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Image Mathing Based On The Co-ourreneMatrixHsing-Wen Hseu, Abhir Bhalerao, Roland WilsonDepartment of Computer Siene,University of Warwik,Coventry CV4 7ALMarh 17, 1999In this work, the Gray Level Co-ourrene Matries (GLCM) and ross-orrelationare ompared in an image mathing proess. First, three images are generated indi�erent noise environments to simulate the images being derived from di�erent sen-sors. Then, a Laplaian Pyramid is used as a high-pass �lter. Finally, orrelationof GLCM and ross-orrelation are ompared. Mutual information(MI) of GLCM isalso inluded to evaluate the framework of the GLCM.
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1 IntrodutionImage mathing has been a widely studied problem in identifying the similarity of thesene or objets in two images. It plays an essential role in proesses suh as textureanalysis, stereo vision, 3D reonstrution, objet reognition, motion analysis, imagelassi�ation and image registration[4℄. When the image mathing has been arriedout, ommon diÆulties that arise are: operating images obtained from di�erentmodalities suh as CT and MR, heavy omputation, deteting motion like salingand rotation. Although ross-orrelation is suessfully used in a single modality, it iseasily defeated when using multiple modalities. In this ase, mutual information hasbeen shown to be more e�etive[1℄. In order to �nd the best math, Viola et al. [10℄designed a formulation to �nd the maximum of mutual information between a modeland the image. Bro-Nielsen[1℄, in his paper, has laimed that mutual informationis the best general feature. There are many other people[3℄[9℄ suessfully applyingmutual information to image mathing. In addition to mutual information, momentsand entropy are also important features in gray level o-ourrene matrix(GLCM),whih ould be used instead. By applying one of the measures derived from theGLCM, the best math an be found between two images. The MultiresolutionFourier Transform(MFT)[11℄ is a linear transformation providing loal frequenyestimation over multiple spatial resolutions whih ould help analysing the motionbetween two images[7℄. This work, therefore, will give an assessment of omputationost to the image mathing by omparing GLCM and ross-orrelation method.There are four major steps in this work. Firstly, a Laplaian pyramid of a pair ofimages is onstruted by using a low-pass �lter. Seondly, the ross-orrelation isomputed between the pair of images and the peak value will be hosen to estimatethe translation between the images. Thirdly, the gray level o-ourrene matrix isalso applied to alulate the orrelation of the pair of images and the peak value isalso hosen as the translation between the pair of images. Finally, to ompare results,we alulate the squared di�erene between atual value and results alulated fromthese two methods. Future work ould employ the MFT and GLCM to �nd thegeometri transformation between two views of the same sene or between objetsin two images.
1



2 Toward Image MathingA digital image an be viewed as a disrete 2-D lattie pixels whose row and ol-umn indies identify a point in the image and the orresponding value of the pointidenti�es the intensity at that point. Let f(i; j) and g(i; j) be two images. The ross-orrelation between them an be expressed by a funtion of displaement (m;n) asfollows[5℄ Cfg(m;n) = 1MN Xi Xj f(i; j)g(i�m; j � n) (1)where M and N are the total samples of one row and one olumn. Eq. (1) analso be viewed as the sample average estimate of the two images, viewed as samplesof a random proess. If we have two random variables(RV's), X and Y , say, theorrelation between them is de�ned asRXY = E[XY ℄ = Z Z p(x; y)xydxdy (2)where p(x; y) is the joint density. If we have a set of M samples from the jointproess, Xi and Yi, say, the sample orrelation is de�ned asCXY = 1M MXi=1XiYi (3)Thus if Yi represents the shifted image fg(i�m; j�n)g and Xi represents the imageff(i; j)g, we an get a formal equivalene between Eq. (1) and Eq. (3): Cfg(m;n)is the sample ross-orrelation between f and g, viewed as samples from a randomproess. A histogram is a funtion whih returns the relative frequeny of a parti-ular gray level in a given image and is useful when applying a statistial method.Now suppose we have a joint histogram hXY (k; l) for X and Y , based on the samplesXi and Yi . Then Eq. (3) an be written asCXY =Xk;l hXY (k; l)kl (4)Other measures of dependene between X and Y inlude mutual information(MI)[5℄.I(X; Y ) = E[i(x; y)℄ = Z Z pXY (x; y)log pXY (x; y)pX(x)pY (y)dxdy (5)with sample estimate IXY =Xk;l hXY (k; l)log hXY (k; l)hX(k)hY (l) (6)2



