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Abstract

In this paper, a new class of Random Field, defined on a multires-
olution array structure, is defined. These combine earlier, tree based
models with the more conventional MRF models. The fundamental
statistical properties of these models are investigated and it is proved
that they can avoid some of the obvious limitations of their predeces-
sors, in terms of modelling realistic image structures. Prediction and
estimation from noisy data are then considered and a new procedure:
Multiresolution Maximum a Posteriori estimation, is defined. These
ideas are then applied to the problem of analysing images containing
a number of regions. It is shown that the model forms an excellent
basis for the segmentation of such images.

Keywords: Markov random fields, image segmentation,
Bayesian estimation.

*Corresponding Author



1 Introduction

Among the statistical approaches to image modelling, Markov Random Fields
(MREF’s) have been around about the longest [28], [6],[14]. Recently, however,
they have gained significant attention [8] [10] [18] [22] [23] [25], especially in
the segmentation of regions of more or less uniform colour or texture. For ex-
ample, Geman et al. [9] used the Kolmogorov-Smirnov non-parametric mea-
sure of difference between the distributions of spatial features extracted from
pairs of blocks of pixel gray levels, with MAP estimation of the boundary.
Panjwani et al. [23] adopted an MRF model to characterise textured colour
images in terms of spatial interaction within and between colour planes. In
a technique which is similar to that used in [27], Bouman and Shapiro used
sequential maximum a posteriori (SMAP) estimation in conjunction with a
multi-scale random field (MSRF) [5] , which is a sequence of random fields at
different scales. Other work exploring the multiresolution approach to MRF’s
is described in [7], [1],[21],[16] and [24]. The last two of these papers point
out the difficulties in preserving the Markovian properties, which require a
locality constraint, within a sampling scheme which implies the violation of
that constraint. On the other hand, there is ample evidence that multireso-
lution processing can lead to highly efficient algorithms in many areas - from
image restoration to optical flow.

The upsurge in interest in MRF’s has been prompted by the work of Besag
[2] and the Gemans [10, 9], largely because of the new approaches to Bayesian
or Maximum a Posteriori (MAP) estimation. Although expensive computa-
tionally, these algorithms provide a relatively simple way to approach an op-
timal estimate using the principles of stochastic sampling, or Markov Chain
Monte Carlo methods [11], as they are sometimes called. Alternatively, it is
often possible to get adequate results with deterministic procedures, such as
Besag’s Iterated Conditional Modes (ICM) algorithm [3]. In any event, MAP
estimation based on non-causal MRF’s suffers from several drawbacks when
applied to images. Apart from the considerable computational burden, the
simpler models have ‘low energy’ states which represent uniform colourings,
so that if an MCMC algorithm is allowed to run long enough, it will tend
to produce results which reflect this, especially if the data are noisy. On the
other hand, deterministic algorithms such as ICM can become trapped in lo-
cal minima, also an undesirable property. While there has been a lot of work
showing the efficacy of multiresolution methods, these have often been jus-
tified on heuristic grounds. The notable exceptions, [7],[1], [21], [5], tend to



rely on palpably unrealistic models, such as those based on quadtrees, which
are prone to the blocking artefacts associated with the sampling scheme. At-
tempts to avoid these problems tend to remove the link to the model, to a
greater or lesser extent, unfortunately.

The work described in this paper presents a new attempt to marry the
ideas of the MRF and multiple resolutions. As such, it is more closely re-
lated to the work of Bouman than the other multiresolution approaches to
the problem. It also starts from a quadtree process, in which the passage
from coarse to fine scales can be described as a Markov Chain. It differs
fundamentally, however, in the process by which each scale or resolution is
conditioned on its immediate predecessor in scale: whereas in the simple
model, a pixel at a given scale depends only on its ancestors in scale, in the
new model, it is also directly dependent on its neighbours at its own scale.
In effect, this makes the model a cross between a conventional MRF, ap-
plied at a single resolution and the models proposed by Bouman and others
[7], [1], [21]. This allows it to model image structures, such as multiple re-
gions having smooth boundaries, in a much more realistic way than previous
stochastic image models. The next section presents the background theory
of the new model. This is followed by a description of its application to
the problem of segmenting images into homogoneous regions from uncertain
data. The paper is concluded with a discussion of the new model and its
possible extensions.

2 Multiresolution Random Fields

The feature of a Markov Random Field which makes it attractive in applica-
tions is that the state of a given site depends explicitly only on interactions
with its neighbours [10]. We model an image as a sequence of MRF’s, con-
forming to a quadtree structure, with a nominal top level 0 and N levels
below that, level k£ having 2% x 2% sites for a finite image of size 2V x 2V
pixels. Note that we order levels from 0 at the top of the tree to N at the
image level. The neighbourhood structure we impose consists of n pixels in
an isotropic neighbourhood, such as the standard first and second order MRF
models [2]:

N ={(i =1,j —=m. k), +m’ < R*,1# m # 0} (1)



Typically, we have chosen a radius R = 1 or R = /2, implying the 4 or 8
neighbours commonly used in image processing [12]. In addition, we define
the parent set, on level £ — 1, which in the simplest case consists of the so
called quadtree father

