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Randomly Sampling Unlabelled Stru
turesLeslie Ann Goldberg�April 20, 1999Abstra
tInformally, an \unlabelled 
ombinatorial stru
ture" is an obje
t su
h as an un-labelled graph (in whi
h the verti
es are indistinguishable) or a stru
tural isomer in
hemistry (in whi
h di�erent atoms of the same type are indistinguishable). Com-putational experiments su
h as those des
ribed in this volume often rely on randomsampling to generate inputs for the experiments. This paper surveys work on theproblem of eÆ
iently sampling unlabelled 
ombinatorial stru
tures from a uniformdistribution.1 Introdu
tionMost of the experimental work des
ribed in this volume involves �rst randomly sampling
ombinatorial stru
tures and se
ond using the randomly-
hosen stru
tures as inputs to
omputational experiments. In order for the experiments to be valid, the distribution fromwhi
h the 
ombinatorial stru
tures are drawn must be pre
isely spe
i�ed. In order forthe experiments to be 
omputationally feasible, the random-sampling algorithms must beeÆ
ient.This survey is devoted to the problem of eÆ
iently sampling unlabelled 
ombinatorialstru
tures from a uniform distribution. For information on the related problem of eÆ
ientlylisting unlabelled 
ombinatorial stru
tures without dupli
ates, see [11℄ and [12℄.We start by giving an example of an unlabelled 
ombinatorial stru
ture | in parti
ular,an unlabelled graph 1. Two graphs with vertex set Vn = fv1; : : : ; vng are said to beisomorphi
 if there is a permutation of Vn whi
h transforms one graph into the other.For example, the graphs G1 and G2 from Figure 1 are isomorphi
 be
ause relabelling theverti
es of G1 a

ording to the permutation ( v1 v2 v3 ) ( v4 v5 ) ( v6 ) transforms G1 into G2.The permutations of Vn partition the n-vertex graphs into equivalen
e 
lasses. Two graphs�leslie�d
s.warwi
k.a
.uk, http://www.d
s.warwi
k.a
.uk/�leslie/, Department of ComputerS
ien
e, University of Warwi
k, Coventry, CV4 7AL, United Kingdom. This work was partially supportedby the ESPRIT Proje
ts RAND-II (Proje
t 21726) and ALCOM-IT (Proje
t 20244) and by EPSRC grantGR/L60982.1For graph-theoreti
 de�nitions, see [10℄ and [17℄.1



G1v1v2v3���� ����v4 v5v6

G2v2v3v1���� ����v5 v4v6Figure 1: G1 and G2 are isomorphi
. The permutation ( v1v2v3 )( v4v5 )( v6 ) transforms G1into G2.are in the same equivalen
e 
lass if and only if there is some permutation whi
h transformsone into the other. (That is, they are in the same equivalen
e 
lass if and only if theyare isomorphi
.) Formally, an \unlabelled graph" is just an isomorphism 
lass of labelledgraphs. Informally, an \unlabelled graph" is what you get when you take a labelled graphand erase the labels on the verti
es. For example, the unlabelled graph 
orresponding tothe graphs in Figure 1 is shown in Figure 2.We will fo
us on 
omputational problems su
h as the following:Input: A positive integer n.Output: An unlabelled graph 
hosen uniformly at random from the set of allunlabelled graphs with n verti
es.This 
omputational problem illustrates the di�eren
e between unlabelled sampling andlabelled sampling: To 
hoose a labelled graph uniformly at random (u.a.r.) from theset of all n-vertex graphs, one would just need to 
onsider ea
h unordered pair of then verti
es and 
hoose, independently with probability 1=2, whether or not to make it anedge. However, this approa
h would not work for sampling unlabelled graphs. For example,the probability of produ
ing a simple path 
ontaining n verti
es (using this approa
h) is(n!=2) times as high as the probability of produ
ing the 
omplete graph on n verti
es. Infa
t, it wasn't until 1987 that a polynomial expe
ted-time algorithm for uniformly samplingunlabelled graphs was dis
overed. This algorithmwas dis
overed by Wormald [31℄, buildingon work of Dixon and Wilf [5℄. These algorithms are dis
ussed in Se
tion 3.1.2



ttt���� ����t ttFigure 2: The unlabelled graph 
orresponding to the graphs in Figure 1.The general te
hniques that have been used for sampling unlabelled 
ombinatorialstru
tures are1. indu
tive de�nitions/generating fun
tions, and2. Burnside's Lemma (P�olya Theory).These te
hniques are des
ribed in Se
tion 2 and Se
tion 3 respe
tively.2 Indu
tive De�nitionsWe will use the following de�nitions to illustrate the \Indu
tive De�nition" approa
h forsampling unlabelled stru
tures. A tree is a 
onne
ted graph with no 
y
les and a rootedtree is a tree in whi
h a parti
ular vertex is distinguished as the root. An unlabelledrooted tree is an isomorphism 
lass of rooted trees, where an isomorphism between tworooted trees is required to map the root of one tree to the root of the other. Informally,an unlabelled rooted tree is what you get when you take a rooted tree and erase the labelson the verti
es, remembering whi
h vertex is the root. For example, see Figure 3. Let Undenote the set of unlabelled rooted trees with n verti
es and let tn denote the size of Un.Nijenhuis and Wilf [25℄ showed that Un and tn 
an be de�ned indu
tively and that thisindu
tive de�nition 
an be used to sample u.a.r. from Un. Their main observation wasthat every member of Un is 
onstru
ted exa
tly n � 1 times by the following pro
edure:For every d 2 f1; : : : ; n� 1g and for every positive integer j su
h that jd < n, let T 0 be amember of Un�jd and let T 00 be a member of Ud. Let T 000 be the unlabelled rooted n-vertexgraph formed by making j 
opies of T 00 and using j new edges to join the root of ea
h 
opy3
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R����� ����� t t t tR t t t tRFigure 3: The four unlabelled rooted trees with four verti
es.to the root of T 0. (The root of T 000 is taken to be the root of T 0.) Output d 
opies of T 000.Thus, tn(n� 1) = n�1Xd=1 Xj : jd<n d tn�jd td;and so t1; t2; : : : 
an be 
omputed by dynami
 programming. Finally, the outline of thesampling algorithm (for n > 2) is as follows (see also [27℄):1. Choose the pair (j; d) with probability dtn�jdtd(n�1)tn .2. Re
ursively 
hoose T 0 u.a.r. from Un�jd.3. Re
ursively 
hoose T 00 u.a.r. from Ud.4. Make j 
opies of T 00 and atta
h the root of ea
h 
opy to the root of T 0.5. Let the root of T 0 be the root of the new n-vertex tree and output the new tree.Nijenhuis and Wilf's approa
h was extended by Wilf [28℄, who showed how to uniformlysample free (unrooted) trees. Wilf's algorithm is also based on an indu
tive de�nition (i.e.,a generating fun
tion) for the trees. This approa
h will be systematised by Flajolet, Zim-merman and Van Cutsem in a forth
oming paper [9℄. The 
ompanion paper by the sameauthors on sampling labelled 
ombinatorial stru
tures [8℄ gives a good idea of the system-ati
 approa
h. The idea is to spe
ify the unlabelled stru
tures using a formal grammarinvolving set, sequen
e and 
y
le 
onstru
tions. Uniform sampling 
an then be done au-tomati
ally using dynami
 programming. This systemati
 approa
h has also been usedby Goldberg and Jerrum to sample some other tree-like unlabelled stru
tures in Se
tion 4of [15℄.3 Burnside's LemmaBurnside's Lemma is an important ingredient in the generating-fun
tion-based samplingapproa
h of [9℄. However, it turns out that this ingredient is useful for sampling even whenit is not possible dire
tly to write a generating fun
tion for the unlabelled stru
tures.4



We will start by setting up the framework for Burnside's lemma. Let � = f0; : : : ; k�1gbe a �nite alphabet of 
ardinality k, and letG be a permutation group on [m℄ = f0; : : : ; m� 1g.For example, G 
ould be the group in Example 1.Example 1: An example of a group with degree2 m = 4 is the group 
onsisting of thefollowing permutations.� identity,� (0 2),� (1 3), and� (0 2)(1 3).For g 2 G and i 2 [m℄, let ig denote the image of i under g. For example, if g = (02) we have0g = 2, 1g = 1, 2g = 0 and 3g = 3. Consider the set �m of all words of length m over thealphabet � . The group G has a natural a
tion on �m whi
h is indu
ed by permutationsof the m \bit positions". Under this indu
ed a
tion, the permutation g 2 G maps theword � = a0a1 : : : am�1 to the word �g = b0b1 : : : bm�1 de�ned by bj = ai for all i; j 2 [m℄satisfying ig = j. For example, if g = (0 2) and � = 0010 then �g = 1000 be
ause a0 = 0,a1 = 0, a2 = 1, a3 = 0 and b2 = a0, b1 = a1, b0 = a2 and b3 = a3. The a
tion of G partitions�m into a number of orbits, whi
h are the equivalen
e 
lasses of �m under the equivalen
erelation that identi�es � and � whenever there exists g 2 G mapping � to �. For example,if k = 2 (so � = f0; 1g),m = 4, and G is the group in Example 1, then the nine orbits of � 4are (0000), (0001; 0100), (0010; 1000), (0101), (1010), (0011; 0110; 1001; 1100), (1110; 1011),(1101; 0111), and (1111). The \Orbit Sampling Problem" (for �xed � ) is as follows.Input: A permutation group G of degree m.Output: A word in �m so that ea
h orbit is equally likely to be output.Most of the unlabelled sampling problems that we 
onsider in this survey 
an be 
odedup in terms of the orbit sampling problem. For example, we 
an represent an N -vertexgraph as its adja
en
y matrix, whi
h is a word in � (N2 ) where � = f0; 1g. The unlabelledN -vertex graphs are just the orbits of words in � (N2 ) with respe
t to the \pair group" S(2)N .(Ea
h of the permutations in S(2)N 
orresponds to a di�erent permutation of the N verti
es.However the verti
es are permuted, the 
orresponding permutation in S(2)N performs the
orresponding a
tion on the adja
en
y matrix.)Now Burnside's Lemma3 says that ea
h orbit 
omes up jGj times (as the �rst 
ompo-nent) in the set of pairs�(� ; G) = f(�; g) j � 2 �m; g 2 G and �g = �g: (1)2The degree of a permutation group is the number of obje
ts on whi
h the permutations a
t. Not alldegree-4 permutation groups have 4 permutations.3Although this lemma is 
ommonly referred to as \Burnside's Lemma", it is really due to Cau
hy andFrobenius [24℄. 5



Figure 4: An illustration of Equation 2 for N = 3. The eight labelled 3-vertex graphs aredivided into four orbits (one on ea
h row) whi
h represent the four unlabelled graphs with3 verti
es. Ea
h row is represented 6 times in �3 be
ause any of the 6 permutations of theverti
es maps the graph on the top row to itself. Similarly, the graph on the bottom rowhas 6 automorphisms (permutations whi
h map it to itself). However, any graph on themiddle two rows has only two automorphisms: the identity, and the permutation whi
htransposes the two degree-1 verti
es.3.1 Unlabelled GraphsTranslating Burnside's Lemma to the spe
ial 
ase of unlabelled graphs, we �nd that ea
hunlabelled N -vertex graph 
omes up N ! times (as the �rst 
omponent) in the set of pairs�N = f(�; g) j � is a (labelled) N -vertex graph and g is a permutationof the N verti
es whi
h maps � to itself.g: (2)The spe
ial 
ase N = 3 is illustrated in Figure 4.The signi�
an
e of Burnside's Lemma (Equation 2) is that in order to uniformly sampleN -vertex unlabelled graphs, we need only sample u.a.r. from �N . This observation was�rst made by Dixon and Wilf [5℄. In order to simplify our presentation of their idea (andWormald's re�nement [31℄), for every permutation g of N verti
es, we will let �g denotef(�; g) j � is a (labelled) N -vertex graph and g maps � to itself.g:Thus, �N = Sg�g, where the union is over all permutations g of N verti
es.We 
an now state the outline of Dixon and Wilf's algorithm for sampling u.a.r. from�N :6



1. Input N2. Choose g with probability j�g jj�N j3. Choose (�; g) u.a.r from �g.Step 3 of the algorithm 
an be implemented in polynomial time: For ea
h 
y
le of (un-ordered) vertex pairs indu
ed by g, de
ide independently (with probability 1=2) whether tomake the pairs edges or non-edges. It is not known how to implement Step 2 in polynomialtime. In parti
ular, it is not known how to 
ompute j�N j in polynomial time4.Wormald's algorithm [31℄ uses the reje
tion sampling method to get around 
omput-ing j�N j. The basi
 idea of reje
tion sampling is as follows. It may be too diÆ
ult to samplefrom the desired distribution. So what the user does instead is to sample from some other(more tra
table) distribution. Imagine the desired distribution as being \s
aled down" sothat it �ts underneath the more tra
table distribution. To draw a sample from the desireddistribution, the user �rst draws a sample from the more tra
table distribution. The userthen uses the sample to determine the probability with whi
h the more tra
table distribu-tion over-represents this sample (relative to the \s
aled down" desired distribution). Withthis probability, the sample is reje
ted and the sampling pro
ess is re-started. Otherwise,the sample is output. The method is useful when it is easy to determine the probabil-ity with whi
h a given sample should be reje
ted and, furthermore, the overall reje
tionprobability is low (so the expe
ted running time until a sample is output is small).The outline of Wormald's algorithm is as follows, where iN represents the identitypermutation on N verti
es and pg represents the probability with whi
h permutation g is
hosen (so Pg pg = 1). Appropriate 
hoi
es for pg will be dis
ussed below.1. Input N2. Choose g with probability pg.3. Choose (�; g) u.a.r. from �g.4. Output (�; g) with probability piNj�iN j j�gjpg . Otherwise reje
t.It is straightforward to 
he
k that the probability that any given pair (�; g) from �N isoutput is piNj�iN j , so the algorithm does sample u.a.r. from �N as long as Criterion 1 (below)is met (so Step 4 
an be implemented).4Dixon and Wilf show how to implement Step 2 in polynomial time on average provided the value ofj�N j is known. (Their method involves 
hoosing a 
onjuga
y 
lass with the appropriate probability andthen 
hoosing a representative permutation g from within the 
onjuga
y 
lass.)7



Criterion 1: The probabilities pg must be 
hosen so thatpiNj�iN j j�gjpg � 1:Furthermore, the reje
tion probability is 0 whenever g = iN . Thus, the expe
ted runningtime of the sampling algorithm is polynomial as long as the other 
riteria below are met.Criterion 2: The probabilities pg must be 
hosen so that Step 2 
an be imple-mented in polynomial time5.Criterion 3: The probabilities pg must be 
hosen so that Step 4 
an be imple-mented in polynomial time.Criterion 4: The probabilities pg must be 
hosen so that, for some positive
onstant 
 and every N , we have piN � N�
. (This ensures that the expe
tednumber of trials before an output is produ
ed (with no reje
tion) is at most N 
.)Wormald [31℄ showed how to 
hoose the probabilities pg so that these 
riteria are met.Thus, he gave an expe
ted polynomial-time algorithm for sampling unlabelled graphs.3.2 Extending Wormald's MethodLet us now 
onsider how to extend Wormald's method to the general \Burnside's Lemma"framework. Let � be a �xed alphabet. For any permutation g of [m℄, let�(� ; g) = f(�; g) j � 2 �m and �g = �g:Then �(� ; G) from Equation 1 equals Sg2G�(� ; g). We 
an write the outline of Wormald'salgorithm using this notation, where im denotes the identity permutation of degree m:1. Input a permutation group G2. Choose g 2 G with probability pg.3. Choose (�; g) u.a.r. from �(� ; g).4. Output (�; g) with probability pimj�(� ;im)j j�(� ;g)jpg . Otherwise reje
t.An appropriate measure of \input size" for the input G is the degree of G, be
ause everydegree-m permutation group 
an be spe
i�ed by a set of O(m) permutations [18℄. Thus,the analogue of Criterion 4 states that there is a positive 
onstant 
 su
h that for every5Note that 
hoosing pg = j�gjj�N j would make Wormald's algorithm equivalent to Dixon and Wilf's. Thus,it would satisfy all 
riteria ex
ept Criterion 2. 8



possible input group G of degree m, we must have pim � m�
. On the other hand, theanalogue of Criterion 1 implies pgpim � j�(� ; g)jj�(� ; im)j ; (3)whi
h implies pim � j�(� ; im)jj�(� ; G)j = j� jmj�(� ; G)j:Thus, we 
annot simultaneously satisfy the two 
riteria unless there is a positive 
onstant 
su
h that for every possible input G of degree m we havej�(� ; G)j � m
j� jm: (4)That is, the size of �(� ; G) must be at most a polynomial times the size of the partof �(� ; G) whi
h 
orresponds to the identity permutation. We will say that a familyof permutation groups has \too many non-trivial symmetries" (with respe
t to the �xedalphabet � ) if there is not a positive 
onstant 
 su
h that every group G in the family sat-is�es Equation 4. Sin
e some families of unlabelled 
ombinatorial stru
tures do 
orrespondto families of groups with too many non-trivial symmetries, Wormald's method 
annot beused in general for unlabelled sampling. Wormald has shown [31℄ how to use the methodto eÆ
iently sample unlabelled r-regular graphs for r � 3. (Note that for �xed r � 3, theunlabelled r-regular graphs do not have too many non-trivial symmetries. In fa
t, mostunlabelled r-regular graphs have only the identity as a symmetry.)3.3 Stru
tures with Too Many Non-Trivial SymmetriesA (labelled) multigraph is given by a set of verti
es and a multiset6 of unordered pairsof verti
es, whi
h are 
alled edges. An unlabelled multigraph is an isomorphism 
lass oflabelled multigraphs. The degree sequen
e of multigraph G is a sequen
e telling how manyverti
es of ea
h degree G has. Consider the following unlabelled sampling problem: Given adegree sequen
e in whi
h ea
h degree is bounded from above by a 
onstant, sele
t, uniformlyat random, an unlabelled 
onne
ted multigraph with the given degree sequen
e. Thissampling problem arises in the 
ontext of sampling stru
tural isomers in 
hemistry [7, 15℄.It is an example of a sampling problem to whi
h Wormald's method does not apply: If thedegree sequen
e has many verti
es of degree 1 or 2 then the unlabelled multigraphs withthe degree sequen
e have too many non-trivial symmetries.Goldberg and Jerrum [15℄ have given a polynomial expe
ted-time algorithm for thissampling problem based on the following idea. Every unlabelled multigraphG is asso
iatedwith a unique \
ore"7 whi
h has no verti
es of degree 1 or 2. To randomly generate amultigraph G, the algorithm �rst generates the 
ore of G and then extends the 
ore byadding trees and 
hains of trees to obtain G.6A multiset is like a set ex
ept that it 
an 
ontain more than one 
opy of an obje
t, so a multigraph
an 
ontain several (indistinguishable) edges between any given pair of verti
es.7For other uses of the \
ore" idea, see Zhan [32℄.9



The algorithm for generating the 
ore is des
ribed using the 
on�guration model ofBender and Can�eld [1℄, Bollob�as [3℄ and Wormald [29℄. A 
on�guration (for a givendegree sequen
e) is a labelled 
ombinatorial stru
ture whi
h 
an be viewed as a re�nementof a multigraph with the degree sequen
e. For any given degree sequen
e, the orbits ofall 
on�gurations (with respe
t to the appropriate permutation group) 
orrespond to theunlabelled multigraphs with the degree sequen
e. Sin
e the degree sequen
e of the 
orehas no verti
es of degree 1 or 2, the 
ores do not have too many non-trivial symmetries.(This follows from an extension of Bollob�as's analysis of unlabelled regular graphs [2℄.)Thus, the algorithm uses Wormald's method to generate the 
ore. (If the 
ore is not
onne
ted, it is reje
ted. The fa
t that this does not happen too often follows from a resultof Wormald [30℄.)After generating the 
ore of the random multigraph, the algorithm extends the 
ore byadding trees and 
hains of trees. This part of the algorithm is based on the generating-fun
tion approa
h mentioned in Se
tion 2.It is an open problem to sample unlabelled multigraphs given a general degree sequen
e(in whi
h degrees need not be bounded from above by a 
onstant). Goldberg and Jerrum'smethod is not appli
able when the degrees are unbounded. In fa
t, the problem withunbounded degrees seems to be diÆ
ult even in the labelled 
ase (see [21, 23, 6℄).3.4 A General Approa
h Based on Burnside's LemmaJerrum [19℄ proposed a general way to use Burnside's Lemma for unlabelled sampling.The idea is to 
onsider the following bipartite graph: The verti
es on the left-hand side areall words in �m. The verti
es on the right-hand side are all permutations in G. There is anedge from word � to permutation g if and only if �g = �. For example, when � = f0; 1gand m = 4 and G is the group des
ribed in Example 1, we get the graph in Figure 5. Thisgraph essentially implements Burnside's Lemma: The edges in the graph are the pairsin �(� ; G). Thus, Burnside's Lemma (Equation 1) says that the set of left-endpoints ofedges 
ontains jGj representatives of ea
h orbit.Now 
onsider a random walk on this graph: When the walk is at a given node, it
hooses a neighbour of the node u.a.r. and moves to the neighbour. If we view the randomwalk from the perspe
tive of the right-hand verti
es we 
an see that it has a stationarydistribution, and that, in the stationary distribution, the probability of being at any node isproportional to its degree. Thus, the stationary distribution allows us to sample edges (andthus, left end-points) u.a.r. By Burnside's Lemma, the stationary distribution thereforeallows us to sample orbits u.a.r. Three issues arise when we 
onsider how to use thismethod to sample orbits:1. How long does it take to simulate a right-to-left step of the random walk?2. How long does it take to simulate a left-to-right step of the random walk?3. How many steps of the random walk do we need to simulate in order to get 
lose tothe stationary distribution? 10
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The �rst two issues arise be
ause the bipartite graph is, in general, too large to 
onstru
texpli
itly. We are looking for sampling algorithms with run-times that are polynomialin m, the degree of G, but the number of left-hand verti
es is j� jm and the number ofright-hand verti
es 
ould be as large as m!. Fortunately, we 
an simulate the randomwalk without expli
itly 
onstru
ting the graph. Taking a step from right to left 
an bedone in polynomial time: For ea
h 
y
le of the permutation 
orresponding to the 
urrentright-hand vertex, a letter in � is 
hosen u.a.r. (This is just a generalisation of Step 3 ofDixon and Wilf's algorithm.) Taking a step from left to right is not so easy. In fa
t, it isequivalent under randomised polynomial-time redu
tions to the Setwise Stabiliser problem,whi
h in
ludes Graph Isomorphism as a spe
ial 
ase. Nevertheless, there are signi�
ant
lasses of groups G for whi
h this step 
an be implemented in polynomial time. Luks hasshown that the 
lass of p-groups|groups in whi
h every element has order a power of pfor some prime p|is an example of su
h a 
lass [22℄.Before moving on to the third issue, we mention another situation in whi
h the simula-tion of the left-to-right step seems to work suÆ
iently well. Peter Cameron has observedthat the random walk des
ribed in this se
tion 
ould be de�ned for any group a
tion,not just for the spe
ial 
ase of a permutation group G a
ting on �m by permuting posi-tions. The general setting is as follows: Given a point �, sele
t u.a.r. a group element g that�xes �, and then sele
t a point that is �xed by g. This random walk has been implementedin 
ertain algorithms for determining the 
onjuga
y 
lasses of a �nite group [26℄.Clearly the e�e
tiveness of the random walk as a basis for general-purpose samplingpro
edures for unlabelled stru
tures depends upon the third issue: \How many steps ofthe random walk do we need to simulate in order to get 
lose to the stationary distribu-tion?" In order to answer this question, we need some de�nitions. For any two probabilitydistributions � and �0 on a �nite set 	 , we de�ne the variation distan
e between � and �0to be D(�; �0) = maxA�	 j�(A)� �0(A)j = 12 Xx2	 j�(x)� �0(x)j:We say that the \toleran
e-Æ mixing time" of the random walk is the minimum t su
hthat for all start verti
es v0 and for all t0 � t, D(�t0(v0); �) � Æ, where � denotes thestationary distribution of the walk, and �t0(v0) denotes the distribution after t0 steps, giventhat the walk starts at vertex v0. We say that the random walk is \rapidly mixing" if its\toleran
e-Æ mixing time" is at most a polynomial in m (the input size | the degree ofthe group G) and log(1=Æ).Jerrum [19℄ showed that the random walk is rapidly mixing if the group G is 
y
li
 orsymmetri
. If G is 
y
li
 (i.e., it is generated by a single permutation) then the orbits donot have too many non-trivial symmetries, so a sampling algorithm based on Wormald'smethod might also work. If G is the symmetri
 group then the orbits have too manynon-trivial symmetries to satisfy Equation 4 so Wormald's method will not work. Howeverit is interesting to note that an analogous situation o

urs: A polynomially-large fra
tionof the pairs in �(� ; G) have word 00 � � �0 in the �rst 
omponent.Goldberg and Jerrum [14℄ showed that the random walk is not always rapidly mixing:In parti
ular, for any �xed alphabet there is an in�nite family of groups G for whi
h the12



toleran
e-13 mixing time is exponential in the degree of G. Thus, there is an in�nite familyof groups for whi
h the variation distan
e is at least 1=3 after exponentially-many steps.The groups in this family are un
ompli
ated from a group-theoreti
 point of view: Thepermutations in the groups 
ommute and have order three. Thus, the groups are p-groups,and ea
h step of the random walk 
an be simulated in polynomial time. However, thegroups are 
ompli
ated from a 
ombinatorial point of view8. It would be interesting toknow for whi
h families of groups the random walk is rapidly mixing. As far as I know,[19℄ and [14℄ are the only known results about this.Goldberg and Jerrum's negative result leaves open the possibility that for a �xed alpha-bet there might be some other eÆ
ient sampling algorithm (one whi
h does not simulatethe random walk) whi
h takes input G and outputs a right-hand vertex (or a left-handvertex) drawn from the stationary distribution of the random walk (or from a distribution
lose to the stationary distribution). As we have seen before, sampling from the stationarydistribution of the left-hand verti
es is easy provided we 
an sample from the stationarydistribution of the right-hand verti
es. A more general result of this form is given in [19℄.Thus, an interesting open question is whether there exists an eÆ
ient sampling algo-rithm whi
h takes input G and outputs a right-hand vertex (i.e., a group element) with(approximately) the 
orre
t distribution. We 
on
lude this se
tion by des
ribing weakeviden
e indi
ating that su
h an algorithm may not exist.First, we will be more spe
i�
 about the notion of an \approximately 
orre
t" distri-bution. A \good" sampling algorithm will1. run in poly(m; ��1) time, where m is the degree of the input group, and � is ana

ura
y parameter, and2. produ
e a random right-hand vertex v su
h that for any vertex v, the probabilitywith whi
h v is returned is in the range [(1� �)p; (1+ �)p℄, where p is the probabilityof being at vertex v in the stationary distribution of the random walk.Se
ond, we will de�ne the \
y
le index polynomial" of a permutation group G. Whenthis polynomial is evaluated at k, the value is1jGjXg2G k
(g);where 
(g) denotes the number of 
y
les in permutation g.Finally, we will state a 
urious 
onsequen
e whi
h would o

ur if a good samplingalgorithm did exist.
8The groups are 
onstru
ted to mimi
 the \Swendsen-Wang Pro
ess," whi
h is a dynami
s for theq-state Potts model. The slow mixing is 
onne
ted to a �rst-order phase transition in the number of\ordered" Potts 
on�gurations. See [14℄, [16℄ and [4℄ and for details.13



If a good sampling algorithm exists, then the following are all true:1. For any �xed k > 1, evaluating the 
y
le index polynomial of a permutation group Gat k is #P-hard.2. For any �xed positive non-integer k, approximately evaluating the 
y
le index polyno-mial of a permutation group G at k is hard. (Spe
i�
ally, there is no fully polynomialrandomised approximation s
heme (fpras) unless RP=NP).3. For any �xed positive integer k, approximately evaluating the 
y
le index polynomialof a permutation group G at k is easy. (Spe
i�
ally, there is an fpras.)Items 1 and 2 are true (whether or not there is a good sampling algorithm). Item 1was shown to be true by Goldberg [13℄ and item 2 was shown to be true by Goldbergand Jerrum [13, 20℄. Jerrum [19℄ showed that Item 3 would be true if there were a goodsampling algorithm for every �xed alphabet size k. It may be that items 1{3 are alltrue (though this would be somewhat surprising). Alternatively, it may be that there isno eÆ
ient algorithm for sampling permutations (right-hand verti
es) in the \Burnside'sLemma" framework. Resolving this open question would be very interesting.A
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