(0,0) (1,0) (2,0)(0,1) (1,1) (2,1)(0,2) (1,2) (2,2) Ti = f0; 1; 2g ; Tj = f0; 1; 2gTi0 = fi+ 1ji+ 1 2 Tig = f1; 2gTj0 = fjjj 2 Tjg = f0; 1; 2gS = f((i; j); (i0; j 0)) 2 (Ti � Tj)� (Ti0 � Tj0)ji0 = i+ 1; j 0 = jg= f((0; 0); (1; 0)) ((1; 0); (2; 0)) ((0; 1); (1; 1))((1; 1); (2; 1)) ((0; 2); (1; 2)) ((1; 2); (2; 2))gTable 1: The set of all pairs of orresponding indies of two 3� 3 images related bya displaement (1,0)where hX(k) = Pl hXY (k; l)hY (l) = Pk hXY (k; l)are the marginal histograms for X and Y . k and l are intensities as are X and Y .2.1 Co-ourrene matriesGray Level Co-ourrene Matries (GLCM) is a method for estimating spatial graylevel dependene[6℄. Given a displaement between two images, a sample spae XYis de�ned and the total number of pairs of pixels within it having the same pair ofgray levels, (r; s), are aumulated to generate a joint histogram, hXY (r; s). Table 1illustrates the set of all pairs of orresponding indies of two 3� 3 images related bya displaement (1,0). The joint histogram of the example an be expressed as,hXY (r; s) = Nr;sNS (7)where Nr;s is the total number of pairs of orresponding indies in S (as given inTable 1)where X gives a gray level value r to the �rst pair of indies and Y givesa gray level value s to the seond pair of indies. NS is the total number of pairsof pixels in S. Sine the joint histogram an be represented in a matrix form,it is alled a o-ourrene matrix. Thus GLCM an be used to determine theorrespondene between a stak of images or registration of a pair of images. Thejoint histogram estimated from GLCM an also be used to generate many measuressuh as orrelation, and mutual information[6℄.3



2.2 Pyramid Strutures in Mutiresolution methodsMultiresolution methods are widely used in image proessing and analysis[8℄. Thestrutures, in general, represent the image aross a number of di�erent resolutions:from oarse-to-�ne. There are links between onseutive levels of the strutureproviding the possibility of reduing omputational ost of various image operationsusing a divide-and-onquer methodology[8℄. The Gaussian pyramid is an importantexample of multiresolution struture. It onsists of the input image at the bottomof the stak and eah level obtained by applying a lowpass-�lter to the one beneath.The Laplaian pyramid is obtained by taking the di�erene between onseutivelevels of a Gaussian pyramid. The di�erene-of-Gaussians resemble the Laplaianoperators ommonly used in image proessing to enhane image features suh asedges. A low-pass �lter is a mask used to smooth the intensities of an image. Thusthe di�erenes between the intensities of an image and those of the smoothed imagean be alulated. For a Laplaian image the average di�erene should be zero.Thus the main reasons to use Laplaian pyramids in this work are as follows� deteting a displaement at a level whih is a fration of original images.� zero mean intensity at every level.� robust in the presene of noise.These give a hane to optimise the omputations.3 ExperimentsWe selet the fourth level of the Laplaian Pyramid as an initial mathing levelin this work. At this level, 2 pixels shift is equivalent to 32 pixels shift in theoriginal image. We use an image of size 256x256, Lena, to reate a set of images,L = fL0; L1; L2; L3g, in whih eah one of them is 32 pixels shift of the other oneshown in Fig 1. A 24 pixel shift ase is also inluded in this work. We wish toexamine1. The omparison between ross-orrelation and GLCM-based methods.2. The e�ets of noise on the performane of the methods.4



(b)(a)

(c) (d)Figure 1: 32 pixels horizontal or vertial shift imagesIn order to arry out the experiment �ve other sets of images are needed as follows1. a set of images, I = fI0; I1; I2; I3g, by adding Gaussian noise with variane:80.6381(PSNR: 10db) to the original image and applying 32 pixels shift.2. a set of images, J = fJ0; J1; J2; J3g, by adding Gaussian noise with variane:25.5000(PSNR: 20db) to the original image and applying 32 pixels shift.3. a set of images, K = fK0; K1; K2; K3g, by applying 24 pixels shift.4. a set of images, M = fM0;M1;M2;M3g, by adding Gaussian noise with vari-ane: 80.6381(PSNR: 10db) to the original image and applying 24 pixels shift.5. a set of images, N = fN0; N1; N2; N3g, by adding Gaussian noise with variane:25.5000(PSNR: 20db) to the original image and applying 24 pixels shift.3.1 The Laplaian PyramidA pyramid of an image is the struture where eah layer or level is half the resolutionof the one below. For an N level Gaussian Pyramid, the upward funtion, REDUCE,5
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Laplacian pyramidGaussian pyramidFigure 2: Relationship between Gaussian and Laplaian Pyramidof a level an be expressed asgl(i; j) = 2Xm=�2 2Xn=�2 w(m;n) gl�1(2i+m; 2j + n) (8)Where l is the number of a level in the pyramid range 0 < l < N�1 and g(i; j) is theintensity of position (i; j) at level l of the pyramid. w(m;n) is a 2D weighting kernelgenerated by an 1D Gaussian funtion w(m) � w(n). By using the same weightingkernel the downward funtion, EXPAND, of two onseutive levels an be expressedas follows ĝl(i; j) = 4 2Xm=�2 2Xn=�2 w(m;n) gl+1� i +m2 ; j + n2 � (9)where gl gives a value only when i+m and j+n are even numbers. The relationshipbetween these two funtions are desribed as Figure 2. Beause a Gaussian-likekernel is a low-pass �lter, the di�erene of the two funtions an be viewed as ahigh-pass image at eah orresponding level. A Laplaian pyramid is a sequene ofthe high-pass images whih an be expressed asll(i; j) = gl(i; j) � ĝl(i; j) (10)In this work, we use w(:) =(0.005, 0.25, 0.4, 0.25, 0.005) as the Gaussian-likekernel[2℄. The Gaussian and Laplaian pyramid of the image Lena is shown inFigure 3. For eah prepared image set suh as L, we an generate a orrespondingLaplaian image set, L4 = fL40; L41; L42; L43g.3.2 CorrelationThe experiment an be arranged as in Fig 4. In the 32 pixels ase, X0 is L0 and Yis one of the Laplaian image sets L, I, or J . In the 24 pixel shift ase, X0 is K0and Y is one of the Laplaian image sets K, M , or N .6



(a) The Gaussian pyramid 

(b) The Laplacian pyramid Figure 3: Gaussian and Laplaian Pyramid of Lena
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(0; 0) (2; 0)(0; 2) (2; 2) (0; 0) (1:5; 0)(0; 1:5) (1:5; 1:5) (0; 0) (2; 0)(0; 2) (2; 2)(a) (b) ()(0; 0) (2; 0)(0; 2) (2; 2) (0; 0) (2; 0)(0; 2) (2; 1) (2; 1) (4; 1)(2; 3) (4; 3)(d) (e) (f)Table 2: (a) Atual displaement of 32 pixels. (b) Atual displaement of 24 pixels.() Atual displaement of reverse intensities and 32 pixels. (d) Cross-orrelationresult of L4 , I4 and J4. (e) Cross-orrelation result of K4 , M4 and N4. (f)ross-orrelation result of reverse intensities and 32 pixels.r(0; 0) r(0; 1)r(1; 0) r(1; 1) Ck(X40 ; Y 40 ) Ck(X40 ; Y 41 )Ck(X41 ; Y 40 ) Ck(X41 ; Y 41 )square differene(k) = vuuuti=1Xi=0 j=1Xj=0(r(i; j)� Ck(X4i ; Y 4j ))2Table 3: square di�erenes of atual displaement and orrelation of GLCM at a binwidth kIn GLCM, the bin width is the range of intensities in an image and the maximumorrelation an be generated for every bin width. Thus we will have maximumorrelation in eah bin width.After the orrelation has been omputed, the square di�erene an be de�ned asshown in Table 3 where the left table is the atual displaement and the right tableis generated by the ross-orrelation or orrelation of GLCM at a bin width k. Thesquare di�erene is the tool with whih to analyse the results of this experiment.By applying a DFT, the ross-orrelation an be omputed eÆiently in frequenydomain and transfered bak to spatial domain to �nd the best math as follows[5℄Cfg(m;n) =Xi Xj f(i; j)g(i�m; j � n) <=> F (u; v)G�(u; v) (11)where F (u; v) is the Fourier transform of f(i; j) and G�(u; v) is the omplex onju-gate of Fourier transform of g(i; j). The atual displaements and results of applyingthe ross-orrelation method is shown in Table 2(a)(b)(d)(e). The result show usthe noise(PSNR=10db and 20db) has no e�et on the method and it an �nd thebest displaement at this level.The bin width is an odd number in this experiment so that we an take the mean8