Pijre = ([i/2], [3/2], k = 1) (2)

where |.| denotes the floor of a real number. In more complex cases, we have
used 8 neighbours on the same level and 4 on the ‘father’ level. The crucial
point about any of these neighbourhood systems is that they imply causality
in scale: in other words, the process at level k is conditioned on that at level
k — 1. This has important consequences for the properties which such fields
can display. For example, it follows immediately that the field is not Markov.
We shall only consider the case where pairwise interactions are involved, so
that the conditional probability defining the RF can be written

P(Xijk = m{Xpgr = n, (¢, 1) € NijpUPiji}) = B 11 p(Xijk = m|Xper = n)
(0,0,7)ENGj R UPij1
(3)

where m,1 < m < M is the label at (i, 7, k), § is a normalising factor and
the pairwise interactions are given by

p(Xijk = m|Xpgr = n) = etrtbromn (4)

where ay, by are constants and &,,, is the Kronecker-§. Equivalently, the
model can be expressed in terms of Gibbs potentials [15]:

Ulwglwg—1) = > Vipmt (wijklwiszjon—1) + > Vig(Wijkswime) (5
Y] (I,m,k)EN;jk

The model encompasses both the quadtree model, for which b, = 0 and the
conventional ‘flat’ MRF, for which b,_; = 0. Note that the model is based on
differences between labels: it specifies that adjacent sites are more likely to
have the same label than not. Because of the product form, the conditioning
of X, depends only on the number of labels of different classes among its
neighbours. The conventional 2 — D discrete MRF was much studied in the
context, of the Ising model for magnetic spin, where it was shown that the
model in 2 — D has a significant feature, namely the occurrence of criticality.
In the binary case, it was established that for large values of the ratio p/(1 —
p), where p is the conditional probability P(X;; = k| X, = k, (m,n) € N;j),
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the model will exhibit two distinct limiting distributions, each corresponding
to a predominant colouring of the lattice [15]. The interesting feature of
the new model, which is not shared by a conventional MRF, is that the
‘low energy’ (high probability) states of the model are not in general single
coloured: the fathers exert a force on their children which discourages uniform
labellings. For example, if there exists on level k a region of constant colour,
of area r2, then the 472 pixels on level k + 1 which represent the same region
would incur a penalty of order 4r for disagreeing with their fathers, via (4);
for large r, this will greatly outweigh that incurred by the approximately
4r boundary pixels which disagree with one or two of their neighbours on
level k4 1. This is quite different from the situation in a conventional MRF,
where any colouring which is nonuniform incurs a cost proportional to the
boundary length, so that the only way to generate significantly nonuniform
labellings is to ‘increase the temperature’, with the result that the typical
sample will have a random textured appearance. Although with the above
asymmetrical neighbourhoods, the field is not Markovian, if we consider the
state of, say, level k of the field conditioned upon that at level £ — 1

P(X} = wp| X1 = wp 1) = e Ukl (6)
Z
where w; is the configuration of the whole image at level ¢ and 7 is the so-
called partition function, then the Markovian/Gibbsian property is restored.
In effect, the configuration at level £ — 1 acts as an ‘external field’ for the
lattice at level k. Unlike a typical such field, this one varies at half the
sampling rate of the image, imposing the coarse structure on its children at
the next level, which adds details, especially in the vicinity of the boundaries.
This is demonstrated in the following theorem:

Proposition 1 Let P(wg|wy—1) define a conditional Markov Random Field
through the potential function in (5) above, where the indexes i/2,j/2 are
taken as integers and the potentials are, without loss of generality, zero if the
two states are identical and satisfy

Vik—1(n|m) > [Niji| %;éani(‘/;c,k(man) >0, m#n (7)

Then the configuration wj which mazimises P(wg|wk—1), for a given configu-
ration wy_1, 1S given by
*
Wijk = Wi/2,j/2,k—1 (8)
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In other words, the most likely configuration on level k,w;, is just a copy of
that on the level above.

Proof: To prove the assertion, note that each site (i,j,k — 1) on level
k — 1 has four children on level k, each of which has the same state in con-
figuration wjy. Similarly, each neighbour of each of these sites will have a
state equal to that of its father on level £ — 1. Suppose that all of these
sites have the same state, m, say. Then any change to another state at
(20 +q,2j + k), q,r € [0,1] must increase the potential at that site, since
it will introduce a disagreement between itself and its father and neighbours.
It follows that only sites on the boundary between two regions with differ-
ent states need be considered. Any such site (i,7,k — 1) can have at most
|Nijk—1] neighbours on level £ — 1 in a different class. Similarly, each child
of such a node can have at most |N; ;x| — 2 neighbours in a different class,
since it will have at least 2 siblings which are also in class m. Hence the
maximum reduction in potential from changing such a site occurs when all
the neighbours have the same state n # m and all 4 children are changed to
n from m:
AU = 4Vipp—1(nlm) — > Vig(n,m) (9)

(s,t,k)G/\/'fjk

where N, is the set of neighbours of (i, j, k) or any of its 3 siblings. But for
any isotropic neighbourhood structure on level k

NGkl < 4Nijie| — 4 (10)
Hence if the potentials satisfy (7), then
AU > 4Vj i (n,m) > 0 (11)

So the change in potential is positive and the state is less likely. Since this
is the worst case, in terms of change in potential, it follows that the state wj
is indeed the most likely one, given wy ;. ¢

Although the result is a simple one, its significance should not be over-
looked: it shows that the structure obtained at coarse scales will be preserved
as details are added. Without such structure preservation, there would in-
deed be little point in having the multiresolution model.

