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Multiresolution Random Fields and TheirAppli
ation to Image AnalysisRoland Wilson�and Chang-Tsun LiyDepartment of of Computer S
ien
e,University of Warwi
k,Coventry CV4 7AL, UKyDepartment of Ele
tri
al Engineering, CCIT, Taiwan, ROC.August 20, 1999Abstra
tIn this paper, a new 
lass of Random Field, de�ned on a multires-olution array stru
ture, is de�ned. These 
ombine earlier, tree basedmodels with the more 
onventional MRF models. The fundamentalstatisti
al properties of these models are investigated and it is provedthat they 
an avoid some of the obvious limitations of their prede
es-sors, in terms of modelling realisti
 image stru
tures. Predi
tion andestimation from noisy data are then 
onsidered and a new pro
edure:Multiresolution Maximum a Posteriori estimation, is de�ned. Theseideas are then applied to the problem of analysing images 
ontaininga number of regions. It is shown that the model forms an ex
ellentbasis for the segmentation of su
h images.Keywords: Markov random �elds, image segmentation,Bayesian estimation.�Corresponding Author
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1 Introdu
tionAmong the statisti
al approa
hes to image modelling, Markov Random Fields(MRF's) have been around about the longest [28℄, [6℄,[14℄. Re
ently, however,they have gained signi�
ant attention [8℄ [10℄ [18℄ [22℄ [23℄ [25℄, espe
ially inthe segmentation of regions of more or less uniform 
olour or texture. For ex-ample, Geman et al. [9℄ used the Kolmogorov-Smirnov non-parametri
 mea-sure of di�eren
e between the distributions of spatial features extra
ted frompairs of blo
ks of pixel gray levels, with MAP estimation of the boundary.Panjwani et al. [23℄ adopted an MRF model to 
hara
terise textured 
olourimages in terms of spatial intera
tion within and between 
olour planes. Ina te
hnique whi
h is similar to that used in [27℄, Bouman and Shapiro usedsequential maximum a posteriori (SMAP) estimation in 
onjun
tion with amulti-s
ale random �eld (MSRF) [5℄ , whi
h is a sequen
e of random �elds atdi�erent s
ales. Other work exploring the multiresolution approa
h to MRF'sis des
ribed in [7℄, [1℄,[21℄,[16℄ and [24℄. The last two of these papers pointout the diÆ
ulties in preserving the Markovian properties, whi
h require alo
ality 
onstraint, within a sampling s
heme whi
h implies the violation ofthat 
onstraint. On the other hand, there is ample eviden
e that multireso-lution pro
essing 
an lead to highly eÆ
ient algorithms in many areas - fromimage restoration to opti
al 
ow.The upsurge in interest in MRF's has been prompted by the work of Besag[2℄ and the Gemans [10, 9℄, largely be
ause of the new approa
hes to Bayesianor Maximum a Posteriori (MAP) estimation. Although expensive 
omputa-tionally, these algorithms provide a relatively simple way to approa
h an op-timal estimate using the prin
iples of sto
hasti
 sampling, or Markov ChainMonte Carlo methods [11℄, as they are sometimes 
alled. Alternatively, it isoften possible to get adequate results with deterministi
 pro
edures, su
h asBesag's Iterated Conditional Modes (ICM) algorithm [3℄. In any event, MAPestimation based on non-
ausal MRF's su�ers from several drawba
ks whenapplied to images. Apart from the 
onsiderable 
omputational burden, thesimpler models have `low energy' states whi
h represent uniform 
olourings,so that if an MCMC algorithm is allowed to run long enough, it will tendto produ
e results whi
h re
e
t this, espe
ially if the data are noisy. On theother hand, deterministi
 algorithms su
h as ICM 
an be
ome trapped in lo-
al minima, also an undesirable property. While there has been a lot of workshowing the eÆ
a
y of multiresolution methods, these have often been jus-ti�ed on heuristi
 grounds. The notable ex
eptions, [7℄,[1℄, [21℄, [5℄, tend to2