value to be the entre. We take an observation range of twie the standard deviationof the original image, �, from the mean value of the original image, �, on eah side[��2�; �+2�℄. For example, given a bin width 3, we an build a histogram from thegray level value 0 in whih the intensity ranges from [��1,�+1℄. On the left the graylevel values derease by 1 and on the right the gray level values inrease by 1. Onethe relationship between the gray level values and intensities are built, we assign agray level value to every pixel in both images. Let f̂(i; j) and ĝ(i; j) be the two newimages and an be viewed as two RV's X̂ and Ŷ . If the two RV's are related bya displaement (m,n), the joint histogram an be alulated by introduing a validregion funtion VX̂Ŷ (i; j). The valid region funtion an be de�ned asVX̂Ŷ (i; j) = 8><>: 1 if (0; 0) � (i +m; j + n) � (15; 15):0 else where:For example, given a displaement (�4;�4), VX̂Ŷ (i; j) maps a valid region rangefrom (4; 4) to (16; 16) in the �rst image to the region range from (0; 0) to (11; 11) inthe seond image. Thus the valid region size an be expressed asRX̂Ŷ = P16i=0P16j=0 VX̂Ŷ (i; j)= (16� jmj)(16� jnj) (12)After a valid region size is de�ned, we an ount the frequeny of a gray level valuein one image to a gray level value in another image. The ounter funtion an bede�ned as NX̂Ŷ (r; s) = 16Xi=0 16Xj=0UX̂Ŷ (r; sjVX̂Ŷ (i; j)) (13)where UX̂Ŷ (r; sjVX̂Ŷ (i; j)) = 8>>>><>>>>: 1 if VX̂Ŷ (i; j) = 1and f̂(i; j) = rand ĝ(i+m; j + n) = s:0 else where:Then the joint histogram matries an be de�ned ashX̂Ŷ (r; s) = NX̂Ŷ (r; s)RX̂Ŷ (14)Beause the displaements is ranged from (-4,-4) to (4,4) and eah displaement givesa joint histogram matrix, we will have 81 matries in this work. The orrelation of9



a displaement (m;n) an be alulated as followsCX̂Ŷ = Xr Xs r s hX̂Ŷ (r; s) (15)The �rst experiment is to ompare the orrelation results in di�erent noise envi-ronment with the atual displaement. The results are desribed as1. The square di�erenes of atual displaement and orrelation of GLCM in 32pixels shift ase are all zeros in every bin width exept 195 where only one binis used to measure the orrelation.2. Fig 5 is 24 pixels shift ase shown us that the results are all the pixels at thefourth level whih are the losest to the atual result at every bin width exeptthe ranges [141 � 171; 177 � 185; 195℄.In order to observe the e�et of the noise, we replae the atual displaementsin Table 3 with the orrelation of GLCM. Then we ompute the square di�erenesbetween the orrelation of GLCM where PSNR=10db and PSNR=20db. The resultsof the seond experiment are1. The noise has no e�et on 32 pixels shift ase.2. The e�et on 24 pixels shift ase is at bin width [71; 97; 119; 141; 157; 159; 171; 183℄shown as Fig 6.3.3 Mutual InformationMI of GLCM is de�ned by the probability matries obtained from the previoussetion. The equation an be expressed asI(m;n) = Xr Xs hX̂Ŷ (r; s) log hX̂Ŷ (r; s)hX̂(r) hŶ (s) (16)We an do an experiment as in the previous setion by replaing the orrelation ofGLCM with the MI of GLCM. Results of the �rst experiment are desribed as1. In 32 pixels shift ase, the results are as good as those of orrelation exeptthe bin width [1; 3℄.2. The results shown in Fig 7 are also as good as those of orrelation exept thebin width [1 � 13; 137℄. Fig 8 show us that the e�et happened at the binwidth [1 � 17; 43; 55; 71; 97; 101; 103; 111; 119; 137; 195℄.10
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(a)
at different bin widths

Square difference results of K  and M  (PSNR=10db)(b)
at different bin widths

(c)
at different bin widths

Square difference results of K  and K  (PSNR=0db) 

Square difference results of K  and N  (PSNR=20db)Figure 5: Square Di�erenes of atual displaement and orrelation of GLCM atdi�erent bin widths for 24 pixels shift
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32 pixels shift 24 pixels shiftorrelation of GLCM 1-141, 173,1-193 175,187-193MI of GLCM 17-135, 139,141,5-193 169-175,187-193Table 4: bin widths with the best square di�erenes at the fourth levelAtual Displaement Cross-orrelation Correlation of GLCM MI of GLCM(0,0) (0,0) (0,0) (0,0)(0,2) (0,2) (0,2) (0,2)(2,0) (2,0) (2,0) (2,0)(2,2) (2,2) (2,2) (2,2)(0,0) (0,0) (0,0) (0,0)(0,1.5) (0,2) (0,2) (0,2)(1.5,0) (2,0) (2,0) (2,0)(1.5,1.5) (2,1) (2,1) (1,2)Table 5: The best results of the three methodsResults of the seond experiment are desribed as1. The noise has no e�et on 32 pixels shift ase.2. The e�et on 24 pixels shift ase is at bin width [1 � 17; 43; 55; 71; 97; 101; 103;111; 119; 137; 195℄ shown as Fig 8.The reversed Laplaian images are also used in this setion. The ross-orrelationgives an inorret result shown in Table 2(e). However, the MI of GLCM works wellin this ase shown in Fig 9.3.4 ComputationFrom the results in setion 3.1 ,3.2 and 3.3, we an ollet the bin widths with zerosquare di�erenes for 32 pixels and the square di�erene value lower than or equalto one for 24 pixels. Aeptable bin widths for the Lena image is shown in Table 5.This means that the aeptable bin width is quite large and the results of the threemethods shown in Table 4 are the losest pixels to the atual displaement. Thebigger the bin width we selet, the more omputation time we an save, so we seletthe bin width range [187 � 193℄.The omputation times of the two methods are shown as Table 6. In this work,13
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24 pixels and PSNR=10db estimates
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(a)
at different bin widths
Square difference results of K  and K  (PSNR=0db) 

Square difference results of K  and M  (PSNR=10db)(b)
at different bin widths

(c)Square difference results of K  and N  (PSNR=20db)
at different bin widthsFigure 7: Square Di�erenes of ross-orrelation and MI of GLCM at di�erent binwidths in 24 pixels shift ase
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and  of K  and N  (PSNR=20db) Figure 8: Noise e�et on the MI of GLCM in 24 pixels shift
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Item Comparison Add/Subtrat Multiply/DivideFFT 2(N2k log2 N2k ) 2(12 N2k log2 N2k )Correlation 2(2N2k N2k )IFT 2(N2k log2 N2k ) 2(12 N2k log2 N2k )PeakFinding N2k N2k(a) Computations of ross-orrelationItem Comparison Add/Subtrat Multiply/Dividestandarddeviation 2(N2k N2k � 1) 2(N2k N2k + 1)(�)grayLevel N2k N2k d2�w e d2�w e 2(3)Assignment 2(2)(2d+ 1)2 2(4)(2d+ 1)2 + 2(3Co-ourrene PdxPdy(N2k � jdxj)matries (N2k � jdxj) +Pdx(N2k � jdxj))2[(2d2�w e � 1) 2(2d2�w e � 1)(2d2�w e � 1)� 1℄ (2d2�w e � 1)Correlation (2d+ 1)2 2(2d+ 1)2(2d2�w e � 1)Peak (2d2�w e � 1)Finding (2d+ 1)2(b) Computations of orrelation of GLCMw is the seleted bin width.� is the standard deviation of the original image.d is the total number of possible displaement.dx and dy are the displaement in x axis and y axis.Table 6: Computation omparison of two methods
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Item Comparison Add/Subtrat Multiply/Divide TotalFFT 128 64 192Correlation 1024 1024IFT 128 64 192PeakFinding 256 256Total 256 1280 128 1664(a) Computations of ross-orrelationItem Comparison Add/Subtrat Multiply/Divide Totalstandarddeviation(�) 510 514 1024grayLevelAssign 512 2 6 520Co-ourrenematries 324 47024 47348Correlation 1296 2916 4212PeakFinding 729 729Total 1565 48832 3436 52833(b) Computations of orrelation of GLCMTable 7: Computation omparison of two methods in this experiment for image size256x256we take the image, Lena, as the original image and take the Laplaian pyramid atthe fourth level, k = 4. At this level we take the ratio of 2 times standard deviationto bin width, d2�=we = 1. In this ase 2� = 98 and bin width is 193 whih wefound above and the displaement range is from -4 to 4. We an then ompletethe omparison shown as Table 7. The omputational omplexity of orrelation ofGLCM is almost 32 times that of ross-orrelation. Note also that the orrelationof GLCM an only detet the best math range from (-4, -4) to (4, 4).4 Conlusions and further workFrom the experiments we know the image mathing an be done by using these twodi�erent methods. Beause the Laplaian image is robust in the presene of noise,17



the ross-orrelation is not a�eted by the noise and GLCM is also not a�eted by thenoise. The omparison of omputational omplexity shows that the GLCM are notas eÆient as ross-orrelation and the mathing is restrited by the displaementsset in this experiment. However, the ross-orrelation annot be applied to imagemathing where one image is negative to the other one while the MI of GLCM isa good hoie to solve the problem. GLCM is a robust framework for solving thisproblem, but the performane needs to be improved. Further work is to optimisethe omputation and apply GLCM to detet a rotation and saling.Referenes[1℄ Morten Bro-Nielsen. Rigid Registration of CT, MR and Cryosetion ImagesUsing a GLCM Framework. Pro. CVRMed-MRCAS'97, vol. 1205:171{180,1997.[2℄ P. J Burt and E. H. Adelson. The Laplaian Pyramid as a Compat ImageCode. IEEE Transations on Communiation, COM-31:532{540, 1983.[3℄ A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-hal. Automated Multi-modality Image Registration Based on Information The-ory. Pro. Information Proessing in Medial Imaging, pages 263{274, 1995.[4℄ S�ebastien Gilles. Desription and Experimentation of Image Mathing UsingMutual Information. Tehnial report, Department of Engineering Siene,Oxford University, UK, 1996.[5℄ R. C. Gonzalez and R. E. Woods. Digital Image Proessing. Addison-WesleyPublishing Co., 1992.[6℄ Robert M. Haralik and Linda G. Shapiro. Computer and Robot Vision.Addison-Wesley Publishing Co., 1992.[7℄ T.I. Hsu. Texture Analysis and Synthesis Using the Multiresolution FourierTransform. PhD thesis, Department of Computer Siene, The University ofWarwik, UK, 1994.[8℄ A. Rosenfeld(ed.). Multiresolution Image Proessing and Analysis. Springer-Verlag, 1984. 18



[9℄ C. Studholme, D. L. G. Hill, and D. J. Hawkes. Automated 3-D Registrationof MR and CT Images of the Head. Medial Image Analysis, vol. 1(2):163{175,1996.[10℄ Paul Viola and Willam M. Wells III. Alignment by Maximization of MutualInformation. International Journal of Computer Vision, 24(2):137{154, 1997.[11℄ R. Wilson, Calway A, and E.R.S. Pearson. A Generalised Wavelet Transform forFourier Analysis: The Multiresolution Fourier Transform and Its Appliation toImage and Audio Signal Analysis. IEEE Transation on Information Theory,38(2):674{690, 1992.
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