With a tighter constraint on the father-child potential, we can establish
a stronger result, which is summarised in the following:



Theorem 1 Let P(wi|wk_1) define a conditional Markov Random Field through
the potential function in (5) above, where the indexesi/2,j/2 are taken as in-
tegers and the potentials are, without loss of generality, zero if the two states
are identical and satisfy

2
Vik=1 — 2|Niji|Viey > 2k log - (12)

Then the copy configuration wj defined in (8) has a probability
P(wy|wg—1) >1—¢ (13)

Proof: To prove the result, it suffices to note that any configuration differing
from wj has a probability bounded below by that of a Bernouilli process,
whose probabilities are defined by the potentials. This process is defined as
follows: .
_ 0 ifwijer = wigej/2k-1

Aijk = 1 else (14)

Now the associated potentials are taken from the original process:
Vs = Vi1, Vik = Vi (15)

With each configuration wy, is a corresponding ‘error’ configuration ;. Each 0
in A\, has a maximum potential R Vj 5, where R = |N;x| is the neighbourhood
size; this occurs if all of its neighbours are different, while each 1 carries a
cost no less than Vijp—1 — [Nijk|Vije, since it must at the very least disagree
with its father. It follows that the probabiltity of any configuration having
m 0’s is bounded below by

1
Pk(m) > E e_mRVk,k_(QQk_m)(Vklk—l_RVIc,k) (16)
which can be expressed as
Py(m) > p™ g7 (17)
where
eVilk—1—2RVp
p= 1+ eVelk—1—2RVy (18)
Hence the probability of the configuration with 0 errors is just
1
P (0) > (19)

(1 4 2BV k= Vijk—1 )221c
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so, if
22 2MVik~Vhin1 > ¢ (20)

then P;(0) > 1 — ¢, from which the result follows immediately.c

It is perhaps obvious from the construction that this is a weak bound,
since the vast majority of error configurations actually increase the boundary
length. That has little impact, however, on the general conclusion that the
spread of the distribution around wj can be tightly controlled by the choice
of interaction potentials.

To illustrate how the father level affects the process, figure 3(a) shows an
array of 4 X 4 sample images generated from the same 16 x 16 father image
using different combinations of father-child and neighbour interactions. Each
32 x 32 image within this array is the result of 2000 iterations, more than
sufficient for an array of this size to approach the stationary distribution.
Note that the image at the top left shows complete randomness, as both
interactions are 0 in this case, while moving from top to bottom the neigh-
bour interaction strength increases and from left to right the father-child
interaction increases. This shows rather clearly the effect of the father over
a wide range of interaction strengths: there is a doubling of the interaction
potential for each step to the right or downwards. Note that in this and
the other sample images, the image boundary pixels are fixed as ‘black’ (0),
so that, in the absence of father-child interactions, for the higher levels of
neighbour interaction, the stationary distribution will have a maximum when
all pixels are black. It can also be seen that all of the images in the top row
have random, isolated pixels. This is because, in the absence of neighbour
interactions, the process is Bernouilli, with each pixel’s colour being chosen
independently; as we move right along the row, however, the probability of
its colour being different from its father’s decreases geometrically.

Although the 4 — neighbour field is simple, it is rather limited in its
ability to produce smooth boundaries and so we also examined the use of
the 8 — neighbourhood. Using the 8 — neighbours as conditioning elements
produces the result shown in figure 3(b). In comparison with 3(a), the regions
are noticeably smoother, with the gaps in the nonconvex shape being filled,
but the same general trends can be observed as the interaction strengths
increase. For example, with greater potentials to the father level, small
regions tend to survive better. This is evident in the images on the right side
of the array. Another obvious defect of the above models is that boundaries
tend to align with the quadtree, which introduces a ‘blockiness’ into both



the statistical structure and the sample images. A simple way around this
problem is to make the influence of the father level £ — 1 zero for any site
at a boundary (ie. having a neighbour of a different colour). This is simply
accomplished by setting the father-child potential to 0 whenever the father
has a neighbour in a different class

V;'jk\i/2,j/2,k71(n|m) =0, if Wi/2,5/2,k—1 # Wimk—1, for some(l,m, k—1) € -N’i/Z,j/2,k71
(21)

This is equivalent to extending the set of neighbours of (i, j, k) on level & — 1

to a larger set of pixels. As a demonstration of the effect of the two changes,

it is simple to show that the most likely configuration on level k, wj, tends

to remove corners propagated from level £ — 1:

Proposition 2 Let wi_y be a configuration of level k — 1 of a MMRF and
let wj, be the corresponding most likely configuration on level k, based on
pairwise potentials using 8 — neighbours and such that fathers on boundaries

have interaction potential 0 with their children. Let (i,j, k — 1) be a pizel on
level k — 1, such that

Wijk—1 7 My Wpgk—1 = M; (D, q) € z%’k—l (22)

where m € [0,1] and the neighbourhood N7, | = {(i +d,j,k —1),(i,j +
e,k—1),(i+d,j+ek—1),d=1lor d= -1 ande = lor e = —1, are
neighbours of (i, j, k — 1) within a block of size 2 X 2 pizels. Suppose that the

configuration wy, has the property that

w;p—l—r,Qq—i—s,k =m, 1,§€ [07 1]7 (pv q, k— 1) S i?‘k—l (23)
ie. the children of the 3 neighbours have the same class as their fathers. Then