rely on palpably unrealisti
 models, su
h as those based on quadtrees, whi
hare prone to the blo
king artefa
ts asso
iated with the sampling s
heme. At-tempts to avoid these problems tend to remove the link to the model, to agreater or lesser extent, unfortunately.The work des
ribed in this paper presents a new attempt to marry theideas of the MRF and multiple resolutions. As su
h, it is more 
losely re-lated to the work of Bouman than the other multiresolution approa
hes tothe problem. It also starts from a quadtree pro
ess, in whi
h the passagefrom 
oarse to �ne s
ales 
an be des
ribed as a Markov Chain. It di�ersfundamentally, however, in the pro
ess by whi
h ea
h s
ale or resolution is
onditioned on its immediate prede
essor in s
ale: whereas in the simplemodel, a pixel at a given s
ale depends only on its an
estors in s
ale, in thenew model, it is also dire
tly dependent on its neighbours at its own s
ale.In e�e
t, this makes the model a 
ross between a 
onventional MRF, ap-plied at a single resolution and the models proposed by Bouman and others[7℄, [1℄, [21℄. This allows it to model image stru
tures, su
h as multiple re-gions having smooth boundaries, in a mu
h more realisti
 way than previoussto
hasti
 image models. The next se
tion presents the ba
kground theoryof the new model. This is followed by a des
ription of its appli
ation tothe problem of segmenting images into homogoneous regions from un
ertaindata. The paper is 
on
luded with a dis
ussion of the new model and itspossible extensions.2 Multiresolution Random FieldsThe feature of a Markov Random Field whi
h makes it attra
tive in appli
a-tions is that the state of a given site depends expli
itly only on intera
tionswith its neighbours [10℄. We model an image as a sequen
e of MRF's, 
on-forming to a quadtree stru
ture, with a nominal top level 0 and N levelsbelow that, level k having 2k � 2k sites for a �nite image of size 2N � 2Npixels. Note that we order levels from 0 at the top of the tree to N at theimage level. The neighbourhood stru
ture we impose 
onsists of n pixels inan isotropi
 neighbourhood, su
h as the standard �rst and se
ond order MRFmodels [2℄: Nijk = f(i� l; j �m; k); l2 +m2 � R2; l 6= m 6= 0g (1)3



Typi
ally, we have 
hosen a radius R = 1 or R = p2, implying the 4 or 8neighbours 
ommonly used in image pro
essing [12℄. In addition, we de�nethe parent set, on level k � 1, whi
h in the simplest 
ase 
onsists of the so
alled quadtree father Pijk = (bi=2
; bj=2
; k � 1) (2)where b:
 denotes the 
oor of a real number. In more 
omplex 
ases, we haveused 8 neighbours on the same level and 4 on the `father' level. The 
ru
ialpoint about any of these neighbourhood systems is that they imply 
ausalityin s
ale: in other words, the pro
ess at level k is 
onditioned on that at levelk � 1. This has important 
onsequen
es for the properties whi
h su
h �elds
an display. For example, it follows immediately that the �eld is not Markov.We shall only 
onsider the 
ase where pairwise intera
tions are involved, sothat the 
onditional probability de�ning the RF 
an be writtenP (Xijk = mjfXpqr = n; (p; q; r) 2 Nijk[Pijkg) = � Y(p;q;r)2Nijk[Pijk �(Xijk = mjXpqr = n)(3)where m; 1 � m � M is the label at (i; j; k), � is a normalising fa
tor andthe pairwise intera
tions are given by�(Xijk = mjXpqr = n) = ear+brÆmn (4)where ak; bk are 
onstants and Æmn is the Krone
ker-Æ. Equivalently, themodel 
an be expressed in terms of Gibbs potentials [15℄:U(!kj!k�1) =Xi;j Vkjk�1(!ijkj!i=2;j=2;k�1) + X(l;m;k)2Nijk Vk;k(!ijk; !lmk) (5)The model en
ompasses both the quadtree model, for whi
h bk = 0 and the
onventional `
at' MRF, for whi
h bk�1 = 0. Note that the model is based ondi�eren
es between labels: it spe
i�es that adja
ent sites are more likely tohave the same label than not. Be
ause of the produ
t form, the 
onditioningof Xijk depends only on the number of labels of di�erent 
lasses among itsneighbours. The 
onventional 2�D dis
rete MRF was mu
h studied in the
ontext of the Ising model for magneti
 spin, where it was shown that themodel in 2�D has a signi�
ant feature, namely the o

urren
e of 
riti
ality.In the binary 
ase, it was established that for large values of the ratio p=(1�p), where p is the 
onditional probability P (Xij = kjXmn = k; (m;n) 2 Nij),4



the model will exhibit two distin
t limiting distributions, ea
h 
orrespondingto a predominant 
olouring of the latti
e [15℄. The interesting feature ofthe new model, whi
h is not shared by a 
onventional MRF, is that the`low energy' (high probability) states of the model are not in general single
oloured: the fathers exert a for
e on their 
hildren whi
h dis
ourages uniformlabellings. For example, if there exists on level k a region of 
onstant 
olour,of area r2, then the 4r2 pixels on level k+1 whi
h represent the same regionwould in
ur a penalty of order 4r2 for disagreeing with their fathers, via (4);for large r, this will greatly outweigh that in
urred by the approximately4r boundary pixels whi
h disagree with one or two of their neighbours onlevel k+1. This is quite di�erent from the situation in a 
onventional MRF,where any 
olouring whi
h is nonuniform in
urs a 
ost proportional to theboundary length, so that the only way to generate signi�
antly nonuniformlabellings is to `in
rease the temperature', with the result that the typi
alsample will have a random textured appearan
e. Although with the aboveasymmetri
al neighbourhoods, the �eld is not Markovian, if we 
onsider thestate of, say, level k of the �eld 
onditioned upon that at level k � 1P (Xk = !kjXk�1 = !k�1) = 1Zk e�U(!k j!k�1) (6)where !i is the 
on�guration of the whole image at level i and Zk is the so-
alled partition fun
tion, then the Markovian/Gibbsian property is restored.In e�e
t, the 
on�guration at level k � 1 a
ts as an `external �eld' for thelatti
e at level k. