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Randomly Sampling Unlabelled Structures

Leslie Ann Goldberg*
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Abstract

Informally, an “unlabelled combinatorial structure” is an object such as an un-
labelled graph (in which the vertices are indistinguishable) or a structural isomer in
chemistry (in which different atoms of the same type are indistinguishable). Com-
putational experiments such as those described in this volume often rely on random
sampling to generate inputs for the experiments. This paper surveys work on the
problem of efficiently sampling unlabelled combinatorial structures from a uniform
distribution.

1 Introduction

Most of the experimental work described in this volume involves first randomly sampling
combinatorial structures and second using the randomly-chosen structures as inputs to
computational experiments. In order for the experiments to be valid, the distribution from
which the combinatorial structures are drawn must be precisely specified. In order for
the experiments to be computationally feasible, the random-sampling algorithms must be
efficient.

This survey is devoted to the problem of efficiently sampling unlabelled combinatorial
structures from a uniform distribution. For information on the related problem of efficiently
listing unlabelled combinatorial structures without duplicates, see [11] and [12].

We start by giving an example of an unlabelled combinatorial structure — in particular,
an unlabelled graph !. Two graphs with vertex set V, = {vi,...,v,} are said to be
isomorphic if there is a permutation of V,, which transforms one graph into the other.
For example, the graphs G; and G5 from Figure 1 are isomorphic because relabelling the
vertices of G according to the permutation (v vy v3) (v4v5) (vg) transforms Gy into Gs.
The permutations of V,, partition the n-vertex graphs into equivalence classes. Two graphs

*leslie@dcs.warwick.ac.uk,http://www.dcs.warwick.ac.uk/~leslie/, Department of Computer
Science, University of Warwick, Coventry, CV4 TAL, United Kingdom. This work was partially supported
by the ESPRIT Projects RAND-II (Project 21726) and ALCOM-IT (Project 20244) and by EPSRC grant
GR/L60982.

1For graph-theoretic definitions, see [10] and [17].
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Figure 1: G; and G5 are isomorphic. The permutation (vjvev3 ) (v4v5)(ve) transforms Gy
into GQ.

are in the same equivalence class if and only if there is some permutation which transforms
one into the other. (That is, they are in the same equivalence class if and only if they
are isomorphic.) Formally, an “unlabelled graph” is just an isomorphism class of labelled
graphs. Informally, an “unlabelled graph” is what you get when you take a labelled graph
and erase the labels on the vertices. For example, the unlabelled graph corresponding to
the graphs in Figure 1 is shown in Figure 2.

We will focus on computational problems such as the following:

Input: A positive integer n.

Output: An unlabelled graph chosen uniformly at random from the set of all
unlabelled graphs with n vertices.

This computational problem illustrates the difference between unlabelled sampling and
labelled sampling: To choose a labelled graph uniformly at random (u.a.r.) from the
set, of all n-vertex graphs, one would just need to consider each unordered pair of the
n vertices and choose, independently with probability 1/2, whether or not to make it an
edge. However, this approach would not work for sampling unlabelled graphs. For example,
the probability of producing a simple path containing n vertices (using this approach) is
(n!/2) times as high as the probability of producing the complete graph on n vertices. In
fact, it wasn’t until 1987 that a polynomial expected-time algorithm for uniformly sampling
unlabelled graphs was discovered. This algorithm was discovered by Wormald [31], building
on work of Dixon and Wilf [5]. These algorithms are discussed in Section 3.1.



Figure 2: The unlabelled graph corresponding to the graphs in Figure 1.

The general techniques that have been used for sampling unlabelled combinatorial
structures are

1. inductive definitions/generating functions, and
2. Burnside’s Lemma (Pélya Theory).

These techniques are described in Section 2 and Section 3 respectively.

2 Inductive Definitions

We will use the following definitions to illustrate the “Inductive Definition” approach for
sampling unlabelled structures. A tree is a connected graph with no cycles and a rooted
tree is a tree in which a particular vertex is distinguished as the root. An unlabelled
rooted tree is an isomorphism class of rooted trees, where an isomorphism between two
rooted trees is required to map the root of one tree to the root of the other. Informally,
an unlabelled rooted tree is what you get when you take a rooted tree and erase the labels
on the vertices, remembering which vertex is the root. For example, see Figure 3. Let U,
denote the set of unlabelled rooted trees with n vertices and let t,, denote the size of U,,.
Nijenhuis and Wilf [25] showed that U, and ¢,, can be defined inductively and that this
inductive definition can be used to sample u.a.r. from f,. Their main observation was
that every member of U, is constructed exactly n — 1 times by the following procedure:
For every d € {1,...,n — 1} and for every positive integer j such that jd < n, let T" be a
member of U,,_ ;4 and let 7" be a member of ;. Let T" be the unlabelled rooted n-vertex
graph formed by making j copies of T" and using j new edges to join the root of each copy
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Figure 3: The four unlabelled rooted trees with four vertices.

to the root of T". (The root of 7" is taken to be the root of 7".) Output d copies of T"".
Thus,

n—1

tn(n - ]_) = Z Z dtn—jdtda
d=1j:jd<n
and so tq,ty,... can be computed by dynamic programming. Finally, the outline of the

sampling algorithm (for n > 2) is as follows (see also [27]):

1. Choose the pair (j,d) with probability %ﬁ%.

2. Recursively choose T" u.a.r. from U,,_ ;4.

3. Recursively choose T" u.a.r. from U,.

4. Make j copies of T" and attach the root of each copy to the root of 7T".

5. Let the root of T" be the root of the new n-vertex tree and output the new tree.

Nijenhuis and Wilf’s approach was extended by Wilf [28], who showed how to uniformly
sample free (unrooted) trees. Wilf’s algorithm is also based on an inductive definition (i.e.,
a generating function) for the trees. This approach will be systematised by Flajolet, Zim-
merman and Van Cutsem in a forthcoming paper [9]. The companion paper by the same
authors on sampling labelled combinatorial structures [8] gives a good idea of the system-
atic approach. The idea is to specify the unlabelled structures using a formal grammar
involving set, sequence and cycle constructions. Uniform sampling can then be done au-
tomatically using dynamic programming. This systematic approach has also been used
by Goldberg and Jerrum to sample some other tree-like unlabelled structures in Section 4
of [15].

3 Burnside’s Lemma

Burnside’s Lemma is an important ingredient in the generating-function-based sampling
approach of [9]. However, it turns out that this ingredient is useful for sampling even when
it is not possible directly to write a generating function for the unlabelled structures.



We will start by setting up the framework for Burnside’s lemma. Let X' = {0,...,k—1}
be a finite alphabet of cardinality k, and let G be a permutation group on [m| = {0,...,m — 1}.
For example, GG could be the group in Example 1.
Example 1: An example of a group with degree? m = 4 is the group consisting of the
following permutations.

o identity,
. (02),

o (13), and
o (02)(13).

For g € G and i € [m], let i denote the image of i under g. For example, if g = (02) we have
09 =2,19=1,29 =0 and 39 = 3. Consider the set 2™ of all words of length m over the
alphabet Y. The group G has a natural action on Y™ which is induced by permutations
of the m “bit positions”. Under this induced action, the permutation ¢ € G maps the
word o = @@y . .. Gp—1 to the word af = boby ... b, defined by b; = a; for all i, € [m]
satisfying i9 = j. For example, if ¢ = (02) and « = 0010 then o9 = 1000 because ay = 0,
a; =0,a, =1, a3 = 0and by = ag, by = a1, by = as and b3 = a3. The action of G partitions
2™ into a number of orbits, which are the equivalence classes of 2™ under the equivalence
relation that identifies o and § whenever there exists ¢ € G mapping « to 3. For example,
if k=2 (so X ={0,1}), m = 4, and G is the group in Example 1, then the nine orbits of £*
are (0000), (0001, 0100), (0010, 1000), (0101), (1010), (0011, 0110, 1001, 1100), (1110, 1011),
(1101,0111), and (1111). The “Orbit Sampling Problem” (for fixed X') is as follows.

Input: A permutation group G of degree m.
Output: A word in Y™ so that each orbit is equally likely to be output.

Most of the unlabelled sampling problems that we consider in this survey can be coded
up in terms of the orbit sampling problem. For example, we can represent an N-vertex
graph as its adjacency matrix, which is a word in 5(3) where ¥ = {0,1}. The unlabelled
N-vertex graphs are just the orbits of words in (%) with respect to the “pair group” 5’](3).
(Each of the permutations in S](\?) corresponds to a different permutation of the N vertices.
However the vertices are permuted, the corresponding permutation in S](\?) performs the
corresponding action on the adjacency matrix.)

Now Burnside’s Lemma?® says that each orbit comes up |G| times (as the first compo-
nent) in the set of pairs

r(X,G)={(a,g9) |a € ¥™ g€ G and of = a}. (1)

2The degree of a permutation group is the number of objects on which the permutations act. Not all
degree-4 permutation groups have 4 permutations.

3 Although this lemma is commonly referred to as “Burnside’s Lemma?”, it is really due to Cauchy and
Frobenius [24].
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Figure 4: An illustration of Equation 2 for N = 3. The eight labelled 3-vertex graphs are
divided into four orbits (one on each row) which represent the four unlabelled graphs with
3 vertices. Each row is represented 6 times in 73 because any of the 6 permutations of the
vertices maps the graph on the top row to itself. Similarly, the graph on the bottom row
has 6 automorphisms (permutations which map it to itself). However, any graph on the
middle two rows has only two automorphisms: the identity, and the permutation which
transposes the two degree-1 vertices.

3.1 Unlabelled Graphs

Translating Burnside’s Lemma to the special case of unlabelled graphs, we find that each
unlabelled N-vertex graph comes up N! times (as the first component) in the set of pairs

v ={(T,g9) | T isa (labelled) N-vertex graph and ¢ is a permutation
of the N vertices which maps I to itself.}. (2)

The special case N = 3 is illustrated in Figure 4.

The significance of Burnside’s Lemma (Equation 2) is that in order to uniformly sample
N-vertex unlabelled graphs, we need only sample u.a.r. from 7. This observation was
first made by Dixon and Wilf [5]. In order to simplify our presentation of their idea (and
Wormald’s refinement [31]), for every permutation g of N vertices, we will let 7, denote

{(T",g) | T is a (labelled) N-vertex graph and g maps I to itself.}.

Thus, Ty = U, T, where the union is over all permutations g of N vertices.
We can now state the outline of Dixon and Wilf’s algorithm for sampling u.a.r. from 7n:



1. Input N

|7yl

2. Choose g with probability .
N

3. Choose (I, g) v.a.r from 7,.

Step 3 of the algorithm can be implemented in polynomial time: For each cycle of (un-
ordered) vertex pairs induced by g, decide independently (with probability 1/2) whether to
make the pairs edges or non-edges. It is not known how to implement Step 2 in polynomial
time. In particular, it is not known how to compute | x| in polynomial time®.

Wormald’s algorithm [31] uses the rejection sampling method to get around comput-
ing | T'v|. The basic idea of rejection sampling is as follows. It may be too difficult to sample
from the desired distribution. So what the user does instead is to sample from some other
(more tractable) distribution. Imagine the desired distribution as being “scaled down” so
that it fits underneath the more tractable distribution. To draw a sample from the desired
distribution, the user first draws a sample from the more tractable distribution. The user
then uses the sample to determine the probability with which the more tractable distribu-
tion over-represents this sample (relative to the “scaled down” desired distribution). With
this probability, the sample is rejected and the sampling process is re-started. Otherwise,
the sample is output. The method is useful when it is easy to determine the probabil-
ity with which a given sample should be rejected and, furthermore, the overall rejection
probability is low (so the expected running time until a sample is output is small).

The outline of Wormald’s algorithm is as follows, where iy represents the identity
permutation on N vertices and p, represents the probability with which permutation g is
chosen (so >°,py = 1). Appropriate choices for p, will be discussed below.

1. Input N
2. Choose g with probability p,.
3. Choose (I, g) u.a.r. from 75.

4. Output (T, g) with probability E Otherwise reject.
iyl Pg

It is straightforward to check that the probability that any given pair (T, g) from Ty is
output is %, so the algorithm does sample u.a.r. from 7'y as long as Criterion 1 (below)
N

is met (so Step 4 can be implemented).

4Dixon and Wilf show how to implement Step 2 in polynomial time on average provided the value of
| 7'~ | is known. (Their method involves choosing a conjugacy class with the appropriate probability and
then choosing a representative permutation g from within the conjugacy class.)



Criterion 1:  The probabilities p, must be chosen so that

|T2N| Py

Furthermore, the rejection probability is 0 whenever g = 4y. Thus, the expected running
time of the sampling algorithm is polynomial as long as the other criteria below are met.

Criterion 2:  The probabilities p, must be chosen so that Step 2 can be imple-
mented in polynomial time®.

Criterion 3:  The probabilities p, must be chosen so that Step 4 can be imple-
mented in polynomial time.

Criterion 4: The probabilities p, must be chosen so that, for some positive
constant ¢ and every N, we have p,, > N7° (This ensures that the expected
number of trials before an output is produced (with no rejection) is at most N°¢.)

Wormald [31] showed how to choose the probabilities p, so that these criteria are met.
Thus, he gave an expected polynomial-time algorithm for sampling unlabelled graphs.

3.2 Extending Wormald’s Method

Let us now consider how to extend Wormald’s method to the general “Burnside’s Lemma”
framework. Let X be a fixed alphabet. For any permutation g of [m], let

rX,g9)={(a,g9) | @ € 2™ and o = a}.

Then T'(X¥, G) from Equation 1 equals Uye T(X, g). We can write the outline of Wormald’s
algorithm using this notation, where 4,, denotes the identity permutation of degree m:

1. Input a permutation group G
2. Choose g € G with probability p,.
3. Choose (a, g) u.a.r. from 7 (X, g).

Piyy | T(Z

|T(Z,im)l Py

4. Output («, g) with probability iy Otherwise reject.

An appropriate measure of “input size” for the input G is the degree of G, because every
degree-m permutation group can be specified by a set of O(m) permutations [18]. Thus,
the analogue of Criterion 4 states that there is a positive constant ¢ such that for every

Note that choosing p, = % would make Wormald’s algorithm equivalent to Dixon and Wilf’s. Thus,

it would satisfy all criteria except Criterion 2.



possible input group G of degree m, we must have p, > m~° On the other hand, the
analogue of Criterion 1 implies

Ty
Py | 7( ,g)I, 3)
Pin | T(Z, i)
which implies
|T(X i) _ |2

Pipy < = :
ToTEG) 172,06
Thus, we cannot simultaneously satisfy the two criteria unless there is a positive constant ¢
such that for every possible input G of degree m we have

| 7(Z,G)| <me| X" (4)

That is, the size of 7(X,G) must be at most a polynomial times the size of the part
of T(X,G) which corresponds to the identity permutation. We will say that a family
of permutation groups has “too many non-trivial symmetries” (with respect to the fixed
alphabet Y') if there is not a positive constant ¢ such that every group G in the family sat-
isfies Equation 4. Since some families of unlabelled combinatorial structures do correspond
to families of groups with too many non-trivial symmetries, Wormald’s method cannot be
used in general for unlabelled sampling. Wormald has shown [31] how to use the method
to efficiently sample unlabelled r-regular graphs for » > 3. (Note that for fixed r > 3, the
unlabelled r-regular graphs do not have too many non-trivial symmetries. In fact, most
unlabelled r-regular graphs have only the identity as a symmetry.)

3.3 Structures with Too Many Non-Trivial Symmetries

A (labelled) multigraph is given by a set of vertices and a multiset® of unordered pairs
of vertices, which are called edges. An unlabelled multigraph is an isomorphism class of
labelled multigraphs. The degree sequence of multigraph G is a sequence telling how many
vertices of each degree GG has. Consider the following unlabelled sampling problem: Given a
degree sequence in which each degree is bounded from above by a constant, select, uniformly
at random, an unlabelled connected multigraph with the given degree sequence. This
sampling problem arises in the context of sampling structural isomers in chemistry [7, 15].
It is an example of a sampling problem to which Wormald’s method does not apply: If the
degree sequence has many vertices of degree 1 or 2 then the unlabelled multigraphs with
the degree sequence have too many non-trivial symmetries.

Goldberg and Jerrum [15] have given a polynomial expected-time algorithm for this
sampling problem based on the following idea. Every unlabelled multigraph G is associated
with a unique “core”” which has no vertices of degree 1 or 2. To randomly generate a
multigraph G, the algorithm first generates the core of G and then extends the core by
adding trees and chains of trees to obtain G.

6 A multiset is like a set except that it can contain more than one copy of an object, so a multigraph
can contain several (indistinguishable) edges between any given pair of vertices.
"For other uses of the “core” idea, see Zhan [32].



The algorithm for generating the core is described using the configuration model of
Bender and Canfield [1], Bollobds [3] and Wormald [29]. A configuration (for a given
degree sequence) is a labelled combinatorial structure which can be viewed as a refinement
of a multigraph with the degree sequence. For any given degree sequence, the orbits of
all configurations (with respect to the appropriate permutation group) correspond to the
unlabelled multigraphs with the degree sequence. Since the degree sequence of the core
has no vertices of degree 1 or 2, the cores do not have too many non-trivial symmetries.
(This follows from an extension of Bollobds’s analysis of unlabelled regular graphs [2].)
Thus, the algorithm uses Wormald’s method to generate the core. (If the core is not
connected, it is rejected. The fact that this does not happen too often follows from a result
of Wormald [30].)

After generating the core of the random multigraph, the algorithm extends the core by
adding trees and chains of trees. This part of the algorithm is based on the generating-
function approach mentioned in Section 2.

It is an open problem to sample unlabelled multigraphs given a general degree sequence
(in which degrees need not be bounded from above by a constant). Goldberg and Jerrum’s
method is not applicable when the degrees are unbounded. In fact, the problem with
unbounded degrees seems to be difficult even in the labelled case (see [21, 23, 6]).

3.4 A General Approach Based on Burnside’s Lemma

Jerrum [19] proposed a general way to use Burnside’s Lemma for unlabelled sampling.
The idea is to consider the following bipartite graph: The vertices on the left-hand side are
all words in X™. The vertices on the right-hand side are all permutations in GG. There is an
edge from word « to permutation g if and only if a9 = «. For example, when X' = {0, 1}
and m = 4 and G is the group described in Example 1, we get the graph in Figure 5. This
graph essentially implements Burnside’s Lemma: The edges in the graph are the pairs
in (Y, G). Thus, Burnside’s Lemma (Equation 1) says that the set of left-endpoints of
edges contains |G| representatives of each orbit.

Now consider a random walk on this graph: When the walk is at a given node, it
chooses a neighbour of the node u.a.r. and moves to the neighbour. If we view the random
walk from the perspective of the right-hand vertices we can see that it has a stationary
distribution, and that, in the stationary distribution, the probability of being at any node is
proportional to its degree. Thus, the stationary distribution allows us to sample edges (and
thus, left end-points) u.a.r. By Burnside’s Lemma, the stationary distribution therefore
allows us to sample orbits u.a.r. Three issues arise when we consider how to use this
method to sample orbits:

1. How long does it take to simulate a right-to-left step of the random walk?
2. How long does it take to simulate a left-to-right step of the random walk?

3. How many steps of the random walk do we need to simulate in order to get close to
the stationary distribution?

10
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Figure 5: The bipartite graph depicting Burnside’s Lemma for X' = {0,1}, m = 4, and the
group G from Example 1.
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The first two issues arise because the bipartite graph is, in general, too large to construct
explicitly. We are looking for sampling algorithms with run-times that are polynomial
in m, the degree of G, but the number of left-hand vertices is | X" and the number of
right-hand vertices could be as large as m!. Fortunately, we can simulate the random
walk without explicitly constructing the graph. Taking a step from right to left can be
done in polynomial time: For each cycle of the permutation corresponding to the current
right-hand vertex, a letter in X' is chosen u.a.r. (This is just a generalisation of Step 3 of
Dixon and Wilf’s algorithm.) Taking a step from left to right is not so easy. In fact, it is
equivalent under randomised polynomial-time reductions to the Setwise Stabiliser problem,
which includes Graph Isomorphism as a special case. Nevertheless, there are significant
classes of groups G for which this step can be implemented in polynomial time. Luks has
shown that the class of p-groups—groups in which every element has order a power of p
for some prime p—is an example of such a class [22].

Before moving on to the third issue, we mention another situation in which the simula-
tion of the left-to-right step seems to work sufficiently well. Peter Cameron has observed
that the random walk described in this section could be defined for any group action,
not just for the special case of a permutation group G acting on Y™ by permuting posi-
tions. The general setting is as follows: Given a point «, select u.a.r. a group element g that
fixes o, and then select a point that is fixed by ¢g. This random walk has been implemented
in certain algorithms for determining the conjugacy classes of a finite group [26].

Clearly the effectiveness of the random walk as a basis for general-purpose sampling
procedures for unlabelled structures depends upon the third issue: “How many steps of
the random walk do we need to simulate in order to get close to the stationary distribu-
tion?” In order to answer this question, we need some definitions. For any two probability
distributions 7w and 7’ on a finite set ¥, we define the variation distance between 7 and 7’
to be .

D) = mag () = 7' ()] = 5 3 [r) = 70
We say that the “tolerance-0 mixing time” of the random walk is the minimum ¢ such
that for all start vertices vy and for all ' > ¢, D(my(vg), ) < d, where 7 denotes the
stationary distribution of the walk, and 7y (vy) denotes the distribution after ¢’ steps, given
that the walk starts at vertex vy. We say that the random walk is “rapidly mixing” if its
“tolerance-d mixing time” is at most a polynomial in m (the input size — the degree of
the group G) and log(1/0).

Jerrum [19] showed that the random walk is rapidly mixing if the group G is cyclic or
symmetric. If G is cyclic (i.e., it is generated by a single permutation) then the orbits do
not have too many non-trivial symmetries, so a sampling algorithm based on Wormald’s
method might also work. If G is the symmetric group then the orbits have too many
non-trivial symmetries to satisfy Equation 4 so Wormald’s method will not work. However
it is interesting to note that an analogous situation occurs: A polynomially-large fraction
of the pairs in 7(X,G) have word 00---0 in the first component.

Goldberg and Jerrum [14] showed that the random walk is not always rapidly mixing:
In particular, for any fixed alphabet there is an infinite family of groups G for which the

12



tolerance—% mixing time is exponential in the degree of G. Thus, there is an infinite family
of groups for which the variation distance is at least 1/3 after exponentially-many steps.
The groups in this family are uncomplicated from a group-theoretic point of view: The
permutations in the groups commute and have order three. Thus, the groups are p-groups,
and each step of the random walk can be simulated in polynomial time. However, the
groups are complicated from a combinatorial point of view®. It would be interesting to
know for which families of groups the random walk is rapidly mixing. As far as I know,
[19] and [14] are the only known results about this.

Goldberg and Jerrum’s negative result leaves open the possibility that for a fixed alpha-
bet there might be some other efficient sampling algorithm (one which does not simulate
the random walk) which takes input G' and outputs a right-hand vertex (or a left-hand
vertex) drawn from the stationary distribution of the random walk (or from a distribution
close to the stationary distribution). As we have seen before, sampling from the stationary
distribution of the left-hand vertices is easy provided we can sample from the stationary
distribution of the right-hand vertices. A more general result of this form is given in [19].

Thus, an interesting open question is whether there exists an efficient sampling algo-
rithm which takes input G and outputs a right-hand vertex (i.e., a group element) with
(approximately) the correct distribution. We conclude this section by describing weak
evidence indicating that such an algorithm may not exist.

First, we will be more specific about the notion of an “approximately correct” distri-
bution. A “good” sampling algorithm will

1. run in poly(m,e™') time, where m is the degree of the input group, and € is an
accuracy parameter, and

2. produce a random right-hand vertex v such that for any vertex v, the probability
with which v is returned is in the range [(1 — €)p, (1 + €)p], where p is the probability
of being at vertex v in the stationary distribution of the random walk.

Second, we will define the “cycle index polynomial” of a permutation group GG. When
this polynomial is evaluated at k, the value is

Z kr:(g),

geG

1
G
where ¢(g) denotes the number of cycles in permutation g.

Finally, we will state a curious consequence which would occur if a good sampling
algorithm did exist.

8The groups are constructed to mimic the “Swendsen-Wang Process,” which is a dynamics for the
g-state Potts model. The slow mixing is connected to a first-order phase transition in the number of
“ordered” Potts configurations. See [14], [16] and [4] and for details.

13



If a good sampling algorithm exists, then the following are all true:

1. For any fixed k£ > 1, evaluating the cycle index polynomial of a permutation group G
at k is #P-hard.

2. For any fixed positive non-integer k, approxrimately evaluating the cycle index polyno-
mial of a permutation group G at k is hard. (Specifically, there is no fully polynomial
randomised approzimation scheme (fpras) unless RP=NP).

3. For any fixed positive integer k, approximately evaluating the cycle index polynomial
of a permutation group G at k is easy. (Specifically, there is an fpras.)

Items 1 and 2 are true (whether or not there is a good sampling algorithm). Item 1
was shown to be true by Goldberg [13] and item 2 was shown to be true by Goldberg
and Jerrum [13, 20]. Jerrum [19] showed that Item 3 would be true if there were a good
sampling algorithm for every fixed alphabet size k. It may be that items 1-3 are all
true (though this would be somewhat surprising). Alternatively, it may be that there is
no efficient algorithm for sampling permutations (right-hand vertices) in the “Burnside’s
Lemma” framework. Resolving this open question would be very interesting.
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