. 1+d 1+e
Woitt 2juk = M = Ty U= 5 (24)

In other words, the ‘corner’ pizel (2i +t,2j + u, k) is more likely to change
its label than to retain its father’s class. The effect is illustrated in figure 1

Proof: First, observe that since each of the pixels within the 2 x 2 block on
level £ —1 has a neighbour in a different class, the interaction potentials with
their children are 0. It follows that only the interactions on level k£ need be
considered.



corner
at level m
k-1 corner at
n level k
m
m m

Figure 1: The ‘corner effect’ in an 8-neighbour MMRF with boundary effect.
The corner pixel at level & — 1 is refined at level k£ to reduce the boundary
energy.

Next consider the pixel (2i +¢,2j + u, k) on level k. Of its 8 neighbours,
at most 3 have a label other than m in configuration wj. It follows that the
minimum energy label for (2i + ¢,2j + u, k) must be m.¢

A noteworthy consequence of this is that the approximation of a straight
edge does become less ‘jaggy’ as the resolution increases. As an illustration
of the effect of these modifications, figure 4 shows a sample from a binary
process using the 8-neighbours on levels 5 < k < 8, but a quadtree on levels
0 < k < 4. By choosing the model parameters appropriately as functions
of the level, different combinations of structure can be obtained. In this
case, the coarse structure representing the bottom level of the pure quadtree
process is refined by the 8 — neighbour MMRF, resulting in a single, smooth
‘blob’ representing the object. Similar results were obtained after 10,000
iterations, indicating that 4 is in equilibrium. A second example, using a
lower correlation coefficient between neighbours, is shown in figure 6. Note
that the large scale structure in this case is punctuated by some smaller
‘objects’. In both cases, however, the parameters of the field are super-
critical and the boundary sites at each level are fixed at 0, so the most likely
image is black. The sample autocorrelation from a set of 20 images produced
in a similar way is shown in figure 7; not surprisingly, this reflects the large
scale structure of these images.
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Condition Level 8 | Level 7 | Level 6 | Level 5
9 Neighbours | 0.0093 | 0.0101 | 0.0178 | 0.0898
Father 0.0092 | 0.0104 | 0.0171 | 0.0303

Table 1: Prediction error rates from level £ — 1 to k£ using all 9 neighbours
or copying the father level, for figure 4.

2.1 Prediction and Estimation

The above observations suggest that a very high level of compression could
be achieved in representing a sample from such a process. In effect, the
configuration wj, which depends only on the level above, is an excellent
predictor for wy. This is illustrated by the difference pyramid in figure 5,
which shows the absolute error

e = [lwr — wyll (25)

Indeed, it follows from proposition 1 above that, under the conditions of the
proposition, wj is the Maximum Likelihood predicition of level k£ from level
k — 1. In more general cases, however, sampling will be necessary to find the
best predictor

Wijk—1 = argmax P(wylwg-1) (26)

Figure 8 shows the result of simulated annealing over 200 iterations, with
a logarithmic schedule, to predict each level of the 8 — neighbour pyramid
of figure 4 from its father. While the result is visually quite convincing, the
table of error rates 1 shows that there is no improvement over the ‘copy’ from
the father.

Apart from its importance in communications applications, the question
of predictability also relates directly to the Gibbs distribution, which is well
known to maximise entropy for a given expected energy [15]. The appropriate
entropy measure is the entropy conditioned on the neighbours

1
H, (P) = Z P(Wijka cUlmn) log, P(—

Wik W,
Wijk Wimn(L,myn)ENGj L UP;jk ”k| lmn)

(27)

Table 2 shows the sample entropies from the bottom 5 levels of the pyramid
in 4, conditioned both on the 8 neighbours and on only the father. Although
all the entropies are small, representing the very high degree of predictability
in this process, there is a significant benefit in using the context on the same

11



Condition Level 8 | Level 7 | Level 6 | Level 5 | Level 4
8 Neighbours | 0.0026 | 0.0044 | 0.0037 | 0.0080 | 0.0293
Father 0.0758 | 0.0816 | 0.1206 | 0.1967 | 0.3005

Table 2: Conditional entropies in bits/pixel for various levels of the 8 —
neighbour MMREF.

level, over the prediction from the father. More significantly, it should be
noted that the entropy per pixel seems to be headed for 0 as the resolution
increases. The reason for this is clear from the prediction error images in
figure 5: the errors are confined to a narrow region around the edge of the
region. Since the edge is tending to a smooth shape, it will be of length
O(2"), as N increases, resulting in an entropy which tends to zero
lim Hy(P) =0 (28)
k—o00
The other main application of the model is in estimation from noisy data.
At its simplest, we might consider the problem of estimating the image at
one level, X}, say, from noisy data Yj. If we know the image X, 1, we can
use the Conditional Maximum A Posteriori (CMAP) estimator

Xk = arg II)I(&XP(XHYk,Xk_l) (29)
k

where, from (6) above,

V3| X ) P(Xg| Xg1)
P(Ye|Xp—t)

P
P(XilYe Xi) = 24 (30)
the first term on the right being the likelihood. While the CMAP estimate is
simple, there are few practical applications where the images X;,0 <k < N

are available. The obvious alternative is the unconditioned MAP estimate of
all the levels

{X;,i <k} =arg {g?gk}P(Xk,Xk_l, ..... , Xo|V2) (31)

and so on for X;,i < k, which can be expressed via (6) as

P(Y3| X3) P(Xg) &

=1

P(Xp, X1, ooy Xo|Yy) =

12



which avoids assumptions about X, ;, but poses another problem: how to
select X;,7 < k to simultaneously maximise the posterior with respect to
all £ + 1 images. The obvious weakness of this approach is that the data
Y: constrain X;,: < k quite strongly and this ought to be built into the
estimation procedure. This is the goal of the multiresolution MAP (MMAP)
estimator. For the above problem, we start again from the left side of (32),
but now expand as

k
P(Xp, X1, ooy, Xin| Vi) = P(X 1| Y2) H P(X;| X1, Y%) (33)

1=m+1

where we have used the Markov property of the sequence X; and we may
start the estimation on a level other than 0. The interesting feature of this
estimator is that it has a sequential structure: first estimate X,,, then X,
and so on, up to X, using

Vi X)) P(X]X )
P(Yi| X 1)

P(X;|X; 1,Y%) = P (34)
The denominator, for fixed X;_4, is a constant, but there is a gap between the
data Y, and X;. A short cut to the solution is to use the copy configuration
Xiji» which for parameters which are supercritical and satisfy the conditions
of Theorem 1 represents a good predictor for X;. This allows sampling to
be performed on X;. In the binary case, an equivalent procedure is to define
data Y;,i < k, by simply averaging over the block of 2¥~% x 2¥~% pixels on
level k corresponding to each pixel (p,q,i) on level i. It is not hard to see
that in this case, we can replace (33) by

k
P(Xty Xpot, eooes XonlVes Yoty ooy Vi) = P(XYe) [ P(Xil X1, Vi)

i=m+1

(35)
As a simple example, consider figure 9, which shows the pyramid obtained
from the image at the bottom level of figure 4, corrupted by additive white
Gaussian noise of unit variance. The pyramid, which represents the ‘raw’
data for the estimator, was obtained using simple block averaging, as in a
quadtree: each pixel on level k is the average of its 4 children on level k£ + 1.
The estimation problem is to reconstruct the original binary pyramid from
these data. The data are conditionally normal

p(Yijell) = N(l,ve), 1 €10,1] (36)

13



where the variance on level k, vy = vp11/4 and vg = 1. The estimator we
use is an extension of the stochastic (Gibbs Sampling) methods described in
[10], which takes account of the conditioning of level k by its father & — 1.
Thus the MMAP estimate is defined by

~ A

Xijr = arg max P(Xije = m|Yijk, Xpgr, (0, q,7) € Nije U Piji) (37)

where Y},,,, are the noisy data. There are two distinct procedures for im-
plementing the estimator, which we have dubbed MMAP and sequential
(SMMAP) in the sequel. The MMAP method visits each level k on each iter-
ation, thus sampling different scales ‘simultaneously’. The sequential method
iterates on one level at a time, with level k£ only being estimated after level
k — 1 converges, making it analogous to the conditional MAP procedure.

The estimates were initialised by thresholding level 4 in the data pyra-
mid and thereafter using conditioned Gibbs sampling. After 100 iterations
at each level, the result in figure 10 was obtained. The error rates at the var-
ious levels for each estimator are shown in Table 3 below. Although only few
iterations were used, the results at high resolutions are significantly better
than were obtained by simply copying the initial level or using a conventional
8 — neighbour MRF estimator. Of the MMAP estimators, the MMAP algo-
rithm performed better than either CMAP or SMMAP. Closer examination
shows that the MMREF estimate gives a more or less constant error rate of
50% per boundary pixel, across a range of scales. This is because the data
are uncertain in these areas - averaging across the boundary does not im-
prove this. Figure 11 shows the number of sites changing on each iteration,
for each of the 4 levels. It shows that after an initial burst at each level,
occupying a few iterations, the sampler settles down to a steady state where
only a handful of sites change on any iteration. The next image 12 shows
that even with a random initial configuration, the sampler quickly converges
to a point where only a few sites change on each iteration. Note that one
iteration here refers to a scan-order visit to every pixel on a given level.

We conclude this example by making the following observations:

1. Both MMAP estimators perform well on this problem - better than
those based on simple MRF or low-resolution thresholding.

2. The relatively worse performance of the SMMAP algorithm shows the
effect of constraining the estimate at level £ by a single realisation at
level k£ — 1, rather than sampling over the whole space simultaneously.

14



Estimator Level 8 | Level 7 | Level 6 | Level 5 | Level 4

CMAP 0.0044 | 0.0084 | 0.0164 | 0.0332 | 0.0547
MMAP 0.0036 | 0.0074 | 0.0149 | 0.0332 | 0.0547
SMMAP 0.0047 | 0.0083 | 0.0156 | 0.0292 | 0.0547

8-neighbour MRF | 0.0126 | 0.0094 | 0.0171 | 0.0332 | 0.0508
Copy from lev. 3 | 0.0155 | 0.0128 | 0.0178 | 0.0302 | 0.0547

Table 3: Error rates in MMAP estimates at various levels, compared with
rate from 8-neighbour MRF and from thresholding at level 4 and copying.

3. Both are fast, requiring of the order of 20 iterations to obtain satisfac-
tory estimates.

4. However, since the cost of an iteration at high resolution far out-
weighs that at low resolution, there is a computational advantage to
the SMMAP approach because it allows a tailoring of the annealing
schedule to each level separately.

5. A further advantage of SMMAP is that the estimate at level k£ can be
used to initialise model parameter estimation at level £ 4+ 1, eg. using
the sampling method described in [17].

A more realistic case is the image shown in figure 13, which again is a
binary image with added white Gaussian noise at a standard deviation of 1,
ie. equal to the difference between black and white. The estimation error
at the highest resolution, using the MMAP algorithm in this case was 1.3%,
better than most results reported on comparable problems in the literature
[5],[17],[27]. The resulting estimate is shown in figure 14; apart from the
corners, where the model does not fit the data, the estimate is visually quite
good.

In more general cases, the measurements are not all the result of averaging
noisy binary image data, of the form of fig. 9. Instead, let the data be given
by the pyramid {Y;, m < i < k}, where

k
P(Yi, Y1, oo, Yoo | Xy Xp1y oove, Xin) = H P(Y;|X;) (38)

i=m

In other words, the data on level i are the result of applying an independent
noise process to the image at that level. We wish to preserve the sequential
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structure in developing a solution to the MAP problem

{Xom<i<ky=arg max  P(Xp Xt XonlVh, Vi o Vo) (39)

Now the posterior in this case is easily obtained with the help of (6) and (38)

P(X) P(Yin| Xon) T 1 P(XG|Xi0) P(Y;]X5)

P(Xkan—l---aXm|Yka}/k—1a"-7Ym) = P(Yk Yk Y. )
) —1y 9 dm

(40)
where the denominator is a constant. This has significant implications for
how we may obtain a MAP estimate: it leads us directly to the MMAP and
SMMAP algorithms described above. Initialisation at level m is readily done
if we assume that the father-child potential V,,,—1 = 0; alternatively, ML
estimation can be used at that level (as in the binary example of fig. 9). In
the MMAP estimate, (40) can be used to sample simultaneously from the
posterior distribution, while in SMMAP, sampling at level £ only starts when
that on level £ — 1 terminates. This implies that, while SMMAP may give
an excellent approximation to the MAP estimate, it is not MAP, but in this
case, MAP=MMAP.

2.2 Hidden Models

While there are few segmentation tasks in which this discrete model directly
reflects image intensity or colour, it is very useful as a hidden model: the state
of the site (7, j, k) controls the parameters of a local image model defining
the characteristics within the region of 2¥ x 2* pixels associated with that
site. In that case, there will be a measurement vector Y ;j, associated with
the site, which depends on the label, ie

p(Y k| Xije = m) # p(Y | Xije = n), if m #n (41)

The measurement vector might represent a histogram of intensity or colour
or some suitable texture measure, for example. The Maximum Likelihood
(ML) estimator for the label is then

~

Xijk = argmax p(Y 5 Xij = m) (42)

which is simple, but ignores the prior probability. The MMAP estimator in
this case is similar in spirit to the SMAP estimator of [5], but differs in one
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important respect: sampling is used to obtain the estimate at each level. As
in SMAP, we compute the estimates sequentially over scale, starting at some
coarse scale k,;,, for which we use the conventional MAP estimate, obtained
by a simulated annealing process

ngk = arg mn%x P(m|Y1,]k7 {quka quka (pa q, k) € /\/;jk}) (43)

In effect, we are assuming indepepdence of level k,,;, from level k,,;, — 1. At
subsequent levels, the labelling X;;; is used to condition that at level k + 1:

Xijk = arg mn%x P(m|ngka {qu1'7 qu1'7 (p, q, T) € Mjk U Pzgk}) (44)
This gives the estimation a causal direction through scale, whilst using the
non-causal, iterative process of annealing at each scale. Moreover, the ‘copy’
configuration is used as the initial labelling at level k.

In many practical applications, using pairwise potentials and difference
measurements, we end up with a normal model for the likelihoods, of the
general form

P(Y iji=Y pgrlwi, wr—1) = N ((Wijr, Wpgr)s S(Wijks Wpgr))s (95 a5 7) € NigeUPijx

(45)
where the normal mean and covariance parameters depend only on the classes
at the two sites. These parameters can be estimated on-line, given the cur-
rent classification at level k. This illustrates another advantage of using the
multiresolution approach: although the equilibrium distribution will in prin-
ciple be approached from any initial configuration, in practice, it will happen
sooner if the initial configuration is close to equilibrium. As with the prior,
the posterior distribution of wy will be a Gibbs distribution conditioned on
the configuration on level £ — 1 and so sampling methods can be used to
locate the maximum.

2.3 Application to Texture Segmentation

In its application to texture segmentation, the model is hidden, with each site
on level k representing a square region of nominal size 2V=% x 2V~ pixels,
from which texture measurements are taken, as in [9]. In fact, windows with
a 50% overlap are used to reduce estimation artefacts. It is convenient to
specify the model in terms of the Gibbs potentials. The interaction potential
defining the MRF at level k in the tree is based on pairwise interactions:

Vije(m|n) = a4+ b||Y i, — Y i |*0mns (pyq,7) € Nijie U Piji (46)
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where |[|.]| is a suitably chosen norm, such as the Euclidean norm. In other
words, there is a cost based on feature similarity associated with sites in the
same class. Sampling is then based on the corresponding Gibbs distribution

_U@m)

P(m) xe™ T (47)

where the position indices have been suppressed and 7' is the scale parameter,
or temperature, which is varied using a logarithmic annealing schedule [10]
From these definitions, the SMMAP algorithm becomes:

For level k& > kpin, bk < N

1. Sample at every site on level &k using measurements Y ;;; and a loga-
rithmic annealing schedule, until no change is detected over a number
I, of iterations over the image at that scale.

2. Use labels on level k£ as the initial labelling on level £ + 1, by copying
labels from fathers to children in the quadtree and to condition the
simulation on level £ + 1.

The initial labelling at level k,,;, is random.

While the above algorithm provides a general framework for segmenta-
tion, its effectiveness depends critically on the texture descriptors used. We
have four local measurements, which are based on the ‘deterministic+stochastic’
decomposition, which is a generalisation of the Wold decomposition of signals
[13]. The four components are:

1. The difference between the average gray level in the blocks.

2. Two measures associated with the deterministic component, based on
an affine deformation model

—

fs(g) = fs’(Ail(g_ )Z)) + 1/5(5) (48)

where fs(.) represents the patch of an image centred at site s, site
s = (I,m,k) is a 4-neighbour of site s = (i,7,k), A is that 2 x 2
nonsingular linear co-ordinate transform and Y that translation which
together give the best fit in terms of total deformation energy between
the two patches. These are identified using the method described in
[13], which makes use of local Fourier spectra calculated at the appro-
priate scale using the Multiresolution Fourier Transform (MFT) [26].
The deformation energy consists of:

18



(a) The deformation term || A—1I||? represents the amount of ‘warping’
required to match the given patch using its neighbour.

(b) The error term ||v,(€)||? is the average residual error in the ap-
proximation.

3. A measure for the stochastic component, based on differences in the
spectral energy densities estimated at each site via the MFT, | f(£,d, o) %,
where

—

A=

- 1 = el 5_5 —gom.T
f€3,0) = %/dx F@wE=2) e (49)

o

is the (continuous) MFT at spatial co-ordinate 5, frequency @ and scale
o [26], which is approximated by a sampled version in practice. This is
similar to many texture classification methods based on local spectra,
Gabor filters or autocovariance estimates [27].

Each of these measures is scaled by the corresponding (within-class or between-
class) sample variance and the four are added with appropriately chosen
weights to give the final interaction energy. Only the gray level difference is
used for the father interaction, however.

The neighbour conditional probabilities are estimated directly from the
data during the sampling process, as are the within-class and between-class
variances. At levels k > k,,;,, the priors take into account the classification
on the previous level, £ — 1: the prior probability that a child has the same
class as its father is approximated by

P(Xiji = Xijajpop 1) = 1 — plirzirzi=t, (50)

where (i/2,7/2/k — 1) is the father site, p < 1 is a constant and d; is the
shortest distance between site s and a site having a different class, ie. it
represents distance to the boundary. In the experiments reported below,
p = 0.5, implying that fathers have no effect at the boundary, which ensures
that boundaries are not biased by the quadtree.

In addition , a line process has been introduced to increase the accuracy of
the segmentations using an assumption of smoothness of the boundary, since
texture measurements require a minimum sample size, which we have found
in practice to correspond to a sampling interval of 4 x 4 pixels with the above
texture measures. The line process is also based on pairwise interactions
between neighbouring boundary blocks, based on the oriented line joining
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the estimated positions of the putative boundary in each block. Boundary
processing is also a simulation designed to find the Bayesian estimate, but
occurs after the regions have been identified on a given level. Only region
sites having neighbours which belong to a different class are identified as
potentially boundary-containing and the process is run on those alone. From
these sites, a subset is selected by stochastic labelling, using a potential
function which penalises curvature in the line joining the estimated centroids
of the putative boundary segment in each block. The potential has the form

M

V(Y,Z) = (sinYs +sinZ3) Y _(V; — Z)* (51)

i=1

where the first two vector components represent the centroid position (X7, X5)
and the third component is the angular difference between the boundary an-
gle at (X7, X3) and the line joining the two centroids, as illustrated in figure
2. The centroid position and boundary angle at a site are estimated using
the MFT-based technique first described in [26]. In this way, both texture
and boundary features can be computed within the same framework. Full
details can be found in [19]. A summary of the boundary labelling algorithm
follows:
At each temperature T

1. For each site 1 € B
2. Calculate the potential V(Y;,Y;), j € Np,
3. Sample from the Gibbs distribution to determine the label v;

A logarithmic annealing schedule is again followed for the boundary process-
ing, which runs after the region processing is complete at a given level. In
the present scheme, no information is propagated from ‘boundary fathers’ to
their children and sites in the boundary set B are labelled as either B or B.
This is a significantly different model from the classic line schemes based on
pixel labelling (eg. [10], as it is designed to fulfil a different role.

The experiments we have used to test the model demonstrate its ability
to segment textured images of various types, as can be seen from figures 15
and 16. In figure 15, the refinement of the segmentation through the MMAP
procedure is evident, as is the improvement due to the boundary process.
Table 4 summarises the performance of the algorithm on this data. The
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Figure 2: ‘Distance’ between boundary segments

Table 4: Segmentation error rates and number of iterations per pixel (# i/p
) for image of fig. 15.

level C Region Process Boundary Process
k Error rate (%) | # i/p | Error rate (%) | # i/p
3 8 7.053 0.189 3.079 0.018
4 6 1.640 0.074 1.059 0.009
5 4 1.265 0.349 0.485 0.016
6 3 0.716 2.191 0.365 0.045
| Total # i/p | | 2.803 | | 0.088

error rate drops to less than 1% with the boundary process at the highest
resolution and this is achieved at a normalised number of iterations per pixel
of only 2. This figure is the sum of contributions from the various levels,
each weighted by the number of pixels on that level. Note that the algorithm
terminates 2 levels above the image level because this is the highest resolution
for which we can obtain meaningful texture and boundary estimates.

In the second figure, a summary of the high resolution segmentations is
shown, for several combinations of two or more textures. It should be noted
that no additional information on the number of textured regions is required
by the algorithm - it is completely unsupervised. These pictures illustrate the
effectiveness of the overall technique and the utility of the boundary process,
which both improves the subjective quality and lowers the misclassification
rates to be among the best reported in the literature - typically of the order
of 1 — 2%. The test images were 256 x 256 pixels, with the textures taken
from Brodatz’s book. Because of the multiresolution estimation, the overall
number of iterations required to attain convergence was low - in the examples
shown in figure 16, the number of iterations/pixel was of the order of 4.

We have compared these results with those presented by a number of
authors, including [16] [4],[5], [17],[27] and [20]. The results presented here
are superior in terms of error rates to those and compare well with any we

21



have seen in the literature on image segmentation.

3

Conclusions

In this paper, we have presented a new model for image analysis, which
combines the notions of multiple resolutions and MRF’s to provide a powerful
way of describing image structure statistically. Correspondingly, a new form
of MAP estimator - the Multiresolution MAP estimator - was presented. The
model was illustrated with examples of image segmentation, in which it has
been shown to be among the most effective methods yet described for the

task.

1.

The advantages of the new model may be summarised as:

By conditioning the MRF at level k£ by that on level & — 1, uniform la-
bellings are no longer the ‘ground’ state of the model. This avoids one
of the most obvious weaknesses of conventional MRF models. By using
an appropriate neighbourhood and conditioning the father-child inter-
actions on the presence of boundaries, it is possible to trade off bound-
ary smoothness against the degree of structure preservation. This is
a completely new feature of the model, which it does not share with
previous image models.

The final state at level k, as well as conditioning the MRF at level k+1,
can be used as an initial state at level k + 1, simply by copying labels
from fathers to their four quadtree children. Although the final MAP
estimate should be independent of the initial state, the time taken to
get there is affected by the initialisation. Using the labelling in this
way speeds up computation.

By appropriately combining the spatially invariant MRF structure with
the quadtree, the blocking and non-stationarity artefacts of that model
are greatly reduced.

The model parameters, which generally are unknown, can be estimated
for the higher resolutions by using the segmentation obtained at the
coarser scales.

Again because of the conditioning by coarse scales, the results are not
critically dependent on the number of labels M.
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Although the work reported here is encouraging, much remains to be done
before it can be considered complete. For example, the line process which
was used to improve the estimate of the boundary, does not interact with the
region labelling. Similarly, the segmentation model has not been tested with
other image features. Work is currently under way to address these issues.
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Figure 3: Tllustrating the effect of father-child interactions. Each of the 16
sub-images is sampled at 32*32 pixels using (a) 4-neighbours and the father
as the conditioning elements and (b) using 8-neighbours and father. From
top to bottom, the neighbour interaction energy increases, while from left
to right the father-child interaction increases. Each image is the outcome of
2000 iterations using a common seed.



Figure 4: Sample from a MMRF process. The bottom level of the pyramid,
k=8, is 256 by 256 pixels. 1000 iterations were used at each level.
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Figure 5: Illustrating the dependence between levels in the process: the
difference between each level of the pyramid and the ‘copy’ from the level
above. With supercritical parameters, the MRF acts to refine the existing
structure.
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Figure 6: Sample a second MMRF process with lower interaction potentials.
The number of scales is 8, with the bottom level image being 128 by 128
pixels. The neighbourhood size was 8 for the bottom 3 levels of the pyramid
and 500 iterations were run at each of these scales. The top 4 levels were
generated with a pure quadtree model.
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Figure 8: Prediction of level k£ from level £ —1 in the image of figure 4, using
simulated annealing over 200 iterations.
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Figure 9: Noisy data pyramid obtained by quadtree averaging of image at
bottom level, which has unit variance additive white Gaussian noise.
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Figure 10: MMAP estimates of image in figure 4 from the noisy data of figure
9.
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Figure 11: Plot of the number of changes on each iteration of the sampler,
for levels 8 (top curve) up to 5(bottom curve).

Figure 12: Number of changes on each iteration, for random initial configu-
ration (top) and state copied from father (bottom) on level 8 of the pyramid.
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Figure 13: Noisy ‘shapes’ image with SNR=0dB.

Figure 14: Full resolution MMAP estimate of image in figure 13.
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Figure 15: Segmentation results of Image I. (

The results before the bound-

)
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ary process is executed at level 3 to 6 respectively. (b) The results after the

boundary process is executed at level 3 to 6 .



Figure 16: Summary of final segmentation results on various texture combi-
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