to define proof rules which can be applied toL programs.

The main concern of this thesis is to be able to verify the object code programs of arbitrary
processors and to simplify verification by abstracting from programs. This chapter is concerned
with the secondary problem of the approach used to carry out the proof of correctness of object
code. This chapter will consider features specific to object code which can affect verification and
will also describe the development of methods for verifying object code. These methods will be
developed for the languageL, which is a description language for the object code of different
processors. This allows their application to any object code program. It alsoallows the main
approach to simplifying verification (by abstracting from programs) to be usedin conjunction
with any additional techniques which may be developed.

178

6.1 Features of Object Code Programs 179

The chapter begins with a description of features of object code programs inSection 6.1.
This is followed by a description of two proof methods for programs ofL. The first, described
in Section 6.2, is based on data refinement (Hoare, 1972; Morris, 1989), a standard technique in
program verification. The second, described inSection 6.3, allows the verification of a program
to be based on regions of the program. These proof methods will be described in terms of the
languageL and can be applied to the object code of any processor.

6.1 Features of Object Code Programs

The verification of an object code program must satisfy the same requirements as the verification
of any program: the correctness of a program is proved by reasoning about the paths and loops
in the program. The methods of Floyd (1967) and Burstall (1974) describe how such proofs
are constructed. The principal requirements are that intermediate specifications are satisfied by
loop-free sequences of commands and that the properties of loops are established by induction
(Cousot, 1981). These requirements are independent of the data operations, the commands or
the execution model of the programming language. The methods described by Floyd (1967) and
Burstall (1974) are therefore independent of any processor language. However, the approach
used to establish the correctness of a program can be affected by features ofthe program or of
the programming language.

The principal features of a program which affect its verification are the data operations used
by the program and the structure of the program’s flow-graph. Object code uses the data op-
erations and instructions provided by the processor architecture. The simplicity of these data
operations means that a large part of an object code program is made up of sequences of instruc-
tions, which implement abstract data operations. These sequences can be reducedto a single
command ofL, by abstracting from the program, and do not need any additional verification
techniques. The structure of an object code program is made up of the paths and loops in the
program’s flow-graph. An object code program can include interleaving (irreducible)loops and
sub-routines, both of which can complicate verification. The approach used to verify an object
code program must therefore take into account the structure of object code. However, both the
data operations provided by a processor and the structure defined by the flow-graph of an object
code program can be used as the basis of a method for verifying object code.

6.1.1 Processor Architecture

A processor architecture determines the data operations and variables available to an object code
program. The processor architecture will also support a particular approach to implementing
programs, typically by optimising the performance of the processor for particular features. For
example, if a processor provides a large number of registers then its programs will be designed to
make greater use of the registers than the machine memory since register access is more efficient
than accessing memory locations (Hennessy & Patterson, 1990). However, processor architec-

6.1 Features of Object Code Programs 180

tures do not affect the method used to verify a program. Verification is basedon reasoning about
the program variables at the program cut-points and these are not determined by the proces-
sor architecture or language. The processor only determines the data operations whichmust be
considered when reasoning about instructions in a program.

Proof methods can be developed for particular processor architectures by the use of tools
and techniques which are specialised to the data operations and instructions of a processor (e.g.
see Yuan Yu, 1992). Such methods can simplify reasoning about the individual instructions
of an object code program, by simplifying theL expressions representing the processor’s data
operations. However, this does not affect the difficulty of verifying a program. To simplify the
verification of a program, the number of instructions considered during the verification must be
reduced. This can be achieved by abstracting from the program, a method which is independent
of any processor language.

Generalising Proofs Across Processors

The use of the languageL to describe object code programs for verification means that verifying
different programs for different processors is no different from verifying different programs for a
single processor. However, it is possible to simplify the verification of asingle program which is
implemented across different processors. Assume a programp is implemented on two different
processors as object code programsp1 andp2. The difference between programsp1 andp2 is
the implementation of the data operations of programp using the operations provided by the two
processors. Ifp is correct then separately verifying programsp1 andp2 leads to the repetition of
work needed to show that the data operations establish the specification ofp.

To show that the object code programsp1 andp2 are correct, it is only necessary to show
that the data operations ofp are correctly implemented byp1 andp2. Data refinement (Hoare,
1972; Morris, 1989) is a method which allows the correctness ofp to be used to verify the object
code programsp1 andp2. The approach is to show that object code programp1 andp2 data
refinep by showing thatp1 andp2 correctly implement the data operations ofp. The correctness
of p1 and p2 can then be established from the correctness ofp. This approach is independent
of processor architectures and can reduce the work needed when implementing a single program
across different processors.

6.1.2 Loops in Programs

An object code program can contain single, nested and interleaving loops. Single and nested
loops are found in high-level programs, each loop is either distinct from any other orcontained
entirely within another loop (Loeckx and Sieber, 1987). For example, the programs of Chapter 5
contain only single loops. The approach used to verify an object program containing single or
nested loops is similar to that used for high-level programs (Dijkstra, 1976; Gries, 1981): inner
loops are shown to establish an intermediate specification which is generalised over one or more
program variables. This specification is then used to show that the outer loop establishes the

6.1 Features of Object Code Programs 181

specification which is used in the proof of correctness for the program.

For example, consider the followingL programp1 which contains nested loops:l1 : if r0 =a 0 then gotol6 else gotol2l2 : r0; r1 := r0 �a 1; r0; l3l3 : if r1 =a 0 then gotol5 else gotol4l4 : r1 := r1 �a 1; l3l5 : goto l1l6 : goto l6
The outer-most loop begins at labell1 (of theL program), the inner loop begins at labell3. The
outer-most loop assignsr0 to r1 and decrementsr0. The inner loop then repeatedly decrements
r1, until r1 = 0, then passes control to the outer loop. To prove` [pc =a l1]p1[pc =a l6], both
loops must be shown to terminate. This requires a proof by induction on the values ofr0 andr1,
which is carried out in two steps. The first shows that for anym 2 N , the inner loop establishes` [pc=a l4 ^ r1 =a m]p1[pc=a l1 ^ r1 =a 0]. This is used in the second step to show that the
outer loop` [pc =a l1 ^ r0 =a n]p1[pc =a l6 ^ r0 =a 0] for anyn 2 N . The two steps can be
carried out separately: the specification of the inner loop is independent of the outer loop.

In interleaving loops, two loops have commands in common but neither is entirely contained
in the other. Interleaving loops are more difficult to verify than nested loops because the two
loops (and their properties) depend on each other. For example, consider the followingL pro-
gramp2: l1 : if r0 =a 0 then gotol6 else gotol2l2 : r1 := r0; l3l3 : if r1 =a 0 then r2 := 1; l4 else r2:= 0; l4l4 : if r2 =a 1 then r0 := r0 �a 1; l1 else gotol5l5 : r1 := r1 �a 1; l3l6 : goto l6
Programp2 has two loops: the first at the commands labelledl1; l2; l3; l4, the second at the com-
mands labelledl3; l4; l5. The loops are interleaved since the second loop passes control into the
body of the first loop (from labell5 to labell3).

To verify interleaving loops, the properties of both loops must be considered at the same
time. For example, assume that programp2 must terminate when control reachesl6: ` [pc =al1]p2[pc =a l6]. To verify p2, both loops must be shown to terminate. The proof can be carried
out by induction on the values ofr0 andr1, to establish the specificatioǹ [pc =a l1 ^ r0 =an ^ r1 =a m]p2[pc =a l1 ^ r0 =a 0 ^ r1 =a 1] (for anyn;m 2 N). This will require two
applications of the induction rule (tl9) for programs, the first for the value ofr0, the second for
the value ofr1. This is a general approach, which can be used to establish the properties of
interleaving loops in any program. The loops in individual programs can be simpler to verify.
For example, in programp2, the second loop (beginning at labell3) can be verified independently
of the first by showing that it preserves the value ofr0.

6.1 Features of Object Code Programs 182

6.1.3 Sub-Routines

Sub-routines are similar to the functions or procedures of high-level languages, implementing an
operation which is used by different parts of an object code program but is not provided bythe
processor language (Wakerly, 1989). A sub-routine can be executed in many different circum-
stances during the execution of an object code program. Because the instructions making up a
sub-routine are part of the program, verifying the program can require repeated proofsthat the
sub-routine establishes different properties. An alternative is to show that the sub-routine satis-
fies a specification describing the properties of the sub-routine. The verification of the program
can then make use of this specification to derive the desired property directly, without the need to
consider the instructions of the the sub-routine. In this approach the instruction passing control
to the sub-routine will be selected as a cut-point of the program, in addition to the cut-points
needed for the proof methods of Floyd (1967) and Burstall (1974).

Processors languages often include instructions which support the use of sub-routines. These
instructions pass control to and from a sub-routine and may also support a particular approach
to passing arguments to a sub-routine. For example, the M68000 processor includes the instruc-
tions jsr andret to pass control to and from a sub-routine. Values are passed to and from
a sub-routine in one or more program variables (either registers or memory locations). These
variables are often determined by programming conventions for the particular processor. For
example, the object code programs of Chapter 5 were produced by the same compiler. For the
M68000 processor, values to and from a sub-routine are stored on the machine stack, identified
by registerA7. For the PowerPC processor, values are passed to and from a sub-routine in the
registers (beginning withr3).

A sub-routine can make use of and change any program variable, including those required
for other parts of the program. To verify a sub-routine independently of the program, the spec-
ification of the sub-routine must describe the variables whose value may change. Todo this,
it is necessary to compare the program variables before and after the sub-routine is executed.
Using the specification operator for programs is too cumbersome since it requiresthat variables
whose value are unchanged by the sub-routine are explicitly listed. An alternative is to define
a specification operator which describes the variables whose value can be changed by the sub-
routine, with all other variables assumed to be unchanged. Assume a set of name expressionsN : Set(En), assertionsP;Q 2 A and programp 2 P . Let fNg[P]p[Q] 2 A be the assertion
specifying a sub-routine, defined:fNg[P]p[Q] def= 8>>><>>>:�s :P (s))9t :s p; t ^Q(t)^8(n : En) ::(9n0 : n 2 N ^ n �(In;s) n0)) Ie(n)(s) = Ie(n)(t)
If ` fNg[P]p[Q] is true then programp beginning in a state satisfyingP establishesQ and
changes only the variables named by a name expression inN . The name expressions in the setN are those which are assigned values by commands in the programp.

6.1 Features of Object Code Programs 183

For example, programidiv of Figure (5.2) satisfies̀ [Pre(n; d; a; l)]idiv[Post(n; d; a; l)], for
anyn; d; a; l 2 N . The variables which are used byidiv are: r0, r1, r2, r3, ref(r18), pc. The
specification ofidiv as a sub-routine will therefore be:` fr0; r1; r2; r3; ref(r18); pcg[Pre(n; d; a; l)]idiv[Post(n; d; a; l)]
The specification of sub-routines can be used during a proof of correctness as a specification of
programs which also describes whether the value of a variable is changed. Letchanges(N)(n) =�s : (9(n0 2 N) : n �(In;s) n0). The following proof rules allows the specification of sub-
routines to used during the verification of a program:` fNg[P]p[Q]` [P]p[Q] ` fNg[P]p[Q] ` P) :changes(N)(n)` [P ^ n =a v]p[Q ^ n =a v]
wheren 2 En andv 2 Values.

The specification of a sub-routine differs from the methods used to specify procedures of
structured languages. In general, a procedure operates on variableslocal to the procedure, which
may not be used by the program (Gries, 1981). However, languages, such as the C language
(Kernighan & Ritchie, 1978), allow a procedure to haveside-effects: a procedure can change
variables used by other parts of the program. The difficulty of verifying such procedures is
similar to the difficulty of verifying the sub-routines of object code programs.

6.1.4 Summary

The verification of a program is based on the flow-graph of the program (Floyd, 1967; Manna,
1974; Burstall, 1974). The data operations used by the program determine the difficulty of
reasoning about individual program commands. The structure of the program, defined by its
flow-graph, determines the difficulty of verifying the program. The proof methods of Floyd
(1967) and (Burstall, 1974), which are generally applied to high-level program, applyequally
to object code programs. However, the difficulty of verifying a program can depend onthe
approach taken to carrying out the proof. For example, verifying that a sub-routine satisfies
a general specification can avoid the need to repeatedly prove that the sub-routine establishes
particular properties.

It is always possible to develop proof methods specialised to the data operations and instruc-
tions of a particular processor. Such methods will not be generally applicable and can impose
limits on the approach used to verify programs. For example, proof rules can be defined (in
terms of the languageL) for the instructions of the M68000 processor. These will simplify
proofs involving the specifications of M68000 instructions. However, the rules cannot beap-
plied to the commands ofL and therefore cannot be applied to the abstraction of sequences of
M68000 instructions. The choice is therefore between simplifying reasoning about instructions
or simplifying reasoning about object code programs.

Methods for verifying programs ofL can be developed which support particular approaches
to carrying out a proof and which do not constrain other methods of proof. The data operations

6.2 Verification by Data Refinement 184

and the flow-graph of a program can be used to develop generally applicable verification meth-
ods. As examples, two approaches to verifying programs ofL will be described. The first uses
data refinement to generalise a single proof of correctness across different implementations of a
program. This is based on the use of data operations in an object code program and in a specifi-
cation. The second method allows a proof of correctness to be structured around the flow-graph
of the program. Both methods can be applied to any program ofL and both allow the use of
other techniques to simplify the proof of correctness.

6.2 Verification by Data Refinement

Object code programs are often produced by compiling a high-level program to a processor
language. A number of factors influence the choice of processor used and a single high-level
program may be compiled to several different processors. Verifying the objectcode of each
processor will repeat the proof of correctness of the high-level program. Data refinement (Hoare,
1972; Morris, 1989) allows a proof of correctness for a program to be specialised to theobject
code implementing that program. The approach is to define and verify an abstract program
which satisfies the specification of the high-level program. Each of the object code programs is
then shown to correctly implement the data operations of the abstract program (Hoare, 1972).
This establishes that each of the object code programs satisfies the specification of the high-level
program, specialised to the data operations of the object code.

Data refinement is based on manipulating specifications and requires the ability to reason
about the assertion language used to specify programs. The assertion languageA is sufficient
for the verification of programs ofL (and therefore any object code program) and to define the
operators needed for data refinement. However, it is not suitable for proofs by datarefinement,
which requires some method (such as an induction scheme on the structure of assertions) for
reasoning about the properties of assertions. Such an assertion language is outside the scope of
this thesis, which is concerned with program verification and not with the assertion language used
to specify programs. The description of data refinement given here will be concerned with the
data refinement of programs ofL. It will not be concerned with those aspects of data refinement
which require reasoning about the properties of assertions. A formal model of data refinement,
with a suitable assertion language, can be derived from those described by Hoare (1972) or
Morris (1989) (together with the substitution operators ofL which are needed to reason about
the name expressions ofL).

6.2.1 Data Refinement

Assumep is a program ofL which satisfies a specification made up of preconditionP and
postconditionQ, ` [P]p[Q]. If p is an abstract program than it can make use of variables and
operations which are not provided by a processor language. Programpl 2 P (modelling an object
code program) is a data refinement ofp if it correctly implements the variables and operations of

6.2 Verification by Data Refinement 185p in terms of the processor language. The implementation is correct if programpl satisfies any
specificationSl which describes the specificationS of programp in terms of the data operations
of pl. Variables of the abstract programp will normally be implemented by expressions inpl. The
specificationSl of pl can therefore be derived from the specificationS of p by replacing variables
in S with their implementation bypl. The variables ofp and their implementation inpl can be
described as an assignment listal which is substituted into specificationS to obtain specificationSl. If p satisfies specificatioǹ [P]p[Q] then the specification ofpl is ` [P / al]pl[Q / al]. It is
also useful to make data refinement conditional on a relationship between variables, described
by theabstraction invariantof the implementation. This describes the states in which the data
refinement must hold between the programs.

Definition 6.1 Data refinement of programs

A programp1 2 P is a data refinement ofp2 2 P under assignment listal and abstraction
invariantI 2 A iff p1 �I;al p2.� ; : (P � (A� Alist)� P)! booleanp1 �I;al p2 def= �8(P;Q : A) :(` [I ^ P]p1[I ^Q])) (` [I ^ (P / al)]p2[I ^ (Q / al)]) 2

Assume abstract programp1 satisfies preconditionP and postconditionQ and abstraction
invariantI, ` [I ^ P]p1[I ^Q]. If p2 data refinesp1 under assignment listal, p1 �I;al p2, thenp2
satisfies the specificatioǹ[I ^ (P / al)]p2[I ^ (Q / al)].
Theorem 6.1 Proof rule for data refinement

For anyp1; p2 2 P , al 2 Alist andP;Q; I 2 A,p1 �I;al p2 ` [I ^ P]p1[I ^Q]` [I ^ (P / al)]p2[I ^ (Q / al)]
Proof. Immediate, by definition of data refinement. 2

Data refinement is a form of program refinement and has some of the same properties.In
particular, data refinement is preserved by refinement.

Theorem 6.2 Properties of data refinement

For programsp1; p2; p3 2 P, I 2 A andal 2 Alist,

1. If programp2 is data refined by programp3 then any abstraction ofp2 is also data refined
byp3. p1 v p2 p2 �I;al p3p1 �I;al p3

6.2 Verification by Data Refinement 186

2. If programp1 is data refined byp2 then it is also data refined by any refinement ofp2.p1 �I;al p2 p2 v p3p1 �I;al p3
Proof. Straightforward by definition of data refinement (Definition 6.1) and the refinement rule
of programs (rule tl7). 2

To show that a programp2 is a data refinement of a programp1, it is enough to show that
every command inp1 is data refined byp2. The abstraction invariantI determines the states
in which the assignment listal implements the data refinement and must be preserved by every
command ofp1.
Theorem 6.3 Establishing data refinement

For c 2 C, p1; p2 2 P , c 2 C, al 2 Alist andA;B;A1; B1; P; Q; I 2 A,8c 2 p1 : 8A;B : (` A) wp(c; B))) (` I ^ A) wp(c; I ^B))^ ` (I ^ (P / al))) P^8c 2 p1 : 8A;B :` ((I ^ A)) wp(c; I ^ B)) [I ^ (A / al)]p2[I ^ (B / al)])p1 �I;al p2
Theorem (6.3) allows the data refinementp2 of a programp1 to implement a command ofp1 by any number of commands inp2. For example, an integer division operation in an abstract

program may be implemented as a sub-routine in the object code implementing the program.
The properties of Theorem (6.2) can be used to simplify a proof of data refinement by showing
that an abstraction of the implementation data refines the abstract program.

6.2.2 Application of Data Refinement

The form of data refinement used in Definition (6.1) is intended to simplify the verification
of different implementations of a single programp. Programp will typically be a high-level
program and its implementations produced by compilingp for different processors. Because
semantics for high-level languages are difficult to obtain,p will be taken to be a program ofL
(which may make use of operations not provided by a processor). Assume programsp1; : : : ; pn 2P model the object code programs implementingp on different processors. To show that each of
the implementations is correct would require a proof that eachpi satisfies the specification ofp
described in terms of the operations provided by the processor language ofpi.

Data refinement provides a simpler approach. First programp is shown to satisfy its specifi-
cation,` [P ^ I]p[Q ^ I], whereI 2 A is the abstraction invariant. Each implementationpi is
then verified by showing thatpi data refinesp, p �I;al pi (for al 2 Alist). This step will use The-
orem (6.3), to show that each command ofp is data refined by one or more commands ofpi. The

6.2 Verification by Data Refinement 187

correctness ofpi then follows from Theorem (6.1), which establishes` [I ^P /al]pi[I ^Q/al].
This approach is similar to that of Hoare (1972), where data refinement is used tosimplify the
program to be verified.

Program abstraction reduces the number of commands to be considered and can therefore
simplify both the proof of correctness and the proof of data refinement. The approach is to
construct an abstractionp0 of the abstract programp, p0 v p, containing only commands needed
to establish the specification,` [P ^ I]p0[Q ^ I]. An abstractionp0i will also be constructed for
each object code programpi, p0i v pi. The abstractions will then be shown to be a data refinement
of p0, p0 �al p0i. By Theorem (6.2), this is enough to establishp0 �al pi and, by Theorem (6.1),` [I ^ P / al]pi[I ^Q / al].
6.2.3 Example: Division

Consider the C program for natural division of Figure (5.1) which was compiled to object code
programs for both the M68000 and the PowerPC processors. As an example of the use of data
refinement, the verification of the PowerPC object code will be repeated by showing its model
in L (programppcdivof Figure 5.15) is a data refinement of an abstract program for natural
division. The abstract program will be derived from programidiv of Figure (5.2). This is an
implementation of the C program inL and was shown to be correct by verifying its abstraction
idiv2. Only two commands ofidiv2 were needed: commandsC1 andC2 of Figure (5.3). Letidiv3
be the programfC1; C2g; this will be the abstract program for the data refinement. Program
idiv3 can be shown to satisfy the specification ofidiv2, the proof is the same as foridiv2 (see
Chapter 5).

The programidiv3 will be used to verifyppcdivby showing thatppcdivis a data refinement
of idiv3. The approach is to show that the abstractionppcdiv2 of ppcdiv(given in Figure 5.16)
is a data refinement ofidiv3. By Theorem (6.2) and sinceppcdiv2 v ppcdiv, this will show that
ppcdivis a data refinement ofidiv3. The proof of data refinement is by Theorem (6.3). Programs
idiv3 andppcdiv2 are used to reduce the number of commands which must be considered during
the proof.

The specification satisfied byidiv3 is that ofidiv1 while the specification to be established by
ppcdiv2 is that ofppcdiv. Both specifications are given in Chapter 5 and are re-stated here in a
form more suitable for the proof of data refinement. The specification satisfied byprogramidiv3
has preconditionPrea(n; d; a; l) and postconditionPosta(n; d; a; l) for anyn; d; a; l 2 Values:

Prea(n; d; a; l) def= pc=32 l1 ^ d > 0 ^ r16 =32 n ^ r17 =32 d ^ r18 =32 a ^ r26 =32 l
Posta(n; d; a; l) def= pc=32 l ^ d > 0 ^ r18 =32 a ^ n =32 (r0 �32 d) +32 ref(a)

The specification to be satisfied byppcdiv2 has preconditionPrel(n; d; a; l) and postcondition
Postl(n; d; a; l):

Prel(n; d; a; l) def= pc=32 l1 ^ d > 0 ^ r3 =32 n ^ r4 =32 d ^ r5 =32 a ^ LR =32 l
Postl(n; d; a; l) def= pc=32 l ^ d > 0 ^ r5 =32 a ^ n =32 (r0 �32 d) +32 readl(a)

6.2 Verification by Data Refinement 188

Data refinement is intended to show that the correctness ofidiv3 establishes the correctness of
ppcdiv2: ` [Prea(n; d; a; l)]idiv3[Posta(n; d; a; l)]` [Prel(n; d; a; l)]ppcdiv2[Postl(n; d; a; l)]
The specifications differ from those in Chapter 5 only in explicitly specifying the value of the
program counterpc.

Implementation of Variables

To show thatppcdiv2 is a data refinement ofidiv3 requires an assignment listal and an in-
variant I 2 A. The assignment list describes the implementation of variables in the speci-
fication of idiv3 as expressions inppcdiv2. The variables ofidiv3 arepc; r16; r17; r18; ref(a)
andr26. With the exception ofpc, these are implemented inppcdiv2 as the PowerPC registers
r3; r4; r5; readl(a); LR respectively. This give the assignment list:al = (r16; r3) � (r17; r4) �(r18; r5) � (ref(a); readl(a)) � (r26; LR).

The program counter in bothidiv3 and inppcdiv2 is pc. However, the values required of the
program counter are different. Inidiv3, the value of the program counter is one of the labelsl1, l6 or l. In ppcdiv2, the program counter is one ofl1; : : : ; l10; l: programppcdiv2 contains
all commands ofppcdiv2 except those at labelsl1 andl8. Since only the commands ofppcdiv2
labelledl1 and l8 are needed, the program counter can be implemented by mapping the labell8 in ppcdiv2 to the labell6 in idiv3. This uses the conditional expressioncond 2 E described
in Chapter 5 and defined in Appendix A. In the assignment listal, the replacement forpc is
the expressioncond(pc =32 l8; l6; pc) (which is equivalent tol6 when pc =32 l8). The full
assignment listal is therefore:al =(pc; cond(pc=32 l8; l6; pc)) � (r16; r3) � (r17; r4)� (r18; r5) � (ref(a); readl(a)) � (r26; LR)

Assignment listal is used to show that̀ [I ^Prea(n; d; a; l)]idiv3[I ^Posta(n; d; a; l)] estab-
lishes̀ [I^(Prea(n; d; a; l)/al)]ppcdiv2[I^(Posta(n; d; a; l)/al)]. To see that the assignment list
correctly implements the variables ofidiv3 and therefore establishes the correctness ofppcdiv2,
note that(Prea(n; d; a; l)/al) = Prel(n; d; a; l) and(Posta(n; d; a; l)/al) = Postl(n; d; a; l). For
example, the precondition ofppcdiv2, Prel(n; d; a; l), is obtained by:

Prea(n; d; a; l) / al= (pc=32 l1 ^ d > 0 ^ r16 =32 n ^ r17 =32 d ^ r18 =32 a ^ r26 =32 l) / al= pc=32 l1 ^ d > 0 ^ r3 =32 n ^ r4 =32 d ^ r5 =32 a ^ LR =32 l= Prel(n; d; a; l)

6.2 Verification by Data Refinement 189

Abstraction Invariant

The abstraction invariant for the data refinement betweenidiv3 and ppcdiv2 must satisfy the
two conditions of Theorem (6.3). LetabsInv(n; d; a; l) 2 A (wheren; d; a; l 2 Values) be the
abstraction invariant defined:

absInv(n; d; a; l) def= 8>><>>: (pc=32 l1 _ pc=32 l6 _ pc=32 l)^pc=32 l1) Prea(n; d; a; l)^pc=32 l6) Inv(n; d; a; l)^pc=32 l) Posta(n; d; a; l)
whereInv(n; d; a; l) is the loop invariant foridiv2 defined in Chapter 5.

The abstraction invariantabsInv(n; d; a; l) satisfies the conditions of Theorem (6.3). The
first, ` (absInv(n; d; a; l) ^ (Prea(n; d; a; l) / al))) Prea(n; d; a; l), is immediate by definition
of Prea which requirespc =32 l1. The second, that for any commandc 2 idiv3 andA;B 2 A:` (A) wp(c; B))) absInv(n; d; a; l) ^ A) wp(c; absInv(n; d; a; l) ^ B) is straightforward.
Sincec is eitherC1 orC2, the proof is similar to that used to verify programidiv2.
Proof of Data Refinement

To show thatppcdiv2 data refinesidiv3, each specification satisfied by a command ofidiv3 must
be satisfied byppcdiv2 (Theorem 6.3). The proof is by Theorem (6.3) and, since there are two
commands inidiv3, is in two parts. Both require a proof that for anyA;B 2 A andc 2 fC1; C2g:`(absInv(n; d; a; l) ^ A)) wp(c; I ^ B)) [absInv(n; d; a; l) ^ A / al]ppcdiv2[absInv(n; d; a; l) ^ B / al]
The proofs for bothC1 andC2 require reasoning by induction about the (arbitrary) assertionA.
The assertion languageA does not support such reasoning and the proof here will only describe
the steps needed to establish data refinement. Only two commands ofppcdiv2 are needed: the
command labelledl1 andl8 given in Figure (5.16). The command labelledl1 will be referred to
asC11 and the command labelledl8 will be referred to asC18.

For c = C1: sinceC1 is an assignment command labelled withl1 (Figure 5.3), the asser-
tion absInv(n; d; a; l) ^ A) wp(C1; absInv(n; d; a; l) ^ B) can be replaced bypc =a l1 ^(absInv(n; d; a; l) ^ A)) (absInv(n; d; a; l) ^ B) / bl1 wherebl1 is the assignment list ofC1
(this uses the assignment rule tl1). This must establish the specification[absInv(n; d; a; l) ^A / al]ppcdiv2[absInv(n; d; a; l) ^ B / al]. Sincepc =a l1, it follows that commandC11 of
ppcdiv2 is enabled. Since this is an assignment command labelled withl1, the proof requires
pc =a l1 ^ absInv(n; d; a; l) ^ (A / al)) (absInv(n; d; a; l) ^ B / al) / bl2 wherebl2 is the
assignment list ofC11. The assertion to prove is therefore:`pc=a l1 ^ (absInv(n; d; a; l) ^ A)) (absInv(n; d; a; l) ^ B) / bl1) (pc=a l1 ^ absInv(n; d; a; l) ^ (A / al)) (absInv(n; d; a; l) ^B / al) / bl2)

6.2 Verification by Data Refinement 190

The truth of this assertion is straightforward, by definition ofabsInv(n; d; a; l) and by substitu-
tion of al, bl1 andbl2. The truth of assertionA / al can be established from the truth ofA and
absInv(n; d; a; l). The invariant requires the values of the variables ofidiv2 and their implemen-
tation inppcdiv2 to be equal at labell6. Any other variable used byA is not replaced inA / al.
Note that this is a property which must be established by induction onA and therefore cannot be
established in the assertion languageA.

To show that postcondition(B / al) / bl2 is established byB / bl1, note that every variable
of idiv3 assigned a value (bybl1) is replaced (byal) with its implementation inppcdiv2. The
assignment listbl2 then updates the variables ofppcdiv2 with the values assigned byidiv3. As
before, any variable used byB which is not assigned a value byidiv3 is not assigned to by
ppcdiv2. The assertion(B / al) / bl2 is therefore satisfied byB / bl1. This completes the first
step, showing that commandC1 of idiv3 is data refined byppcdiv2.

The second step, showing that commandC2 is data refined byppcdiv2 is similar to the first.
The proof is by showing that any specification satisfied byC2 is satisfied byC18, after replacing
the variables ofidiv3 with their implementation inppcdiv2. This establishes thatC18 of program
ppcdiv2 data refines commandC2 of idiv3. Since there are only two commands inidiv3, the two
steps establish thatppcdiv2 is a data refinement ofidiv3 under assignment listal and invariant
absInv(n; d; a; l): idiv3 �absInv(n;d;al);al ppcdiv3. The correctness ofppcdiv2 then follows from
the correctness ofidiv3.

Note that programidiv models an object code program for the Alpha AXP processor imple-
menting the C program for natural division and the PowerPC programppcdivwas also obtained
by compiling this C program. The proof thatidiv3 is data refined byppcdiv2 is therefore an
example of how a proof of correctness for a single program can be transferred between the im-
plementations of the program on different processors.

6.2.4 Related Work

The approach to data refinement used here is simpler than others, such as those of Hoare (1972),
Morris (1989) and Abadi & Lamport (1991). These provide a more powerful form of data re-
finement which allows reasoning about programs which operate on distinct variables and values.
The approach used here is sufficient for the relatively simple requirements ofverifying different
implementations of a program. Note that no part of the approach used here nor of the standard
methods (Hoare, 1972; Morris, 1989; Abadi & Lamport, 1991) is specific to a particular lan-
guage. At the cost of a more complex development, the more powerful methods can be equally
well applied to the abstract languageL

6.3 Structured Proofs 191

6.3 Structured Proofs

Verification in a structured language uses the syntax of a program to derive specifications of the
program commands from the specification of the program. This is the reverse of verification
in a flow-graph language (such asL), where the specification of a program is built up from
specifications of the commands (rule tl6 of the program logic). As an example of a proof method
which can be applied to any program ofL, a technique will be described which allows the
verification of a program to be based on the flow-graph of the program. The method uses regions
of a program to define a structure which can be used to break down a program specification to
specifications of individual program commands.

The method is based on a predicate transformer for regions,wp, which interprets a regions
as a discrete unit of a program. Ifr is a region, thenwp(r; Q) is the weakest precondition
required forr to terminate in a state satisfying postconditionQ. The functionwp is based on the
flow-graph of a region and on the weakest precondition of the commands making up the region.
This is similar to the definition of awp predicate transformer for the compound commands of a
structured language (Dijkstra, 1976). The main difference is the treatment of loops in a program.
A structured language permits only nested loops and each loop can be verified as a discrete
component of the program. A region can contain both nested and interleaving loops. Loops in a
region must therefore be considered in terms of the paths between the cut-points of the region.

6.3.1 Weakest Precondition of Regions

Thewp function for regions is defined in two steps. In the first, a functionwp0 is defined which
describes the weakest precondition of a loop-free sequence of commands, beginning withthe
head of the region. This is used to establish the properties of a path between cut-points of a
region. Functionwp0 is used in the second step to derive a function,wp1, describing the weakest
precondition needed to establish a postcondition by executing paths in a region any number of
times. The functionwp1 does not require the region to terminate and thewp function for regions
is obtained by strengthening functionwp1 to require that the region terminates.

Weakest Precondition of Paths

Functionwp0 is defined by recursion on regionr. If Q is the postcondition to be established by
regionr thenwp0(r; Q) is the weakest precondition needed for the head ofr to establish assertionq. Assertionq is either the postconditionQ or the weakest precondition needed for a sub-regionr0 2 rest(r) to establishQ, q0) wp0(r0; Q). The recursive definition ofwp0 constructs a
series of intermediate assertions for each sub-regionr0. These describe the specifications to be
established by each command in a path beginning with the head of the region. The path must
end in a state in which no command, other than the head of the region, is enabled. Ifr is a unit
region thenwp0(r; Q) is wp(head(r); Q) (the only path throughr is made up of the head ofr).

6.3 Structured Proofs 192

Definition 6.2 Weakest precondition of paths

For any setA of assertions,
WA is true in a states iff there is an assertion inA which istrue in s.W : Set(A)! AWA def= �(s : State) : 9a : a 2 A ^ a(s)

For any regionr and assertionQ, wp0(r; Q) is the weakest precondition required to establishQ
by executing any path throughr.

wp0 : (R�A)!A
wp0(r; Q) def= �

wp(head(r); Q) if unit?(r)
wp(head(r); Q0) otherwise

whereQ0 = (_(fq : A j 9(r1 : R) : r1 2 rest(r) ^ (8s : q(s)) wp0(r1; Q)(s))g[f(final?(body(r)� fhead(r)g) ^Q)g) 2
Becausewp0 is defined by recursion, the proof that a regionr satisfies its specificatioǹ P)
wp0(r; Q) can be carried out by induction onr (Theorem 4.9).

The weakest precondition of a regionr, wp(r; Q), is derived from the weakest precondition
needed for one or more paths through the region to establish a postcondition,wp1(r; Q). A
path through regionr is constructed as amaximal sub-region: the largest sub-region ofr which
can be constructed from some command ofr. The weakest liberal preconditionneeded forr
to establish postconditionQ is an assertion,wp1(r; Q), such that execution, in sequence, of any
number of maximal sub-regions ofr in a state satisfyingwp1(r; Q) eventually produces a state
satisfyingQ. It is not necessary for execution ofr to terminate. To establish termination, the
functionwp(r; Q), requires thatr produces a state satisfyingQ which is final forr.
Definition 6.3 Weakest precondition of a region

Regionr1 is a maximal sub-region ofr2, writtenr1 < r2 iff r1 is the largest region which can be
constructed from the body ofr2, beginning with any command ofr2.< : (R�R)! booleanr1 < r2 def= 9c : c 2 body(r2) ^ r1 = region(label(c); body(r2))
For regionr 2 R and assertionQ 2 A, wp1(r; Q) 2 A is the weakest liberal precondition
required forr to establish assertionQ. Functionwp1 has type(R � A) ! A and inductive
definition:

wp0(r; Q)(s)
wp1(r; Q)(s) wp1(r; q)(s) r1 < r ` q) wp0(r1; Q)

wp1(r; Q)(s)
wherer1 2 R, q 2 A ands 2 State.

6.3 Structured Proofs 193

For regionr and assertionQ, wp(r; Q) is the weakest precondition required forr to terminate
and establish assertionQ.

wp : (R�A)!A
wp(r; Q) def= wp1(r; Q ^ final?(r)) 2

The weakest liberal precondition,wp1, is the transitive closure of the weakest precondition
for paths,wp0. Properties of the weakest precondition of regions,wp, will generally be es-
tablished by reasoning about the weakest liberal precondition functionwp1 since functionwp0
simply strengthens the postcondition established bywp1.
6.3.2 Properties of the Weakest Precondition

The weakest precondition for paths has many of the properties of a maximal trace.If there is only
one command in a regionr, then the weakest precondition of a path is the weakest precondition
of the head ofr. If there is more than one command then the weakest precondition for a path
throughr can be established from the weakest preconditions for the head ofr (which begins the
path) and for anyr0 2 rest(r) (which describes the remainder of the path).

The weakest liberal precondition,wp1, specifies the transitive closure of maximal traces
throughr, beginning with the head ofr. Formally, functionwp1 satisfies the equation:

wp1(r; Q)(s), (enabled(r)(s) ^ (9t : mtrace+(body(r); s; t)) ^Q(t)))
wherer 2 R,Q 2 A ands; t 2 State(see Lemma E.4 of the appendix). When the postcondition
to be established by the region requires a final state, the weakest liberal precondition specifies
the total correctness of a region. The weakest precondition of a region,wp(r; Q), strengthens
postconditionQ to require termination ofr.
Theorem 6.4 Properties ofwp

AssumeP;Q 2 A , s; t 2 State,r 2 R. The assertionwp(r; Q) is the weakest precondition
needed to establishQ by a terminating execution of regionr.

wp(r; Q)(s), (9t : Ir(r)(s; t) ^Q(t))
Reasoning about the weakest precondition,wp, of a region is simpler when considering the

weakest liberal precondition,wp1. Proof rules forwp1 use the transitive closure of maximal
traces to describe the behaviour of sequences of commands in the region. Proof rules forwp0
can be used to reason about the individual commands making up the sequences specified bywp1.
These two functions are enough when reasoning about the specification of loop-free regions.
However, to prove that a region containing a loop establishes a postcondition, it is necessary to
use some form of induction (Floyd, 1967). Induction schemes for the regions can be derived from
induction on a well-founded set (Loeckx & Sieber, 1987) with elements of the set representing
decreasing values of variables used in the region.

6.3 Structured Proofs 194

unit?(r) ` P) wp(head(r); Q)` P) wp0(r; Q) (tl20)r1 2 rest(r) ` P) wp(head(r); q) ` q) wp0(r1; Q)` P) wp0(r; Q) (tl21)r1 < r ` P) wp1(r; q) ` q) wp1(r1; Q)` P) wp1(r; Q) (tl22)j < i r1 < r ` enabled(r1) ^ F (j)) wp1(r1; Q)` F (i)) wp1(r; Q)` F (n)) wp1(r; Q) (tl23)r � r1 ` P) wp(r1; Q)` P) wp(r; Q) (tl24)

body(r) � p ` P) wp1(r; Q)` [P]p[Q] (tl25)

wherer; r1 2 R, i; j; n 2 N andP;Q; q 2 A
Figure 6.1: Proof Rules for the Regions

Theorem 6.5 General induction

Let T be some type and� a well founded relation of type(T � T) ! boolean. There is a
well founded induction scheme on assertions indexed by the typeT . For G : T ! A, Q 2 A,r; r1 2 R, i; j; n 2 T ands 2 State:j � i r1 < r ` enabled(r1) ^G(j)) wp1(r1; Q)` G(i)) wp1(r; Q)` G(n)) wp1(r; Q)
The induction scheme of Theorem (6.5) is equivalent to the intermittent assertionsmethods
(Burstall, 1974; Cousot & Cousot, 1987). A simple induction scheme based on the natural
numbers, similar to that used for the programs (rule tl9), is straightforwardto derive from the
induction scheme of Theorem (6.5).

6.3 Structured Proofs 195

strcopy: li r3, 0 l1 : r3 := Long(0); l2
loop: lbzx r4, r3, r1 l2 : r4 := ref(r1 +32 r3)); l3

stb r4, r3, r2 l3 : ref(r2 +32 r3) := r4; l4
addic 3, 3, 1 l4 : r3 := r3 +32 1; l5
cmpwi 1, r3, 0 l5 : CRF := calcCRF(r4); l6
bc 4, 5, loop l6 : if bit (2)(CRF) then gotol2 else gotol7
blr l7 : goto loc(LR)

PowerPC program L programstrcopy

Figure 6.2: String Copy

Proof Rules

Both functionwp1 and functionwp can be used to reason about programs. Both establish that
a region eventually produces a state satisfying a postcondition. If the region is a subset of a
program, then the program must also produce that state. The weakest precondition,wp, also
allows a region to be replaced with an equivalent region. During the course of a proof, this can
be used to manipulate the region being verified.

Proof rules for the regions are given in Figure (6.1). Rule (tl20) and rule (tl21) derive the spec-
ification of a path in a regionr from the specifications of paths in sub-regions ofr. Rule (tl22)
breaks down the specification of a region into a specification to be establishedby a maximal
sub-region. This rule is similar to the composition rule in structured languages (Dijkstra, 1976).
Rule (tl23) is an induction scheme for regions based on the natural numbers. Rule (tl24)allows
regionr to be replaced with an equivalent region and rule (tl25) relates the specification of a
region in a program to the program.

6.3.3 Example: String Copy

For an example of the use of regions to verify a program, consider the PowerPC programof
Figure (6.2). This copies the contents of an arraya into an arrayb. Both arrays are identified by
their address in memory: the address of the first element ofa is stored in registerr1, the address
of the first element ofb is stored inr2. The end of arraya is identified by an element containing
the value0. The program uses the conventions of the C language, where a string is identified by
its first element and terminated by a null character (Kernighan & Ritchie,1978).

The PowerPC program is modelled by theL programstrcopyof Figure (6.2). Program
strcopy1 of Figure (6.3) is an abstraction ofstrcopy, strcopy1 v strcopy. Programstrcopy1 is
constructed using the methods described in Chapter 4: a region is formed beginning with the

6.3 Structured Proofs 196C1 = l1 :r3 := Long(0); l2C2 = l2 :if ref (r1 +32 r3) =32 0
then r4; ref(r2 +32 r3); r3;CRF :=

ref(r1 +32 r3); ref(r1 +32 r3); r3 +32 1;
calcCRF(ref(r1 +32 r3)); loc(LR)

else r4; ref(r2 +32 r3); r3;CRF :=
ref(r1 +32 r3); ref(r1 +32 r3); r3 +32 1;
calcCRF(ref(r1 +32 r3)); l2

Figure 6.3: Abstractionstrcopy1 of strcopy

command labelledl1 and excluding the command atl7, this is abstracted by applying the general
transformationT2. The resulting commands are composed with the command ofstrcopyat labell7. The commands ofstrcopy1 will be referred to asC1 andC2
Specification ofstrcopy1
The specification to be satisfied bystrcopy1 requires that, given the address of two arrays,a; b,
the program copies the contents ofa into b. The preconditionPre(a; b; l; n) 2 A requires that the
link registerLR contains the labell to which control is to return. No command in the program
can be labelled withl. The precondition also requires thatnth element of the arraya is the first
null character. The postconditionPost(a; b; l; n) 2 A requires that arrayb is equal to arraya.

Pre(a; b; l; n) def= �
LR =32 l ^ :(l =32 l1 _ l =32 l2) ^ ref(a +32 n) =32 0^8(�i : i <a n) :ref(a+32 i) =32 0)

Post(a; b; l; n) def= 8<: LR =32 l ^ ref(a+32 n) =32 0^8(�i : i <a n) :ref(a+32 i) =32 0)^8(�i : n �a i) ref(a+32 i) =32 ref(b +32 i))
The specification to be satisfied bystrcopy1 is, for anya; b; n; l 2 N :` [pc=32 l1 ^ Pre(a; b; l; n)]strcopy1[pc=32 l ^ Post(a; b; l; n)]
Verification of strcopy1
Programstrcopy1 will be verified by constructing a regionr of the program and showing that
this region satisfies the specification. Regionr begins at labell1 and contains the two commandsC1 andC2: r = region(l1; fC1; C2g). The specification to be satisfied byr is defined as a single

6.3 Structured Proofs 197

assertionspec(i; a; b; l; n), which indexes the properties required of the region by the value of
the program counter. The properties described byspec(i; a; b; l; n) will also be used during the
proof of correctness. For example, the invariant of the loop at commandC2 is described by
spec(i; a; b; l; n), wherei 2 N is value on which the induction rule (tl23) is based. Fori; a; b; l; n,
assertionspec(i; a; b; l; n) is defined:

spec(i; a; b; l; n) def= 8>>>><>>>>: Pre(a; b; l; n)^pc=32 l2)i =32 (n�32 r3)8(�i : i <a r3) ref(a+32 i) =32 ref(b +32 i))^pc=32 l)i =32 (n�32 r3)8(�i : i <a r3) ref(a+32 i) =32 ref(b+32 i))
Using the value of the program counter to index the properties of the specification is similar to
approach used by Burstall (1974) to apply the method of intermittent assertions.

The specification to be satisfied by regionr is, for anyi; a; b; l; n 2 N :` (pc=32 l1 ^ spec(i; a; b; l; n))) wp(r; pc=32 l ^ spec(0; a; b; l; n))
Regionr is verified by deriving the intermediate specifications to be established by commands of
the region from the specification of the region. This approach contrasts with methoddescribed
in Chapter 4 in which the program commands are shown to establish intermediate specifications
from which the program specification is derived.

The verification of regionr proceeds as follows:

1. By definition,` pc =32 spec(0; a; b; l; n)) final?(r). The predicate transformerwp can
therefore be replaced withwp1 and the specification to be satisfied is:` (pc=32 l1 ^ spec(i; a; b; l; n))) wp1(r; pc=32 l ^ spec(0; a; b; l; n))

2. Rule (tl23) is applied for a proof by induction oni. There are two cases, wheni = 0 and
wheni > 0. Let r1 = unit(C2); in both cases ofi. If follows that bothr1 2 rest(r) andr1 < r aretrue. Also note thathead(r) = C1 andhead(r1) = C2.
(a) Base case,i = 0: By definition ofwp1 it is only necessary to show that` pc =32l1 ^ spec(0; a; b; l; n)) wp0(r; pc =32 l ^ spec(0; a; b; l; n)). This is by repeated

application of rule (tl20) and rule (tl21).`pc=32 l1 ^ spec(0; a; b; l; n)) wp(head(r); pc=32 l2 ^ spec(0; a; b; l; n))`pc=32 l2 ^ spec(0; a; b; l; n)) wp(head(r1); pc=32 l ^ spec(0; a; b; l; n))
Both these assertions can be established from commandsC1 andC2. The specifica-
tion ` pc =32 l1 ^ spec(0; a; b; l; n)) wp0(r; pc =32 l ^ spec(0; a; b; l; n) follows
from the proof rules.

6.3 Structured Proofs 198

(b) Inductive case,i > 0: The proof is similar to that for the base case with the ex-
ception that the specification must establish the inductive hypothesis. This requires
assertionsspec(i � 1; a; b; l; n) andenabled(r0) (for somer0 < r) to be established
by wp0(r; pc =32 l2 ^ spec(i � 1; a; b; l; n)). Since the postcondition to be es-
tablished in this case includespc =32 l2, a regionr0 can be constructed asr0 =
region(l2; strcopy1). The label of regionr0 is l2 andr0 is enabled whenpc =32 l2.
By definition of region, the only command inr0 is C2; region r0 is therefore re-
gion r1, r0 = unit(C2). Control does not pass from commandC2 to commandC1::(C2 7�! C1).
The proof, as for the base case, is by the application of rule (tl20) and rule (tl21).
The assertion to be proved is̀ pc =32 l1 ^ spec(i; a; b; l; n)) wp0(r; pc =32l2 ^ spec(i� 1; a; b; l; n)). This requires the following assertions:`pc=32 l1 ^ spec(i; a; b; l; n)) wp(head(r); pc=32 l2 ^ spec(i; a; b; l; n))`pc=32 l2 ^ spec(i; a; b; l; n)) wp(head(r1); pc=32 l2 ^ spec(i� 1; a; b; l; n))
Showing thatr establishespc =32 l2 ^ spec(i � 1; a; b; l; n)) allows the inductive
hypothesis to be satisfied. The hypothesis establishes the property` enabled(r1) ^
spec(i � 1; a; b; l; n)) wp(r1; pc =32 l ^ spec(0; a; b; l; n)). From rule (tl22) and
from the assertioǹ pc =32 l1 ^ spec(i; a; b; l; n)) wp0(r; pc =32 l2 ^ spec(i �1; a; b; l; n)), this establishes:` pc=32 l1 ^ spec(i; a; b; l; n)) wp1(r; pc=32 l ^ spec(0; a; b; l; n))
This completes the proof for this case.

Verifying that the regionr establishes its specification is enough to show that the program
strcopy1 satisfies:` [pc=32 l1 ^ spec(n; a; b; l; n)]strcopy1[pc=32 l ^ spec(0; a; b; l; n)]
From the weakening rule (tl10) and the strengthening rule (tl11) for programs, and fromthe truth
of assertions: ` pc=32 l1 ^ Pre(a; b; l; n)) pc=32 l1 ^ spec(n; a; b; l; n)` pc=32 l ^ spec(0; a; b; l; n)) pc=32 l ^ Post(a; b; l; n)
the specification of the program,` [Pre(a; b; l; n)]strcopy1[Post(a; b; l; n), is established from the
specification of the region.

6.3.4 Verifying Regions of a Program

Because a region of a program can be considered as a program, verifying that a regionestablishes
a postcondition is equivalent to verifying a program. Thewp function for the regions is therefore

6.4 Conclusion 199

an instance of the methods of Floyd (1967) and Burstall (1974) for proving program correctness.
The weakest precondition functions for regions of a program allow program verification to be
based on the flow-graph of a program. The transformationT2 requires the ability to mechanically
construct regions of a program. The weakest precondition transformers for regions allow the use
of the tools which construct regions during program verification.

The weakest precondition transformers can also be used to establish the correctness of region
transformations which consider only the external behaviour of a region. These are typically the
transformations used in compilation and code optimisation. If the compiling transformationTc
is applied to regionr, it must construct a regionTc(r) which terminates wheneverr terminates
and which produces the same states asr: Ir(r)(s; t)) Ir(Tc(r))(s; t). This is the definition
of refinement in structured languages (see Chapter 4) and can be specified by thewp predicate
transformer (as̀ wp(r; Q)) wp(Tc(r); Q), for anyQ 2 A). Code optimising transformations
are generally defined on the flow-graph of a region and thewp function allows the use of the
flow-graph to verify the optimising transformation.

Because only the external behaviour of a region is considered, thewp transformer is not
enough when considering program refinement and abstraction. Program refinement considers all
states produced by a program (such as the body of a region) while the interpretation of regions
considers only the states in which a region begins and ends. The interpretation of regions is
therefore not enough when considering the abstraction of programs: forr1; r2 2 R, it is not
possible to establishbody(r1) v body(r2) from 8s; t : Ir(r1)(s; t)) Ir(r2)(s; t). Furthermore,
thewp transformer cannot be used to show that abstracting transformations are correct. If regionr contains an infinite loop and never terminates,:Ir(r)(s; t) for all s; t 2 State, there is no
regionr0 such that̀ wp(r0; Q)) wp(r; Q) (because this requires(9t : Ir(r0)(s; t))) 9t :Ir(r)(s; t)).

The refinement relation of regions is a more powerful approach to comparing the behaviour
of regions than thewp transformers for regions. The refinement relation (as well as transforma-
tionsT1 andT2) considers both the internal and the external behaviour of regions. The internal
behaviour of a region allows refinement between regions to establish refinement between the
programs making up the regions. This reflects the main use of regions as a vehicle fortrans-
forming programs, rather than as a method for structuring programs during verification. Because
both the internal and external behaviour of a region are considered by the refinement relation, it
is possible to show that transformations abstract from regions; that the transformed region also
abstracts from programs and that the abstraction preserves the failures of the regions.

6.4 Conclusion

Processor languages differ from each other in the syntax of the instructions and in the data op-
erations used by the instructions. However, these differences are superficial. The object code
of all processor languages are programs which make changes to variables. The instructions and
data operations of a processor do not affect the basic function of a program, which is toestablish

6.4 Conclusion 200

the properties required by its specification. It is therefore unnecessary to develop proof methods
especially for the verification of object code. Any such proof method will be equivalent to the
method of inductive assertions (Floyd, 1967) or the method of intermittent assertions(Manna,
1974; Burstall, 1974). This follows from the fact that object code is simply a program ofa pro-
cessor language. The method used to verify object code is therefore the same as the method used
to verify any program: the properties of interest are described in terms ofprogram variables and
proof is based on the paths and loops in the program flow-graph. The only features introduced
by object code programs are the models for data, which allow pointers, and for execution, which
permit interleaving loops. The properties of these features can be establishedusing operators
provided by the languageL and the methods of Floyd (1967) or Burstall (1974).

A number of proof methods have been developed to simplify reasoning about programs (see
Cousot, 1981). These are, generally, intended for program verification in a systemof logic, rather
than by reasoning directly about the semantics of a programming language. The application of
these methods to programs of the abstract languageL is straightforward. Two proof methods
were described in this chapter. The first is based on data refinement (Morris, 1989) and provides
a means for justifying a single proof of correctness for a program implemented on a number of
processors. The approach taken relies on the use of a program logic to describe the effect on spec-
ification of implementing a program in a processor language. This allows the implementation of
a correct program to be verified by showing that it data refines the program.

The second proof method allows the flow-graph of a program to be used in a proof of cor-
rectness. This presumes that tools for constructing and manipulating a region areavailable. This
assumption can be satisfied by a system which abstracts from programs using theprogram trans-
formationsT1 andT2. Separate tools are straightforward to construct, using the flow-analysis
techniques of code optimisation (Hecht, 1977; Aho, Sethi & Ullman, 1986). The method for rea-
soning about flow-graphs using the weakest precondition functions,wp1 andwp, is essentially
the method of intermittent assertions (Manna, 1974; Burstall, 1974). The main feature of this
proof method is that it can be applied to any program ofL. As a consequence, it is an example
of a proof method which can be applied to the object code of a range of processors.

The proof methods described in this chapter are examples of a general feature of the ab-
stract languageL. Because the correctness ofL programs is independent of any particular proof
method, the proof methods which have developed for program verification can be applied to the
programs ofL. The two proof methods described in this chapter can both be applied to any
program implemented in any processor language. The first provides a way of simplifying the
verification of a single program implemented across different processors. Thesecond exploits a
feature (the program flow-graph) common to all object code programs of all processor languages.
This reflects one of the main uses of the languageL: to generalise methods for verifying pro-
grams across different processor languages. Developing the methods for the languageL means
they can be applied to verify arbitrary object code programs.

Chapter 7

Verification of the Theory

The methods described in this thesis are intended, first, to allow object code programs to be
verified and, second, to simplify verification by manipulating the text of programs. To ensure the
correctness of the methods, the theory presented in Chapters 3, 4 and 6 has been verified using
the PVS theorem prover (Owre et al., 1993). This allows the theorems and rules for manipulating
programs ofL to be used without the need to repeat the proof of the theory. It also ensures that
the languageL can be defined in terms which can be manipulated by a theorem prover. This
allows the methods described in this thesis to be implemented as an automated proof tool and
also allows a wide range of techniques to be used for the implementation. For example, the rules
for the substitution operator can be implemented either by a simplification procedure (applying
the rules as theorems of a logic) or by a decision procedure (which operates directly on theL
expressions).

The verified theory includes all theorems and lemmas, the substitution rules and the proof
rules of the program logic. It does not include the example programs, which are not part of
the theory needed for program verification. There is a difference between the verification of a
mathematical theory and its implementation as an automated proof tool for program verification.
The work with PVS verifies the theory on which automated tools will be based. Theimplemen-
tation of a proof tool must consider the issues common in program development, such as the
representation of the languageL and the algorithms used to analyse and manipulateL programs.
The implementation must also take into account issues specific to automatedproof tools, such as
the procedures needed to reason about the logical formulas making up a program specification.
Some of the issues involved in implementing the methods described in this thesis as a proof tool
will be considered. However, the implementation of proof tools is outside the scope ofthis the-
sis. A description of methods for implementing proof tools is given by Duffy (1991) and Boulton
(1994), among others.

This chapter describes the use of the PVS system to verify the theory and the relationship
between the proofs carried out in PVS and the mathematical proofs of the theoremsand lemmas
(given in Appendix C and Appendix D). The PVS system is described inSection 7.1. This is
followed, inSection 7.2, by a description of the use of PVS to develop the theory. This will also

201

7.1 The PVS System 202

consider the relationship between mathematical and mechanical proofs. The verification of the
theory in PVS will be described inSection 7.3. The implementation of the theory in a proof tool
is discussed inSection 7.4.

7.1 The PVS System

The PVS system is based on an interactive theorem prover for typed higher order logic (Owre,
Rushby & Shankar, 1993) and is intended for reasoning about logical specifications. A number
of facilities simplify the use of PVS, including a user interface and automated management of
specifications and proofs. Specifications are defined as theories, made up of definitions, axioms
and theorems, in a specification language based on higher order logic. The PVS specification
language supports user defined data types and function definition by primitive recursion. Aproof
is carried out manually, by issuing commands which invoke the proof procedures of the theorem
prover. The theorem prover also provides a simple scripting language, to allow the definition
of commands using the primitive commands of the proof tool. The proof procedures of PVS
include rewriting, decision procedures for simple logical formulas and for integerarithmetic. A
proof in PVS (as in other theorem provers) is the series of commands which must beissued to
the theorem prover to show that a formula is true.

Proof tools have been developed which use the PVS system to simplify and carry outproofs
(Skakkebaek and Shankar, 1994; Jacobs et al., 1998). These are based on implementing alterna-
tive user interfaces to the PVS system, rather than by making direct use of the PVS components.
Support for extensions to the PVS system is limited and more restrictive thanis provided by tools
such as the Isabelle or HOL theorem provers (Paulson, 1995a; Gordon & Melham, 1993). The
Isabelle and HOL theorem provers are intended to provide a framework in which proof tools can
be implemented. These systems support the development of proof tools based on the theorem
provers by providing and documenting access to the procedures and data representation of the
theorem prover. In contrast, access to the procedures of the PVS theorem prover is limited and
extending the PVS system is a non-trivial task. This reflects the PVS system’sintended use as
a general proof tool for reasoning about specifications rather than a framework in which other
proof tools can be developed.

7.1.1 The PVS Specification Language

A PVS specification is organised as modules, calledtheories, in which types, functions and
variables are specified and logical formulas given as axioms or theorems. Functions and types
can be arguments to modules and can also be referred to by other modules. Logical formulas can
be presented as axioms, which are assumed to betrue, or theorems, which must be proved. A
logical formula is any expression ranging over the booleans. The usual operators areavailable
and include logical equivalence, syntactic equality, the universal and existential quantifiers and
the Hilbert epsilon. Formulas expressing equivalence can be used by the prover asrewrite rules.

7.2 Development of the Theory 203

A type is either declared without definition or is defined by enumeration, as an abstract data
type or as a subtype by predicates on the values of an existing type. Types provided by PVS
include the natural numbers, booleans and infinite sequences of a given type. The definition of
an abstract data type (ADT), which may be parameterised, generates a theory containing the def-
initions and declarations needed for its use. In particular, the sub-term relation,�, is generated
by the PVS theorem prover for each recursively defined abstract data type. Thedefinition of an
ADT has the form:

name[p1; : : : ; pn] : datatypebegin
cons1(acc1 : T(1;1); : : : ; acck : T(1;k)) : rec1

...
consm(acc1 : T(m;1); : : : ; acc(m;j)) : recmend name

The ADT identifier isname, eachpj is a parameter to the type and eachconsi is a constructor. For
each constructorconsi there are one or more accessor functionsaccl ranging over typeT(i;l). Each
reci is a predicate on instances of the ADT acting as a recogniser for the associated constructor,
consi, such thatreci(x) for x of typenameis true iff x is constructed withconsi.

Predicates are functions ranging over booleans and sets of a type are treated aspredicates
on elements of that type. Functions may be defined by primitive recursion and functions, and
some operators, may be overloaded. A limited form of polymorphism is supported: if typeT is
an argument to a theory module then functions can be defined with types dependent onT ; the
argumentT will be instantiated when the functions are used. A conditional is provided by anif-then-else-endif expression for which both branches must be provided. An expression for
pattern matching on an instance of an ADT is available and is equivalent to anested conditional
using the recognisers of the ADT.

7.2 Development of the Theory

The PVS system was used both to develop and to verify the theory described in this thesis. The
use of PVS was intended to ensure the correctness of the theory and in particular the theorems
and rules needed to manipulate programs. The theory verified using PVS is made up ofthe
definitions, lemmas and theorems of Chapters 3, 4 and 6. It also includes the rules for the
substitution operator (Figure 3.3) and for the program logic (Figures 3.5, 4.7 and 6.1). The PVS
system was also used to refine and develop the theory as errors were found and corrected. This
process used the PVS system to experiment with alternatives to the models used as the theory
was developed. More generally, the PVS system was used as a tool to manage and check the
details of the manually developed theory.

The development of the theory described in this thesis proceeded as follows: first, the theory
was developed without the use of PVS, by working out (on paper) an informal model of the com-

7.2 Development of the Theory 204

ponents needed to verify object code (the expressions, commands, programs and regions).This
included the methods needed to abstract from programs and the theorems which were required to
establish the correctness of the methods. The informal model was then formallydefined as a PVS
specification. As each part was defined in the PVS specification language, attempts were made
to prove the theorems and lemmas describing the properties required of that partof the theory.
These attempts often exposed errors in the initial development which requiredamendments to the
theory. The theory was refined by correcting and extending the models used, to allowadditional
properties to be established and used in proofs. These corrections were mainlycarried out in
PVS, as the result of experiments with extensions and alternative to the models. The completed
development in PVS consists of specification files totalling approximately 8200 lines (172000
characters) and proof files made up of approximately 86000 lines (9900000 characters).

The result of the work with PVS is two theories, the first made up of the definitionsand
theorems described in this thesis and the second made up of the definitions and theorems defined
in the PVS specification language. The differences between the two theories are in the precise
form of the definitions and in the proofs of the two sets of theorems. The theories makethe same
assumptions and their theorems are equivalent; the two theories are thereforeequivalent.

7.2.1 Mechanical and Mathematical Proofs

The work with PVS resulted in a set of proofs establishing the correctness of the theorems and
lemmas making up the theory. These proofs are made up of the commands to the theorem
prover needed to establish the truth of a theorem or lemma. As a consequence, themechanical
proof is highly dependent on the PVS theorem prover. However, a mathematical proof must be
independently verifiable. A proof in PVS cannot be considered a mathematical proof since it
is difficult to read and check that a PVS proof is correct without the use of PVS. Any theorem
prover can contain errors and a proof which depends on the PVS theorem prover cannot be
considered sufficient to establish the correctness of the theory. It can only beconsidered as
increasing confidence in a separate, mathematical proof.

Separate mathematical proofs of the theorems and lemmas were developed and are given in
Appendix C, Appendix D and Appendix E. Because these can be verified independently of a
theorem prover, they are considered to be the main proof of the theory described inthis thesis.
The mathematical proofs are based on the structure of the PVS proof, which determines the
general approach used to establish a property. The development of the mathematical proofs was
otherwise independent of the PVS proofs. In particular, the mathematical proofs are not simply
a human-readable transcript of the PVS proof. Consequently, the theory described in this thesis
has been verified twice: once with an automated proof tool and once manually. The manual
(mathematical) proof allows the correctness of the theory to be independently verified while the
proof in PVS increases confidence in the mathematical proof and therefore in the theory.

7.3 Verifying the Theory in PVS 205

7.3 Verifying the Theory in PVS

The development of the theory in PVS is based on a description in the PVS specification lan-
guage of the definitions, the theorems and the lemmas which make up the theory. There are
a number of differences between the theory described in the thesis and the PVS specification.
These differences are principally in the methods used to define constructs of the languageL in
the PVS specification language. However, the differences are minor and the theory defined in
the thesis is equivalent to that defined in PVS. There are greater differences between the lemmas
used in the mechanical and mathematical proofs. A proof in a theorem prover is carried out using
simpler concepts than is needed in a mathematical proof. This requires properties, which can be
assumed in a mathematical proof, to be explicitly stated and proved for themechanical proof.
For example, the fact that any subset of a finite set is also finite (Levy, 1979) can be assumed in
a mathematical proof but must be explicitly proved in a mechanical proof.

7.3.1 Specification of the Theory in PVS

The greater part of the theory described in this thesis translates immediately to the PVS specifi-
cation language. In particular, the theory concerning the commands, the majority ofChapter 3,
and programs and regions, that of Chapter 4, can be translated directly to the PVSspecification
language. The theory concerning the weakest precondition for regions and the data refinement
between programs, in Chapter 6, can also be translated easily to PVS. Themodel of the expres-
sions used in the PVS theory differs from that of Chapter 3 in the definition of the basic types,
Values, NamesandLabelsand the definition of the expressionsE. As a consequence, the defi-
nitions in PVS of the functions on these types also differ from those given in Chapter3. These
differences are minor: the theories defined for PVS and those given in Chapters 3,4 and 6 are
equivalent. The remainder of this section will describe the differences between the definition in
PVS of the theory and the definitions given in this thesis.

Model of the Basic Expressions

The basic expressions are constructed from an undefined typeT , by which a processor represents
data, and a register identifier typeRT. The values, variables, labels and registers are contained in
the setsBValues, BVars, BLabelsandBRegsrespectively. The sets are undefined but are assumed
to be non-empty. The setBRegshas typeRT, the setsBValuesis of typeT and the setsBVarsand
BLabelsare subsets ofBValues. An abstract data type,Basic, containing the basic expressions is

7.3 Verifying the Theory in PVS 206

the disjoint union of the setsBValues, BVarsandBLabels.

Basic: datatypebegin
bval(val : BValues) : bval?
bvars(var : BVars) : bvar?
breg(reg : BRegs) : breg?end Basic

The predicatesbval?, bvar?andbreg?are recognisers for elements ofBasicrepresenting the
basic values, variables and registers respectively. These define the recognisers for the labels and
names: a basic label is a basic value constructed from the setBLabels; a basic name is a basic
variable or a basic register.

blabel?(x) def= bval?(x) ^ val(x) 2 BLabels

bname?(x) def= bvar?(x) _ breg?(x)
The typeBasicrepresents the constants over which the functions ofL range. The subtypes

of Basiccontaining the basic names and the basic values define the set of states.

BasicNames
def= fx : Basicj bname?(x)g

BasicValues
def= fx : Basicj bval?(x)g

In the PVS theory, a state is function from basic names to values.

State
def= BasicNames! BasicValues

Model of the Expressions

The expressionsE are defined as the basic expressions, the substitution expression, the applica-
tion of a function to an expression and an expression pair. The functions are appliedto a single
expression and, as in Chapter 3, the set of function names isF . The substitution operator is
defined separately from the expressions,E, and the substitution expression is a function from
states to basic values. The setE0 contains all expressions.E0 : datatypebegin

base(basic: Basic) : base?
subst(substfn: [State! BasicValues]) : subst?
pair(left : E0; right : E0) : pair?
apply(fn : F ; arg : E0) : apply?end name

7.3 Verifying the Theory in PVS 207

The set of expressionsE is the subset ofE0 in which the constructorpair occurs only as a
sub-term of an expression. E def= fx : E0 j :pair?(x)g
e.g. The expressionapply(f; pair(x; y)) 2 E but pair(x; y) 62 E . The set of names, values and
labels are defined as subtypes ofE0.

Names
def= fx : E0 j base?(x) ^ bname?(basic(x))g

Values
def= fx : E0 j base?(x) ^ bval?(basic(x))g

Labels
def= fx : E0 j base?(x) ^ blabel?(basic(x))g

A function is applied to a single expression and a function with arity greater than1 is applied to
an expression constructed from the functionpair applied to elements ofE0. e.g. The application
of functionf to argumentsx; y; z, f(x; y; z), can be represented asapply(f; pair(x; pair(y; z))).
The label and name expressionsEn andEl are defined as in Chapter 3. The expressions resulting
from application of the constructorsubstare values andsubst(f) 62 En.

The semantics of the expressions are defined by primitive recursion on the typeE0, unfolding
the definition ofIn in the definition ofIe. The interpretation of constructorsubstin states is the
application of the argument of the constructorsubstto s. The result is an element ofBasicand
an expression ofE0 is obtained by the application of the constructorbase:Ie(subst(f))(s) def= base(f(s))
The interpretation of an expression pair is the pair constructed from the interpretation of the
arguments. Ie(pair(x; y))(s) def= pair(Ie(x)(s); Ie(y)(s))

The interpretation functionIn on name expressions is defined by applying the functionIe to
the arguments of name functions.In(x)(s) def= � x if base?(x)If (fn(x))(Ie(arg(x))(s)) if apply?(x)

The typeAlist is an abstract data type and the definition follows that given in Chapter 3.
The functionsfind andupdateare also as given in Chapter 3. The predicatecorrect?on correct
assignment lists is that given in Section C.2.3 of the appendix. The substitution operator / is
defined by recursion on the typeE0. The substitution ofal in an expressionx 2 E is formed
from the constructorsubst. The substitution of assignment listal in expressionpair(x; y) is the
substitution ofal in x andy./ : E0 ! Ex / al def= �

subst(�(s : State) : Ie(x; update(s; al))) if :pair?(x)
pair(left(x) / al; right(x) / al) otherwise

The definition is well-founded since every expression constructed bypair is well-founded.

7.4 Implementing the Theory 208

Models of the Commands and Programs

The commands and the programs are as defined in Chapters 3 and 4. The most significant vari-
ation is in the definition of sequential composition. In the PVS theory, the composition of an
assignment command (Definition 3.24 and Definition 3.25) and the composition of labelled and
conditional commands (Definition 3.23) are defined as two functions. The composition of an
assignment command is by a functioncomposeassignwith type

composeassign: (Alist� El � C0)! C0
which is defined as in Definition (3.24). Foral 2 Alist; l 2 El andc 2 C0, the result of the
compositioncomposeassign(al; l; c) is the result of(:= (al; l)); c. Sequential composition of
commandsc1; c2 2 C0 is defined ascomposeassign(al; l; c2) if c1 = (:= (al; l)) for someal 2 Alist andl 2 El, otherwise it is as defined in Definition (3.23).

The specification of programs and regions required a PVS theory for finite sets. This was
obtained by translating part of a library provided with the HOL theorem prover to a PVS theory.
This was then extended with the additional theorems and lemmas required to modelthe programs.
Although the PVS system provides a library for finite sets, this is based on the cardinality of a
set. This complicates reasoning about programs, which is based on the addition of commands to
a program. Furthermore, the PVS library required more machine resources than was needed by
the theory translated from the HOL theorem prover.

While there are other differences between the model of programs and regions defined in PVS
and the model defined in Chapter 4 , these are minor. For example, the definition oftrace in the
PVS theory has type(Set(C) � State� State) ! booleanwhile in the definition of Chapter 3,
the first argument has typeP .

7.4 Implementing the Theory

The methods described in this thesis are intended to allow the implementationof proof tools
for verifying and abstracting object code programs. The usual approach to implementing proof
tools is to extend an existing theorem prover with the logic and procedures needed to manipulate
and reason about the domain of the proof tool (e.g. see Boulton, 1994). This allows the logic
and the procedures of the proof tool to be based on the logic and procedures provided by the
theorem prover. Methods for implementing a theory as a proof tool are well established (Gordon
& Melham, 1993; Moore, 1994; Boulton, 1994). The implementation as a proof tool of the
theory would not require any technique other than those which are commonly used in automated
theorem proving. The requirements of a proof tool for verifying object code based on the work
in this thesis will be briefly summarised here.

A proof tool for object code verification requires an assertion language, in which to specify
programs, a representation of the languageL and procedures for manipulating the expressions,
commands and programs ofL. A first order logic together with the natural numbers and spec-
ification operators for commands and programs is sufficient for the assertion language used to

7.5 Conclusion 209

specify programs. The assertion language must also provide proof rules, such as those ofA,
for reasoning about the expressions, commands and programs ofL. Because program specifica-
tions are based on theL expressions modelling the data operations of a processor, a proof tool
must also provide procedures to simplify logical formulas which include properties of the natural
numbers. Such procedures are well known (Shostak, 1977; Moore, 1994; Boulton, 1994).

To simplify verification by abstracting programs, a proof tool must mechanise the appli-
cation of the sequential composition operator and implement the transformations on regions.
Implementing sequential composition is a straightforward application of its definition (see Sec-
tion 3.3), specialised to the representation by the proof tool ofL commands. The proof tool must
also provide procedures for simplifying the result of abstracting commands. Thesecan be based
on the substitution rules of Figure (3.3) and on procedures for reasoning about equivalence rela-
tions and for rewriting (Duffy, 1991). The abstraction of programs will be based on sequential
composition or on the region transformationsT1 andT2. To implement these transformations
requires the manipulation and analysis of flow-graphs. Efficient methods for representing and
manipulating flow-graphs are described by Aho et al. (1986).

A proof tool for verification will normally be developed as an extension to an existing theo-
rem prover. The theorem prover used must provide a high degree of control over the representa-
tion of the formulas of its logic. The proof tool must represent the languageL and its assertion
language in terms of the logic of the theorem prover. These representations will beused to de-
termine the actions to be carried out by procedures of the proof tool. The theorem provermust
therefore allow the terms of its logic to be examined and manipulated. It must also ensure that
the result of such manipulation is consistent in the logic of the theorem prover, otherwise the
proof tool will be unsound. Theorem provers which are suitable for implementing such a proof
tool include Isabelle (Paulson, 1995a), HOL (Gordon & Melham, 1993) and COQ (Barras etal.,
1997). These explicitly support the development of proof tools as extensions to the theorem
prover. The PVS system is less suitable, since it does not provide the access required to the
internal procedures and the representation of the logic used by the PVS theorem prover.

7.5 Conclusion

The differences between the theory defined in the PVS specification language and those defined
in Chapters 3 and 4 are mainly concerned with the representation of the expressions. The defi-
nition of expressions use particular features of the PVS specification language. For clarity, the
description in Chapter 3 uses a slightly different approach (which does not affect the correctness
of the theory). The expressions ofL are likely to cause the greatest difficulty if the theory is rede-
fined in the specification language of an alternative theorem prover. The remainder of the theory,
dealing with the commands and the program, is relatively straightforward andits definition in an
alternative specification language should not be difficult.

The theory has been verified using the PVS theorem prover and a separate mathematical
proof is given in the appendix of this thesis. The methods for proving the theory are basedon the

7.5 Conclusion 210

induction schemes for commands, programs and regions. Many of the proofs are based on the
structure of the commands and regions and on the size of programs. The proofs of semantic prop-
erties of the transformation are indirect since the difference in the levels of abstraction between
the transformed and the original region must be considered. These properties are established by
relating the behaviour of a command in the transformed region to the behaviour of a sequence of
commands in the original region.

Related work in automated theorem proving includes the definition of graph theory inthe
HOL theorem prover by Wong (1991) and Chin-Tsun Chou (1994). The definition of finite
sets used in the work with PVS is similar to the methods described by Camilleri & Melham
(1992) for inductive relations. Definitions of structured programming languages include the
work by Gordon (1988) and Curzon (1992); Windley (1994) and Müller-Olm (1995) describe
the definition of processor languages. The work at Computational Logic Inc. has resultedin the
implementation of proof tools for the verification of both hardware and software (Bevier et al.,
1989; Yuan Yu, 1992).

The work with the PVS theorem prover is intended to verify the correctness ofthe theory
described in Chapter 3 and Chapter 4. It is not intended to define a proof tool for program
verification, the definition of the theory in the specification language of a theorem prover will
not result in an efficient proof tool. The development of a proof tool for the languageL does
not require any techniques other than those commonly used in theorem proving and in program
optimisation. Such a proof tool can be used to verify any sequential object code program. The
theory concerning the verification and abstraction of programs described in thisthesis is not
concerned with the techniques used to implement proof tools. Instead, it provides a method for
applying existing techniques to construct proof tools which can simplify the task of verifying
programs.

Chapter 8

Conclusion

This thesis has considered the verification of object code in a program logic. The methods used
to construct the proof of correctness are the standard methods for program verification (Floyd,
1967; Manna, 1974; Burstall, 1974). The size of typical object code programs meant that it was
necessary to provide a method for reducing the manual work needed to verify a program. The
approach used is based on program abstraction by manipulating the text of a program. Because
the manipulation of text is easily mechanised, this approach allows the efficient implementation
of abstracting program transformations in a proof tool.

The transformation and verification of object code is made difficult by the number andextent
of specialisation of processor instructions. Because of the number of instructions which must be
considered, it is difficult to prove the correctness of a program transformation.The specialisa-
tion of instructions means that the simplifications which can be performed are restricted by the
processor language rather than by the methods used to verify the program. The definitionof a
program logic for a processor language will also be complicated. A large number of inference
rules will be required and the program logic will be difficult to reason with as well as being
specialised to a single processor language.

These problems were solved by considering a processor language as an instance of an abstract
language,L. The languageL is sufficiently expressive to define the semantics of instructions
in sequential object code programs. Expressions of a processor language are defined as name
or value expressions of the languageL and the representation of a processor instruction as a
command ofL makes clear the action performed by the instruction. Defining the semantics
of processor instructions in terms of the abstract language simplifies the definition of a program
logic and of program transformations. In addition, the program logic and transformationsdefined
for the abstract language can be applied to the programs of a range of processor languages.

A program ofL can be simplified by the sequential composition of program commands.
This was defined on the syntax of the commands by extending the algebraic rules of Hoare
et al. (1987) to pointers and computed jumps. Sequential composition can be applied to arbitrary
commands of a program and will result in an abstraction of the commands. TransformationsT1
andT2 generalise sequential composition to regions of a program. The general transformation,

211

8.1 Contribution of the Thesis 212T2, can be applied to an arbitrary region of a program and will also result in anabstraction of the
region. Methods were described for applying sequential composition or the transformations to
construct an abstraction of a program. These methods are consistent with the standard techniques
for program verification.

A program logic can be defined for the languageL using the techniques of Hoare (1969)
and Dijkstra (1976). The program logic used in the examples is based on proof rules for a flow-
graph language, similar to as those of Francez (1992), extended with a rule for the assignment
command, similar to that of Cartwright and Oppen (1981). A program ofL can be verified using
standard proof methods for verification (Floyd, 1967; Manna, 1974; Burstall, 1974). The method
of verification used in this thesis is described in Chapter 4 and based on the method of intermittent
assertions (Manna, 1974; Burstall, 1974); alternative methods were described inChapter 6.

8.1 Contribution of the Thesis

The main contributions of the work described in this thesis is a method for verifying any object
code program and a method for reducing the manual work needed to carry out the verification.
The methods use the abstract languageL to model and abstract from object code programs. The
use of an abstract language to model and manipulate object code programs is common in code
optimisation techniques (Aho et al., 1986) but is novel for program verification. An abstract
language allows the object code programs of a range of processor languages to be verified using
the same tools and techniques. For example, the program logicA and method of verifying
programs described in Chapter 4 were used to verify the different object code programs (of
different processors) given in Chapter 5.

The ability to describe any object code program as a program of an abstract language with an
equal number of commands is new. The languageL is at least as expressive as any other sequen-
tial language used in verification: any sequential program which does not modify itself can be
described as a program ofL. The languageL is more expressive than the intermediate languages
used in compilers. Any processor instruction which can be described as transforming a state can
be described as a single command ofL. A single command ofL can therefore describe the exact
behaviour of a processor instruction. In compilers, a command of an intermediate language is
translated to sequences of instructions; it cannot describe the behaviour of processorinstructions.
The ability to model object code as a program ofL with an equal number of commands means
that the difficulty of verifying the object code is not increased by its translation toL.

The abstract languageL provides the means for abstracting from programs by manipulating
the text of a program. The method used to abstract program is an extension of the rulesof (Hoare
et al., 1987), which are limited to structured programs without pointers. The ability to abstract
from programs with pointers and computed jumps and to describe the abstraction as aprogram
is new. Since the result of abstraction is aL program, it is not necessary to distinguish between
programs and their abstractions. This allows the abstraction of a program to be verified using the
same methods as the original program.

8.1 Contribution of the Thesis 213

Modelling Object Code for Verification

The features ofL used to model object code are the commands (which model instructions) and
the programs. The languageL has three commands, which simplifies the development of tech-
niques for verifying and transformingL programs. The programs ofL are based on the execution
model of object code, in which the flow of control is determined by instructions. A program ofL is a set ofL commands, each of which select their successor. This provides a flexible model of
object code which simplifies the manipulation ofL programs. It differs from the usual approach
to modelling object code in which an object code program is described in terms of a structured
language (Bowen and He Jifeng, 1994; Back et al., 1994).

The main features of the commands and expressions ofL are the simultaneous assignment
and the name and label expressions. The simultaneous assignment command permits assign-
ments to arbitrary variables and pointers and is more general than the assignment commands
previously considered. It is needed to allow a processor instruction to be modelled by a singleL
command. Pointers are modelled inL as name expressions, a novel approach which is simpler
and more flexible than the models of arrays and pointers commonly used (Dijkstra, 1976; Manna
& Waldinger, 1981). The execution model ofL uses a program counter to select commands
for execution. The value assigned to the program counter is the result of evaluatinga label ex-
pression, providing the languageL with computed jumps. The name and label expression are
built up in the same way as the value expressions (from constants and functions). This means
that methods for reasoning about name and label expressions are consistent with methodsfor
reasoning about value expressions.

The expressions ofL also support the definition of proof rules forL; the assertion languageA is an example of a program logic with such proof rules. The principal features ofA are the
specification of assignment commands and the treatment of control flow in programs.Assign-
ments are specified using the substitution operator ofL, which generalises simultaneous textual
substitution to allow its application in the presence of pointers. The proof rulesfor programs ofL are based on the selection of commands by the use of the program counter. This approach is
simpler than those previously proposed for flow-graph programs (Clint & Hoare, 1972; Jifeng
He, 1983). Program logics for the languageL can be used to verify any object code program
(of any processor language) which is described in terms ofL. This provides a single, consistent
approach to modelling and verifying the object code programs of any processor language.

Abstraction

The abstraction ofL programs is based on the sequential composition of commands. This is
defined as a function on the commands ofL; the definition generalises the rules for manipulating
commands described by Hoare et al. (1987) to commands of a flow-graph language which include
pointers and computed jumps. The interpretation of sequential composition used is newand
consistent with the execution model of flow-graph languages (such asL). The definition of
sequential composition required the development of new constructs in the languageL, to take

8.1 Contribution of the Thesis 214

into account the undecidability introduced by pointers and computed jumps. The abstraction of
assignment commands is based on a representation of assignment lists which allows the merger of
assignment lists to be described syntactically. This is a new approach to abstracting assignment
commands which avoids the aliasing problem (which is undecidable). The undecidability of
computed jumps is avoided by the use of the the program counter to guard the result of composing
two commands. This allows the application of sequential composition to any twocommands in
a program: the result will always be an abstraction of the commands.

The sequential composition operator ofL is enough to abstract from any program ofL but to
mechanise program abstraction, it is necessary to define transformations on programs. To use a
program transformation during verification, the transformation must be correct. A framework for
defining and reasoning about transformations ofL programs was described. The framework is
based on regions, to analyse and transform programs, and traces, to reason about transformations.
The regions are a novel concept; their properties include an induction scheme and the ability to
define transformations by primitive recursion. This framework is more generalthan those used
in code optimisation, since it can be applied to arbitrary programs regardlessof the structure of
the program’s flow-graph. It is also more general than those used in program verification, which
are developed for structured programs.

The framework was used to define transformationsT1 andT2. TransformationT1 is a straight-
forward application of sequential composition, which abstracts commands in a region in the order
determined by the flow-graph of the region. The general transformationT2 uses an analysis of a
region’s flow-graph to determine the cut-points in the regions. This analysis is more general than
those used in code optimisation, since it is not limited by the structure of the flow-graph. Both
transformations abstract from their arguments. Furthermore, the result of applying the transfor-
mations to a regionr is semantically equivalent tor and preserves the failures ofr. This ensures
that, when verifying a program, it is enough to consider the abstraction of the programformed
by applying the transformations.

Because the transformations and the sequential composition operator consider only thetext
of a program, mechanising program abstraction is both straightforward and efficient. The tech-
niques needed to construct and manipulate regions are commonly used to develop compilers.
The efficiency of these techniques is a consequence of the efficiency with which machines can
carry out symbolic manipulation. For the same reason, verifying a program in a programlogic is
more efficient than reasoning about the semantics of a program. The work described in this thesis
therefore provides a means for efficiently applying proof tools in the verificationof a program.
It also allows the application of proof tools to verify object code, regardlessof the processor
language in which the object code is written. This greatly reduces the manual work needed to
verify an object code program.

8.2 Application 215

8.2 Application

An object program can be verified either by the use of generic transformations and proof rules or
by the use of transformations and rules specialised to the processor language. The first approach
was used in the examples of Chapter 5 and has the advantage that the programs of a number
of processors can be verified. The second allows the definition of rules and transformation to
simplify the verification proof; examples of this approach are given in Chapter6. The second
approach is required for processor languages with a computation model in which the general
transformations,T1 andT2, cannot be not applied directly. The SPARC processor is an example
of such a language.

Abstractions of a program are constructed from the syntax of the program commands to allow
their implementation in an automated tool for program verification. An approachto verifying
programs with abstraction is described in Chapter 4. The use of sequential composition and
transformationsT1 andT2 in the verification of a program is consistent with the standard proof
methods (Floyd, 1967; Manna, 1974; Burstall, 1974). TransformationsT1 andT2 can reduce the
number of commands in a regionr, limited by the number of loops inr. If there aren loops then
the result ofT2(r) will contain no less thenn + 1 commands, representing then loops and the
path from the head ofr to the first loop inr. The result of constructing an abstraction will be a set
of complex commands, made up of the expressions occurring in the original commands. These
can be simplified using information about the values of names which occur in the commands and
expressions.

To verify an object program, the processor instructions must be defined in terms ofL. Where
an instruction is executed in a strictly sequential model, its definition in L is straightforward.
However, some instructions of an otherwise sequential language imply a parallel execution
model. For example, the Alpha AXP processor (Sites, 1992) defines a sequential execution
model for application programs but includes floating point instructions whose semanticsare de-
scribed in a parallel execution model. The definition of the instructions can be modelled in terms
of L but the resulting commands and programs will be complex and difficult to verify. Asimpler
alternative is to restrict an object program to ensure that the behaviour of these instructions can
be defined in a sequential execution model. For example, to meet a standard for floating point
operations, the Alpha processor manual recommends the use of floating point instructions ina
form which forces sequential execution (Digital Equipment Corporation, 1996).

8.3 Related Work

Other work with verifying object code programs has mainly been concerned with showing the
correctness of a compiler (see Hoare et al., 1993 and Müller-Olm, 1995) or verifying a proces-
sor design (Windley, 1994). The techniques used in these works are similar to the interpreter
functions described by Boyer & Moore (1997). The models defined for an object code program
are intended to show that a high-level command is correctly refined by a sequenceof processor

8.3 Related Work 216

instructions or that an instruction is correctly implemented in hardware. The models are not
intended for verifying the object code program.

Symbolic execution is a technique for mechanically constructing an abstractionof a program.
The sequential composition of commands ofL can be considered a form of symbolic execution.
The transformationT2 is the generalisation of sequential composition to a region of a program
and is equivalent to the symbolic execution of the region. However, the result of both sequential
composition and the transformations are defined as commands ofL while the result of symbolic
execution is a logical relation. Further transformations can be defined on the syntactic structure
of commands and programs ofL and these can be applied to both a program and its abstraction.
A logical relation does not provide such a structure, transformations are less easily defined and
cannot be applied to both program and abstraction.

Techniques for symbolic execution of programs are well known (see King, 1976) and in-
clude the execution of programs with pointers and multiple assignment commands (Colby, 1996).
When the program includes pointers, the relation constructed by symbolic execution solves the
aliasing problem by a series of comparisons between pointers. The properties described by the
relation depend on the result of each comparison and this can lead to a large number of terms,
making the relation difficult to manipulate. The relation constructed by symbolic execution is
intended for use in program analysis and describes the semantic properties of commands. The
structure of a verification proof will therefore depend on the properties of functionsused in the
definition of the semantics rather than on the syntax of the commands and flow of control through
the program. In general, this will lead to a large and complex proof.

The work at Computational Logic Inc on program verification is also based on the semantic
properties of instructions (Bevier et al., 1989; Yuan Yu, 1992). The techniques described by
Boyer & Moore (1997) for object code verification are specialised to a particular method of
proof and use interpreter functions to model the behaviour of a processor (Boyer & Moore,
1997). Verification is based on reasoning about the behaviour of the interpreter rather than the
behaviour of the program. Because of the complexity of an interpreter function, this makes
manual intervention in the proof difficult. The use of an interpreter function alsohides the
similarities between processor languages and leads to a replication of workwhen modelling
object programs. To verify object programs of different processors, separate interpreter functions
for the two processors must be constructed and the properties of these functions established.

In contrast, the use of the languageL to model an object code program allows the standard
techniques for program verification to be applied. The processor language does not play a great
as role as in systems using an interpreter function. Once the instructions of an object programs
are defined in terms of the commands ofL, the processor language does not feature in the veri-
fication. This allows the implementation of generic proof tools for object code verification and
such a tool can be applied consistently to the programs of a range of processors.

8.4 Verifying Safety Properties 217

8.4 Verifying Safety Properties

The techniques described in this thesis are intended to prove the liveness properties of a program.
Safety properties are properties which must be true for every state produced bythe program but,
by a simple transformation of the program, a safety property can be verified asa liveness property.
The transformation does not alter the basic requirement that every state produced by the program
must be shown to have the property. However, it may reduce the number of steps in the proof by
allowing the verification to be based on an abstraction of the program.

Assume that	 is a safety property which must be established by programp, property	
is an assertion on a state,	 2 A. To transform the safety property to one of liveness, the
programp must halt if a command does not preserve the property	. A state is changed only
by an assignment command and the program must halt if an assignment command beginning
in states, such that	(s), produces a statet such that:	(t). To achieve this, the assignment
commands are made conditional on the preservation of the property. The conditional command
of L is extended so that the test is an assertion ofA rather than a boolean expression ofEb. The
extended constructor function will have type:

if then else : (A� L0 � L0)! L0
and interpretation:I(if a then c1 elsec2)(s; t) def= � I(c1)(s; t) if a(s)I(c2)(s; t) otherwise

For safety property	, every assignment command:= (al; l) in programp is transformed to
the command:

if 	 / ((pc; l) � al) then := (al; l) else abort

This command terminates only if the assignment establishes the safety property and halts other-
wise.

Assume that the safety property	 is to be established by programp beginning at the com-
mand labelledl1 and ending at command labelledl2. Transforming the assignment commands
of p results in programp0. The property to be proved is that the programp0 beginning in a state
satisfying	 terminates. ` [(pc= l) ^]p0[pc= l2]
The transformations for abstracting from the program can then be applied to programp0.
8.5 Extending the Work

The programs considered here are those of processor languages, which have relatively simple
data types and constructs. High-level languages include more complex data types and thecon-
trol constructs of the structured languages. A high-level program can be defined in terms of a

8.5 Extending the Work 218

processor language, and therefore in terms ofL. However, the verification of a high-level pro-
gram will be simplified by augmenting the languageL with the data types and control constructs
of the high-level language and defining the program in terms of this augmented language. In
general, the addition of high-level data types, and expressions of these types, to the languageL
is straightforward. The setValuesis extended with a representation of the additional types and
the expressions ofL are defined to include the functions on the data types.

The languageL excludes a form of expression, found in high-level languages, which are
constructed from the application of functions to name expressions and which result in a value.
For example, the language C includes an operator& with type En ! Valuessuch that, forx 2 Vars, &(ref(x)) � x. To define such an expression in the languageL requires an extension
of the setE to include the application of functions from names to values. Such an extension is
straightforward: a set of identifiers for these functions is defined as a subset ofF .F (Names!Values) � F
An interpretation functionIf 0 is defined on this subset, with type:F (Names!Values) ! (Names� : : :� Names)! Values

The set of expressionsE is extended to include the application of the functions to name expres-
sions. x 2 En f 2 F (Names!Values)f(x) 2 E
The interpretation of expressions is also extended with the application of the interpretationIf 0.Ie(f(x))(s) = If 0(f)(In(x)(s)) if f 2 F (Names!Values)
The C operator& can then be defined, forx 2 Names, If 0(&)(x) = �fv : Values j x =
name(v)g.

The control constructs of a high-level language are essentially those of a structured language
together with a, possibly restricted, jump command. The transformations to construct an ab-
straction can, in general, be applied to a high-level program without modification.The iteration
command of a high-level language forms a loop in the program and will be treated correctly by
the transformationT2. High-level languages include procedures and functions and these may
complicate the abstraction of a program. Although it is likely that a region of a high-level pro-
gram which included procedure calls could be transformed, this may require an extension to the
methods which have been considered. A technique which might form the basis of such transfor-
mations is that ofprocedure in-liningin which the body of a procedure is substituted for the a
call to the procedure.

Alternatives to the transformationsT1 andT2 can be defined for particular processor lan-
guages or for sequence of instructions which commonly appear in an object program. For ex-
ample, transformations can be specialised for the object code produced by a particular compiler.

8.6 Summary of Results 219

These would use the translation rules of the compiler to re-construct the flow of control through
the original program and to match the instructions of the object code with the commands ofthe
source program. Where it is known that a particular compiler was used, the rules used for data
refinement can also be used to simplify the expressions which occur in the objectprogram.

Only sequential programs have been considered and therefore only the programs of the un-
privileged mode of a processor. The definition of sequential composition depends on the factthat
assignments are made to program variables by one command at a time. The privileged mode of a
processor has a parallel execution model and a privileged mode program can allow two instruc-
tions to simultaneously assign values to the same variable. The order in which the assignments
are actually made may be arbitrary and the value assigned to the variable will be unknown. While
it is possible to model such a program, by simple extensions toL, it is not generally possible to
construct an abstraction of the program by the sequential composition of commands.

Abstractions of a parallel program can be constructed by partitioning the program into sub-
programs which are executed sequentially and have exclusive access to a subset of the program
variables. This models the parallel program as a set of sequential processes,similar to those
described by Hoare (1985). A sub-programp exchanges data with other sub-programs at the
beginning and end of the execution ofp, by reading and writing variables, and each sub-program
executes independently of other sub-programs. The parallel program must be verified byestab-
lishing liveness and safety properties for each sub-program. The liveness properties are those
required by the program specification but the safety properties must ensure non-interference be-
tween sub-programs, by establishing that each sub-program writes only to the variables of that
sub-program. The abstraction of the parallel program can then be constructed by constructing
abstractions of each of the sequential sub-programs.

8.6 Summary of Results

This thesis describes a method for simplifying the verification of an object program by con-
structing an abstraction of the program. The techniques are based on the definition ofprocessor
instructions in terms of an abstract language. Arbitrary commands of this languagecan be com-
bined by sequential composition. This results in a single command which is an abstraction of the
original commands. The aliasing problem between program variables was solved byan exten-
sion to the assignment command. Abstractions of a computed jump were constructed bythe use
of conditional commands to determine the target of the jump. The method for abstractingfrom
commands was extended to programs by defining transformations on the flow-graph of a program
and the transformations were shown to construct an abstraction of the program. The transforma-
tions can be applied to the programs of a number of processor languages and the verification of
an object program may use the standard methods for program verification. The methods forab-
stracting commands and programs are based on the syntax of the commands only. This suggests
that the techniques may be efficiently mechanised as an automated tool for programverification.

Bibliography

Abadi, M. and Lamport, L. (1991). The existence of refinement mappings.Theoretical Com-
puter Science 82(2), 253–284.

Aho, A., Sethi, R. and Ullman, J. (1986).Compilers. Principles, Techniques and Tools.
Addison-Wesley.

Apt, K. R. (1981, October). Ten years of Hoare’s logic: A survey-part I.ACM Transactions
on Programming Languages and Systems 3(4), 431–483.

Back, R. J. R., Martin, A. J. and Sere, K. (1994). Specification of a microprocessor. Technical
Report 148,̊Abo Akademi University.

Back, R. J. R. and von Wright, J. (1989). Refinement calculus, part I: Sequential nondetermin-
istic programs. In de Bakker, J. W., de Roever, W. P. and Rozenburg, G. (Eds.),Stepwise
Refinement of Distributed Systems. Models, Formalisms, Correctness, Volume 430 ofLec-
ture Notes in Computer Science. Springer-Verlag.

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J., Giménez, E.,Herbelin, H., Huet,
G., Noz, C. M., Murthy, C., Parent, C., Paulin, C., Saïbi, A. and Werner, B. (1997, August).
The Coq proof assistant reference manual - version v6.1. Technical Report 0203, INRIA.

Barringer, H., Cheng, J. H. and Jones, C. B. (1984). A logic covering undefinedness in pro-
gram proofs.Acta Informatica 21(3), 251 – 269.

Bevier, W. R., Warren A. Hunt, J., Moore, J. S. and Young, W. D. (1989, April). An approach
to systems verification. Technical Report 41, Computational Logic Inc.

Bledsoe, W. W. (1974, December). The Sup-Inf Method in Presburger Arithmetic.Technical
Report Memo ATP-18, Math. Dept, University of Texas at Austin, Austin,Texas.

Boulton, R. J. (1994).Efficiency in a Fully-Expansive Theorem Prover. Ph. D. thesis, Univer-
sity of Cambridge Computer Laboratory.

Bowen, J. (Ed.) (1994).Towards Verified Systems, Volume 2 ofReal-Time Safety Critical
Systems. Elsevier Science.

Bowen, J. and He Jifeng (1994). Specification, verification and prototyping of an optimized
compiler.Formal Aspects of Computing 6(6), 643–658.

Boyer, R. S. and Moore, J. S. (1979).A Computational Logic. Academic Press.

220

BIBLIOGRAPHY 221

Boyer, R. S. and Moore, J. S. (1997). Mechanized formal reasoning about programs and com-
puting machines. In Veroff, R. (Ed.),Automated Reasoning and Its Applications: Essays
in Honor of Larry Wos, Chapter 4, pp. 147–176. MIT Press.

Boyer, R. S. and Yuan Yu (1996, January). Automated proof of object code for a widely used
microprocessor.Journal of the ACM 43(1), 166–192.

Breuer, P. T. and Bowen, J. P. (1994, January). Decompilation: The enumeration of types and
grammars.ACM Transactions on Programming Languages and Systems 11(1), 147–167.

Bundy, A. (1983).The Computer Modelling of Mathematical Reasoning. Academic Press.

Burstall, R. M. (1974). Program proving as hand simulation with a little induction. In Infor-
mation Processing, Volume 74, pp. 308–312. North-Holland.

Camilleri, J. and Melham, T. (1992). Reasoning with inductively defined relations in the HOL
theorem prover. Technical Report 265, Computer Laboratory, Cambridge University.

Cartwright, R. and Oppen, D. (1981). The logic of aliasing.Acta Informatica 15, 365 – 384.

Chin-Tsun Chou (1994, September). A formal theory of undirected graphs in higher-order
logic. See Melham & Camilleri (1994), pp. 144–157.

Church, A. (1940). A formulation of a simple theory of types.Journal of Symbolic Logic 5,
56–68.

Clarke, E. M., Emerson, E. A. and Sistla, A. P. (1986, April). Automatic verification of finite-
state concurrent systems using temporal logic specifications.ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244–263.

Clarke, E. M., Grumberg, O. and Long, D. E. (1994, September). Model checking and ab-
straction.ACM Transactions on Programming Languages and Systems 16(5), 1512–1542.

Clarke, L. A. and Richardson, D. J. (1981). Symbolic evaluation methods for program analy-
sis. See Muchnick & Jones (1981), Chapter 9, pp. 264–302.

Clint, M. and Hoare, C. A. R. (1972). Program proving: Jumps and functions.Acta Informat-
ica 1, 214–224.

Colby, C. (1996).Semantics-based Program Analysis via Symbolic Composition of Transfer
Relations. Ph. D. thesis, School of Computer Science, Carnegie Mellon University.

Cousot, P. (1981). Semantic foundations of program analysis. See Muchnick & Jones (1981),
Chapter 10, pp. 303–342.

Cousot, P. (1990). Methods and logics for proving programs. In van Leeuwen, J. (Ed.),For-
mal Models and Semantics, Volume B of Handbook of Theoretical Computer Science,
Chapter 15, pp. 841–994. Elsevier.

Cousot, P. and Cousot, R. (1987). Sometime= always+ recursion� always - on the equiva-
lence of the intermittent and invariant assertions methods for proving inevitability proper-
ties of programs.Acta Informatica 24, 1–31.

BIBLIOGRAPHY 222

Curzon, P. (1992). A programming logic for a verified structured assembly language. In
Voronkov, A. (Ed.),Logic Programming and Automated Reasoning, Volume 624 ofLec-
ture Notes in Computer Science. Springer-Verlag.

Cyrluk, D., Möller, O. and Rueß, H. (1997). An efficient decision procedure for the theory of
fixed-sized bit-vectors. In Grumberg, O. (Ed.),Computer Aided Verification. 9th Interna-
tional Conference (CAV97). Haifa, Israel, June 22-25, 1997: Proceedings, Volume 1254
of Lecture Notes in Computer Science LNCS, Berlin - Heidelberg - New York, pp. 60–71.
Springer.

de Bakker, J. W. (1980).Mathematical Theory of Program Correctness. Prentice-Hall.

de Bruin, A. (1981). Goto statements: Semantics and deduction systems.Acta Informatica 15,
384 – 424.

Diefendorff, K. (1994, June). History of the PowerPC architecture.Communications of the
ACM 37(6), 28–33.

Digital Equipment Corporation (1996, October).Alpha Architecture Handbook. Digital
Equipment Corporation.

Dijkstra, E. (1976).A Discipline of Programming. Prentice-Hall.

Duffy, D. A. (1991).Principles of Automated Theorem Proving. John Wiley & Sons.

Fidge, C. J. (1997). Modelling program compilation in the refinement calculus. InBCS-FACS
Northern Formal Methods Workshop.

Floyd, R. W. (1967). Assigning meanings to programs. In Schwartz, J. T. (Ed.),Mathematical
Aspects of Computer Science, Volume 19 ofSymposia in Applied Mathematics, pp. 19–32.
Providence, RI: American Mathematical Society.

Ford, W. and Topp, W. (1988).The MC68000: Assembly Language and Systems Program-
ming. D. C. Heath.

Francez, N. (1992).Program Verification. Addison Wesley.

Gordon, M. J. C. (1988). Mechanizing programming logics in higher order logic. Technical
Report 145, Computer Laboratory, Cambridge University.

Gordon, M. J. C. (1994a). A mechanized Hoare logic of state transition. See Bowen(1994),
Chapter 1, pp. 1–17.

Gordon, M. J. C. (1994b). State transition assertions: A case study. See Bowen(1994), Chap-
ter 5, pp. 93–113.

Gordon, M. J. C. and Melham, T. F. (1993).Introduction to HOL. Cambridge University Press.

Gries, D. (1981).The Science of Programming. Springer-Verlag.

Grundy, J. (1993).A Method of Program Refinement. Ph. D. thesis, University of Cambridge.

Hayes, J. P. (1988).Computer Architecture and Organization(Second ed.). McGraw-Hill.

Hecht, M. (1977).Flow Analysis of Computer Programs. Elsevier.

BIBLIOGRAPHY 223

Hennessy, J. L. and Patterson, D. A. (1990).Computer Architecture: A Quantative Approach.
Morgan Kaufman.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.Communications of
the ACM 12, 576–580.

Hoare, C. A. R. (1972). Proofs of correctness of data representation.Acta Informatica 1(4),
271–281.

Hoare, C. A. R. (1985).Communicating Sequential Processes. Prentice-Hall.

Hoare, C. A. R., Hayes, I. J., He Jifeng, Morgan, C. C., Roscoe, A. W., Sanders, J. W.,
Sørensen, I. H., Spivey, J. M. and Sufrin, B. A. (1987, August). Laws of programming.
Communications of the ACM 30(1), 672–686.

Hoare, C. A. R., He Jifeng and Sampaio, A. (1993). Normal form approach to compiler design.
Acta Informatica 30(8), 701–739.

Jacobs, B., van den Berg, J., Huisman, M., van Berkum, M., Hensel, U. and Tews,H. (1998).
Reasoning about java clases. InProceedings of Object-Oriented Programming Systems,
Languages and Applications. ACM SIGPLAN.

Jifeng He (1983). General predicate transformer and the semantics of a programming lan-
guage with Go To statement.Acta Informatica 20, 35–57.

Kernighan, B. W. and Ritchie, D. M. (1978).The C Programming Language. Prentice-Hall.

King, J. (1976, July). Symbolic execution and program testing.Communications of the
ACM 19(7), 385–394.

King, J. C. (1971, November). Proving programs to be correct.IEEE Transactions on Com-
puters C-20(11), 1331–1336.

Kleene, S. C. (1952).Introduction to Meta-Mathematics. North-Holland.

Lamport, L. (1994, May). The Temporal Logic of Actions.ACM Transactions on Program-
ming Languages and Systems 16(3), 872–923.

Levy, A. (1979).Basic Set Theory. Springer-Verlag.

Loeckx, J. and Sieber, K. (1987).The Foundations of Program Verification(Second ed.).
Wiley-Teubner.

Manna, Z. (1974).Mathematical Theory of Computation. McGraw-Hill.

Manna, Z. and Pnueli, A. (1981). Verification of temporal programs: The temporal frame-
work. In Boyer, R. S. and Moore, J. S. (Eds.),The Correctness Problem in Computer
Science, Chapter 5, pp. 215–275. Academic Press.

Manna, Z. and Pnueli, A. (1991).The Temporal Logic of Reactive and Concurrent Systems.
Specification, Volume 1. Springer-Verlag.

Manna, Z. and Waldinger, R. (1981). Problematic features of programming languages: A
situational-calculus approach.Acta Informatica 16, 371 – 426.

BIBLIOGRAPHY 224

McCarthy, J. and Painter, J. (1967). Correctness of a compiler for arithmetic expressions. In
Mathematical Aspects of Computer Science, Volume 19 ofProceedings of Symposia in
Applied Mathematics. American Mathematical Society.

Melham, T. F. (1993).Higher Order Logic and Hardware Verification. Cambridge Tracts in
Theoretical Computer Science. Cambridge University.

Melham, T. F. and Camilleri, J. (Eds.) (1994, September).Higher Order Logic Theorem Prov-
ing and its Applications: 7th International Workshop, Volume 859 ofLecture Notes in
Computer Science. Springer-Verlag.

Milner, R. (1984). The use of machines in rigorous proof.Phil. Trans. R. Soc. London, A 312,
411–422.

Moore, J. S. (1994). Introduction to the OBDD algorithm for the ATP community.Journal of
Automated Reasoning 6(1), 33–45.

Morgan, C. (1990).Programming from Specifications. Prentice-Hall International.

Morris, J. M. (1987). A theoretical basis for stepwise refinement and the programming calcu-
lus.Science of Computer Programming 9, 287–306.

Morris, J. M. (1989). Laws of data refinement.Acta Informatica 26, 287–308.

Motorola (1986).M68000 8-/16-/32-Bit Microprocessors, Programmer Reference Manual(5
ed.). Prentice-Hall.

Motorola Inc. and IBM Corp. (1997).PowerPC Microprocessor Family: The Programming
Environments For 32-Bit Microprocessors. Motorola Inc. and IBM Corp. Revision 1.1.

Muchnick, S. and Jones, N. (1981).Program Flow Analysis. Prentice-Hall.

Müller-Olm, M. (1995, August). Structuring code generator correctness proofs by stepwise
abstracting the machine language’s semantics. Technical report, University of Kiel.

Necula, G. C. and Lee, P. (1996, September). Proof-carrying code. Technical Report CMU-
CS-96-165, School of Computer Science, Carnegie Mellon University.

Owre, S., Rushby, J. M. and Shankar, N. (1993). PVS: A Prototype Verification System.
Technical Report SRI-CSL-93-04, SRI.

Paulson, L. C. (1985). Verifying the unification algorithm in LCF.Science of Computer Pro-
gramming 5(2), 143–169.

Paulson, L. C. (1994a).Isabelle: A Generic Theorem Prover, Volume 828 ofLecture Notes in
Computer Science. Springer-Verlag.

Paulson, L. C. (1994b). Set theory for verification: I. from foundations to functions. Technical
report, University of Cambridge.

Paulson, L. C. (1995a). Introduction to Isabelle. Distributed with the Isabelle system.

Paulson, L. C. (1995b). Set theory for verification: II. induction and recursion. Technical
report, University of Cambridge.

BIBLIOGRAPHY 225

Pavey, D. J. and Winsborrow, L. A. (1993). Demonstrating equivalence of source code and
PROM contents.The Computer Journal 36(7), 654–667.

Polak, W. (1981).Compiler Specification and Verification, Volume 124 ofLecture Notes in
Computer Science. Springer-Verlag.

Ramsey, N. and Fernández, M. F. (1997, May). Specifying representations of machine instruc-
tions.ACM Transactions on Programming Languages and Systems 19(3), 492–524.

Sampaio, A. (1993).An Algebraic Approach to Compiler Design. Ph. D. thesis, University of
Oxford.

Shostak, R. E. (1977, October). On the SUP-INF method for proving Presburger arithmetic.
Journal of the ACM 24(4), 529–543.

Sites, R. L. (1992). Alpha AXP architecture.Digital Technical Journal 4(4), 1–17.

Sites, R. L. (1993, February). Alpha AXP architecture.Communications of the ACM 36(2),
33–44.

Skakkebaek, J. U. and Shankar, N. (1994). Towards a duration calculus proof assistantin PVS.
Technical Report SRI-CSL-93-10, SRI.

Sreedhar, V. C., Gao, G. R. and Yong-Fong Lee (1996, November). Identifying loops in DJ
graphs.ACM Transactions on Programming Languages and Systems 8(6), 649– 658.

Tarjan, R. E. (1981, July). A unified approach to path problems.Journal of the ACM 28(3),
577–593.

Tennent, R. D. (1991).Semantics of Programming Languages. Prentice-Hall.

Wakerly, J. F. (1989).Microcomputer Architecture and Programming - The 68000 Family.
Wiley.

Weaver, D. L. and Germond, T. (Eds.) (1994).The SPARC Architecture Manual, Version 9.
Prentice-Hall.

Wegbreit, B. (1977, July). Complexity of synthesizing inductive assertions.Journal of the
ACM 24(3), 504–512.

Windley, P. J. (1994, September). Specifying instruction-set architectures in HOL: A primer.
See Melham & Camilleri (1994).

Wolfe, M. (1991). Flow-graph anomalies: What’s in a loop? Technical Report CS/E92-012,
Oregon Graduate Institute.

Wong, W. (1991, August). A simple graph theory and its application in railway signalling. In
Archer, M., Joyce, J. J., Levitt, K. N. and Windley, P. J. (Eds.),Proceedings of the 1991
International Workshop on HOL Theorem Proving System and its Applications, Davis,
California, USA, pp. 395–401. IEEE Computer Society Press.

Young, W. D. (1989, January). A mechanically verified code generator. Technical report,
Computational Logic Inc.

BIBLIOGRAPHY 226

Yuan Yu (1992).Automated Proofs of Object Code for a Widely Used Microprocessor. Ph. D.
thesis, University of Texas at Austin.

Appendix A

Functions

The functions used in the examples of Chapter 5 are defined under the assumption that the values
are the natural numbers,Values= N . The general arithmetic functions, (equality, addition,
subtraction, etc) are assumed to be as defined in Chapter 3. Bit-vector functions are the operators
on bit-vectors of a given sizeszand, in general, result in a bit-vector of sizesz. A bit-vector is
assumed to be represented as a natural number (inValues) and the size of the bit-vector is also a
natural number. The bit-vector functions include signed and unsigned arithmetic operations and
the equality and greater-than relations.

The only general function required in Chapter 5 which is not defined in Chapter 5 is the
conditional expressioncond(b; x; y) 2 E . This has the value ofx if b is equivalent totrue and isy otherwise.

Definition A.1 Conditional expressions

The conditional expression is a value function with namecond and arity3.

cond2 FvIf (b; vt; vf) def= � vt if B(x)vf otherwise 2
A.1 Bit-Vector Functions

The bit-vector functions differ from the general functions in that the values are assumed to be
the naturals,Values= N , and in that the size of the bit-vector is an argument to the function. In
general, the bit-vector functions are writtenf(sz)(a1; : : : ; an) wheref is the function name,sz
the size of the bit-vector anda1; : : : ; an are arguments. The function namef has arity1+ n, the
notation is used only to distinguish particular arguments:f(sz)(a1; : : : ; an) is a synonym for the
expressionf(sz; a1; : : : ; an).

227

A.1 Bit-Vector Functions 228

An accessor function for individual bits of a bit-vector,bit applied to a bit-vectora and indexi results in the value of theith bit of a. A constructormkBit applied to an argumenta has the
result0 iff a is equivalent tofalseand is1 otherwise.

Definition A.2 Bit operations

The value of theith bit of bit-vectora is obtained by applying the functionbit .

bit 2 FvIf (bit)(n)(a) def= � 1 if (a mod2n+1) � 2n0 otherwise

The constructormkBit applied to a valuea results in0 if a is equivalent tofalse.

mkBit 2 FvIf(mkBit)(a) def= � 1 if Ib(a)0 otherwise 2
A.1.1 Bit-Vector Operations

The accessor functionB applied to valuei and a bit-vectora results in theith byte ofa. The
accessor functionW applied to valuei and bit-vectora results in theith word ofa.

Definition A.3 Accessors

The accessor function for bytes is namedB.

B 2 FvIf (B)(i)(a) def= (a� 2i�8) mod28
The accessor function for words is namedW.

W 2 FvIf (W)(i)(a) def= (a � 2i�16) mod216 2
A.1.2 Arithmetic Operations

The arithmetic operators are addition,plus, negation,neg, subtraction,minus, unsigned multi-
plication,mult , and sign extensionext. All functions are applied to a bit-vector of a given size
szand, with the exception of sign extension, result in a bit-vector of sizesz.

A.1 Bit-Vector Functions 229

The functionplus applied to sizesz and argumentsx; y is the result ofx + y which can
represented in a bit-vector of sizesz. The result of applyingneg to sizeszand argumentx is
the two’s complement negation ofx interpreted as a bit-vector of sizesz. The functionminus
applied to sizeszand expressionsx; y 2 E results in the two’s complement representation, in a
bit-vector of sizesz, of x� y.

Definition A.4 Addition and subtraction

Addition plus and negationnegare functions inFv.

plus; neg2 FvIf (plus)(sz)(x; y) def= (x + y) mod2szIf (neg)(sz)(x) def= (2sz�1 � x+ 2sz�1) mod2sz

Subtraction,minus, is an expression defined in terms of addition and negation.

minus : Values! (E � E)! E
minus(sz)(x; y) def= plus(sz)(x; neg(sz)(y))

Forx; y 2 E, plus(sz)(x; y) is writtenx +szy andminus(sz)(x; y) is writtenx�szy. 2
The result of functionmult applied to argumentsx; y of sizeszis the representation ofx� y

in a bit-vector of sizesz.

Definition A.5 Unsigned multiplication

Multiplication,mult , is a function inFv.

mult 2 FvIf (mult)(sz)(x; y) def= (x� y) mod2sz

For expressionsx; y 2 E , mult (sz)(x; y) will be writtenx�szy. 2
Sign extension, the functionext, is applied to a bit-vectora of sizen and results in a bit-vector

of sizem.

Definition A.6 Sign extension

The functionext 2 Fv sign extends a bit-vector.

ext 2 FvIf (ext)(n;m; a) def= � ((2m�n � 1)� 2n + a) mod2m; if (a mod2n) � 2n�1a otherwise 2

A.1 Bit-Vector Functions 230

A.1.3 Shift and Rotate Operations

The shift and rotate operations on bit-vectors are defined in terms of functions forleft and right
shift operations described by Wakerly (1989). The shift left operation,shiftl , applied to bit-
vectora, of sizesz, and bitc shiftsa left and sets the least significant bit of the result to the value
of c. The shift right operation,shiftr , applied to bit-vectora, of sizesz, and bitc shiftsa right
one position and sets the most significant bit of the result to the value ofc.
Definition A.7 Primitive shift functions

The functionsshiftl andshiftr are value functions ofFv with arity 3.

shiftl 2 FvIf(shiftl)(sz)(a; c) def= ((a� 2) + (c mod2)) mod2sz

shiftr 2 FvIf(shiftr)(sz)(a; c) def= ((a mod2sz�1)� 2) + ((c mod2)� (2sz�1)) 2
Shift Operations

Processors provide both arithmetic and logical shifts. An arithmetic shiftinterprets the bit-vector
as a two’s complement number and an arithmetic shift to the left or right of bit-vector a is
equivalent to the signed multiplication or division ofa by 2. The arithmetic shift to the left and
right are defined byAshiftl andAshiftr respectively.

Definition A.8 Arithmetic shift functions

Ashiftl applied to bit-vectora of sizesz shifts a one position to the left.Ashiftr applied to
bit-vectora of sizeszshiftsa one position to the right while preserving the sign of the bit-vector.

Ashiftl : Values! E ! E
Ashiftl (sz)(a) def= shiftl(sz)(a; 0)
Ashiftr : Values! E ! E
Ashiftr (sz)(a) def= shiftr (sz)(a; bit(sz� 1; a)) 2

In a logical shift the bit-vector is interpreted as an unsigned number. A logicalshift to the
left is equivalent to an unsigned multiplication by2 and a logical shift to the right is equivalent
to an unsigned division by2. The logical shift to the left and to the right are defined byLshiftl
andLshiftr respectively.

A.1 Bit-Vector Functions 231

Definition A.9 Logical shift functions

The logical shift to the left and right are defined byLshiftl andLshiftr respectively.

Lshiftl : Values! E ! E
Lshiftl (sz)(a) def= shiftl(sz)(a; 0)
Lshiftr : Values! E ! E
Lshiftr (sz)(a) def= shiftr (sz)(a; 0) 2

Rotate Operations

The shift operations on a bit-vector have the effect of setting the least or mostsignificant bits to0. A rotate operation sets this bit to the value of the most or least significant bitof the argument.
For example, when a bit-vector is shifted to the left, the value of the most significant bit is lost.
In a rotate to the left, this value is stored in the least significant bit.

Rotl applied to bit-vectora of size sz shifts a one position to the left and sets the least
significant bit of the result to the most significant bit of the argumenta. Rotr applied to bit-
vectora of sizeszshiftsa one position to the right and sets the most significant bit of the result
to the least significant bit of the argumenta.

Definition A.10 Rotate functions

The rotation of a bit-vector by to the left and right is defined byRotl andRotr respectively.

Rotl : Values! E ! E
Rotl(sz)(a) def= shiftl(sz)(a; bit(sz� 1; a))
Rotr : Values! E ! E
Rotr(sz)(a) def= shiftr (sz)(a; bit(0; a)) 2

A second form of rotation is on anextendedbit-vector. A bit-vector is extended by the use
of a variablex to store one or more additional bits.Rotxl applied to bit-vectora of sizeszand
extension variablex shiftsa one position to the left and the least significant bit of the result is set
to the value ofx. Rotxr applied to bit-vectora of sizeszand extension variablex shiftsa one
position to the right and the most significant bit of the result is set to the value ofx.

A.1 Bit-Vector Functions 232

Definition A.11 Extended rotate functions

The extended rotation to the left and right are defined byRotxl andRotxr respectively.

Rotxl : Values! E ! E
Rotxl(sz)(a; x) def= shiftl(sz)(a;mkBit (x))
Rotxr : Values! E ! E
Rotxr(sz)(a; x) def= shiftr (sz)(a;mkBit (x)) 2

A.1.4 Memory Access

Functions to access the values stored in memory are defined in terms of name expressionref, as
value expressions and as an assignment list. Assuming that each memory variable stores a byte, a
long-worda is stored in memory by assigning each byte ofa to one of four consecutive memory
locations.

Definition A.12 Functionwritel applied to expressionsa ande, constructs an assignment list in
which the long word betweena anda +32 3 is assigned byte3 to byte0 of e.

writel : (E � E)! Alist

writel (a; e) def= (ref(a);B(3)(e)) � (ref(a+32 1);B(2)(e)) �(ref(a+32 2);B(1)(e)) � (ref(a +32 3);B(0)(e)) � nil 2

Appendix B

Processor Language Features

Processor languages include a number of features which must be modelled in the languageL to
enable an object program to be verified. As an example of such features, the methodby which
the Motorola 68000 interprets a value and the addressing modes of the M68000 are described in
terms of expressions ofL.

B.1 Motorola 68000: Condition Codes

Data is interpreted by assigning a value to the condition codes (also called flags) of the M68000,
the five least significant bits of the status register,SR. The condition codes are set by an instruc-
tion to reflect the result of an operation on data and the semantics of such an instruction will
include an assignment to the status register. The expression assigned toSR can be calculated by
applying the functionmkSR to the five bits representing the values of the individual condition
codes.

Definition B.1 The condition codes are set by a constructormkSR applied to five arguments:x, the extend flag,n, the negative flag,z, the zero flag,v, the overflow andc, the carry flag,
mkSR(x; n; z; v; c).

mkSR 2 FvIf (mkSR)(x; n; z; v; c) def= � (mkBit (x)� 24) + (mkBit (n)� 23)+(mkBit (z)� 22) + (mkBit (v)� 2) + c 2
The method for calculating the individual condition codes and their used depends on the

particular instruction. In general, instructions which perform similar operations have a simi-
lar interpretation and make similar use of the condition codes, e.g. the arithmetic instructions
typically use the same interpretation of data. The condition codes are used by accessing the
individual bits of the status register,SR.

233

B.1 Motorola 68000: Condition Codes 234

Carry (C), Bit 0: Bit 0 is set by addition and subtraction operations to reflect the carry out of
an addition operation. If the flag is set then the result of the operation was too large to
represent in the size of bit-vector which was used. Since subtraction is defined in terms
of addition, the interpretation of the carry flag is derived from that of addition. Other
operations set the carry to0.

The carry flag in an addition operation on operands of sizeszwith argumentsx, y and
resulte, e = x + y, is set to1 if e � 2sz. For the M68000 processor, the flag is set if the
most significant bit of bothx andy are set or if either is set and the most significant bit ofr is not. The most significant bit is determined from the sizeszof the operations.

bit (0)(SR) = 8<: bit(sz�a 1)(x) and bit(sz�a 1)(y)
or not bit (sz�a 1)(e) and bit(sz�a 1)(x)
or not bit (sz�a 1)(e) and bit(sz�a 1)(y)

Overflow (V), Bit 1: In general, the overflow flag is set when the result of an operation is too
large to be represented in the bit-vector size used. For addition,e = x+ y, the overflow is
set if the most significant bits of the argumentsx andy differ from the most significant bits
of the resulte. The most significant bit is determined from the sizeszof the operations.

bit(1)(SR) = � bit(sz�a 1)(x) =a bit(sz�a 1)(y)
and not (bit(sz�a 1)(e) =a bit(sz�a 1)(x))

Zero (Z), Bit 2: The zero flag is set when the result of an operation is equal to0. The method
used in the semantics of the M68000 to determine whether the resulte is 0 is by the
conjunction of the negated bits of the result. The sizeszof the operation determines the
number of bits which are compared.

bit (2)(SR) = not bit(sz�a 1)(e) and : : : and not bit(0)(e)
This is equivalent to a direct comparison with0.

bit (2)(SR) = (e =a 0)
Negative (N), Bit3: The negative flag is set when the result of an operation, interpreted as a

two’s complement number, is less than0. In the two’s complement system, a number is
negative if the most significant bit is set. Assume that the size of the operationis szand
that the result of the operation ise. The negative flag is assigned the value of bitsz� 1th
of e.

bit (3)(SR) = bit(sz�a 1)(e)
Extend (X), Bit 4: In arithmetic operations this is set to the value of the carry flag. In other

operations this is a general purpose flag. For example, the rotate operations used the extend
flag as an extension to the bit-vector to be rotated.

B.1 Motorola 68000: Condition Codes 235

B.1.1 Condition Code Calculation

Examples of common methods for calculating the condition codes are those of the data move-
ment,move, addition,add, and comparison,cmp, instructions. The semantics of each instruction
describes the operation to be performed and assigns a value to the status register, SR, reflect-
ing the result of the operation. The instructions are written with the instruction size,sz, source
argument,src, and destination argument,dst.

Data movement move:sz src; dst

The result of the operation is the value of the source argument,src, assigned to the des-
tination argumentdst. Condition codeX is unaffected,N is set if the source operand is
negative,Z is set if the source is0 andV andC are cleared. Assume that the size of the
operation is a byte,sz= Byte.

dst;SR:=Byte(src);
mkSR(bit(4)(SR); bit(sz�a 1)(src); (src=sz0); false; false)

Addition add:sz src; dst

The destination argument is assigned the value ofsrc + dst. The destination must be
a register or a memory variable. When the destination is an address register, the status
register is unchanged. Assume that the destination is not an address register.

dst;SR := e;mkSR(C;N; Z; V; C)
wheree = (dst+szsrc); N = bit(sz�a 1)(e); Z = (e =sz0)V = bit(sz�a 1)(src) and bit(sz�a 1)(dst) and not bit(isz �a 1)(e)

or not bit (sz�a 1)(src) and not bit(sz�a 1)(dst) and bit(isz �a 1)(e)C = bit(sz�a 1)(src) and bit(sz�a 1)(dst)
or not bit (isz �a 1)(e) and bit(sz�a 1)(src)
or not bit (isz �a 1)(e) and bit(sz�a 1)(dst)

Comparison cmp:sz src; dst

A comparison instruction performs a similar operation to a subtraction. The destination is
subtracted from the source,(dst�szsrc) and the condition flags are set according to the
result. In the comparison instruction, only the status register is changed.

SR := mkSR(X;N;Z; V; C)

B.1 Motorola 68000: Condition Codes 236

wheree = (dst�szsrc); X = bit(4)(SR); N = bit(sz�a 1)(e); Z = (e =sz0)V = not bit(sz�a 1)(src) and bit(sz�a 1)(dst) and not bit(isz �a 1)(e)
or bit (sz�a 1)(src) and not bit(sz�a 1)(dst) and bit(isz �a 1)(e)C = bit(sz�a 1)(src) and not bit(sz�a 1)(dst)
or bit (isz �a 1)(e) and bit(sz�a 1)(src)
or bit (isz �a 1)(e) and not bit(sz�a 1)(dst)

B.1.2 Addressing Modes of the M68000

Addressing modes determine how an operand is obtained from arguments to a processor instruc-
tion. In general, an instruction argument is used to determine the variable name, a memory
address or register, in which the operand is stored. The description of these addressing modes
is by name expressions accessing individual bytes of memory. The exception is theimmediate
addressing mode in which the instruction argument is the operand and is described by avalue
expression.

Immediate addressing This mode applies only when the argument is a source and the argument
is the operand. The instruction argument is written with a# prefix and is interpreted as a
value. For example, in the instructioninst #1; d the operand is the value1.

Absolute addressingThe instruction argument is a value identifying the memory location in
which the operand is stored. The instruction argumentx : szdenotes the address in mem-
ory x. The size of the bit-vectorx is szand is either a word or a long-word. When the
bit-vector is a word, it is sign extended to a long-word.

ref(ext(Word; Long; x))
When the bit-vector is a long-word, it is used directly,ref(x).

Data register direct The instruction argument is a data register. For instructioninst Dn; dst
the source is the value ofDn, dst := f(Dn). For instructioninst src;Dn the destination
is the registerDn, Dn := f(Dn).

Address register direct The instruction argument and the operand are an address register. For
instructioninst An; dst the source is the value ofAn, dst := f(An). In instructioninst src;An the destination is the registerAn, An := f(src).

Address register indirect The operand is stored in memory at an address stored in an address
register which is the instruction argument. For instructioninst An@; dst the source
is the value stored in memory at the addressAn, dst := f(ref(An)). In instructioninst src;An@ the destination is the memory location at addressAn, ref(An) := f(src)

B.1 Motorola 68000: Condition Codes 237

Address register with post-increment The operand is in memory at an address stored in an
address register. After the operand has been used and updated, the address register is set
to the address of the next operand in memory. The operand may be of sizeByte, Wordor
Longand the change to the address register is by the addition of 1, 2 or 4. If the address
register is the stack pointer (A7), then the increment is always a multiple of 2. With an
operand is of sizeByte, the increment is also by 2 bytes.

For instructioninst:sz src;An@+ the destination is the memory location at addressAn,
ref(An) := f(ref(An)). The change to the address register is of 1, 2, or 4 bytes: for a long-
word, An := An +32 4. The addition operates on a long-word since memory addressing
is by long-words. The model of the instruction is the combination of the operation and the
increment to the register.

ref(An);An := f(src);An +32 4
When used with the stack pointer (A7), this mode implements a pop from a stack. The
instructioninst:b A7@+; dstuses the byte at the top of the stack and increments the stack
pointer to the next word. The memory access of the M68000 must be aligned on a word
boundary and the stack pointer is incremented by2. The instruction is modelled as with
the general case.

dst;An := f(ref(An));An +32 2
Address register indirect with pre-decrement The instruction argument is an address register

and the operand is in memory at the address immediately below that stored in the argu-
ment. The address register is decremented by 1, 2 or 4 depending on the operand size
and the operand is the location identified by the new value of the address register. As
with the address register indirect with pre-increment mode, the stack pointer A7 is always
decremented by a multiple of two.

For instructioninst:sz src;An@�, the destination is calculated from the size of the
operand. When the size is a byte, the operand is obtained byref(An�32 2)). The change to
the address register isAn�32 2. The two are combined to give the model of the instruction.

ref(An �32 1);An := f(src);An �32 1
The stack pointer is always aligned with a word boundary. Forn = 7 the address register
is decremented by two bytes.

ref(An �32 2);An := f(src);An �32 2)
Address register indirect with displacement The argument is an address register with a dis-

placement of sizeWord. The operand is stored at the address calculated from the contents
of the address register together with the sign-extended displacement.

B.1 Motorola 68000: Condition Codes 238

In instructioninst:sz src;An@(x), the destination argument is obtained by the expression
ref(An +32 ext(Word; Long; x)).

ref(An +32 ext(Word; Long; x)) := f(src)
Address register indirect with index The argument to the instruction is an address register, an

index register (an address or data register), an integer displacement, an integer size and an
integer scale. The address register, index register and displacement are optional.

The argument is writtenAn@(i; r : sz: sc) whereAn is an address register,i is the integer
displacement,szthe size of the data,sc the scale andr is a data or address register. The
location in memory of the operand is calculated by the addition ofi, the value stored at the
location stored inAn and the value stored ofr multiplied by the size and scale.

readl(An +32 ext(sz; Long; i) +32 (ext(sz; Long; r)�32 sc))
The reference manual (Motorola, 1986) defines different forms of this addressing mode.
When the displacement can be represented in a byte, the mode is called8-bit displacement;
when the displacement is a word or long it is called abase displacement. These modes are
also defined with the program counterPC replacing the address register and are referred
to asprogram counter indirect with index.

Memory indirect post-indexed The operand is stored in a memory location whose addressx is
also stored in memory. The location at which addressx is stored is determined from the
argument which is writtenAn@(d1)@(d2; r : sz: sc; d2). An is an address register,d1 andd2 are integer displacements,r is an index register (an address or data register),sz is the
operation size andsc is an integer scale.

The location of the addressx is calculated by the addition ofAn andd1. The address of the
operand is calculated by addition of the addressx, the scaled index register,r � sc, and the
integerd2. The integersd1 andd2 and the index register are sign extended to a long-word.

ref(readl(An +32 ext(sz; Long; d1))+32 (ext(sz; Long; r)�32 sc)+32 ext(sz; Long; d2)))
Memory indirect pre-indexed The operand is stored in a memory location whose addressx is

also stored in memory. The location at which addressx is stored is determined from the
argument which is writtenAn@(d1; r : sz : sc)@(d2). An is an address register,d1 andd2 are integer displacements,r is an index register (an address or data register),sz is the
operation size andsc is an integer scale.

The location of the addressx is calculated by the addition of the address registerAn, the
scaled index register,r � sc, and the integerd1. The address of the operand is calculated

B.1 Motorola 68000: Condition Codes 239

by the addition of the addressx and the integerd2. The integersd1 andd2 and the index
register are sign extended to a long-word.

ref(readl(An +32 ext(sz; Long; d1) +32 (ext(sz; Long; r)�32 sc))+32 ext(sz; Long; d2))
Expressions defining memory access for word and long-words use similar calculation but

must be defined in terms of functions such aswritel andreadl. For example, to obtain a long-
word from instruction argumentA and the address register indirect addressing mode, the ex-
pression used inreadl(ref(A)). To store a long-wordx with argumentA and using the address
register indirect mode, an assignment list is constructed by(A;A +32 4) � writel (A; x).

Appendix C

Proofs: Commands

This appendix contains proofs of the theorems and lemmas of Chapter 3, proofs for the substi-
tution rules of Figure (3.3) and a definition for the predicatecorrect?. The order in which the
proofs and definitions are presented is that of Chapter 3. The proofs for lemmas concerning the
expressions are followed by the proofs for substitution rules. These are followed by the definition
of correct?and the proofs for the sequential composition operator.

C.1 Expressions

C.1.1 Lemma (3.1)

Proof.

1. Immediate.

2. The definition of equivalence givesIn(n1)(s) = In(n2)(s). From the definition ofIe,Ie(n1)(s) = s(In(n1)(s)) andIe(n2)(s) = s(In(n2)(s)). By substitution,s(In(n1)(s)) =s(In(n2)(s)).
3. Note that ifI1 = In (ande1; e2 2 En) then it follows, as before, thate1 �(Ie;s) e2.

CaseI2 = Ie: By definition, the interpretation of the expressions isIe(f(e1)(s)) =If(f)(Ie(e1)(s)) andIe(f(e2)(s)) = If (f)(Ie(e2)(s)). The proof follows immediately
from e1 �(Ie;s) e2.
CaseI2 = In (with f 2 Fn): By definition, the interpretation of the expressions isIe(f(e1)(s)) = If(f)(Ie(e1)(s)) andIe(f(e2)(s)) = If (f)(Ie(e2)(s)). As before the
proof follows immediately frome1 �(Ie;s) e2. 2

240

C.2 Substitution 241

C.2 Substitution

Substitution in Assignment Lists

Lemma C.1 For any name expressionx 2 En, assignment listal and states,In(x)(s) 2s al, x 2s al
Proof. By induction onal:
Caseal = nil: By definition,In(x)(s) 2s nil = false= x 2s nil.

Caseal = (t; r) � bl with hypothesisIn(x)(s) 2s bl , x 2s bl: FromIn(x)(s) 2 Namesand
the definition ofIn, In(In(x)(s))(s) = In(x)(s) andIn(x)(s) �s t iff x �s t. If x �s t then
the equivalence of membership follows immediately. Ifx 6�s t then the proof follows from the
inductive hypothesis.

Caseal = bl� cl with hypothesisIn(x)(s) 2s bl, x 2s bl andIn(x)(s) 2s cl, x 2s cl: The
proof of equivalence follows immediately from the definition of membership and theinductive
hypothesis. 2
Lemma C.2 Properties of find

For name expressionx, assignment listal and states,x 62s al
find(x,al)(s)=x

Proof. By induction onal.
Caseal = nil: find(x; al)(s) = x by definition.

Caseal = (x1; e1) � bl andx 62s bl) find(x; bl)(s) = x: if x1 �s x2 thenx 2s al which is a
contradiction. Sincex1 6�s x, find(x; al)(s) = find(x; bl; s) = x since ifx 2s bl thenx 2s al.
Caseal = bl � cl with x 62s bl) find(x; bl)(s) = x andx 62s cl) find(x; cl)(s) = x: Sincex 62s cl, find(x; al)(s) = find(x; bl)(s). x 62s bl andfind(x; al)(s) = x. 2
C.2.1 Lemma (3.2)

Proof.

Casex 2 Names: By definition,x / al = x, andIn(x)(update(al; s)) = x = In(x)(s).
Casex = f(a1; : : : ; an) for f 2 Fn: By definition of substitution,f(a1; : : : ; an) / al =f(a1 / al; : : : ; an / al). From the definition ofIn, In(f(a1 / al; : : : ; an / al)(s)) is If(f)(Ie(a1 /al)(s); : : : ; Ie(an / al)(s)). For 1 � i � n, Ie(ai / al)(s) = Ie(ai)(update(al; s)). This leads
to If(f)(Ie(a1)(update(al; s)); : : : ; Ie(an)(update(al; s))) which is equivalent to the interpreta-
tion in the updated state,In(f(a1; : : : ; an))(update(al; s)). 2

C.2 Substitution 242

C.2.2 Theorem (3.1)

Membership of an assignment list is based on the equivalence of name expressions and member-
ship in states updated with assignment listal of a name expressionx is equivalent to membership
in s of x / al.
Lemma C.3 For name expressionx 2 En, assignment listsal; bl 2 Alist and states,x 2update(bl;s) al = (x / bl) 2s al / bl
Proof. By induction onal.
Caseal = nil: By definition, both sides of the equation arefalse.

Caseal = (x1; v1) � al0 and the property istrue for al0: By definition ((x1; v1) � al0) / bl =(x1 / bl; v1 / bl) � (al0 / bl). From the definition of membership and substitution in a name
expression,x �update(bl;s) x1 iff x / bl �s x1 / bl. The remainder of the proof is straightforward
from the definition of membership and the inductive hypothesis.

Caseal = (cl1 � cl2) and the property istrue for bothcl1 andcl2: The proof is straightforward
from the definition of membership. 2

When the expressione is a name expression, searching for the value associated withe in
assignment listal in the states updated withbl is equivalent to substitutingbl in bothe andal
and performing the search in the states.
Lemma C.4 For name expressionn 2 En, assignment listsal; bl 2 Alist, and statess; s0 2 State,s0 = update(bl; s) n 2s0 alIe(find(n; al)(s0))(s0) = Ie(find(n / bl; al / bl)(s))(s)
Proof. By induction onal,
Caseal = nil. By definitionn 2s0 nil = falsecontradicting the assumption.

Caseal = (x; v) � al0 with the propertytrue for al0. By Lemma (C.3),n �update(bl;s) x iffn / bl �s x / bl.
Assumen �update(bl;s) x, it follows thatn/ bl �s x/ bl. By definition,Ie(find(n; al)(s0))(s0) =Ie(v)(s0) andIe(find(n/bl; al/bl)(s))(s) = Ie(v/bl)(s). The proof thatIe(v)(s0) = Ie(v/bl)(s)
is immediate from the definition of substitution and froms0 = update(bl; s).
Assumen 6�update(bl;s) x. By definition,Ie(find(n; al)(s0))(s0) = Ie(find(n; al0)(s0))(s0) and,

from the inductive hypothesis, this isIe(find(n / bl; al0 / bl)(s))(s). Also by definition and sincen / bl 6�s x / bl, Ie(find(n / bl; al / bl)(s))(s) = Ie(find(n / bl; al0 / bl)(s))(s) completing the
proof for this case.

C.2 Substitution 243

Caseal = (cl1 � cl2) with the propertytrue for cl1 andcl2.
Assumen 2s0 cl1. From Lemma (reflem:2.1.1) it follows thatn / bl 2s cl1 / bl. By definition,Ie(find(n; al; s0))(s0) = Ie(find(n; cl1; s0))(s0) and the property follows from the inductive hy-
pothesis. Assumen 62s0 cl1, it follows thatn / bl 62s cl1 / bl and (from the assumptionn 2s0 al)n 2s0 cl2. Consequently,n / bl 2s cl2 / bl and, by definition, the property to be established isIe(find(n; cl2; s0))(s0) = Ie(find(n; cl2/bl; s))(s) which is immediate from the inductive hypoth-
esis. 2
Proof. Theorem (3.1)By induction onal and by extensionality withx 2 Names.

Caseal = nil. From the definitions, and sincenil / bl = nil, update(bl; s)(x) = update(bl; s)(x)
is straightforward

Caseal = (x1; v1) �al0 and the property istrue for al0: By definition,update(al; update(bl; s))(x)
isIe(find(x; al)(update(bl; s)))(update(bl; s)). Also,update(bl�(al/bl); s)(x) isIe(find(x; bl�(al / bl))(s))(s).
Assumex 2update(bl;s) al. From Lemma (C.3), it follows thatx 2s al / bl is true (x / bl = x
sincex 2 Namesand the substitution is for name expressions). This reduces the equation toIe(find(x; al)(update(bl; s)))(update(bl; s)) = Ie(find(x; (al / bl))(s))(s).
Assume thatx �update(bl;s) x1. By definition this istrue iff x / bl �s x1 / bl. The result
of Ie(find(x; al)(update(bl; s)))(update(bl; s) will therefore beIe(v1)(update(bl; s)) and the re-
sult of Ie(find(x; (al / bl))(s)))(s) is Ie(v1 / bl)(s). The proof follows from the definition of
substitution.

Assume thatx 6�update(bl;s) x1. Thatx 2update(bl;s) al0 follows from the definition of member-
ship and the proof is straightforward from the inductive hypothesis and the definitions.

Assumex 62update(bl;s) al. From Lemma (C.3), it follows thatx 62s al / bl. If x is assigned to
by the assignment list it must be bybl. The equation reduces toupdate(bl; s)(x) = update(bl; s)
from the definitions.

Caseal = (cl1 � cl2) with the propertytrue for cl1 andcl2. The proof is similar to the previous
case.

By definition,update(al; update(bl; s))(x) is Ie(find(x; al)(update(bl; s)))(update(bl; s)). Also
by definition,update(bl � (al / bl); s)(x) is Ie(find(x; bl � (al / bl))(s))(s).
Assume thatx 2update(bl;s) al. From Lemma (C.3), it follows thatx 2s al/bl (sincex 2 Names,x/bl = x). Consequently,Ie(find(x; bl�(al/bl))(s))(s) is equivalent toIe(find(x; al/bl)(s))(s).
From Lemma (C.4), this is equivalent toIe(find(x; al)(update(bl; s)))(update(bl; s)).
Assume thatx 62update(bl;s) al. From Lemma (C.3), it follows thatx 62s al / bl. By defini-
tion, Ie(find(x; bl � (al / bl))(s))(s) is Ie(find(x; bl)(s))(s) and, by definition, this is equiv-
alent to update(bl; s)(x). From Lemma (C.2),find(x; al)(update(bl; s)) = x and thereforeIe(find(x; al)(update(bl; s)))(update(bl; s)) isIe(x)(update(bl; s)). By definition ofIe and fromx 2 Names, this is equivalent toupdate(bl; s)(x) completing the proof. 2

C.2 Substitution 244

Substitution Rules

Corollary C.1 Find and Update

For al; bl 2 Alist, s 2 State andx 2 Names:Ie(x)(update(al; s)) = Ie(find(x; al; s))(s)
Proof. Immediate, from definition ofIe andupdate. 2
Proof. Rules of Figure (3.3)

Rules (sr1), (sr2), (sr3), (sr4) and (sr5): Straightforward from definitions of substitution,�s,Ie andfind. For (sr3) note that the conclusion reduces toIe(find(x; (t; r) � al)(s))(s)) = Ie(r)(s)
From the definition offindand the assumption thatx �s t, find(x; (t; r) � al)(s) = r.
For (sr4), the conclusion reduces toIe(find(x; (t; r) � al)(s))(s)) = Ie(find(x; al)(s))(s)
From the definition offindand the assumptionx 6�s t, find(x; (t; r) � al)(s) = find(x; al)(s).
Rules (sr6) and (sr7): From the definitions and the fact thatf is a name function, the left hand
side of the equivalence in the assumption reduces toIe(find(In(f(a1; : : : ; an); (t; r) � al)(s)))(s)
For rule (sr6): since the assumption is that the equivalence holds,In(f(a1; : : : ; an))(s) =In(t)(s), the definition offind reduces the conclusion toIe(r)(s) = Ie(r)(s) which is trivially
true.

For rule (sr7): the assumption is that the equivalence witht is not true. From the definition ofIn
and of substitution, the left hand side of the assumption, reduces toIe(find(If(f)(Ie(a1)(update(al; s)); : : : ; Ie(an)(update(al; s))); al)(s))(s)
For eachvi of the assumption,Ie(vi)(s) = Ie(ai)(update(al; s)). This leads toIe(find(If (f)(Ie(v1)(s); : : : ; Ie(vn)(s)); �al)(s))(s)
From the definition of equivalence, substitution and the interpretation functionIe andIn, this isIe(f(v1; : : : ; vn) / al)(s)
completing the proof for the rule.

C.2 Substitution 245

Rules (sr8) and (sr9): For any states, Ie(e / (al � bl))(s) is Ie(e)(update(al � bl; s)).
For rule (sr8),bl = nil: by extensionality,update(al � nil; s) = update(al; s) and it follows by
definition thatIe(e)(update(al; s)) = Ie(e / al)(s).
For rule (sr9),al = nil: since, for anyx 2 Namesandt 2 State, find(x; nil; s) = x, the proof is
as for rule (sr8). By extensionality,update(nil � bl; s) = update(bl; s) andIe(e / nil � bl)(s) =Ie(e / bl)(s).
Rule (sr8): By definition Ie(x / bl � (t; r) � al)(s) is Ie(x)(update(bl � (t; r) � al)) and, by
Corollary (C.1), this is equivalent toIe(find(x; bl� (t; r) �al; s))(s). Sincex �s t, it follows thatx 2s (t; r) � al andfind(x; (t; r) � al; s) = r. The conclusion of the rule is then straightforward
from Ie(find(x; (t; r) � al; s))(s) = Ie(r)(s).
Rule (sr9): As for rule (sr8), the conclusion reduces toIe(find(x; bl � (t; r) � al; s))(s) = Ie(find(x; bl � al; s))(s)
There are two cases to consider: for the first, assumex 2s (t; r) � al. Sincex 6�s t, it follows
thatx 2s al which leads toIe(find(x; (t; r) � al; s))(s) = Ie(find(x; al; s))(s). Sincex 6�s t, this
reduces, by definition offind, to Ie(find(x; al; s))(s) = Ie(find(x; al; s))(s) which is trivially
true. For the second case, assumex 62s (t; r) � al. It follows thatx 62s al and therefore the
conclusion of the rule reduces toIe(find(x; bl; s))(s) = Ie(find(x; bl; s))(s), which is trivially
true.

Rule (sr10): Let x = In(f(a1; : : : ; an) / bl � (t; r) � al)(s). By definition,x = If(f)(Ie(a1)(update(bl � (t; r) � al; s)); : : : ; Ie(an)(update(bl � (t; r) � al; s)))
Since eachvi of the rule is equivalent toan / bl � (t; r) � al, it follows thatx = If (f)(Ie(v1)(s); : : : ; Ie(vn)(s))
Also by definition (and sincef 2 Fn),Ie(f(a1; : : : ; an) / bl � (t; r) � al)(s)= Ie(If(f)(Ie(a1)(update(bl � (t; r) � al; s)); : : : ; Ie(an)(update(bl � (t; r) � al; s))))(update(bl � (t; r) � al; s))= Ie(x)(update(bl � (t; r) � al; s))
As with rule (sr8), this reduces toIe(find(x; bl � (t; r) � al; s))(s). Sincex �s t, this isIe(find(x; (t; r) � al; s))(s) which reduces toIe(r)(s), completing the proof.

Rule (sr11): As in the proof of rule (sr10), letx = In(f(a1; : : : ; an) / bl � (t; r) � al)(s). As
before,Ie(f(a1; : : : ; an)/bl�(t; r)�al)(s) is equivalent toIe(x)(update(bl�(t; r)�al; s)). Note
also thatIe(f(v1; : : : ; vn)/bl�al)(s) is equivalent toIe(If (f)(v1; : : : ; vn))(update(bl�al; s)),
since thevi are constants (vi 2 Values).

C.2 Substitution 246

Note that Ie(x)(update(bl � (t; r) � al; s)) = Ie(f(v1; : : : ; vn))(update(bl � (t; r) � al; s))
and Ie(x)(update(bl � al; s)) = Ie(f(v1; : : : ; vn))(update(bl � al; s))

The proof therefore requires thatIe(x)(update(bl � (t; r) � al; s)) = Ie(x)(update(bl � al; s))
and as before,Ie(x)(update(bl � (t; r) � al; s)) reduces toIe(find(n; bl � (t; r) � al; s))(s) andIe(x)(update(bl � al; s) is Ie(find(x; bl � al; s))(s).
There are two cases to consider: for the first,x 2s (t; r) � al. By definition,find(x; bl � (t; r) �al; s) = find(x; (t; r) � al; s). Sincex 6�s t, it must be thatx 2s al from which it follows that
find(x; (t; r) �al; s) = find(x; al; s) and thatfind(x; bl�al; s) = find(x; al; s). This completes the
proof for this case. For the second case, assumex 62s (t; r) � al. As as consequence,find(x; bl �(t; r) � al; s) = find(x; bl; s). It also follows thatx 62s al and thereforefind(x; bl � al; s) =
find(x; bl; s) completing the proof. 2
C.2.3 Correct Assignment Lists

The definition ofcorrect?used in the PVS theories differs from that given in Chapter 3. The
correctness of an assignment listal is asserted by the predicateassign?which is defined by
recursion onal.
Definition C.1 Correct assignment lists

The functionassign?has type(Alist� Alist)! State! boolean

and definition

assign?(nil; cl)(s) def= true

assign?((x; e) � al; cl)(s) def= 8<: e �s find(x; cl)(s)^assign?(al; (x; e) � cl)(s) if v 2s cl
assign?(al; (x; e) � cl)(s) otherwise

assign?(al � bl; cl)(s) def= assign?(al; nil)(s) ^ assign?(bl; nil)(s)
The predicatecorrect?is defined in terms ofassign?.

correct?(al)(s) def= assign?(al; nil)(s) 2

C.2 Substitution 247

The action ofassign?for a simple list is to retain the names and values which have been
encountered in the listcl. To determine whether(x; e) is a correct assignment, the last value
assigned tox is found incl and compared withe. If the two are equivalent then the assignment(x; e) is possible provided that the remainder of the assignment listal is correct.

The properties of Definition (3.18) follow from Lemma (C.5) and Lemma (C.6) below. Note
that the first property is proved from Lemma (C.5). Forn 2 Namesands 2 State, whenbl = nil,n 2s bl = false.

Lemma C.5 For simple listal 2 Alist, simple?(al), assignment listbl 2 Alist and states 2
State,

assign?(al; bl)(s), 0@ 8(n : Names) :9(e : E) : 8(e1 : E) : e1 2 Assoc(n; al)(s)) e �s e1^n 2s bl) e �s (find(n; bl)(s)) 1A
Proof. Let� be the property on the right hand side.�(al; bl; s) def= 8(n : Names) :9(e : E) : 8(e1 : E) : e1 2 Assoc(n; al)(s)) e �s e1^ n 2s bl) e �s (find(n; bl)(s))
()) by induction onal with anyn 2 Names. Sinceal is a simple list, there are two cases.

Caseal = nil: The proof follows immediately from definitions.

Caseal = (x; v) � al0 and inductive hypothesisassign?(al0; (x; v)bl; s)) �(al0; (x; v) � bl; s):
If x 6�s n, the proof is immediate from the inductive hypothesis therefore assume thatx �s n
andx 2s bl. By definition ofassign?, v �s find(x; bl)(s). Assume thatx 2s al0, then from
the assumption thatassign?(al0; (x; v) � bl; s) (from assign?(al; bl; s)) and from the inductive
hypothesis there is a valuee such thate �s find(x; (x; v) � bl)(s) and for alle1 such thate1 2
Assoc(x; al0)(s), e1 �s e. By definition offind, e �s v and thereforev �s e1. From this, the
assertion9(e : E) : 8(e1 : E) : e1 2 Assoc(n; al)(s)) e �s e1 follows immediately and
completes the proof for this case.

Assume thatx 62s bl. The proof is similar to that of the previous case.

(() by induction onal.
Caseal = nil: The proof follows immediately from definitions.

Caseal = (x; v) � al0 and inductive hypothesis�(al0; (x; v) � bl; s)) assign?(al0; (x; v) � bl; s):
Assume thatx 2s bl. From the definition of�(al; bl; s) and v 2 Assoc(x; al)(s), v �s
find(x; bl)(s) is immediate. If the assertion�(al; bl; s)) �(al0; (x; v) � bl; s) is true then
assign?(al0; (x; v) � bl; s) will be established by the inductive hypothesis.

To show�(al0; (x; v) � bl; s), assumen 2 Namessuch thatn 2s al0. By definition of�(al; bl; s),
there is an expressione 2 E such that8e1 2 Assoc(n; al)(s) : e �s e1 andn 2s bl) e �s

C.2 Substitution 248

find(n; bl)(s). The first conjunct of�(al0; (x; v) � bl; s), 8e1 2 Assoc(n; al0)(s) : e �s e1, is
straightforward from the definition ofAssocandoccs?.

Assume thatx �s n. Fromx 2s al, it follows thate �s v and thate �s find(n; (x; v) � bl)(s),
completing the proof of�((x; v) � al0; bl; s) for this case.

Assume thatx 6�s n. From�(al; bl; s) andn 6�s x, it follows thate �s find(n; (x; v) � bl)(s),
completing the proof of�((x; v) � al0; bl; s). 2
Lemma C.6 For any assignment listsal; bl 2 Alist and states 2 State,

assign?(al; bl)(s), �
assign?(initial(al); bl)(s)^8(cl : Alist) : cl� al ^ combine?(cl)) assign?(cl; nil)(s)�

Proof. Let� be the property�(al; bl; s) def= assign?(initial(al); bl)(s)^ 8(cl : Alist) : cl� al ^ combine?(cl)) assign?(cl; nil)(s)
The proof is by induction onal.
Caseal = nil: The proof is immediate from definitions.

Caseal = (x; v) � al0 with inductive hypothesisassign?(al0; (x; v) � bl)(s), �(al0; (x; v) � bl; s):
()), the proof is similar for ((). From the assumptionassign?(al; bl)(s), and by definition, it
follows thatassign?(al; (x; v) � bl)(s) and, if x 2s bl, v �s find(x; bl)(s). From the definition
of initial , assign?(initial(al); bl)(s) iff assign?((x; v) � initial(al0); bl)(s). From the definition
of assign?, this requiresv �s find(x; bl)(s), if x 2s bl, andassign?(initial(al0); (x; v) � bl)(s).
The assumptionassign?(al; bl)(s) establishesv �s find(x; bl)(s), satisfying the first require-
ment. The second requirement,assign?(initial(al0); (x; v) � bl; s), is established by the inductive
hypothesisassign?(al0; (x; v) � bl; s)) �(al0; (x; v) � bl; s) and the definition of�.

This establishes the first conjunct of�(al; bl; s). The second conjunct is straightforward from
the inductive hypothesis,assign?(al0; (x; v) � bl; s)) �(al0; (x; v) � bl; s) and the assumption
assign?(al; bl; s).
Caseal = (cl1 � cl2) with the inductive hypothesisassign?(cl1; bl1)(s) , �(cl1; bl1; s) and
assign?(cl2; bl2)(s) , �(cl2; bl2; s) for any bl1; bl2 2 Alist: The proof is straightforward from
assign?(al; bl)(s) = assign?(cl1; nil)(s) ^ assign?(cl2; nil)(s), with bl1 = bl2 = nil. 2
C.2.4 Theorem (3.2)

The proof forcorrect?is based on that forassign?.

Theorem C.1 For assignment listsal; bl; cl 2 Alist and states,
assign?(al; cl; update(bl; s)), assign?(al / bl; cl / bl; s)

C.3 Composition 249

Proof. By induction onal. Caseal = nil: By definitional / bl = nil andassign?(nil; cl; s) is
true for anys 2 Stateandcl 2 Alist.

Caseal = (x; v) � al0 and with inductive hypothesisassign?(al0; (x; v) � cl; update(bl; s)) iff
assign?(al0 / bl; ((x; v) � cl) / bl; s):
()), the proof for (() is similar.

From the assumptionassign?(al; cl; update(bl; s)): if x 2update(bl;s) cl then v �update(bl;s)
find(x; cl)(update(bl; s)). By definition this isIe(v)(update(bl; s)) = find(x; cl)(update(bl; s)).
From Lemma (C.4),find(x; cl)(update(bl; s)) is equivalent tofind(x / bl; cl / bl)(s). From the
definition of find this isIe(v / bl)(s) = Ie(v)(update(bl; s)) completing the proof the first re-
quirement ofassign?. Note that Ifx 62update(bl;s) cl then from Lemma (C.3),x / bl 62s cl / bl.
The remainder of the proof, forassign?(al0 / bl; (x; v) � cl / bl; s) follows from the assumption
assign?(al; cl; update(bl; s)). By definition,assign?(al0; (x; v) � cl; update(bl; s)) is true and the
proof is immediate from the inductive hypothesis.

Caseal = cl1 � cl2 and assuming the property istrue for bothcl1 andcl2:
The proof is straightforward from the definition ofassign?, Lemma (C.3) and the inductive
hypothesis. 2
Proof. Theorem (3.2)

By definition, correct?(al)(s) = assign?(al; nil; s) and the proof is immediate from Theorem
(C.1) withcl = nil. 2
C.3 Composition

Properties of the sequential composition of commandsc1 andc2, c1; c2 are established in two
steps. The first assume thatc1 is an assignment command and the proof is, generally, by induction
on c2. The second step establishes the properties for any command by induction onc1.
C.3.1 Composition and Assignment

Lemma C.7 Composition and assignment

Assume commandsc; c1; c2 2 L0, assignment listsal; bl 2 Alist, label l 2 Labels, label
expressionsl1; l2 2 El and statess; t; u 2 State.

Result of composition. The result of the composition of an assignment command with any com-
mand is an abstraction. I(:= (al; l1))(s; u) I(c)(u; t)I(:= (al; l1); c)(s; t)

C.3 Composition 250

Reverse of composition.If the composition of two assignments commandsc1 andc2 begins in
states and ends in statet then there is an intermediate state in whichc1 ends andc2 begins.I(:= (al; l1); := (bl; l2))(s; t)9u : I(:= (al; l1))(s; u) ^ I(:= (bl; l2))(u; t)

Composition with a labelled command. If assignment commandc1 begins in states and the
successor expression ofc1 is not equivalent ins to the label ofl : c then the composition
of c1 with l : c is equivalent to the commandc1.I(:= (al; l1); l : c)(s; t) l1 6�s lI(:= (al; l1))(s; t)

Composition with a regular labelled command If assignment commandc1 begins in states
and the successor expression ofc1 is equivalent ins to the label ofl : c and l : c is a
regular command, then there is an intermediate state betweenc1 andl : c.I(:= (al; l1); l : c)(s; t) regular?(l : c) l1 �s l9u : I(:= (al; l1))(s; u) ^ I(l : c)(u; t)

Proof. Result of composition

By induction onc. The cases whenc is not an assignment command are straightforward from
the inductive hypothesis.

Casec = (l0 : c0) with inductive hypothesisI(:= (al; l1); c0)(s; t):
FromI(:= (al; l1))(s; u), Ie(pc)(u) = Ie(l1)(s) and, from Corollary (3.2),Ib(equal(pc; l1))(s).
From the definition of composition with a labeled command and of the interpretationof a con-
ditional command, the conclusion is equivalent toI(:= (al; l1); c0)(s; t) and is straightforward
from the inductive hypothesis.

Casec = (if b then ct elsecf) with the inductive hypothesisI(:= (al; l1); ct)(s; t) andI(:=(al; l1); cf)(s; t): The proof is straightforward from the definition of composition with a condi-
tional and from the assumptions.

Casec = (:= (bl; l2)): FromI(:= (al; l1))(s; u), correct?(al)(s) andu = update((pc; l1) �al; s).
From I(:= (bl; l2))(u; t), correct?(bl)(u) and t = update((pc; l2) � bl; u). The definition of
composition leads toI(:= (((pc; l1) � al)� (bl / (pc; l1) � al); l2 / ((pc; l1) � al)))(s; t)
as the conclusion to be proved. From the definition ofI, there are two requirements: the correct-
ness of the assignment list and the change to the state.

Correctness: The definition ofI requires

correct?((pc; l2 / ((pc; l1) � al)) � (((pc; l1) � al)� (bl / (pc; l1) � al)))(s)

C.3 Composition 251

This reduce to the three correctness statementscorrect?((pc; l2 / al) � nil)(s), correct?((pc; l1) �al; s) andcorrect?(bl / (pc; l1) � al)(s) (see the Corollary 3.1 and Definition 3.18 ofcorrect?).
correct?((pc; l2 / al) � nil)(s) is trivially true andcorrect?((pc; l1) � al; s) follows immediately
from I(:= (al; l1))(s; u). From Theorem (3.2),correct?(bl / (pc; l1) � al)(s) is equivalent to
correct?(bl)(update((pc; l1) � al; s)). FromI(:= (al; l1))(s; u), u = update((pc; l1) � al; s) and
correct?(bl)(u) follows fromI(:= (al; l1))(u; t).
State update: The definition ofI requirest = update((pc; l2 / ((pc; l1) � al)) � (((pc; l1) � al)� (bl / (pc; l1) � al)); s)
From the assumptionI(:= (al; l1))(s; u), u = update((pc; l1) � al; s). Also from assump-
tion I(:= (bl; l2))(u; t), t = update((pc; l2) � bl; u). Replacingu gives,t = update((pc; l2) �bl; update((pc; l1) � al; s)) and the proof is straightforward by extensionality. 2
Proof. Reverse of composition

The intermediate stateu is update((pc; l1) � al; s). The correctness of the assignment lists,
correct?((pc; l1) � al)(s) andcorrect?((pc; l2) � bl)(u) is straightforward from Theorem (3.2) and
the correctness of the assignment list in the assumption. The state updatet = update((pc; l2) �bl; update((pc; l1) � al; s)) is also straightforward from the assumption and Theorem(3.1).2
Proof. Composition with a labelled command

The conclusion follows from the assumptionl1 6�s l, Corollary (3.2), the definition of composi-
tion and the interpretation of a conditional command. 2
Proof. Composition with a regular labelled command

From the assumptionl1 �s l, the definition of the composition and the interpretation of the
conditional command, the assumption reduces toI(:= (al; l1); c)(s; t).
The intermediate stateu for all cases isu = update((pc; l1) � al; s). From the definition of com-
position, the interpretation of a conditional command and the assumptionl1 �s l, the conclusion
requires thatI(c)(u; t).
By induction onc. Whenc is an assignment command, the proof is as for the previous property.
Whenc is a conditional command, the proof is straightforward from the inductive hypothesis
(that the property istrue for the branches of the conditional).

Assume thatc = l0 : c0 and the property istrue for c0. Note that ifl : c is a regular command
then so isl : l0 : c0: every labelled command which is a sub-term ofl : c is labelled withl andl0 = l. From the interpretation of an assignment command,I(:= (al; l1))(s; u) impliespc�u l1
and, from the assumption,pc�u l. From the inductive hypothesis, the property istrue for c0 and
there is a stateu0 such thatI(:= (al; l1))(s; u0) andI(c0)(u0; t). From Lemma (3.3),u0 = u and,
sinceIe(pc)(u) = l0, it follows thatI(l0 : c0)(u; t) is true. 2

C.3 Composition 252

C.3.2 Theorem (3.3)

Proof. By induction onc1. The case whenc1 is a conditional command follows from definition
of composition and the assumption that the property istrue for the branches of the conditional.
If c1 is a labeled commandl0 : c0, and assuming the property istrue for c0, the conclusion follows
from the definition of composition, the assumption thatl0 = l (c is a regular command) and the
inductive hypothesis.

Assumec is the assignment command:= (al; l1). The proof is by induction onc2. Whenc2
is a conditional command, the conclusion follows from the definition of composition and the
assumption that the property holds for the branches of the conditional. Whenc2 is an assignment
command, the conclusion is immediate from the definition of composition. Assumec2 is the
labeled commandl0 : c0 and that the property holds forc0. From the definition of composition,l : c1; c2 is l : if equal(l1; l0) then c1; c0 elsec1. From the inductive hypothesis,regular?(l :c1)) regular?((l : c1); c0). Since every sub-term ofl : c1; c0 is also regular (for every sub-term
labeled withl2, l2 = l), so isc1; c0. The conclusion thatl : c1; c0 is regular follows since the
only other labeled command occurring inl : c1; c0 is c1 and therefore every labeled command inl : c1; c0 is labeled withl. 2
C.3.3 Theorem (3.4)

Proof.

By induction onc1.
Casec1 = if b then ct elsecf and the property istrue for ct andcf . From the assumption there
is a stateu such thatI(c1)(s; u) andI(c2)(u; t). From the definition of compositionc1; c2 is
if b then ct; c2 elsecf ; c2. The conclusion to be proved is that ifIb(b)(s) thenI(ct; c2)(s; t) and
if :Ib(b)(s) thenI(cf ; c2)(s; t). From the assumptionI(c1)(s; u), eitherIb(b)(s) andI(ct)(s; u)
or :Ib(b)(s) andI(cf)(s; u). AssumeIb(b)(s), the inductive hypothesis is(9u0 : I(ct)(s; u0) ^I(c2)(u0; t))) I(ct; c2)(s; t) and the conclusion for this case follows withu0 = u. The case for:Ib(b)(s) is similar.

Casec1 = l0 : c0 with the assumption that the property istrue for c0. The proof is similar to that
of the conditional command.

Casec1 = (:= (al; l)). The proof is immediate from Lemma (C.7). 2
C.3.4 Theorem (3.5)

Proof.

By induction onc1, the case for the conditional and labelled commands is straightforward from
the inductive hypothesis.

C.3 Composition 253

Assumec1 = (:= (al; l1)). By definition,c1; (l : c2) is if equal(l1; l) then c1; c2 elsec1. From
the assumptionI(c1)(s; t), Ie(pc)(t) = Ie(l1)(s). Frompc 6�t l and l 2 Labels, l1 6�s l andIb(equal(l1; l))(s) is false. ThereforeI(if equal(l1; l) then c1; c2 elsec1)(s; t) is I(c1)(s; t). 2
C.3.5 Theorem (3.6)

The proof is by induction onc1, the case for the assignment command is proved by induction
on c2.
Lemma C.8 For assignment commandc1 = (:= (al; l)), commandc2 2 L0 and statess; t,I(c1; c2)(s; t)(9(u : State) : I(c1)(s; u) ^ I(c2)(u; t)) _ I(c1)(s; t)
Proof.

From the interpretation of an assignment command, if there is an intermediatestateu, it isu = update((pc; l) � al; s), otherwiset = update((pc; l) � al; s).
By induction onc2.
Casec2 = if b then ct elsecf and assuming the property istruefor c1; ct andc1; cf . By definition,c1; c2 is the conditional commandif b / ((pc; l) �al) then c1; ct elsec1; cf . AssumeIb(b / ((pc; l) �al))(s), thenI(c1; c2)(s; t) is I(c1; ct)(s; t). Assume there is no intermediate stateu such thatI(c1)(s; u) andI(ct)(u; t), then from the hypothesis,I(c1)(s; t) and the case is proved. Assume
that there is an intermediate stateu such thatI(c1)(s; u) andI(ct)(u; t). The value of the boolean
conditionb in u is Ib(b)(update(al; s)) which is equivalent toIb(b / bl)(s). ThereforeI(c2)(u; t)
is equivalent toI(ct)(u; t) completing the proof for this case. The case when:Ib(b / ((pc; l) �al))(s) is similar.

Casec2 = (l : c) and assuming the property istrue for c. The proof is similar to that of the
conditional command.

Casec2 = (:= bl; l2), the proof follows from Lemma (C.7). 2
Proof. Theorem (3.6)

Straightforward by induction onc1 and from Lemma (C.8). 2
C.3.6 Theorem (3.7)

The proof is similar to that of Theorem (3.6). The proof is by specializing the propertywhenc1
is an assignment command by labeling the commandc2.

C.3 Composition 254

Lemma C.9 For assignment commandc1 = (:= (al; l)) commandc2 2 L, label l2 2 Labels
and statess; t, I(c1; (l2 : c2))(s; t) regular?(l2 : c2)(9(u : State) : I(c1)(s; u) ^ I(l2 : c2)(u; t)) _ (I(c1)(s; t) ^ pc 6�t l2
Proof.

By induction onc2. Note that sincel2 : c2 is a regular command, every sub-termc0 of c2,l2 : c0 is also regular. Also, from the definition of composition,c1; (l2 : c2) is the conditional
if equal(l; l2) then c1; c2 elsec1. If :Ib(equal(l; l2))(s) then from the assumption, it follows thatI(c1)(s; t), Ie(pc)(t) = Ie(l)(s) andl 6�s l2. The conclusion,I(c1)(s; t), andpc 6�s l2 follows
immediately. For the remainder, assume thatl �s l2.
Casec2 = if b then ct elsecf and assuming the property istrue for ct and cf . The proof is
straightforward from the inductive hypothesis and is similar to that given for Lemma (C.8).

Casec2 = l0 : c0 and assuming the property is true forc0. Sincel2 : c2 is a regular command,l0 = l2. From the inductive hypothesis, either there is an intermediate stateu such thatI(c1)(s; u)
andI(l2 : c0)(u; t) or I(c1)(s; t) andpc 6�t l2. Assume there is an intermediate stateu: fromI(l2 : c0)(u; t) and froml0 = l2 it follows that I(l2 : l0 : c0)(u; t). The conclusion that there
is a stateu such thatI(c1)(s; u) andI(l2 : l0 : c0)(u; t) is thereforetrue. Assume there is
no intermediate state. From the inductive hypothesis,I(c1)(s; t) andpc 6�t l2 is trivially true
completing that proof for this case.

Casec2 := (:= (bl; l3)). Sincel �s l2, the assumption reduces toI(c1; c2)(s; t) and the conclu-
sion follows from Lemma (C.7). 2
Proof. Theorem (3.7)

Straightforward by induction onc1 and by Lemma (C.9) for the case whenc1 is an assignment
command. 2
C.3.7 Theorem (3.8)

Proof.

From the assumption,c1; c2 is enabled ins and there is not 2 Statesuch thatI(c1; c2)(s; t).
From composition,label(c1) = label(c1; c2) and c1 is enabled ins. Assume that there is at1 2 Statesuch thatI(c1)(s; t1). Also assume that:pc �t1 label(c2). From Theorem (3.5),I(c1; c2)(s; t1) = I(c1)(s; t1) contradicting the assumption that there is no sucht1.
Assume thatpc �t1 label(c2) and let stateu of the conclusion bet1, u = t1; commandc2 is
enabled inu. Assume that there is a statet2 such thatI(c2)(u; t2): t1 is an intermediate state
such thatI(c1)(s; t1) andI(c2)(t1; t2). It follows, from Theorem (3.4), thatI(c1; c2)(s; t2). This
contradicts the assumption that there is no statet such thatI(c1; c2)(s; t) and completes the
proof. 2

C.3 Composition 255

C.3.8 Theorem (3.9)

Proof.

1. c1 halts.

From composition,c1; c2 is enabled ins iff c1 is enabled ins. The property to be proved is
therefore that if8t1 : :I(c1)(s; t1) then8t : :I(c1; c2)(s; t). Assume that there is a statet
such thatI(c1; c2)(s; t). From Theorem (3.6) there is a stateu such thatI(c1)(s; u) which
is a contradiction.

2. c2 halts.

Note that ifc2 halts in statet then it is enabled int. Assume that there is a stateu such
thatI(c1; c2)(s; u). From Theorem (3.7) eitherI(c1)(s; u) andpc 6�u label(c2) or there is
a statet0 such thatI(c1)(s; t0) andI(c2)(t0; u).
Assume thatI(c1)(s; u) andpc 6�u label(c2): The commands are deterministic (Lemma
3.3) andu = t. From the assumptionhalt?(c2)(t), it follows thatenabled(c2)(t) is true.
This contradicts the assumption thatpc 6�u label(c2).
Assume there is at0 such thatI(c1)(s; t0) andI(c2)(t0; u). The commands are deterministic
and from Lemma (3.3),t = t0. ThereforeI(c2)(t; u) is true contradicting the assumption
thatc2 halts int. 2

Appendix D

Proofs: Programs

This appendix contains proofs of the theorems and lemmas of Chapter 4, the definition of a path
through a program and additional properties of programs, generalized sequential composition
and the relationship between loops and traces. The order in which the proofs and definitions are
presented follows that of Chapter 4.

D.1 Program Syntax and Semantics

The syntactic properties of the programs include the rules which describe how programsmay be
constructed.

D.1.1 Rules of Construction for Programs

Lemma D.1 Rules of construction

1. The empty set is a program, program?(fg).
2. Any subset of a program is also a program.

program?(p1) p2 � p1
program?(p2)

3. The addition of a commandc 2 L to a program results in a program.

program?(p)
program?(p+ c)

1. Since the empty set has no commands, the proof is immediate.

256

D.1 Program Syntax and Semantics 257

2. Letp be a program. Ifp0 is a subset ofp which is not a program then there are commandsc1; c2 2 p0 such thatlabel(c1) = label(c2)). Sincep0 � p, bothc1 andc2 are members ofp
contradicting the assertion thatp is a program.

3. Case9c1 2 p : label(c1) = label(c): By definition,p + c = p and by the assumption,
program?(p+ c).
Case:9c1 2 p : label(c1) = label(c): Let p0 be the set of commandsp [fcg. Assume
thatp0 is not a program, then there is a commandc1 in p0 such thatlabel(c1) = label(c)
andc1 6= c. This contradicts the assumption that there is no such command.

D.1.2 Theorem (4.1): Program Induction

The proof for both induction schemes is by induction on a finite set. In the proof,�p will be the
property of Theorem (4.1) and�f the property of the finite induction schemes.

Proof. Induction

By finite induction. Let�f be�(p : FiniteSet(L) : program?(p)) �p(p).�f (fg): From the assumptions of Theorem (4.1),�p(fg), and since the empty set is a program,�f (fg) is true.8b : �f (b)) (8x : x 62 b) �f (b [fxg)):
To show�f(b[fxg)), it is necessary to show thatprogram?(b[fxg)) �p(b[fxg). Note thatb is a program since it is a subset ofb [fxg. Also, (b + x) = b [fxg since otherwise there is
a c 2 b such thatlabel(c) = label(x) andb [fxg is not a program. The proof therefore follows
From the assumption of Theorem (4.1),(8(p : P) : �p(p)) 8(c : L) : �p(p + c)) with p = b
andc = x. 2
Proof. Strong Induction

By strong finite induction. Let�f be�(p1 : FiniteSet(L)) : program?(p1)) (8p01 : p01 � p1)�p(p01)).
Let p1 andp01 bep. Sinceprogram?(p) andp � p, the property�p(p) follows from the property�f established by the finite induction scheme.

To show that the assumptions of the finite induction scheme are satisfied, the property �f (b)
must be established. Sinceprogram?(b) (from �f (b)), any subsetp01 of b is also a program. Ifp01 = b then the property�p(b) follows from the assumption that�p(p1)0 (definition of�f).
Assume thatp01 � b, then from�f , �p(p01) and from the assumption of strong program induction
(8p : (8p1 : p1 � p1) �p(p1))) �p(p)), �p(b) is immediate. 2

D.2 Additional Induction Schemes 258

D.1.3 Lemma (D.2) and Lemma (4.1)

Lemma D.2 Selection of commands

For programp and behaviour�, Ip(p)(�)8(n : N) : Ic(at(p; Ie(pc)(�n(0))))(�n(0); �n(1))
Proof. Lemma (D.2)

SinceI(p)(�), for everyi 2 N there is a commandc 2 p such thatI(c)(�(i); �(i + 1)). Com-
mandc is labeled (p � L) and from the semantics of the command,Ie(pc)(�(i)) = label(c).
Sincep is a program, there is no other commandc0 2 p such thatlabel(c) = label(c0), therefore
at(p; Ie(pc)(�(i))) = c. 2
Proof. Lemma (4.1)

()), the proof is similar for ((): AssumeI(p)(�). For everyi 2 N , there is a commandc 2 p
such thatI(c)(�(i); �(i + 1)). From the assumption there is also a commandc0 2 p0 such thatI(c0)(�(i); �(i+ 1)) and the proof for this case is complete. 2
D.2 Additional Induction Schemes

For the transitive closure of a relation two induction schemes are assumed in addition to the
scheme which follows from its definition.

Theorem D.1 Induction Schemes for Transitive Closure

Assume typeT , property� : (Set(T); T; T) ! boolean, relationR : (Set(T); T; T) !
boolean, seta : Set(T) and x; y; z : T . To establish the property8a; x; y : R+(a; x; y))�(a; x; y) it is necessary to establish either of the propertiesLeft Inductionor Right Induction
below.

Left induction: R(a; x; y)�(a; x; y) R(a; x; y) R+(a; y; z) �(a; y; z)�(a; x; z)
Right induction: R(a; x; y)�(a; x; y) R+(a; x; y) �(a; x; y) R(a; y; z)�(a; x; z)

The proofs for these induction schemes can be derived from induction on the transitive closure
of R.

D.3 Transition Relations 259

D.3 Transition Relations

The transition relations are theleads-torelation and the trace relations through a program. A
number of basic properties of the trace relations are used to establish the lemmas and theorems
of Chapter 4.

D.3.1 Theorem 4.2

Proof.

By induction on;.

Case9c 2 p ^ s c; t: From the definition ofI(p)(�) there is a commandc0 such thatI(c0)(�(0); �(1)). Sincep is a program, all commands are labelled,c0 and c are enabled ins, c0 = c. Since the commands are deterministic,t = �(1).
Case9u : s p; u ^ u p; t and the property holds between statess andu and betweenu andt:
From the assumptions thatI(p)(�) and that the property holds betweens andu, there is ani > 0
such thatu = �(i). From Corollary (4.1),I(p)(�i) follows from the assumptionI(p)(�). This
together withu = �i(0) satisfies the assumptions of the inductive hypothesis betweenu andt.
The conclusion that there is anm > 0 such thatt = m follows from the inductive hypothesis.2
D.3.2 Traces

The traces relation is stronger thanleads-toand the maximal traces are stronger than both of
these.

Lemma D.3 For statess; t and programp, if there is a trace froms to t throughp thens leads
to t throughp. If there is a maximal trace froms to t then there is a trace from states to statet.

trace(p; s; t)s p; t mtrace(p; s; t)
trace(p; s; t) rmtrace(p; s; t)

trace(p; s; t)
Proof. trace(p; s; t)) s p; t is straightforward by induction ontrace. mtrace(p; s; t))
trace(p; st;) andrmtrace(p; s; t)) trace(p; st;) are immediate by definition. 2

Some basic properties of the trace relations are used in the proofs.

Lemma D.4 For programp and statess; t,
tset(p; s; t) � p

Proof. Immediate by induction onp and definition oftset(p; s; t). 2

D.3 Transition Relations 260

Lemma D.5 For p 2 P , c 2 p ands; t; u 2 State,s c; u(tset(p; s; t)� fcg) = tset(p� fcg; u; t)
Proof.

By extensionality: withc0 2 L, c0 2 (tset(p; s; t)� fcg), c0 2 tset(p� fcg; s; t). Note that for
everyc1 2 p, u0 2 Statesuch thats c1; u0, c1 = c andu = u0.
()): Assumes c0; t. It follows that c0 = c, c0 62 tset(p; s; t) � fcg and, by Lemma (D.4),c0 62 tset(p � fcg; u; t). Assume9u0 : s c0; u0 ^ trace(p � fc0g; u; t). It follows thatc0 = c,c0 62 (tset(p; s; t) � fcg) and, by Lemma (D.4),c0 62 tset(p � fcg; u; t). Assume9u0; c1 : s c1;u0 ^ c0 2 tset(p � fc1g; u; t). It follows that c1 = c, u0 = u and c0 2 tset(p � fcg; u; t) is
straightforward.

((): If c0 2 tset(p � fcg; u; t) thens c0; u0 is false for all u0 2 Stateandc0 6= c. From the
definition oftset, it follows thatc0 2 tset(p; s; t)� fcg. 2
Lemma D.6 For p; p0 2 P , ands; t 2 State,p � p0 trace(p; s; t)

trace(p0; s; t)
Proof. Straightforward, by induction and from the observation that every command inp is also
in p0 2
Lemma D.7 For p 2 P ands; t 2 State,

tset(p; s; t) 6= fg
trace(p; s; t)

Proof.

By strong induction onp.

Sincetset(p; s; t) is not empty, there is ac 2 tset(p; s; t).
Cases c; t: trace(p; s; t) follows immediately.

Case9u : s c; u ^ trace(p� fcg; u; t): trace(p; s; t) follows immediately from definition.

Case9(u 2 State; c0 2 p) : c0 6= c ^ s c0; u ^ c 2 tset(p � fc0g; u; t) and the property holds
for p � fc0g: Sincec 2 trace(p � fc0g; u; t), trace(p � fc0g; u; t) 6= fg and there is a trace
trace(p� fc0g; u; t). trace(p; s; t) follows from the definition oftrace. 2

D.3 Transition Relations 261

Lemma D.8 For p 2 P , c 2 L ands; t; u 2 State,

trace(p; s; u) program?(p [fcg) c 62 p u c; t
trace(p [fcg; s; t)

Proof.

By induction ontrace(p; s; u).
Casec0 2 p ands c0; u: Sincec 62 p, c 2 (p [fcg)� fc0g. Fromu c; t it follows that there is a
tracetrace(p [fcg � fc0g; u; t) andtrace(p [fcg; s; t) follows from the definitions.

Casec0 2 p, u0 2 State, s c0; u0, trace(p � fc0g; u0; u) and the property is true fortrace(p �fc0g; u0; u): Sincec 62 p, c 62 p � fc0g and the inductive hypothesis leads totrace(p � fc0g [fcg; u0; t). The conclusiontrace(p[fcg; s; t) follows from the definition oftraceandp�fc0g[fcg = (p [fcg)� fc0g. 2
D.3.3 Lemma (4.3)

Proof.

()) By induction ontrace.

Case: c 2 p ands c; t: Immediate from definitions.

Case: c 2 p and s c; u and trace(p � fcg; u; t) with inductive hypothesistrace(tset(p �fcg; u; t); u; t): By definition of tset and from the assumptions,c 2 tset(p; s; t) ands c; u.
From Lemma (D.5),trace(tset(p� fcg; u; t); u; t) iff trace(tset(p; s; t)� fcg; u; t). The conclu-
siontrace(tset(p; s; t); s; t) follows from the definition oftrace.

((): By Lemma (D.4) it follows thattset(p; s; t) � p and the conclusiontrace(p; s; t) is straight-
forward by Lemma (D.6). 2
Theorem (D.2)

The proof uses the following Lemma.

Lemma D.9 For p 2 P , c 2 L ands; u; t 2 State,

trace(p; s; u) c 2 p u c; t c 62 tset(p; s; u)
trace(p; s; t)

Proof.

By induction ontrace(p; s; u).

D.3 Transition Relations 262

Casec1 2 p ands c1; u: If c1 = c thenc 2 tset(p; s; u), contradicting the assumptions. Assumec1 6= c. It follows thatc 2 p � fc1g andu c; t, there is a trace,trace(p � fc1g; u; t). Sinces c1; u, there is also a tracetrace(p; s; t).
Case9u0; c1 : c1 2 p ^ s c1; u0 ^ trace(p � fc1g; u0; u) and the property holds fortrace(p �fc1g; u0; u): The inductive hypothesis has assumptionsc 62 tset(p�fc1g; u0; u), andc 2 p�fc1g
and conclusiontrace(p�fc1g; u0; t). For the first assumption, note that ifc 2 tset(p�fc1g; u0; u)
then c 2 tset(p; u0; u) and thereforec 2 tset(p; s; u), contradicting the assumptions. For the
second, ifc = c1 thenc 2 tset(p; s; u) which is also a contradiction. Therefore, the conclusion of
the inductive hypothesis holds andtrace(p; s; t) follows from s c1; u0, trace(p� fc1g; u0; t) and
the definition oftrace. 2

The leads-torelation can be defined in terms of the trace relations: if states leads to statet
through programp, then it does so by the transitive closure ofmtraceto an intermediate stateu
followed by a trace tot.
Theorem D.2 For programp and statess; t,s p; t

trace(p; s; t) _ (9u : mtrace+(p; s; u) ^ trace(p; u; t))
Proof.

By right induction ons p; t.
Casec 2 p ands c; t: trace(p; s; t) follows from the definition oftrace.

Casec 2 p, s p; u, u c; t and eithertrace(p; s; u) or 9u0 : mtrace+(p; s; u) ^ trace(p; u; t):
Assumetrace(p; s; u), the proof is similar for the case9u0 : mtrace+(p; s; u0) ^ trace(p; u0; u).
Assume thatc 2 tset(p; s; u), thenmtrace(p; s; u) andtrace(p; u; t) completing the proof. As-
sume thatc 62 tset(p; s; u) then by Lemma (D.9),trace(p; s; t) and the proof is completed. 2
Corollary D.1 For programp and statess; t,s p; t final?(p)(t)

mtrace+(p; s; t)
Proof. From Theorem (D.2) and the assumptions p; t, there are two cases, assumetrace(p; s; t).
Fromfinal?(p)(t)) final?(p � tset(p; s; t))(t) and the definition ofmtrace, it follows that the
conclusionmtrace(p; s; t) is true. The proof is similar for the case(9u : mtrace+(p; s; u) ^
trace(p; u; t)). 2

D.4 Refinement 263

D.4 Refinement

D.4.1 Theorem (4.5)

Proof. Composition of commands

Let p0 = p] fc1; c2g. By definition ofv, the property to be proved isc1; c2 2 p 8s; t : s p0; t8s; t : s p; t
By induction ons p0; t.
Casec 2 p] fc1; c2g ands c; t:
By definition of c1; c2 and] (label(c1; c2) = label(c1)), c 2 p � fc1g or c = c1; c2. Assumec 2 p� fc1g. By Lemma (4.2),s p; t is immediate. Assumec = c1; c2. By Theorem (3.6) (ands c; t = I(c)(s; t)), eithers c; t or there is a stateu such thats c1; u andu c2; t. In either case,
sincec1 2 p andc2 2 p, s p; t is straightforward from the definition ofleads-to.

Cases p0; u andu p0; t for u 2 State and assume that the property holds between statess andu and between statesu andt: Since the property holds betweens andu and betweenu andt,s p; u andu p; t, the proof is immediate from the definition of transitive closure. 2
Proof. Refinement and subprograms

The property to prove is8s; t : s p1; t) s p; t. If s p1; t, thens p2; t by the assumption and by
definition of refinement. Sincep2 � p, s p; t follows from Lemma (4.2). 2
Proof. Programs and abstraction

By definition ofv, the property to be proved is8s; t : s p1; t) s p2; t8s; t : s p1]p2; t) s p2; t
By induction ons p1]p2; t.
Casec 2 p1] p2 ands c; t:
By definition ofp1] p2, c 2 p1 or c 2 p2.
Assumec 2 p1. By definition,s p1; t ands p2; t follows from the assumption thatp1 v p2.
Assumec 2 p2, the proof is immediate from definition ofs p2; t.
Cases p1]p2; u andu p]p2; t for u 2 State and assume that the property holds between statess
andu and between statesu andt: Since the property holds betweens andu and betweenu andt, s p2; u andu p2; t, the proof is immediate from the definition of transitive closure. 2

D.5 Control Flow Properties 264

D.5 Control Flow Properties

D.5.1 Theorem (4.6)

Proof. Composition (Left).

The proof is by induction onc1.
Casec1 = (:= (al; l1)): By definition,c1; c2 is if equal(pc; label(c2)) then c0 elsec1 wherec0 is
the composition ofc1 andc2. From the definition of7�!, sincec1 occurs inc1; c2 andc1 7�! c3,
it follows thatc1; c2 7�! c3.
Casec1 = l : c and the property istrue for c: By definition of 7�!, c1 7�! c3 iff c0 7�! c3. By
definition of composition,c1; c2 = l : (c; c2) and the property is immediate from the inductive
hypothesis and the definition of7�!.

Casec1 = if b then ct elsecf and the property istrue for ct and forcf : By definition of 7�!,c1 7�! c3 iff ct 7�! c3 _ cf 7�! c3. By definition of composition,c1; c2 is the command
if b then ct; cf elsecf ; c2 and the property is immediate from the inductive hypothesis and the
definition of 7�!. 2
Proof. Composition (Right).

Immediate from definition of composition and Corollary (4.2). 2
The proof for the reverse of composition is in two steps: the first whenc1 is an assignment

command, the second whenc1 is a labelled or conditional command.

Proof. Reverse (assignment command)

Let c1 = (:= (al; l)). The proof is by induction onc2.
Casec2 = (:= (bl; l2)): By definition, the composition ofc1; c2 is := ((pc; l) � al� ((pc; l2 � bl) /al); l2 / (pc; l) � al). The successor expression ofc1; c2 is l2 / (pc; l) � al and sincec1; c2 7�! c3,
there is a statet such thatIl(l2 / (pc; l) � al)(t) = label(c3) By substitution, this is equivalent toIl(l2)(update((pc; l) � alt)) and there is a state in whichl2 is equivalent tolabel(c3). Thereforec2 7�! c3.
Casec2 = l : c and the property holds forc: By definition,c1; c2 is the conditional command
if equal(pc; l) then c1; c elsec1. Sincec1; c2 7�! c3, eitherc1 7�! c3 (and the proof is complete)
or c1; c 7�! c3 and eitherc1 7�! c3 or c 7�! c3. From the definition ofreaches, if c 7�! c3 thenl : c 7�! c3 is alsotrueand the proof is complete.

Casec2 = if b then ct elsecf and the property holds forct andcf : By definition, if c1; c2 7�! c3
then eitherc1; ct 7�! c3 or c1; cf 7�! c3. In either case, the proof follows from the inductive
hypothesis. 2

D.5 Control Flow Properties 265

Proof. Reverse (labeled and conditional commands

Casec1 = l : c and the assumption holds forc: By definition,(c1; c2) = l : (c; c2) andc; c2 7�!c3. From the inductive hypothesis eitherc2 7�! c3 or c 7�! c3. The proof follows from the
definition ofreachesfor a labelled command.

Casec1 = if b then ct elsecf and the property holds forct and cf : By definition, c1; c2 is
if b then ct; c2 elsecf ; c2 and eitherct; c2 7�! c3 or cf ; c2 7�! c3. In both cases the proof follows
from the inductive hypothesis. 2
D.5.2 Theorem (4.8)

Proof. Immediate successors

Let c1 = l : c. The proof is by induction onc. The cases whenc is a labeled or a conditional
command are straightforward from the inductive hypothesis. Letc = (:= (al; l)). By definition
of I(c)(s; t), t = update((pc; l) � al) and sinceenabled(c2)(t), label(c2) = Il(pc)(t). From
definition ofupdate, Il(pc)(t) = Il(l)(t) and there is a state suchIl(l)(t) = label(c2). 2

The proof of the second part of the Theorem uses the following property of theleads-to
relation.

Lemma D.10 For p 2 P , s; t 2 State, s p; t9(u : State); (c : L) : c 2 p ^ s c; u
Proof.

Straightforward, by induction ons p; t. 2
Proof. Reaches through a program

By induction ons p; t.
Casec 2 p ands c; t: The proof is similar to that for the immediate successor.

Cases p; u andu p; t and the property holds betweens andu and betweenu and t: From
Lemma (D.10) andu p; t, there is ac 2 p andu0 2 Statesuch thatu c; u0. Commandc is
enabled inu therefore, from the inductive hypothesis (betweens andu), c1 p7�! c. Also from the
inductive hypothesis (betweenu andt), c p7�! c2. The conclusionc1 p7�! c2 follows immediately
from the definition ofreaches. 2

D.6 Paths 266

D.6 Paths

A path is defined inductively as establishing the relationreachesthrough a set. If for commandsc1; c2 of a seta, the relationc1 a7�! c2 holds, thenc1 is said to reachc2 in the seta andc1 andc2 are the end-points of the path. For thereachesrelation, both the end-points and all interme-
diate commands must be contained in the seta. For a path through seta, only the intermediate
commands must be contained ina.

Definition D.1 Paths

For commandsc1, c2 and seta, the relationpath?has type(Set[L];L;L)! boolean

and is defined by induction.c1 7�! c2
path?(a; c1; c2) c 2 a� fc1g c1 7�! c path?(a� fc1g; c; c2)

path?(a; c1; c2) 2
The definition of a path is similar to that of the reaches relation with the exception that the

path is through the seta while thereachesrelation is in the seta. The relationpath?holds even
if either c1 or c2 is not a member ofa. However, every intermediate point must be taken froma.
The relationpath?defines a path since each intermediate command is use at most once.

Lemma D.11 For commandsc; c1; c2 2 L and setsa; bSet(L),
path?(a; c1; c2)

path?(a [b; c1; c2)
Proof. By induction onpath?(a; c1; c2):
Base casec1 7�! c2: path?(a [b; c1; c2) follows immediately from definition.

Inductive case, c 2 a�fc1g, c1 7�! c andpath?(a�fc1g; c; c2) and hypothesis8b0 : path?((a�fc1g) [b0; c; c2): From the hypothesis and(a� fc1g) [b � fc1g = (a [b)� fc1g, path?((a [b)� fc1g; c; c2) andpath?(a [b; c1; c2) follows from the assumptions and definition. 2
For commandsc1; c2 and seta, if path?(a; c1; c2) then any commandc 2 a is either unneces-

sary for the path fromc1 to c2 or c1 is unnecessary for the path fromc to c2.
Lemma D.12 For c; c1; c2 2 L and seta 2 Set(L),

path?(a; c1; c2) c 2 a
path?(a� fcg; c1; c2) _ path?(a� fc1g; c; c2)

D.6 Paths 267

Proof. By induction onpath?(a; c1; c2):
Base casec1 7�! c2: path?(a� fcg; c1; c2) follows immediately from definition.

Inductive casec 2 a� fc1g, c1 7�! c andpath?(a� fc1g; c; c2). Hypothesis:8c0 : c0 2 a� fcg) path?(a� fc1g � fc0g; c1; c2) _ path?(a� fc1g � fcg; c0; c2)
Casec = c2: path?(a� fcg; c1; c2) follows immediately from assumptions and definition.

Assumec 6= c2, the proof is by cases.

Casec2 = c1: Let c0 = c in the inductive hypothesis. From the assumptions andc 6= c2,c 62 (a� fc1g) andc1 7�! c, the hypothesis leads topath?(a� fc1g� fcg; c1; c2) From Lemma
(D.11) this ispath?((a�fc1g�fcg)[; c; c2) and from(a�fc1g�fcg)[(a�fc1g) = (a�fc1g)
this ispath?(a� fc1g; c; c2) completing the proof for this case.

Casec2 6= c1: Let c0 = c2 in the hypothesis. From the assumptions andc2 6= c1, c2 62 (a� fc1g)
and the hypothesis leads topath?(a�fc1g�fc2g; c1; c2). The proof is similar for the case whenc2 = c1 and leads topath?(a� fc1g; c; c2) completing the proof. 2

If there is a path from commandc1 to commandc2 through a seta thenc1 reachesc2 in the
seta [fc1; c2g.
Lemma D.13 For commandsc1; c2 2 L and seta 2 Set(L),

path?(a; c1; c2)c1 a[fc1;c2g7�! c2
Proof. Straightforward by induction onpath?(a; c1; c2). 2

If commandc1 reaches commandc2 through a seta then there is a path fromc1 to c2 through
seta.

Lemma D.14 For commandsc1; c2 2 L and seta 2 Set(L),c1 a7�! c2
path?(a; c1; c2)

Note that thereachesrelation through a set is equivalent to the transitive closure of�(a :
Set(L); c1; c2 : L) : c1 2 a ^ c2 2 a ^ c1 7�! c2.
Proof. By left induction ofc1 a7�! c2.
Base casec1 7�! c2: path?(a; c1; c2) follows immediately from definition.

Inductive casec; c1; c2 2 a, c1 7�! c andc a7�! c2 with hypothesispath?(a; c; c2): Assume
that c 6= c1 since otherwise the conclusion follows immediately from the hypothesis. From

D.7 Loops andmtrace 268

Lemma (D.12),c1 2 a and from the hypothesis, eitherpath?(a � fc1g; c; c2) or path?(a �fcg; c1; c2) .

Case path?(a � fc1g; c; c2): From c 2 a � fc1g, c1 7�! c and the definition ofpath?, the
conclusionpath?(a; c1; c2) follows from the assumptions.

Case path?(a� fcg; c1; c2): The conclusionpath?(a; c1; c2) follows from Lemma (D.11). 2
Commandc1 reaches commandc2 through a seta, c1 a7�! c2, iff there is a path fromc1 toc2. Eitherc2 is an immediate successor ofc1 or there is an immediate successor ofc1 which is

distinct fromc1 and which reachesc2 in a� fcg.
Theorem D.3 Paths

For commandsc1; c2; c and seta, c1 6= c2 c1 a7�! c2c1 7�! c2 _ (9c 2 (a� fc1g) : c1 7�! c ^ c a�fc1g7�! c2)
Proof.

From the assumption and Lemma (D.14), it follows thatpath?(a; c1; c2) is true. From the defi-
nition of path?, eitherc1 7�! c2, and the proof is complete, or there is ac 2 a� fc1g such thatc1 7�! c andpath?(a � fcg; c; c2). From Lemma (D.13), this is enough to establishc a07�! c2
wherea0 = (a� fc1) [fc; c2g. From the definition ofreaches, it follows thatc2 2 a and, sincec2 6= c1, c2 2 a�fc1g. Sincec is also ina�fc1g, it can be established thata0 = a and thereforec a�fc1g7�! c2. 2

Whena is a program, Theorem (D.3) can be used in a proof by strong induction ona. If
there is an immediate successor,c, of c1 which reachesc2 in a� fc1g then there is a flow-graph
constructed froma � fcg beginning atc. This is a proper subset of the flow-graph constructed
from a to which the inductive hypothesis applies.

D.7 Loops andmtrace

There is a loop in a programp if during an execution ofp, a commandc 2 p is selected for
execution more than once. For each loop in the program, there is a command which begins the
loop. This command, the head of the loop, can be determined by a property of a maximal trace
through a program. If there is a maximal trace through a programp from states to statet, then
any commandc 2 p enabled int is the head of a loop inp. Moreover, eitherc is enabled ins or
there is an intermediate stateu and a subset ofp p1 � p such that there is a trace froms to u inp1 and a trace fromu to t in (p� fp1g) [fcg.

D.7 Loops andmtrace 269

Theorem D.4 For p 2 P , c1; c2 2 p, s; t; u 2 State anda 2 P ,

trace(p; s; t) enabled(c1)(s) enabled(c2)(t) c2 2 tset(p; s; t) c1 6= c2(9a; u : a � p ^ enabled(c2)(u) ^ trace(a; s; u) ^ trace((p� a) [fc2g; u; t))
Proof.

By induction ontrace(p; s; t).
Cases c1; t: Sincec1 6= c2, there are two cases oftset(p; s; t). Assume there is a stateu such thats c2; u. Sincec2 is enabled ins, it shares a label withc1 and, from the definition of programs,c1 = c2 which is a contradiction.

Assume there is a commandc0 2 p and stateu such thats c0; u andc2 2 tset(p � fc0g; u; t).
Sincec0 is enabled in states, c0 2 p andc1 2 p, c0 = c1. Sinces c1; t ands c1; u, by Lemma (3.3)
it follows thatu = t. Thereforec2 2 tset(p� fc1g; t; t), tset(p� fc1g; t; t) is not empty, and, by
Lemma (D.7), there is a tracetrace(p� fc1g; t; t).
Let a = fc1g andu = t. It follows thata � p, enabled(c2)(t) andtrace(a; s; u) (from s c1; t).
Also (p� a) [fc2g = p� fc1g andtrace((p� a) [fc2g; u; t) is true, completing the proof for
this case.

Case9(u0 2 State) : s c1; u0 ^ trace(p � fc1g; u0; t) with the assumption that the property is
true for trace(p � fc1g; u0; t): Since there is a trace fromu0 to t throughp � fc1g, there is a
commandc0 2 p � fc1g enabled inu0. If c2 = c0 then the proof is as for the previous case witha = fc1g andu = u0. Assumec2 6= c0. Sincec2 2 (tset(p; s; t) � fc1g), by Lemma (D.5),c2 2 tset(p � fc1g; u0; t) and from the assumptions,enabled(c2)(t). Also sinceenabled(c0)(u0)
andtrace(p� fc1g; s; u0), the assumptions of the inductive hypothesis are satisfied.

From the inductive hypothesis, there is a seta1 � p�fc1g and stateu1 such thattrace(a1; u0; u1),
enabled(c2)(u0) and trace((p � fc1g � a1) [fc2g; u1; t). Let a be a1 [fc1g andu = u1.
trace(a; s; u) follows from s c1; u0 andtrace(a� fc1g; u0; u). enabled(c2)(u) is immediate as isa � p andtrace((p�a)[fc2g; u; t) follows from(a1�p�fc1g) = ((a1[fc1g)�p), completing
the proof. 2

The property of Theorem (D.4) is used in the proofs for transformationT2 to show that a
command enabled after a maximal trace through a region is the head of a loop (a member of
lpheads). The commands beginning a loop in a region are determined by the predicatelphead?
which is defined in terms of thereachesrelation. The property of Theorem (D.4) is re-stated
in terms ofreachesin two steps. The first step (Theorem D.5 below) describes the property in
terms of theleads-torelation between state and the second step describes this property in terms
of reaches(Theorem D.6 below).

Theorem D.5 For p; p1 2 P, c 2 L ands; t; u 2 State,

mtrace(p; s; t) :final?(p)(t)(9c; p1; u :p1 � p ^ c 2 p ^ enabled(c)(u) ^ enabled(c)(t)^ s p1; u ^ u fcg[(p�p1); t)_(9c 2 p : enabled(c)(s) ^ enabled(c)(t) ^ s p; t)

D.8 Regions 270

Proof.

From the definition ofmtrace(p; s; t), trace(p; s; t) and final?(p � tset(p; s; t)) are bothtrue.
From the definition offinal?, and the assumption:final?(p)(t) there is a commandc0 2 p such
thatenabled(c0)(t). if c0 62 tset(p; s; t) thenc0 2 p � tset(p; s; t), contradicting the assumption
final?(p� tset(p; s; t))(t).
Assumec0 2 tset(p; s; t). From the definition oftraceand the assumption,trace(p; s; t) there is
a commandc1 2 p andenabled(c1)(s). By Theorem (D.4), eitherc1 = c0 or there is a programa � p and stateu such thattrace(a; s; u), enabled(c0)(u) andtrace(p � a [fc0g; u; t). Assumec1 = c0. From trace(p; s; t) and Lemma (D.3),s p; t follows immediately.enabled(c1)(s) and
enabled(c1)(t) follow from the assumptions, completing the proof for this case.

For the second case, fromtrace(a; s; u) it follows thats a; u and fromtrace(p � a [fc0g; u; t)
it follows thatu p�a[fc1; t (both by Lemma D.3). Commandc0 is enabled ins andt and therefore
the proof is complete. 2
Theorem D.6 For p; p1 2 P, c 2 L ands; t; u 2 State,

mtrace(p; s; t) c 2 p enabled(c)(s) :final?(p)(t)c p7�! c _ (9c1; p1; u :p1 � p ^ c 2 p ^ enabled(c1)(t)^ c p17�! c1 ^ c1 fc1g[(p�p1)7�! c1)
Proof.

The proof is straightforward from Theorem (D.6) and Theorem (4.8). Note that becausec is
enabled ins, enabled(c)(s), for every commandc0 2 p such thatenabled(c0)(s), c0 = c. 2
D.8 Regions

Theorem (4.9)

The proof is by induction on a program. Let�r be the property of Theorem (4.9) and�p be the
property of the strong induction scheme on programs.

Proof.

By strong program induction. Let�p be�(p : P) : (8(r : R) : body(r) � p) �r(r)). Letp = body(r), the conclusion of Theorem (4.9),8r : �r(r), follows from the conclusion of the
program induction scheme,8p : �p(p). The proof is therefore that the assumption of the program
induction scheme is satisfied by the assumption of Theorem (4.9).

The assumption of the program induction scheme is(8p : (8p0 : p0 � p) �p(p0))) �p(p)).
Let p be any program, to prove�p(p) it must be shown that for any regionr such thatbody(r) �p, �r(r) is true.

D.9 Composition Over a Set 271

From the assumption of Theorem (4.9), if, for every proper sub-regionr0 � r, �r(r0) is true then�r(r) is alsotrue. Let r0 be a proper sub-region ofr, r0 � r. Becausebody(r) � p andr0 � r,
it follows thatbody(r0) � p. Therefore, from the assumption of the program induction scheme,�p(body(r0)) is true. From the definition�p andbody(r0) � body(r0), it follows that�r(r0) is
alsotrue. The proof of�r(r) therefore follows from the assumption of Theorem (4.9) and the
proof of�p(p) is complete. 2
D.8.1 Corollary (4.5)

Proof.

The proof is in two steps.

1. label(r1) = label(r3) andbody(r1) v body(r3):
From the definition ofv between regions,label(r1) = label(r2) andlabel(r2) = label(r3).
Also by definition,body(r1) v body(r2) andbody(r2) v body(r3). By Theorem (4.3),
body(r1) v body(r3).

2. 8s; t : s r1; t ^ final?(r1)(t)) final?(r3)(t):
By definition ofv between programs (body(r1) v body(r2)), s r2; t andfinal?(r2)(t).
Sincer2 v r3, s r3; t andfinal?(r3)(t) follows immediately. 2

D.9 Composition Over a Set

Lemma D.15 For c 2 L and seta 2 FiniteSet(L),
label(c; a) = label(c)

Proof.

Straightforward from strong finite induction ona and from the definition of composition. 2
If commandc ends in statet and there is no commandc0 2 A enabled int then the command(c;A) also ends int.

Theorem D.7 For commandsc; c1 2 L, seta 2 FiniteSet(L) and statess; t; u 2 State,I(c)(s; t) 8(c1 2 a) : :(9u : I(c)(s; u) ^ enabled(c1)(u))I(c; a)(s; t)

D.9 Composition Over a Set 272

Proof.

By strong finite induction ona. If a = fg, then by definition,I(c; a)(s; t) = I(c)(s; t) and the
proof is complete.

Assumea 6= fg and that the property holds for alla0 � a. Let c0 = �a, from the epsilon
axiom, c0 2 a anda � fc0g � a. The property to prove is that fromI(c)(s; t) it follows thatI((c; a� fc0g); c0)(s; t) (definition of composition over a set).

Casefor all c2 2 a � fc0g, there is nou2 2 Statesuch thatI(c)(s; u2) andenabled(c2)(u2):
From the inductive hypothesis,I(c; a � fc0g)(s; t). From the assumptions,pc 6�t label(c0)
since otherwise there would commandc0 2 a is enabled int, enabled(c0)(t) contradicting the
assumptions. From Theorem (3.5), the composition ofc; a�fc0g andc0 is equivalent toc; a�fc0g
andI((c; a� fc0g); c0)(s; t) follows fromI(c; a� fc0g)(s; t).
Casethere is ac2 2 a�fc0g andu2 2 Statesuch thatI(c)(s; u2) andenabled(c2)(u2): It follows
that there is a command ina, c2, and a state,u2, such thatI(c)(s; u2) and enabled(c2)(u2),
contradicting the assumptions. 2

Theorem (D.7) describes the behaviour when no command in the seta is enabled. This
is extended by Theorem (D.8) below for the case when a single command of a programp is
selected. If commandc begins in states and ends in stateu, there is a commandc0 2 p which
begins in stateu and ends in statet and no other command ina is enabled int then the commandc; a begins in states and ends in statet.
Theorem D.8 For commandsc; c1; c2 2 L, programp 2 P and statess; t; u,(9c1 2 p : I(c)(s; u) ^ I(c1)(u; t)) (8(c2 2 p) : :enabled(c2)(t))I(c; p)(s; t)
Proof.

By strong finite induction onp. Note that every subset ofp is also a program and thatp 6= fg
sincec1 2 p.

Let c0 = �p. By definition of composition over a set, the property to prove is thatI((c; p �fc0g); c0)(s; t).
Casec0 = c1: Assume for somec2 2 p � fc1g, there is au0 such thatI(c)(s; u0) and that
enabled(c2)(u0). From the assumptionsI(c)(s; u) and from Lemma (3.3)u = u0. Sincec1
is also enabled inu, c1; c2 2 p andp is a program it follows thatc1 = c2 contradicting the
assumptionc2 2 p� fc1g.
Assume there is no stateu0 such thatI(c)(s; u0) andenabled(c2)(u0), for somec2 2 p � fc1g.
From Theorem (D.7),I(c)(s; u) leads toI(c; p � fc1g)(s; u). From Theorem (3.4),I(c; p �fc1g)(s; u) andI(c1)(u; t) it follows thatI((c; p� fc1g); c1)(s; t) is true.

Casec0 6= c1: From the assumptions, there is a commandc1 2 p � fc0g such thatI(c1)(u; t)
and for allc2 2 p � fc0g, :enabled(c2)(t). Therefore, from the inductive hypothesis,I(c; p �

D.9 Composition Over a Set 273fc0g)(s; t) is true. From the fact thatc0 2 p, the assumption that no command ofp is enabled int and Theorem (3.5), the conclusionI((c; p� fc0g); c0)(s; t) follows immediately. 2
For commandc 2 L and seta 2 FiniteSet(L), if c; a reaches commandc1 then there is a

commandc2 2 a [fcg such thatc2 7�! c1.
Theorem D.9 For c; c1; c2 2 L anda 2 FiniteSet(L),(c; a) 7�! c19c2 : c2 2 a [fcg ^ c2 7�! c1
Proof.

By strong finite induction ona.

Casea = fg: By definition,(c; a) = c thereforec 7�! c1 andc 2 a [fcg are immediate.

Casea 6= fg: Let c0 = �a. By definition of composition,(c; a � fc0g); c0 7�! c1. From
Theorem (4.6), either(c; a � fc0g) 7�! c1 or c0 7�! c1. Assumec0 7�! c1. Since�a 2 a the
conclusion follows immediately. Assume(c; a � fc0g) 7�! c1. From the inductive hypothesis,
there is a commandc3 2 (a�fc0g)[fcg such thatc3 7�! c1. The conclusion follows immediately
from c3 2 a [fcg. 2

For commandc 2 L, programp 2 P and statess; t 2 State, if I(c; p)(s; t) then there is a
trace throughp [fcg from s to t.
Theorem D.10 For c 2 L, p 2 P ands; t 2 State,c 62 p I(c; p)(s; t) program?(p [fcg)

trace(p [fcg; s; t)
Proof.

By strong finite induction onp. Note that every subset ofp [fcg is also a program.

Casep = fg: By definition,I(c; p)(s; t) = I(c)(s; t) andtrace(p [fcg; s; t) follows from the
definition oftrace.

Casep 6= fg: Let c0 = �p. From the assumptions,I((c; p � fc0g); c0)(s; t) is true. From
Theorem (3.5), either there is a stateu such thatI(c; p � fc0g)(s; u) andI(c0)(u; t) or I(c; p �fc0g)(s; t) andpc 6�t label(c0).
AssumeI(c; p � fc0g)(s; t) andpc 6�t label(c0). From the assumption,c 62 p and thereforec 62 p � fc0g. Sincep � fc0g � p, the inductive hypothesis leads totrace(p � fc0g [fcg; s; t).
From Lemma (D.6) and(p� fc0g [fcg) � (p [fcg), it follows thattrace(p [fcg; s; t) is true.

AssumeI(c; p � fc0g)(s; u) andI(c0)(u; t). From the inductive hypothesis,trace(p � fc0g [fcg; s; u) is true. Sincec0 62 (p � fc0g [fcg), and by Lemma (D.8),trace(p [fcg; s; t) is also
true, completing the proof. 2

D.9 Composition Over a Set 274

For any programp, commandc and states; t, if I(c; p)(s; t) then eitherI(c)(s; t) or there is
au such thatI(c)(s; u) andtrace(p; u; t).
Theorem D.11 For p 2 P , c 2 L ands; t; u 2 State,I(c; p)(s; t)I(c; s; t) _ (9u : I(c; s; u) ^ trace(p; u; t))
Proof.

By strong finite induction onp.

Casep = fg: By definitionI(c; p)(s; t) = I(c)(s; t) and the proof is complete for this case.

Casep 6= fg: Let c0 = �p. By definition,I(c; p)(s; t) is I((c; p � fc0g); c0)(s; t). From Theo-
rem (4.5) either there is at1 such thatI(c; p�fc0g)(s; t1) andI(c0)(t1; t) or I(c; p�fc0g)(s; t).
AssumeI(c; p � fc0g)(s; t). From the inductive hypothesis, eitherI(c)(s; t) (and the case is
proved) or there is au such thatI(c)(s; u) and trace(p � fc0g; u; t). From Lemma (D.6), and
(p� fc0g � p), it follows thattrace(p; u; t) is truecompleting the proof for the case.

Assume a statet1 2 Statesuch thatI(c; p � fc0g)(s; t1) andI(c0)(t1; t). From the inductive
hypothesis eitherI(c)(s; t1) or there is au such thatI(c)(s; u) andtrace(p�fc0g; u; t1). AssumeI(c)(s; t1), then fromI(c0)(t1; t), c0 2 p and the definition oftrace, trace(p; t1; t) is trueand the
proof is completed for this case. Assume a stateu such thatI(c)(s; u) andtrace(p�fc0g; u; t1).
FromI(c0)(t1; t), c0 62 p � fc0g and Lemma (D.8),trace(p � fc0g [fc0g; u; t). The conclusion
that there is a stateu such thatI(c)(s; u) andtrace(p; u; t) follows immediately. 2

For programp 2 P, commandsc 62 p; c1 2 p and statess; t 2 State, if commandc begins in
states to produce statet andc1 halts int then(c; p) halts in states.
Theorem D.12 For p 2 P , c; c1 2 L ands; t; t1; t2 2 State,c 62 p c1 2 p I(c)(s; t) enabled(c1)(t) 8t1 : :I(c1)(t; t1)8t2 : :I(c; p)(s; t2)
Proof.

By strong finite induction onp. Sincec1 2 p, p 6= fg and there is only one case. Letc0 = �p and
assume that there is a statet2 2 Statesuch thatI(c; p)(s; t2). The proof is by showing that this
assumption leads to a contradiction. From the definition of composition over a set,I(c; p)(s; t2)
is I((c; p� fc0g); c0)(s; t2).
Casec0 = c1: From Theorem (3.7) either there is a stateu such thatI(c; p � fc0g)(s; u) andI(c0)(u; t2) or I(c; p � fc0g)(s; t2) and:enabled(c0)(t). From the assumptions,enabled(c0)(t)
is trueand there is only the case whenI(c; p�fc0g)(s; u) andI(c0)(u; t2). Sincep is a program
andenabled(c1)(t), there is no commandc3 2 p � fc1g such thatenabled(c3)(t). From the

D.10 Path Transformation 275

assumptionI(c)(s; t) and Theorem (D.7),I(c; p � fc0g)(s; t) is true. From the assumptionI(c; p� fc0g)(s; u) and from Lemma (3.3),u = t and thereforeI(c0)(t; t2). This contradicts the
assumption that there is not1 2 StatesuchI(c1)(t; t1) and completes the proof for this case.

Casec0 6= c1: From Theorem (3.7) either there is a stateu such thatI(c; p � fc0g)(s; u) andI(c0)(u; t2) orI(c; p�fc0g)(s; t2) and:enabled(c0)(t). For both cases, fromc1 2 (p�fc0g) and
from the inductive hypothesis it follows that8t3 : :I(c; p�fc0g)(s; t3) which is a contradiction.2
D.10 Path Transformation

The properties of the path transformationT1 are based on the behaviour of the commands con-
structed by composition over a set and the syntactic properties established bythe transforma-
tion. The proof of the semantic properties of the transformation are based on basic proper-
ties of the command constructed by the transformation. Note that for regionr, label(T1(r)) =
label(head(r)) and that for allr0 2 rest(r) there is ac 2 r such thatlabel(c) = label(r0).

For any regionr and commandc, if T1(r) reachesc then there is ac1 2 r such thatc1 reachesc throughbody(r) [fcg.
Theorem D.13 For r 2 R, c; c1 2 L, T1(r) 7�! c9c1 : c1 2 body(r) ^ c1 body(r)[c7�! c
Proof.

By strong induction onr.
Case unit?(r): By definition,T1(r) = head(r) and from the assumptions,head(r) 7�! c. The

conclusionhead(r) body(r)[fcg7�! c follows from head(r) 2 r and the definition of thereaches
relation through a set.

Case:unit?(r): By definition,T1(r) = (head(r);T1(rest(r))). From Theorem (D.9), there is a
commandc2 2 T1(rest(r)) [fhead(r)g such thatc2 7�! c. If c2 = head(r) then the proof is
as before. Assumec2 2 T1(rest(r)), then there is a regionr0 2 rest(r) such thatT1(r0) 7�! c.
Sincer0 2 rest(r), r0 � r and from the inductive hypothesis,9c1 2 body(r0) ^ c1 body(r0)[fcg7�!c. From body(r0) � body(r) and c1 2 body(r0) it follows that c1 2 body(r). Also, from(body(r0) [fcg) � (body(r) [fcg), and from Theorem (4.7), it follows thatc1 body(r0)[fcg7�! c is
true. 2

If the head of a single loopr is enabled in states, there is maximal trace from states to statet through the body ofr and there is a commandc 2 r enabled int thenc is the head ofr.

D.10 Path Transformation 276

Lemma D.16 For r 2 R, c 2 L ands; t 2 State,

single?(r) enabled(head(r))(s) c 2 r enabled(c)(t) mtrace(body(r); s; t)c = head(r)
Proof.

From the assumptionenabled(c)(t), t is not final forbody(r). From Theorem (D.5), if there is a
maximal trace throughbody(r) from s to t, andt is not final, then there are two cases.

Assume there is a commandc0 2 body(r) such thatenabled(c0)(s) andenabled(c0)(t). Since
head(r) 2 body(r), enabled(head(r))(s) andbody(r) is a program it follows thatc0 = head(r).
Also sinceenabled(c)(t) andc 2 body(r), it also follows thatc0 = c completing the proof for
this case.

Assume there is a programp � body(r), a stateu and a commandc0 2 body(r) such that

enabled(c0)(u), enabled(c0)(t), s p; u andu (body(r)�p)[fc0g; t. Fromenabled(c)(t) and from the
assumptionenabled(c0)(t), it follows thatc0 = c. If c = head(r) then the case is proved, thereforec 6= head(r) and, sinceenabled(head(r))(s), head(r) 2 p andhead(r) 62 (body(r) � p [fcg).
Therefore there is a subsetp0 of body(r)�fhead(r)g such thatu p0; t. From Theorem (4.8), this

means thatc p07�! c is trueand it follows thatc body(r)�fhead(r)g7�! c, contradicting the assumption
single?(r). 2

If the head ofr is enabled in states and there is a maximal trace froms to statet throughr,
thenI(T1(r))(s; t).
Theorem D.14 For any regionr 2 R and statess; t 2 State,

single?(r) enabled(head(r))(s) mtrace(body(r); s; t)I(T1(r))(s; t)
Proof.

By strong region induction onr.
Case unit?(r): By definition,body(r) = fhead(r)g thereforemtrace(body(r))(s; t) is equiva-
lent to I(head(r))(s; t). By definition,T1(r) = head(r) and the conclusionI(T1(r))(s; t) is
straightforward.

Case:unit?(r) with the property true for every proper sub-region ofr:
By definition,T1(r) = (head(r);T1(rest(r))). From the definition ofmtrace, there is a trace
from s to t, trace(body(r); s; t). By definition of trace, there are two cases. For the first case,
assume there is a commandc 2 body(r) ands c; t. Sincec is enabled ins it follows thatc =
head(r). From the definition ofmtrace(body(r); s; t), t is final for body(r)� tset(body(r); s; t).
From Lemma (D.16) and the assumptionmtrace(body(r); s; t), statet is also final forbody(r)�

D.10 Path Transformation 277fhead(r)g. Since no regionr0 2 rest(r) shares a label withhead(r), it follows that there is no
regionr0 2 rest(r) which is enabled int. Consequently there is no commandc0 2 T1(rest(r0))
which is enabled int. The conclusionI(head(r);T1(rest(r)))(s; t) follows from Theorem (D.7).

For the second case oftrace(body(r); s; t), assume there is ac 2 body(r) and stateu such thats c; u andtrace(body(r) � head(r); u; t). Sincec is enabled ins it follows thatc = head(r).
Because there is a trace fromu to t, there is a commandc1 2 body(r) � fhead(r)g such that
enabled(c1)(u). This command begins a sub-regionr0 = region(label(c1); body(r)�fhead(r)g)
and, by definition,r0 2 rest(r). Sincehead(r) 62 r0, it follows that loopfree?(r0) and therefore
single?(r0).
From the assumptionmtrace(body(r); s; t) and from Lemma (D.16), the only command ofr
which can be enabled int is head(r). Sincehead(r) 62 r0, there is a maximal trace throughr0 from u to t, mtrace(body(r0); u; t). The head ofr0 is c1 which is enabled inu and, sincer0 � r, the assumptions of the inductive hypothesis are satisfied. From the inductive hypothesis,
it follows thatI(T1(r0))(u; t) is true.

Because onlyhead(r) can be enabled int, there is no commandc0 2 T1(rest(r)) such that
enabled(c0)(t). FromI(head(r); s; u), from I(T1(r0))(u; t) and from Theorem (D.8) it follows
thatI(head(r);T1(rest(r)))(s; t), completing the proof. 2

For any regionr and statess; t, if I(T1(r))(s; t) thens r; t. The proof uses the following
property of theleads-torelation through a set.

Lemma D.17 For any setsa; b 2 Set(L) ands; t 2 State,s a; t (8(c : L); (s1; t1 : State) : c 2 a ^ s1 c; t1) s1 b; t1)s b; t
Proof. Straightforward by induction ons a; t. 2
Theorem D.15 For r 2 R, s; t 2 State,

single?(r) I(T1(r))(s; t)s r; t
Proof.

By strong region induction onr.
Case unit?(r): I(T1(r))(s; t) iff I(head(r))(s; t), by definition, ands r; t is straightforward
from head(r) 2 r.
Case:unit?(r) and the property holds for every proper subregion ofr: There is no commandc 2 T1(rest(r)) such thatlabel(c) = label(head(r)) and rest(r) is a program, since for everyr0 2 rest(r) there is ac0 2 r such thatr0 = region(label(c0); body(r) � fhead(r)g). Therefore,

D.10 Path Transformation 278

for any regionsr1; r2 2 rest(r) such thatlabel(r1) = label(r2), the regionsr1 andr2 are the same,r1 = r2. It follows that for any commandsc1; c2 2 T1(rest(r)) such thatlabel(c1) = label(c2),c1 = c2. ConsequentlyT1(rest(r)) is a program,program?(T1(rest(r))).
From Theorem (D.10), there is a tracetrace(T1(rest(r))[fhead(r)g; s; t) and, by Lemma (D.3),s T1(rest(r))[fhead(r)g; t. Every regionr0 2 rest(r) is loop-free,loopfree?(r0), and therefore
a single loop,single?(r0). From the inductive hypothesis, for everyr0 2 rest(r) and statess1; t1, I(T1(r0))(s1; t1)) s1 r0; t1. Sincer0 � r, by Lemma (4.2), this leads tos1 r; t1.I(head(r))(s1; t1)) s r; t is immediate from the definitions. From Lemma (D.17) it follows
thats r; t. 2

For any regionr and statess; t, if I(T1(r))(s; t) then there is a maximal trace froms tot throughr. The proof of this property is by a number of steps to establish thatt is final for
body(r)� fhead(r)g and that there is a trace froms to t throughr, trace(body(r); s; t).
Lemma D.18 For r; r1 2 R ands; t 2 State,

loopfree?(r) I(T1(r))(s; t)
final?(body(r))(t)

Proof.

By strong region induction onr to show that if a commandc 2 r is enabled int then there is a
contradiction.

Case unit?(r): Any commandc 2 r enabled int is head(r). Thereforehead(r) 7�! head(r)
contradicting the assumption thatr is loop-free.

Case:unit?(r) and the property holds for proper sub-regions ofr: By Theorem (D.11) eitherI(head(r))(s; t) or there is au such thatI(head(r))(s; u) andtrace(T1(rest(r)); u; t).
AssumeI(head(r))(s; t) and that there is a commandc 2 r such thatenabled(c)(t). It follows
that there is a sub-regionr0 = region(label(c); body(r)� fHead(r)g) such thatr0 2 rest(r) and
enabled(r0)(t). Therefore there is a commandT1(r0) 2 T1(rest(r)) such thatenabled(T1(r0))(t).
Assume that there is a statet1 such thatI(T1(r0))(s; t1). Fromr0 � r andloopfree?(r) it follows
that loopfree?(r0). From the inductive hypothesis it follows thatfinal?(body(r0))(t1) and that no

regionr1 2 (rest(r)) is enabled inT1, otherwisehead(r1) 2 r0 (from head(r0) body(r)�fhead(r)g7�!
head(r1)) and enabled(head(r1))(t1) which is a contradiction. From Theorem (D.8), it fol-
lows thatI(head(r);T1(rest(r)))(s; t1) is trueand from the assumptionI(T1(r))(s; t) it follows
that t1 = t. Thereforehead(r0) r7�! head(r0), contradicting the assumption thatr is loop-
free, loopfree?. Assume that there is no statet1 such thatI(r0)(t; t1). From Theorem (D.12),
there can be no state such thatI(head(r);T1(rest(r)))(s; t). This contradicts the assumptionI(T1(r))(s; t).
Assume there is a stateu such thatI(head(r))(s; u) and trace(T1(rest(r)); u; t). By defini-
tion of trace, there is a regionr0 2 rest(r) and statet1 such thatI(T1(r0))(u; t1). If t1 is not

D.10 Path Transformation 279t, then there is a trace throughT1(rest(r)) from t1 to t and a regionr1 2 rest(r) such that
enabled(T1(r1))(t1). Therefore there is a commandc1 2 r such thatlabel(c1) = label(r1) and,

as before,head(r0) body(r)�fhead(r)g7�! c1. From the definition ofregion, c1 2 r0 contradicting
the inductive hypothesis thatI(T1(r0))(u; t1)) final?(r0)(t1). Thereforet1 = t, t is final forr0 and is therefore final forbody(r) � fhead(r)g. Statet is also final forbody(r) otherwise
head(r) r7�! head(r) contradicting the assumption thatr is loop-free. 2
Lemma D.19 For r; r1 2 R ands; t 2 State,

single?(r) r1 2 rest(r) I(T1(r1))(s; t)
final?(body(r)� head(r))(t)

Proof.

Sincer1 2 rest(r), head(r) 62 r1 andr1 is necessarily loop-free. From Lemma (D.18),t is final
for r1. Statet is therefore final forbody(r) � fhead(r)g since otherwise there is a commandc 2 body(r) � fhead(r)g such thatenabled(c)(t) which can be reached fromhead(r1) through

body(r) � fhead(r)g. Sincehead(r1) body(r)�fhead(r)g7�! c, it follows thatc 2 r1, contradicting
the assumption thatfinal?(r1)(t). 2
Theorem D.16 For r 2 R, s; t 2 State,I(T1(r))(s; t)

trace(body(r); s; t)
Proof.

By strong region induction.

Case unit?(r): By definition,T1(r) = head(r) andtrace(body(r); s; t) follows immediately.

Case:unit?(r) and the property holds for every proper subregion ofr: By definition, T1 =
head(r);T1(rest(r)). By Theorem (D.11), eitherI(head(r))(s; t) and the proof is complete or
there is au such thatI(head(r); s; u) andtrace(T1(rest(r)); u; t).
From the definition oftrace, there is a regionr1 2 rest(r) and statet1 such thatI(T1(r1))(u; t1).
From Lemma (D.19), statet1 is final for r1. Statet1 is therefore final forT1(rest(r)), otherwise
there is a command inr which is enabled int1, can be reached fromhead(r1) throughbody(r)�fhead(r)g and is therefore inr1 leading to a contradiction. SinceI(T1(r1))(u; t1) andr1 � r,
the inductive hypothesis leads totrace(body(r1); u; t). Frombody(r1) � body(r)� fhead(r)g,
it follows thattrace(body(r)�fhead(r)g; u; t). From the definition oftraceand the assumptionI(head(r))(s; u) it follows that trace(body(r); s; t), completing the proof. 2

The result of applying the path transformation to regionr is a command which is equivalent to
a maximal trace throughr. Theorem (D.14) establishedmtrace(body(r); s; t)) I(T1(r))(s; t).
Theorem (D.17) below establishes the reverse.

D.10 Path Transformation 280

Theorem D.17 For any regionr 2 R and statess; t 2 State,

single?(r) I(T1(r))(s; t)
mtrace(body(r); s; t)

Proof.

Note that fromI(T1(r))(s; t) it follows that enabled(r)(s) andhead(r) 2 tset(body(r); s; t).
The conclusion is straightforward from Theorem (D.16) and Lemma (D.19). 2
D.10.1 Theorem (4.13)

Lemma D.20 For r 2 R, s; t 2 State

single?(r) enabled(head(r))(s) mtrace+(body(r); s; t)
enabled(head(r))(t) _ final?(body(r))(t)

Proof.

The proof is by right induction on the transitive closure ofmtrace. There are two cases, the proof
for the base casemtrace(body(r); s; t) is straightforward from Lemma (D.16). The inductive case
is similar: there is a stateu such thatmtrace+(body(r); s; u) andmtrace(body(r); u; t). From the
inductive hypothesis,enabled(head(r))(u) and the proof is straightforward from Lemma (D.16).2
Lemma D.21 For r 2 R, s; t 2 State,

single?(r) s unit(T1(r)); t
mtrace+(body(r); s; t)

Proof.

By induction ons unit(T1(r)); t. The inductive case is immediate from the inductive hypothesis.

Base case,s T1(r); t: By Theorem (D.17),mtrace(body(r); s; t) is trueandmtrace+(body(r); s; t)
is immediate by definition. 2
Lemma D.22 For p 2 P , s; t 2 State,

mtrace+(p; s; t)s p; t

D.10 Path Transformation 281

Proof.

Straightforward by induction on the transitive closure ofmtrace, (mtrace+(p; s; t)) and from
Lemma (D.3). 2
Proof. Theorem 3.12

There are three properties to prove.

1. label(unit(T1(r))) = label(r).
From the definition ofunit andT1, label(unit(T1(r))) = label(head(r)). By definition
label(r) = label(head(r)), completing the proof.

2. body(unit(T1(r))) v body(r)
The required property is8s; t : s unit(T1(r)); t) s r; t.
By definition,body(unit(T1(r))) = fT1(r)g. From Theorem (D.15), for anys1; t1 2 State,s1 T1(r); t1) s1 r; t1. The property is therefore straightforward from Lemma (D.17).

3. s unit(T1)(r); t ^ final?(unit(T1(r)))(t)) s r; t ^ final?(r)(t).
From item (2),s unit(T1)(r); t) s r; t. By Lemma (D.21),mtrace+(body(r); s; t)
is true. The assumptionfinal?(unit(T1(r)))(t) leads to:enabled(head(r))(t), otherwise
enabled(T1(r))(t) (sincelabel(T1(r)) = label(head(r))). Therefore, from Lemma (D.20),
final?(r)(t) is trueand the proof is complete. 2

D.10.2 Theorem (4.14)

Lemma D.23 For r 2 R, s; t 2 State,

single?(r) enabled(head(r)) mtrace+(body(r); s; t)s unit(T1(r)); t
Proof.

By induction onmtrace+(body(r); s; t). The base case, withmtrace(body(r); s; t), is immedi-
ate from Theorem (D.14). The inductive case is immediate from the inductive hypothesis and
Lemma (D.20). 2
Proof. Theorem (4.14)

()): From Theorem (4.13),label(r1) = label(unit(T1(r))), thereforeenabled(unit(T1(r)))(s)
iff enabled(r1)(s). Also from Theorem (4.13) and the definition ofv, if s unit(T1(r)); t and
final?(unit(T1)(r)) thens r; t (from body(unit(T1(r))) v body(r)) andfinal?(r)(t).

D.10 Path Transformation 282

((): As before,enabled(r)(s) , enabled(unit(T1)(r)). From Corollary (D.1), ifs r; t and

final?(t) then mtrace+(body(r); s; t). From Lemma (D.23), this leads tos unit(T1(r)); t. As-
sumefinal?(unit(T1(r)))(t) is false, then the only command in the region,T1(r) is enabled int.
label(T1(r)) = label(head(r)) and thereforehead(r) is enabled int contradicting the assumption
thatfinal?(r)(t), sincehead(r) 2 r. Thereforefinal?(unit(T1)(r))(t) and the proof is complete.2
Theorem (4.15)

The equivalence of the failure of a region and a transformed region is established in two steps.
The first shows that if the head of a regionr halts then so does the transformed regionT1(r). The
second step shows that ifr beginning in a states leads to a statet in which r halts thenT1(r)
either halts ins or there is a stateu produced byT1(r) beginning ins in whichT1(r) halts.

Lemma D.24 For r 2 R, s; t 2 State,

single?(r) halt?(head(r))(s)
halt?(T1(r))(s)

Proof.

By definition ofhalt?, there are two properties to be proved.

The first is that fromenabled(T1(r))(s)) enabled(head(r))(s). This is straightforward from
label(T1(r)) = label(head(r)).
The second is that from8t1 : :I(head(r))(s; t1), it can be inferred that8t : :I(T1(r))(s; t).
AssumeI(T1(r))(s; t) for somet 2 State: From Theorem (D.16), there is a trace froms to t
throughr, trace(body(r); s; t). Sinceenabled(head(r))(s) (from halt?(head(r))(s)), head(r) is

the first command of the trace. From the definition oftrace, there is a statet0 such thats head(r); t0
contradicting the assumption that no such state exists. 2
Lemma D.25 For r 2 R, s; t 2 State,

single?(r) enabled(r)(s) trace(body(r); s; t) halt?(body(r))(t)
halt?(T1(r))(s) _ enabled(head(r))(t)

Proof.

By strong region induction onr.
Case unit?(r): The only command inr is head(r). From the definition ofhalt?(body(r))(t),
there is a command inr which is enabled int. Sinceunit?(r), the only command inr is head(r).

D.10 Path Transformation 283

Case:unit?(r) and the property istrue for the proper sub-regions ofr: Sinceenabled(r)(s)
it follows that enabled(head(r))(s). Sincehalt?(body(r))(t), there is a commandc 2 r such
thatenabled(c)(t) and8t1 : :I(c)(t; t1). If c = head(r) then the proof is immediate, assumec 6= head(r). From the definition oftrace, there are two cases to consider.

Assumes head(r); t. From enabled(c)(t) it follows that c begins a proper sub-regionr0 of r,r0 = region(label(c); body(r) � fhead(r)g), such thatr0 2 rest(r) andenabled(r0)(t). From
halt?(c)(t), c = head(r0) and by Lemma (D.24),halt?(T1(r0))(t). Sincer0 2 rest(r), it can be in-
ferred thatT1(r0) 2 T1(rest(r)). In addition, the truth ofhead(r) 62 T1(rest(r)), I(head(r))(s; t)
andhalt?(T1(r0))(t) satisfies the assumptions of Theorem (D.12). From Theorem (D.12) it fol-
lows that8t2 : :I(head(r);T1(rest(r)))(s; t1) and thereforehalt?(head(r);T1(rest(r)))(s). The
proof for this case follows immediately from the definition ofT1.
Assume there is a stateu such thattrace(body(r) � fhead(r)g; u; t). Then there is a commandc1 2 body(r) � fhead(r)g such thatenabled(c1)(u). Commandc1 begins a proper sub-regionr0 of r, r0 = region(label(c1; body(r) � fhead(r)g), such thatr0 2 rest(r), enabled(r0)(u) and
single?(r0) (from loopfree?(r0)).
From the inductive hypothesis, there are two cases: the first thatenabled(head(r0))(t) is true, the
second thathalt?(T1(r0))(u) andhalt?(body(r0))(t). If enabled(head(r0)(t)) is true then from

enabled(head(r0))(u) andu body(r)�fhead(r)g; t, head(r0) body(r)�fhead(r)g7�! head(r0), contra-
dicting the assumptionsingle?(r). Assumehalt?(T1(r0)(u)). Sincesingle?(r), no other com-
mand inT1(rest(r)) can be enabled int andenabled(T1(r0))(u). Theorem (D.21) applies and
leads tohalt?(head(r);T1(rest(r)))(s). The conclusionhalt?(T1(r)) follows from the definition
of T1. 2
Lemma D.26 For r 2 R ands; t 2 State,

single?(r) halt?(T1(r))(s)
halt?(head(r))(s) _ 9t : trace(body(r); s; t) ^ halt?(body(r))(t)

Proof.

By strong induction onr.
Case unit?(r): By definitionT1(r) = head(r) and the proof is immediate.

Case:unit?(r) and assuming the property istrue for all proper sub-regions ofr:
Assume there is a statet such thatI(head(r))(s; t). Also assume no commandc 2 T1(rest(r))
is enabled int. From Theorem (D.7),I(head(r);T1(rest(r)))(s; t) follows immediately contra-
dicting the assumption thathalt?(T1(r))(s).
Assume there is a commandc 2 T1(rest(r)) such thatenabled(c)(t). It follows that there is
a regionr0 = region(label(c); body(r) � fhead(r)g) suchc = T1(r0). Assume there is not1 such thatI(T1(r0))(t; t1) thenhalt?(r0)(t) is immediate from definition. In addition, since

D.10 Path Transformation 284I(head(r))(s; t) there is a trace throughr, trace(body(r); s; t), and, sincehead(r0) 2 body(r),
halt?(body(r))(t). Assume there is at1 such thatI(T1(r0))(t; t1). From Theorem (D.8) and the
fact thatr0 is loop-free (fromsingle?(r)), I(head(r);T1(rest(r)))(s; t1) is true. This contradicts
the assumptionhalt?(T1(r))(s). 2
Lemma D.27 For r 2 R ands; t 2 State,

single?(r) enabled(unit(T1(r)))(s) halt?(unit(T1(r)))(s)
halt?(head(r))(s) _ 9t : trace(body(r); s; t) ^ halt?(body(r))(t)

Proof.

From the assumptionhalt?(unit(T1(r))), there is a commandc 2 body(unit(T1(r))) such that
halt?(c)(s). From the definition ofunit, c = T1(r) and by Lemma (D.26), the proof is immediate.2
Lemma D.28 For r 2 R ands; t; u 2 State,

single?(r) enabled(head(r))(s) s r; t halt?(body(r))(t)
halt?(T1(r))(s) _ 9u : s unit(T1(r)); u ^ halt?(unit(T1(r)))(u)

Proof.

From Theorem (D.2) ands r; t, either trace(body(r); s; t) or there is au 2 Statesuch that
mtrace+(body(r); s; u) ^ trace(body(r); u; t). The proof for both cases are similar and only the
second is given.

From Lemma (D.20),enabled(head(r))(s) and mtrace+(body(r); s; u), eitherfinal?(r)(u) or
enabled(head(r))(u). Since there is a trace fromu to t throughbody(r), final?(body(r))(u) leads
to a contradiction. Thereforeenabled(head(r))(u) is trueand there is a trace,trace(body(r); u; t)
andhalt?(body(r))(t).
From Lemma (D.25), eitherhalt?(T1(r))(t) and the case is proved orenabled(head(r))(t). As-
sume there is a statet1 such thatI(head(r))(t; t1). Sincehead(r) 2 body(r) this contradicts the
assumptionhalt?(body(r))(t) and the proof is complete. 2
Proof. Theorem (4.15)

()): Assumeenabled(r)(s) andhalt?(unit(T1(r)))(s), then eitherhalt?(body(unit(T1(r))))(s)
or there is a statet such thats unit(T1(r)); t andhalt?(body(unit(T1)(r)))(t). For the first case, the
proof is straightforward from Lemma (D.27) and Lemma (D.3).

For the second case, note that from Theorem (D.15) and Lemma (D.17),s r; t is straightfor-
ward. In addition, since any command ofbody(unit(T1(r))) enabled int is T1(r) it follows that

D.11 General Transformation 285

enabled(unit(T1)(r)) is true. The proof is straightforward by Lemma (D.27). Note that if there
is a stateu, such thattrace(body(r); t; u) thent r; u is alsotrue (Lemma D.3).

((): Assumeenabled(r)(s) andhalt?(r)(s). There are two cases. Assumehalt?(body(r))(s).
From the assumptionenabled(r)(s), the only command ofr enabled ins is head(r) and there-
fore halt?(head(r))(s). The proof is straightforward from Lemma (D.24). For the second case,
assume a statet such thats r; t andhalt?(body(r))(t). The proof is immediate from Lemma
(D.28). 2
D.11 General Transformation

The proofs for the theorems concerning the general transformation are based on a numberof
basic properties of traces and regions.

If commandc of programp is enabled ins and there is trace throughp from s to t then there
is a trace through the region ofp which begins withc.
Lemma D.29 For p 2 P , c; c1 2 L ands; t 2 State,

trace(p; s; t) c 2 p enabled(c)(s)
trace(body(region(label(c); p); s; t))

Proof.

By induction ontrace(p; s; t).
Cases c; t. By definition,c 2 region(label(c); p) and the conclusion is immediate.

Cases c; u and trace(p � fcg; u; t) and the property istrue for trace(p � fcg; u; t): Since
there is a trace fromu to t throughp� fcg, there is a commandc1 2 p� fcg which is enabled
in u. From Theorem (4.8),c 7�! c1 and therefore, for everyc2 2 body(region(label(c1); p �fcg)), c p7�! c2 andc2 2 body(region(label(c); p)). Sincebody(region(label(c1); p� fcg)) does
not containc, body(region(label(c1); p � fcg)) � body(region(label(c); p)) � fcg. From the
inductive hypothesis,trace(body(region(c1; p�fcg)); u; t) is true. From Lemma (D.6), it follows
that trace(body(region(label(c); p)) � fcg; u; t) is alsotrue. From the assumptions c; u, the
conclusiontrace(body(region(label(c); p)); s; t) is immediate from the definitions. 2

If a commandc is a member of a trace set between statess to t, then there is a trace froms
to a state in whichc is enabled.

Lemma D.30 For p 2 P , c 2 L ands; t; u 2 State,c 2 tset(p; s; t) :enabled(c)(s)9u : trace(p; s; u) ^ enabled(c)(u)

D.11 General Transformation 286

Proof.

Straightforward, by strong induction onp and cases oftset. 2
If programp1 is a subset of programp2 then trace set throughp1 is a subset of a trace set

throughp2.
Lemma D.31 For p1; p1 2 P ands; t 2 State,p1 � p2

tset(p1; s; t) � tset(p2; s; t)
Proof.

By strong induction onp1 and cases oftset. The property to proved is for anyc0 2 L, c0 2
tset(p1; s; t)) c0 2 tset(p2; s; t).
Casec 2 p1, s c; t andc0 = c. Sincec 2 p2, the proof is immediate by definition oftset.

Caseu 2 Stateandc 2 p1, s c; u, trace(p1 � fcg; u; t) andc0 = c. As before, the proof is
straightforward. Note that from Lemma (D.6) and the assumptions it follows thattrace(p2 �fcg; u; t) is true.

Caseu 2 Stateand c 2 p1, s c; u and c0 2 tset(p1 � fcg; u; t) with the property true for
all proper subsets ofp1. From the inductive hypothesis and the assumptions it follows thatc0 2 tset(p2 � fcg; u; t). The extension toc0 2 tset(p2 � fcg; u; t) is straightforward from the
definition oftset. 2

If a commandc1 is enabled in a statet after a trace through a programp beginning with a
commandc thenc1 is a member of the trace set of the region beginning withc.
Lemma D.32 For p 2 P , c; c1 2 L ands; t 2 State,

trace(p; s; t) c 2 p enabled(c)(s) c1 2 tset(p; s; t)c1 2 tset(body(region(label(c); p)); s; t)
Proof.

By strong program induction onp and by cases oftset(p; s; t).
Cases c; t andc1 = c: The proof is immediate fromc 2 body(region(label(c); p); s; t) and
thereforec 2 tset(body(region(label(c); p)); s; t).
Cases c; u, c1 = c, trace(p � fcg; u; t) and the property istrue for p � fcg: From the defi-
nitions of regionand trace, c 2 body(region(c); p)) and there is ac0 2 p � fcg such thatc0 is
enabled inu. Sinces c; u, it follows that c 7�! c0 and thereforebody(region(label(c0); p �fcg)) is a subset ofbody(region(label(c); p)). From the assumptiontrace(p � fcg; u; t) and
from Lemma (D.29) it follows thattrace(body(region(label(c0); p � fcg)); u; t) is true. From

D.11 General Transformation 287

Lemma (D.31), this establishestrace(body(region(label(c); p)); u; t). The conclusion thatc1 is a
member oftset(body(region(label(c); p)); s; t) follows from the definition oftset.

Cases c; u, c1 2 tset(p�fcg; u; t) and the property istrue for p�fcg: Fromtrace(p; s; t), there
is a tracetrace(p � fcg; u; t) and therefore a commandc2 2 p � fcg such thatenabled(c2)(u).
This command begins a regionr of p � fcg, r = region(label(c2); p � fcg), and, from the
inductive hypothesis,c1 2 tset(body(r); u; t). From Theorem (4.8),c 7�! c2 and thereforec p7�! c3, for all c3 2 body(r). Since, by definition,c 62 body(r) it follows that body(r) is a
subset ofbody(region(label(c); p))� fcg.
Let p0 = body(region(label(c; p))). By definition,body(r) � p0 �fcg and, from Lemma (D.31),
tset(body(r); u; t) � tset(p0 � fcg; u; t). Sincec1 2 tset(body(r); u; t) andtset(p0 � fcg; u; t) is
a subset oftset(p0; s; t), the proof is complete. 2
D.11.1 Loops

The properties of loops in a region are syntactic and based on the commands beginning a loop.
The proof of Theorem (4.16) is based on the property that, for regionr, a loop in a sub-regionr1
of r, r1 2 loops(r), is also a loop inr. To show that this is true, strong induction is used with the
inductive hypothesis applied to a sub-regionr2 2 rest(r).

Any command beginning a loop in a sub-region ofr (in rest(r)) also begins a loop inr.
Lemma D.33 For r; r1 2 R, andc 2 L,r1 2 rest(r) lphead?(c; r1)

lphead?(c; r)
Proof.

From lphead?(c; r1) it follows that there is a setp � body(r1) such thathead(r1) p7�! c andc (body(r1)�p)[fcg7�! c. By definition,head(r) 62 body(r1) and thereforehead(r) 62 p. It follows that

there is a setp0 = p[fhead(r)g such thathead(r) p07�! c andc (body(r)�p0)[fcg7�! c. The conclusion
lphead?(c; r) is immediate from the definition. 2

Any command beginning a loop in a sub-region ofr (in loops(r)) also begins a loop inr.
Lemma D.34 For r; r1 2 R, andc 2 L,r1 2 loops(r) lphead?(c; r1)

lphead?(c; r)
Proof.

D.11 General Transformation 288

There are two cases to consider, for both the proof is similar to that of Lemma(D.33). Sincer1 2 loops(r), there is a commandc1 2 cuts(r) such thatr1 = region(label(c1); lpbody(c1; r)).
Casec1 = head(r). The proof is straightforward fromlpbody(c1; r) � body(r), from the defini-
tion of lphead?and by the properties of thereachesrelation.

Casec1 6= head(r). By definition, lphead?(c1; r) is true and there is a pathp � body(r) such

thathead(r) p7�! c1 and, forp0 = body(r)� p [fc1g, c1 p07�! c1. From lphead?(c; r1), there is

also a pathp1 � body(r1) such thatc1 p17�! c and, forp01 = body(r0) � p01 [fc1g, c p017�! c. By
definition,lpbody(c1; r) � body(r), therefore there is a pathp2 = p[p1 such thathead(r) p27�! c.
Sincep01 \ p2 = fg, there is also a pathp02 = (body(r) � p2) [fcg such thatp0 � body(r) andc p07�! c. The conclusionlphead?(c; r) follows by definition. 2

A single loopr is a region in which no command can reach itself without passing through
head(r). Conversely, if a commandc can reach itself throughbody(r)� fhead(r)g then there is
a commandc 2 body(r)� fhead(r)g beginning a loop inr.
Lemma D.35 For r 2 R, p 2 P andc; c1 2 L,p = body(r)� fhead(r)g c p7�! c9c1 : c1 6= head(r) ^ lphead?(c1; r) ^ c1 p7�! c ^ c p7�! c1
Proof.

By strong region induction onr. By definition andc p7�! c, c 2 p and thereforec 2 body(r) �fhead(r)g. It follows that:unit?(r) is true.

Sincec 2 r it follows thathead(r) r7�! c. By Theorem (D.3), there is ac2 2 body(r)� head(r)
which begins a regionr0 = region(label(c2); body(r) � fhead(r)g) such thatc 2 r0 andr0 2
rest(r). Let p0 = body(r0)� fhead(r0)g.
Assumec p07�! c. By the inductive hypothesis, there is ac1 2 p0 such thatlphead?(c1; r0). From
Lemma (D.33),lphead?(c1; r) is true. From Theorem (4.7),p0 � p andc1 6 head(r), it follows
thatc1 p7�! c andc p7�! c1, completing the proof for this case.

Assume:(c p07�! c). Sincec 2 r0, head(r0) r07�! c and, sincec2 = head(r0), c2 r07�! c. From the

assumption and the definition ofregion, c r07�! head(r0) and thereforec r07�! c2. By transitivity

of reaches, c2 r07�! c2 and, by definition,lphead?(c2; r0). Therefore there is ac1 = c2 such thatc1 p7�! c andc p7�! c1. Sincec1 = c2, by Lemma (D.33) it follows thatlphead?(c1; r) and the
proof is complete. 2
D.11.2 Theorem (4.16)

Proof.

D.11 General Transformation 289

There are two cases: whenr0 = region(label(head(r)); lpbody(head(r); r)) and whenr0 =
region(label(c); lpbody(c; r)) for c 2 body(r) � fhead(r)g and lphead?(c; r). The proofs are
similar and only the second case will be considered.

Assumec 2 body(r)�fhead(r)g such thatlphead?(c; r) andr0 = region(label(c); lpbody(c; r)).
Let p = body(r0) � fhead(r0)g. By definition c 2 cuts(r), head(r0) = c andr0 2 loops(r).
Assume:single?(r0), it follows that there is a commandc1 2 body(r0) such thatc1 p7�! c1.
From Lemma (D.35), there is a commandc2 2 body(r0) such thatlphead?(c; r0) and c2 6=
head(r0). From Lemma (D.34),c2 is also a loop head ofr, lphead?(c2; r) andc2 2 cuts(r). By
definition, lpbody(c; r) = (body(r) � lpheads(r)) + c. Sincec2 2 cuts(r) andc2 6= head(r0),c2 2 lpbody(c; r) leads to a contradiction. Therefore there can be noc1 such thatc1 p7�! c1
leading to the conclusion thatsingle?(r0).
Note that for the case whenr0 = region(label(head(r)); lpbody(head(r); r)), Lemma (D.35)

requires thatc1 6= head(r). This is straightforward fromc1 body(r)�fhead(r)g7�! c1. 2
D.11.3 Theorem (4.17)

The proof of Theorem (4.17) is based on showing that the commands of a transformed regionT2(r) correspond to a maximal trace throughr, restricted in the cut-points ofr. For com-
mandc 2 T2(r) and statess; t, if I(c)(s; t) then rmtrace(lpheads(r))(body(r); s; t). This is
established in two steps, the first to show that fromI(c)(s; t), it follows that there is a com-
mandc1 2 r such thatmtrace(lpbody(c; r); s; t). The second step shows that this establishes
rmtrace(lpheads(r))(body(r); s; t). The proofs are based on a number of basic properties of
maximal traces.

The transitive closure of a restrict maximal trace through a region establishes theleads-to
relation throughr.
Lemma D.36 For p 2 P , a 2 Set(L), s; t 2 State,

rmtrace+(a)(p; s; t)s p; t
Proof.

Straightforward, by induction on the transitive closure ofrmtrace. The base case follows from
Lemma (D.3). The inductive case is immediate from the inductive hypothesis. 2
Lemma D.37 For r 2 R,

label(T2(r)) = label(r)
Proof.

Immediate from definitions. 2

D.11 General Transformation 290

A maximal trace through a regionr constructed from a cut-pointc and the loop body ofc,
lpbody(c; r), establishes a maximal trace throughlpbody(c; r).
Lemma D.38 For r 2 R, c 2 L ands; t 2 State,

enabled(c)(s) c 2 cuts(r) mtrace(body(region(label(c); lpbody(c; r))); s; t)
mtrace(lpbody(c; r); s; t)

Proof.

There are two properties to prove: the first thattrace(lpbody(c; r); s; t) and the second that
final?(lpbody(c; r)� tset(lpbody(c; r); s; t))(t) both follow from assumptions.

Let p = body(region(label(c); lpbody(c; r))).
trace(lpbody(c; r); s; t): From the assumptionmtrace(p; s; t) and from the definition ofmtrace,
it follows that trace(p; s; t) is true. From Corollary (4.3),p � lpbody(c; r) and, from Lemma
(D.6), trace(lpbody(c; r); s; t) is straightforward.

final?(lpbody(c; r)� tset(lpbody(c; r); s; t))(t): From the assumption,mtrace(p; s; t), final?(p�
tset(p; s; t)) is trueand there is noc1 2 p� tset(p; s; t) such thatenabled(c1)(t).
Assume there is a commandc2 2 lpbody(c; r) � tset(lpbody(c; r)) such thatenabled(c2)(s).
Fromc2 2 lpbody(c; r), enabled(c)(s), enabled(c2)(t) ands lpbody(c;r); t it follows, from The-

orem (4.8), thatc lpbody(c;r)7�! t. By definition ofregion, c2 2 region(label(c); lpbody(c; r)) and
thereforec2 2 p.

Assume thatc2 2 tset(p; s; t). From Lemma (D.31), andp � lpbody(c; r) it follows that c2 2
tset(lpbody(c; r)) leading to a contradiction with the assumptionc2 62 tset(lpbody(c; r); s; t)
Thereforec2 2 p � tset(p; s; t) contradicting the assumption that there is no command inp �
tset(p; s; t) which is enabled int. 2

For a cut-pointc of a regionr, a maximal trace throughlpbody(c; r) establishes a maximal
trace through region beginning withc and constructed fromlpbody(c; r).
Lemma D.39 For r 2 R, c 2 L ands; t 2 State,

enabled(c)(s) c 2 cuts(r) mtrace(lpbody(c; r); s; t)
mtrace(body(region(label(c); lpbody(c; r)); s; t)

Proof.

Let p = body(region(label(c); lpbody(c; r))). There are two properties to prove: the first that
trace(p; s; t) and the second thatfinal?(p� tset(p; s; t))(t).
trace(p; s; t): From the assumptionmtrace(lpbody(c; r); s; t) and from the definition ofmtrace,
trace(lpbody(c; r); s; t) is true. From Lemma (D.29) it follows thattrace(p; s; t) is alsotrue.

D.11 General Transformation 291

final?(p� tset(p; s; t))(t): From the assumption,mtrace(lpbody(c; r); s; t), final?(lpbody(c; r)�
tset(lpbody(c; r); s; t)) is trueand there is noc1 2 lpbody(c; r)� tset(lpbody(c; r); s; t) such that
enabled(c1)(t).
Assume there is a commandc2 2 p � tset(p; s; t) such thatenabled(c2)(s) andc2 2 p. Fromc2 2 p and from Corollary (4.3),c2 2 lpbody(c; r)). From the assumptionfinal?(lpbody(c; r)�
tset(lpbody(c; r); s; t))(t) andenabled(c2)(t) it follows thatc2 2 tset(lpbody(c; r))); s; t). From
Lemma (D.32), it also follows thatc2 2 tset(p; s; t) contradicting the assumptionc2 2 p �
tset(p; s; t). Therefore there can be no command inp� tset(p; s; t) which is enabled int and the
proof offinal?(p� tset(p; s; t))(t) is complete. 2

For cut-pointc of regionr, a maximal trace throughlpbody(c; r) is equivalent to a maximal
trace throughr restricted in the loop heads ofr, rmtrace(lpheads(r)).
Lemma D.40 For r 2 R, c 2 L ands; t 2 State,

mtrace(lpbody(c; r); s; t) enabled(c)(s) c 2 cuts(r)
rmtrace(lpheads(r))(body(r); s; t)

Proof.

Straightforward from definitions. Note thatlpbody(c; r) = (body(r)� lpheads(r)) [fcg. 2
Lemma D.41 For r 2 R, c 2 L ands; t 2 State,

rmtrace(lpheads(r))(body(r); s; t) enabled(c)(s) c 2 cuts(r)
mtrace(lpbody(c; r); s; t)

Proof. Straightforward from definitions. 2
If a transformed regionT2(r) produces a states from statet then the transitive closure of

rmtrace(lpheads(r)) is truebetweens andt in body(r).
Lemma D.42 For r 2 R ands; t 2 State, s T2(r); t

rmtrace+(lpheads(r))(body(r); s; t)
Proof.

By right induction ons T2(r); t.
Casec 2 body(T2(r)) ands c; t: By definition of T2, there is a regionr0 2 loops(r) suchc = T1(r0). From Theorem (4.16),single?(r0) and from Theorem (D.17),mtrace(body(r0); s; t)

D.11 General Transformation 292

is true. From the definitions ofregion and lpbody, there is ac0 2 cuts(r) such thatr0 =
region(label(c0); lpbody(c0; r)) and label(head(r0)) = label(c0). SinceT1(r0) is enabled ins
and label(T1(r0)) = label(head(r0)), c0 is also enabled ins. By Lemma (D.38) it follows that
mtrace(lpbody(c0; r); s; t). From this and Lemma (D.40) the conclusion is immediate.

Casec 2 body(r) andu 2 State, s T2(r); u, u c; t and the property holds fors T2(r); u: From
the inductive hypothesis,rmtrace+(lpheads(r))(body(r); s; u) is true and all that is required is
to showrmtrace(lpheads(r))(body(r); u; t). The proof for this is the same as for the previous
case. 2
Lemma D.43 For r 2 R ands; t 2 State, s T2(r); ts r; t
Proof.

By induction ons T2(r); t. The inductive case is immediate from the inductive hypothesis and the
definition of transitive closure.

Base case:c 2 T2(r) ands c; t. Fromc 2 T2(r) and from the definitions, there is a sub-regionr0 2 loops(r) such thatc = T1(r). From Theorem (4.16),single?(r0) and the proof is immediate
from I(T1(r0))(s; t) and Theorem (D.15). 2

If there is a restricted maximal trace through a region to a statet then any command enabled
in t is the head of a loop inr.
Lemma D.44 For r 2 R, c1 2 L, s; t 2 State,

rmtrace(lpheads(r))(body(r); s; t) enabled(c)(s) c 2 cuts(r)
final?(body(r))(t) _ (9c1 : c1 2 lpheads(r) ^ enabled(c1)(t))

Proof.

Assume there is a commandc2 2 body(r) such thatenabled(c2)(t). Eitherc2 2 lpheads(r) and
the proof is complete orc2 62 lpheads(r) andc2 2 tset(body(r); s; t) (definition of rmtrace).
Assumec2 62 lpheads(r) andc2 2 tset(body(r); s; t). By definition,mtrace(body(r); s; t) is true.
If c = c2 then the conclusion is immediate, assumec 6= c2.
From Theorem (D.4) there is au 2 Stateand a setp � body(r) such thatenabled(c2)(u),
trace(body(r) � p [fc2g; u; t) and trace(p; s; u). Sinceenabled(c)(s) andenabled(c2)(t) and

from Lemma (D.3) and Theorem (4.8),c p7�! c2 and c2 (body(r)�p)[fc2g7�! c2. By definition,
lpbody(c; r) = body(r) � lpheads(r) [fcg and lphead?(c2; region(label(c); lpbody(c; r))) is
true. Assumec = head(r), thenlphead?(c2; r) is immediate andc2 2 lpheads(r) completing
the proof for this case.

D.11 General Transformation 293

Assumec 6= head(r) and c 2 lpheads(r). By definition, region(label(c); lpbody(c; r)) 2
loops(r) and, from Lemma (D.34),lphead?(c2; r) is true. Thereforec2 2 lpheads(r) which
is a contradiction. 2

Lemma (D.44) can be extended to the transitive closure of a restricted maximal trace.

Lemma D.45 For r 2 R, c1 2 L, s; t 2 State,

rmtrace+(lpheads(r))(body(r); s; t) enabled(c)(s) c 2 cuts(r)
final?(body(r))(t) _ (9c1 : c1 2 lpheads(r) ^ enabled(c1)(t))

Proof.

Straightforward, by induction on the transitive closure ofrmtraceand from Lemma (D.44). 2
A consequence of Lemma (D.45) is that a final state produced by a transformed regionT2(r)

is also final for the regionr.
Lemma D.46 For r 2 R ands; t 2 State,

enabled(head(T2(r)))(s) s T2(r); t final?(T2(r))(t)
final?(r)(t)

Proof.

From the definitions,label(T2(r)) = label(r) and label(r) = label(head(r)). It follows that

enabled(T2(r))(s) iff enabled(head(r))(s). From the assumptions T2(r); t and Lemma (D.42),
rmtrace+(lpheads(r))(body(r); s; t) is true. From Lemma (D.45), there are two cases: either
final?(body(r))(t) or there is a commandc 2 lpheads(r) such thatenabled(c)(t). If it is the case
final?(body(r))(t) thenfinal?(r)(t) is immediate by definition.

Assumec 2 lpheads(r) and enabled(c)(t). Then there is ar0 2 loops(r) such thatr0 =
region(label(c); lpbody(c; r)) andenabled(head(r0))(t). Regionr0 is in gtbody(r) by definition.

By Corollary (4.3),body(T2(r)) � gtbody(r) and, froms T2(r); t and Lemma (4.2),s gtbody(r); t.
Sinceenabled(head(T2(r))(s), enabled(T1(r))(t), s gtbody(r); t and, by Lemma (4.8), it follows

thathead(T2(r)) gtbody(r)7�! T1(r0). Therefore, by definition ofregion, T1(r0) 2 body(T2(r)) and,
sinceenabled(T1(r0))(t), the assumption thatt is final forT2(r) is contradicted. 2
Proof. Theorem (4.17)

From the definition ofv, there are three properties to be proved

1. label(T2(r)) = label(r). Immediate from definition ofT2 andregion.

D.11 General Transformation 294

2. body(T2(r)) v body(r). The proof required is that for anys; t 2 State, s T2(r); t) s r; t.
This is immediate from Lemma (D.43).

3. For s; t 2 State, if enabled(T2(r))(s), s T2(r); t andfinal?(T2(r))(t) are true, then so is
final?(r)(t). This is immediate fromlabel(r) = label(head(r)), label(T2(r)) = label(r)
and Lemma (D.46). 2

D.11.4 Theorem (4.18)

The proof of Theorem (4.18) is based on showing that the transitive closure of a restricted maxi-
mal trace through a regionr is equivalent to theleads-torelation through the transformed regionT2(r). The proof is in a number of steps which establish a relationship between theleads-to
relation throughr and the transitive closure ofrmtracethroughr.
Lemma D.47 For r 2 R, c; c1 2 L, s; t; u 2 State,s r; t c 2 cuts(r) enabled(c)(s)

trace(lpbody(c; r))_(9c1; u :rmtrace+(lpheads(r))(body(r); s; u)^ trace(lpbody(c; r); u; t) ^ enabled(c1)(u) ^ c1 2 lpheads(r)
Proof.

By right induction ons r; t. The proof for two cases are similar and only the inductive case is
considered.

Assumet1 2 Stateand c2 2 r such thats r; t1 and t1 c2; t. The inductive hypothesis is
that eithertrace(lpbody(c; r); s; t1) or there is a stateu and commandc3 2 lpheads(r) such that
rmtrace+(lpheads(r))(body(r); s; u), trace(lpbody(c; r); u; t1)) andenabled(c3)(u). Assume the
second case, the proof is similar for the first.

Assumec2 62 tset(lpbody(c; r); u; t1). By Lemma (D.9) and the assumptiont1 c2; t it follows
thattrace(lpbody(c; r); u; t) is true. This completes the proof for this case.

Assumec2 2 tset(lpbody(c; r); u; t1). By definition, mtrace(lpbody(c; r); s; t) is true and, by
Lemma (D.40) andc2 2 lpheads(r), it follows that rmtrace(lpheads(r))(lpbody(c; r); s; t) is
also true. This leads to the conclusion that there is a state,t1, and command,c2, such that
rmtrace+(lpheads(r))(body(r); s; t1) andenabled(c2)(t1). By Lemma (D.45) it follows thatc2 2
lpheads(r) andtrace(lpbody(c2; r); t1; t) follows immediately fromt1 c2; t and the definitions,
completing the proof. 2

When the state produced by a regionr is final forr, Lemma (D.47) can be described in terms
of maximal traces only.

D.11 General Transformation 295

Lemma D.48 For r 2 R, c; c1 2 L, s; t; u 2 State,s r; t c 2 cuts(r) enabled(c)(s) final?(r)(t)
mtrace(lpbody(c; r))_(9c1; u :rmtrace+(lpheads(r))(body(r); s; u)^mtrace(lpbody(c; r); u; t) ^ enabled(c1)(u) ^ c1 2 lpheads(r)

Proof.

Straightforward from Lemma (D.47) since for any programp and statess; t, trace(p; s; t) ^
final?(p)(t) immediately lead tomtrace(p; s; t). 2

For regionr, the leads-torelation throughT2(r) follows from the transitive closure of the
restricted maximal trace,rmtrace(lpheads(r)), throughr.
Lemma D.49 For r 2 R, s; t 2 State,

enabled(head(r))(s) rmtrace+(lpheads(r))(body(r); s; t)s T2(r); t
Proof.

By right induction on the transitive closure ofrmtrace. The proof for the base and inductive
cases are similar and only the inductive case is considered.

For the inductive case, assume a stateu such that bothrmtrace+(lpheads(r))(body(r); s; u) and
rmtrace(lpheads(r))(body(r); u; t) aretrue. Also assume that the property holds betweens andu, s T2(r); u. From the definition ofleads-to, all that is required is to show that there is ac 2 T2(r)
such thatI(c)(u; t).
From Lemma (D.45), eitherfinal?(r)(u) or there is ac1 2 lpheads(r) such thatenabled(c1)(u).
final?(body(r))(u) contradicts the assumption that there is a trace beginning atu, therefore
there is a commandc1 2 lpheads(r) enabled inu. By Lemma (D.41) and the assumption
rmtrace(lpheads(r))(body(r); u; t) it follows that mtrace(lpbody(c1; r); u; t). Let r0 be the re-
gion constructed fromlpbody(c1; r) beginning withc1, r0 = region(label(c1); lpbody(c1; r)).
Sincec1 2 lpheads(r), by definitionr0 2 loops(r) and, by Lemma (D.39),mtrace(body(r0); u; t)
is true. From the inductive hypothesis,s T2(r); u, and from the assumption,enabled(c1)(u)
and thereforeenabled(r0)(u). Also from the assumptions,enabled(head(r))(s) and therefore
head(T2(r)) reachesT1(r0) in gtbody(r) and from the definition ofT2 andregion, T1(r0) 2 T2(r).
Sincer0 2 loops(r), single?(r) follows from Theorem (4.16). Fromenabled(c1)(u), and since
head(r0) = c1, enabled(head(r0))(u) is true. Therefore, frommtrace(body(r0); u; t) and Theo-
rem (D.14), it follows thatI(T1(r0))(u; t) is true, completing the proof. 2

The property of Lemma (D.49) can be re-stated in terms of theleads-torelation through
regionr whenr produces a final state.

D.11 General Transformation 296

Lemma D.50 For r 2 R, s; t 2 State,

enabled(head(r))(s) s r; t final?(r)(t)s T2(r); t
Proof.

From Lemma (D.48), and fromhead(r) 2 cuts(r), there are two cases. The proofs for both are
similar and only the second case is considered.

Assume commandc 2 lpheads(r) andu 2 Statesuch thatc is enabled inu, enabled(c)(u),
andrmtrace+(lpheads(r))(body(r); s; u) andmtrace(lpbody(c; r); u; t) are true. By definition,
mtrace(lpbody(c; r); u; t) is equivalent tormtrace(lpheads(r))(body(r); u; t). Together with the
assumptionrmtrace+(lpheads(r))(body(r); s; u), this is enough to establish the transitive closure
of the restricted maximal trace betweens and t, rmtrace+(lpheads(r))(body(r); s; t), and the
conclusion is immediate from Lemma (D.49). 2
Proof. Theorem (4.18)

()): I(T2(r))(s; t)) I(r)(s; t) is straightforward fromT2(r) v r (Theorem 4.17).

((): By definition and the assumptionI(r)(s; t), enabled(r)(s), s r; t andfinal?(r)(t) aretrue.
By definition,label(T2(r)) = label(r) andenabled(r)(s) iff enabled(T2(r))(s).
From the assumptionenabled(r)(s), it follows thatenabled(head((r))(s) is true. Froms r; t,
final?(r)(t) and Lemma (D.50), the conclusions T2(r); t is immediate.

Fromfinal?(r)(t), final?(T2(r))(t) is straightforward since for every commandc 2 T2(r), there
is a commandc0 2 r such thatlabel(c0) = label(c) (definition ofgtbody(r)). If final?(T2(r))(t) is
falsethen there is a commandc0 2 T2(r) such thatenabled(c0)(t). Therefore there is a commandc 2 r such thatenabled(c)(t) contradicting the assumption thatfinal?(r)(t). 2
D.11.5 Theorem (4.19)

The proof of Theorem (4.19) is based on the behaviour of a regionr and the transformed regionT2(r) when commands of either halt in a state.

If a command of a transformed regionT2(r) halts in a state then so does the regionr.
Lemma D.51 For r 2 R, c 2 L ands 2 State,c 2 T2(r) halt?(c)(s)

halt?(r)(s)

D.11 General Transformation 297

Proof.

From the definition ofT2, there is a commandc1 2 r and regionr0 2 loops(r) such thatc = T1(r0) and r0 = region(label(c1); lpbody(c1; r)). From Theorem (4.16),single?(r0) and
by Lemma (D.26), there are two cases to consider.

Case halt?(head(r0))(s). Sincehead(r0) = c1, by definition of region, and sincec1 2 r, it
follows, from the definitions, thathalt?(body(r))(s) andhalt?(r)(s) aretrue.

Casethere is a statet such thattrace(body(r0); s; t) andhalt?(body(r0)(t)). From Lemma (D.3),s r0; t. By definition of lpbody(c1; r) andregion, body(r0) � body(r). From this together with
Lemma (4.2) it follows thats r; t. Sincehalt?(body(r0))(t), there is ac3 2 body(r0) such that
for any statet1, :I(c3)(t; t1). Sincebody(r0) � body(r), c3 2 body(r) andhalt?(body(r))(t) is
proved.halt?(r)(s) follows from the definition ofs r; t andhalt?. 2

If a transformed regionT2(r) fails in a state then so does the regionr.
Lemma D.52 For r 2 R ands 2 State,

halt?(T2(r))(s)
halt?(r)(s)

Proof.

From the definition ofhalt?(T2(r))(s), there are two cases.

Case halt?(body(T2(r)))(s). By definition there is a commandc 2 T2(r) andhalt?(c)(s). The
conclusion follows immediately from Lemma (D.51).

Casethere is a statet such thats T2(r); t and halt?(body(T2(r)))(t). From Lemma (D.43),s r; t. From Lemma (D.51),halt?(r)(t) and, by definition, there are two cases. Assume
halt?(body(r))(t) then the conclusion is immediate froms r; t and the definition ofhalt?(r)(s).
Assume there is a stateu such thatt r; u andhalt?(body(r))(u). Froms r; t and the definition
of leads-to, it follows that s r; u. Sinces r; u and halt?(body(r))(u), the conclusion is
immediate from the definition ofhalt?(r)(s). 2

Lemma (D.52) establishes thathalt?(T2(r))(s)) halt?(r)(s). The reverse,halt?(r)(s))
halt?(T2(r)), is established by considering the commands ofr which halts ins.

If the head of regionr fails in a states then so does the transformed regionT2(r).
Lemma D.53 For r 2 R ands 2 State,

halt?(head(r))(s)
halt?(T2(r))(s)

D.11 General Transformation 298

Proof.

By definition, there is a regionr0 2 loops(r) beginning with the head ofr and constructed from
lpbody(head(r); r), r0 = region(label(head(r)); lpbody(head(r); r)). The head ofr0 is head(r)
and, by definition ofregion and label(r0) = label(r), T1(r0) 2 T2(r). By Theorem (4.16),
single?(r0) and, by Lemma (D.24),halt?(T1(r0))(s) is immediate. By definition it follows that
halt?(body(T2(r)))(s) is true and the conclusionhalt?(T2(r))(s) is immediate from the defini-
tions. 2

If a regionr is enabled and begins in a states to produce a statet in which it fails then the
transformed region fails in states.
Lemma D.54 For r 2 R ands 2 State,

enabled(head(r))(s) s r; t halt?(body(r))(t)
halt?(T2(r))(s)

Proof.

Fromenabled(head(r))(s), s r; t and Lemma (D.47), there are two cases. The proofs for both
cases are similar and the more general is considered.

Assumec1 2 L andu 2 Statesuch that

enabled(c1)(u) ^ c1 2 lpheads(r)^rmtrace+(lpheads(r))(body(r); s; u) ^ trace(lpbody(c1; r); u; t)
From the assumptionsenabled(head(r))(s) andrmtrace+(lpheads(r))(body(r); s; u), it follows,

from Lemma (D.49), thats T2(r); u. From the assumptionhalt?(body(r))(t), there is a commandc0 2 r such thatenabled(c0)(t) and8t1 : :I(c0)(t; t1).
Casec0 2 lpbody(c1; r). Let r0 = region(label(c1); lpbody(c1; r)). Sincec1 2 lpheads(r),
it follows that r0 2 loops(r). From Lemma (D.3) andtrace(lpbody(c1; r); u; t) it follows thatu lpbody(c1;r); t. Sinceenabled(c1)(s) andenabled(c0)(u), and from Theorem (4.8),c1 reachesc0
in lpbody(c1; r), c1 lpbody(c1;r)7�! c0, andc0 2 r0, by definition ofregion.

From halt?(c0)(t) andc0 2 r0, it follows thathalt?(body(r0))(t). From Lemma (D.29), the as-
sumptiontrace(lpbody(c1; r); u; t) leads totrace(body(r0); u; t). From this and Lemma (D.25),
eitherhalt?(T1(r0))(u) or enabled(head(r0))(t) aretrue.

Assumeenabled(head(r0))(t). Sincec0 2 r0 and enabled(c0)(t), it follows that head(r0) =c0. Sincehead(r0) = c1 and there is a trace from stateu through lpbody(c1; r), it follows
that c1 2 tset(lpbody(c; r); u; t). By definition, this leads tomtrace(lpbody(c; r); u; t) and, by
Lemma (D.39), it follows thatmtrace(body(r0); u; t). Sincer0 2 loops(r), by Theorem (4.16),
single?(r0) and by Theorem (D.14),I(r0)(u; t). By Lemma (D.49) and from the assumptions,s T2(r); u is true. From the definitions,enabled(head(T2(r)))(s) and fromenabled(c1)(u) and

D.11 General Transformation 299

Theorem (4.8) and the definitions, it follows thathead(T2(r)) gtbody(r)7�! T1(r0). ThereforeT1(r0) 2 T2(r) ands T2(r); t.
Sincec0 = c1 andenabled(c0)(t) (from halt?(c0)(t)), it follows that enabled(T1(r0))(t) (sincec1 = head(r0)). Assume that there is a statet1 such thatI(T1(r0))(t; t1). By Theorem (D.15), it

follows thatt r0; t1 and, sincer0 � r, this leads tot r; t1. By definition of leads-toand since
enabled(c0)(t), there is a statet2 such thatI(c0)(t; t2) contradicting the assumptionhalt?(r)(t).
ThereforeT1(r0) fails in t, halt?(T1(r0))(t) andhalt?(T2(r))(s) follows from the definition, froms T2(r); t and fromT1(r0) 2 T2(r).
Assumehalt?(T1(r0))(u). As before,s T2(r); u andhead(T2(r)) gtbody(r)7�! head(r0) and it fol-
lows thatT1(r0) 2 T2(r). From halt?(T1(r0))(u), it follows that halt?(body(T2(r)))(u) and
halt?(T2(r))(s) is straightforward from the definitions.

Casec0 62 lpbody(c1; r). It follows thatfinal?(lpbody(c1; r)� tset(lpbody(c1; r); u; t))(t) is true
and therefore so ismtrace(lpbody(c1; r); u; t). Let r1 = region(lpbody(c1; r); u;). By definition,r1 2 loops(r) and, by Theorem (4.16),single?(r). By Lemma (D.39),mtrace(body(r1); u; t)
and, sincec1 = head(r1), by Lemma (D.14),I(T1(r1))(u; t). As before,head(T2(r)) gtbody(r)7�!T1(r1) andT1(r1) 2 T2(r). It follows thats T2(r); u.

From the assumptions,c0 2 lpheads(r) andenabled(c0)(t) and begins a sub-regionr0 of r. Letr0 = region(label(c0); lpbody(c0; r)). By definition,r0 2 loops(r) andT1(r0) 2 gtbody(r). Sinces T2(r); t andbody(T2(r)) � gtbody(r), it follows thathead(T2(r)) gtbody(r)7�! T1(r0) andT1(r0) 2T2(r). Furthermore,head(r0) = c0 and, sincehalt?(c0)(t), it follows, by Lemma (D.24), that
halt?(T1(r0))(t). Therefore,halt?(body(T2))(t) is true andhalt?(T2(r))(t) is straightforward
from the definitions. 2

Lemma (D.53) and Lemma (D.54) complete the proof of the equivalence of failures of a
regionr and the transformed regionT2(r). As a consequence, the proof of Theorem (4.19) is
straightforward from the definitions and the assumption that the regions are enabledin the state
in which they fail.

Proof. Theorem (4.19)

Sincelabel(r) = label(T2(r)), by definitionenabled(r)(s) () enabled(T2(r))(s).
()): Immediate from Lemma (D.52).

((): There are two cases: Assumehalt?(body(r))(s). Then there is ac 2 r, such thathalt?(c)(s)
and, therefore,enabled(c)(s). Sinceenabled(r)(s) andlabel(r) = label(head(r)) it follows thatc = head(r). From Lemma (D.53),halt?(head(r))(s)) halt?(T2(r))(s) and the proof is
complete for this case.

Assumet 2 Statesuch thats r; t andhalt?(body(r))(t). The proof for this case is immediate
from Lemma (D.54) and completes the proof for the Theorem. 2

D.11 General Transformation 300

D.11.6 Theorem (4.20)

Theorem (4.20) is a syntactic property of transformationT2. The proof is based on the fact that
the only cut-point of a single loopr is the head ofr.
Lemma D.55 For r 2 R,

single?(r)
cuts(r) � fhead(r)g

Proof.

Assume there is a cut-pointc 2 cuts(r) such thatc 6= head(r). By definitioncmust be the head of
a loop inr, lphead?(c; r). Sincec 6= head(r), there are setsa andb such thata � body(r) andb =(body(r)�a)[fcg. The head ofr reachesc througha, head(r) a7�! c and thereforehead(r) 2 a
by definition ofreaches. Sincehead(r) 6= c andhead(r) 2 a, head(r) 62 (body(r) � a) [fcg.
Fromhead(r) 62 b, b � body(r)�fhead(r)g. Since the commandc forms a loop inb, c b7�! c, it

follows, by Lemma (4.7), thatc body(r)�fhead(r)g7�! c. This contradicts the assumptionsingle?(r).2
Since the only cut-point of a single loopr is the head ofr, the result oflpbody(c; r), forc 2 cuts(r), is the body ofr. Consequently, every region formed fromlpbody(c; r) is r.

Lemma D.56 For r 2 R andc 2 L,

single?(r) c 2 cuts(r)
region(label(c); lpbody(c; r)) = r

Proof.

From Lemma (D.55), if there is a commandc 2 cuts(r) thenc = head(r). From the definition
of cuts(r), the result oflpheads(r)[fhead(r)g is fhead(r)g. Therefore the result of(body(r)�
lpheads(r))+ head(r) is body(r). By definition,label(head(r)) = label(r) and, by definition of
region, region(label(r); body(r)) = r. 2
Proof. Theorem (4.20)

From the assumptionsingle?(r), by Lemma (D.56) and by definition,loops(r) = frg and
gtbody(r) = fT1(r)g. Sincelabel(T1(r)) = label(r), the result ofregion(label(r); gtbody(r)) is(label(r); fT1(r)g). This is also the result ofunit(T1(r)) and the proof is complete. 2

Appendix E

Proofs: Proof Methods for Object Code

This appendix contains proofs of the theorems and lemmas of Chapter 6. The order in which the
proofs and definitions are presented follows that of Chapter 6.

E.1 Theorem (6.3)

Lemma E.1 For anyp 2 P, I; A;B; P;Q 2 A, c 2 C ands; t 2 State,s p; t (8c 2 p : (` A) wp(c; B))) (` I ^ A) wp(c; I ^ B))) (I ^ P)(s) Q(t)I(t)
Proof. By right induction ons p; t.
Casec1 2 p ands c1; t. By definition ofs c1; t, Ic(c1)(s; t) is true. FromQ(t), it follows that
wp(c; Q)(s) is true. From the assumptions, this establisheswp(c; I ^ Q)(s) and, as a property
of wp, this establishes a statet0 such thatIc(c1)(s; t0) and(Q ^ I)(t0). Since the commands are
deterministic, it follows thatt0 = t andI(t) follows immediately.

Casec1 2 p, u 2 State, s p; u andu c1; t. As before, sinceIc(c1)(u; t) andQ(t), it follows that
wp(c; Q)(t). The assumptions establishwp(c; I ^Q)(t) from whichI(t) is straightforward. 2
Lemma E.2 For anyp1; p2 2 P , I; A;B; P;Q 2 A, al 2 Alist, c 2 C ands; t 2 State,s p1; t^8c 2 p1 : 8A;B : (` A) wp(c; B))) (` I ^ A) wp(c; I ^B))^8c 2 p1 : 8A;B :` ((I ^ A)) wp(c; I ^ B)) [I ^ (A / al)]p2[I ^ (B / al)])^(I ^ P)(s) ^ (I ^Q)(t)([I ^ (P / al)]p2[I ^ (Q / al)])(s)

301

E.2 Theorem (6.4) 302

Proof. By right induction ons p1; t.
Casec1 2 p1 ands c1; t. From(I ^Q)(t) andIc(c1)(s; t) (definition ofs c1; t) , it follows that
wp(c; I ^Q)(s) is true. The proof is then straightforward from the assumptions.

Casec1 2 p1, u 2 State, s p1; u andu c1; t. The inductive hypothesis states that the property
holds fors p1; u. By definition of the specification operator for programs and from([I ^ (P /al)]p2[I ^ (Q/al)])(s), the assertion(I ^ (P /al))(s) is true. The property to prove is that there
is a statet0 such thats p2; t0 and(I ^ (Q / al))(t0) is true.

As before,wp(c; I ^ Q)(u) follows from (I ^ Q)(t) andIc(c1)(u; t). From Lemma (E.1) and
the assumptions, it can be concluded thatI(u) is true. From the inductive hypothesis, it follows
that ([I ^ (P / al)]p2[I ^ (wp(c; (I ^ Q)) / al)])(s). By definition, this establishes a stateu0
such thats p2; u0 and(I ^ (wp(c; I ^ Q) / al))(u0). From the assumptions,([(I ^ wp(c; I ^(Q))/al)]p2[I ^ (Q/al)])(u0) can be established from((I ^wp(c; I ^Q))) wp(c; I ^Q))(u0),
which is trivially true. This establishes([I ^ (wp(c; I ^ Q) / al)]p2[I ^ (Q / al)])(u0). By
definition, it follows that there is a statet0 such thats p2; t0 and(I ^ (Q / al)])(t0) and therefore[I ^ (P / al)]p2[I ^ (Q / al)](s) is true, completing the proof. 2
Proof. Theorem (6.3)

Straightforward from the assumptions, the definition of the specification operatorand from
Lemma (E.2). 2
E.2 Theorem (6.4)

Lemma E.3 Assumer 2 R, s; t 2 State andP;Q 2 A.

wp0(r; Q)(s), (enabled(r)(s) ^ (9t : mtrace(body(r); s; t) ^Q(t)))
Proof. ())

Note thatwp0(r; Q)(s)) enabled(r)(s) is straightforward by induction onr and by definition
of wp (for commands).

The proof ofwp0(r; Q)(s)) 9t : mtrace(body(r); s; t) ^Q(t) is by induction onr.
Case unit?(r). By definitionwp0(r; Q)(s) = wp(head(r); Q)(s). The properties of the function
wp establish9t : Ic(head(r))(s; t)^Q(t) from wp(head(r); Q) and the conclusion is immediate
from the definition ofmtraceandr = unit(head(r)).
Case:unit?(r) and the property holds for anyr0 � r. By definition ofwp0, wp0(r; Q)(s) =
wp(head(r); Q0)(s) whereQ0 2 A. From the properties ofwp, 9t0 : Ic(head(r))(s; t) ^ Q0(t0).
There are two cases: eitherQ0(t)) final?(body(r) � fhead(r)g)(t0) ^ Q(t0) or there is ar0 2
rest(r) such thatQ0(t0)) wp0(r0; Q)(t0). In the first case, the proof is as for the base case of the
induction. For the second case, the inductive hypothesis establishes9t : mtrace(body(r0); t0; t)^

E.2 Theorem (6.4) 303Q(t). Sincebody(r0) � body(r)�fhead(r)g, it follows that the tracemtrace(body(r0); t0; t) can
be established withouthead(r). FromIc(head(r))(s; t0) it follows thatmtrace(body(r); s; t) is
also true. The maximal trace is established sincehead(r) cannot be executed in statet if it is
executed in states. This establishes9t : mtrace(body(r); s; t) ^Q(t) completing the proof. 2
Proof. (() By induction onr.
Case unit?(r). By definition,mtrace(body(r); s; t) is Ic(head(r); s; t). FromQ(t) and the prop-
erties ofwp, the conclusionwp0(r; Q)(s) is straightforward.

Case:unit?(r) and the property holds for anyr0 � r. By definition and the assumption
enabled(r)(s), mtrace(body(r); s; t) establishesIc(head(r))(s; t0) for t0 2 State. There are
two cases: eithert0 is final for body(r) � fhead(r)g (and thereforet0 = t) or there is ac 2
body(r)� fhead(r)g andenabled(c0)(t0) ^mtrace(body(r)� fhead(r)g; t0; t). In the first case,
the proof is immediate fromQ(t), final?(body(r)�fhead(r)g)(t) and the properties ofwp. In the
second case,c0 begins a regionr0 2 rest(r) such thatenabled(r0)(t0). Frommtrace(body(r) �fhead(r)g; t0; t) andr0 = region(body(r) � fhead(r)g), it follows thatmtrace(body(r0); t0; t).
Otherwise there is ac1 2 body(r) � fhead(r)g which is necessary for the trace fromt0 to t but
not in the region beginning withc0. Since the trace implies thatc0 reachesc1, c1 must be in the re-
gion beginning withc0 leading to a contradiction. From the inductive hypothesis,wp0(r0; Q)(t0)
is true. By definition ofwp0, and fromwp(head(r);wp0(r0; Q))(s), it follows thatwp0(r; Q)(s)
is alsotrue. 2
Lemma E.4 AssumeP;Q 2 A , s; t 2 State,r 2 R. Assertionwp1(r; Q) is the weakest
precondition required to establishQ by an arbitrary number of maximal traces throughr.

wp1(r; Q)(s), (enabled(r)(s) ^ (9t : mtrace+(body(r); s; t)) ^Q(t)))
Proof. ())

By induction onwp1(r; Q)(s).
Casewp0(r; Q)(s). The proof is straightforward from Lemma (E.3).

Casewp1(r; q)(s), r1 < r and` q) wp0(r; Q). The inductive hypothesis states that the
property istrue for wp(r; q)(s).
From the inductive hypothesis, there is at0 2 Statesuch thatmtrace+(body(r); s; t0) ^ q(t0).
From the assumptions,q(t0)) wp0(r1; Q)(t0). From Lemma (E.3), it follows that there is at 2 Statesuch thatmtrace(body(r0); t0; t)^Q(t). Sincebody(r0) � body(r) andr0 contains every
command inr reachable fromhead(r0), it follows thatmtrace(body(r); t0; t) (otherwise there is
a command inr enabled int which is not reachable fromhead(r0) which is a contradiction). The
conclusionmtrace+(body(r); s; t)^Q(t) is straightforward from the transitive closure ofmtrace.2

E.3 Theorem (6.5) 304

Proof. (()

By right induction onmtrace+(body(r); s; t).
Case mtrace(body(r); s; t) ^ Q(t). From Lemma (E.3),wp0(r; Q)(s) is true andwp1(r; Q)(s)
follows immediately by definition.

Case mtrace+(body(r); s; t0) andmtrace(body(r); t0; t) andQ(t). The inductive hypothesis states
that the property holds formtrace+(body(r); s; t0).
From the assumptionmtrace(body(r); t0; t), it follows that there is a commandc 2 r such that
enabled(c)(t0). Let r1 = region(label(c); body(r)), by definition,r1 < r andenabled(r1)(t0).
Also from mtrace(body(r); t0; t), mtrace(body(r1); t0; t) is true since otherwise there a com-
mand necessary for the trace throughr which cannot be reached byc (which is a contradiction).
Lemma (E.3),mtrace(body(r1); t0; t) andQ(t) establishwp0(r1; Q)(t0). The inductive hypoth-
esis andwp0(r1; Q) establisheswp1(r;wp0(r1; q))(s). The conclusionwp1(r; Q)(s) follows
immediately fromr1 < r, ` wp0(r1; Q)) wp0(r1; Q). andwp1(r;wp0(r1; q))(s). 2
Proof.Theorem (6.4)

())

By definition, wp(r; Q)(s) = wp1(r; Q ^ final?(r))(s). From Lemma (E.4), this establishes
enabled(r)(s) and9t : mtrace+(body(r); s; t) ^ Q(t) ^ final?(r)(t). From Lemma (D.22) (of
Appendix D), this leads toenabled(r)(s) and9t : s r; t ^ final?(r)(t) ^ Q(t). The conclusion9t : Ir(r)(s; t) ^Q(t) is straightforward by definition.

(()

The proof is similar to that above except thatIr(r)(s; t), leads toenabled(r)(s) and s r; t
andfinal?(r)(t). The truth ofmtrace+(body(r); s; t) is established by Corollary (D.1) (of Ap-
pendix D). The remainder of the proof is straightforward from the definitions and Lemma (E.4).2
E.3 Theorem (6.5)

The proof is by well-founded induction. The induction scheme for well-founded relation�:(T � T)! booleanis: 8x : (8y : y � x) �(y))) �(x)8z : �(z) (E.1)

where� : (T ! boolean), x; y; z : T .

Proof.Theorem (6.5)

By well-founded induction on� andn with�(n) = (` G(n)) wp1(r; Q)). From the induction
scheme (Equation E.1), the property to prove is8(x : T) : (8(y : T) : y � x) �(y))) �(x).

E.3 Theorem (6.5) 305

Assumex 2 T , the assumptions of Theorem (6.5) require a proof that8j; r1 : j � x ^ r1 <r)` enabled(r1) ^ G(j)) wp1(r1; Q). Assumej 2 T andr1 2 R such thatj � x andr1 < r. By definition of` for assertions, there is a states such thatenabled(r1)(s) andG(j)(s)
and the property to prove iswp1(r1; Q)(s). From the induction scheme andj � x, �(j) is true.
This leads tò G(j)) wp1(r; Q) and, by definition of̀ for assertions, this givesG(j)(s))
wp1(r; Q)(s). By Lemma (E.4),wp1(r; Q)(s)) enabled(r)(s). Sinceenabled(r1)(s) is also
true, label(r) = label(r1) and thereforer = r1 (by definition ofregionand< between regions).
It follows from wp1(r; Q)(s) andr = r1 thatwp1(r1; Q)(s) is true, completing the proof. 2

	WRAP_THESIS_Wahab_1998.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

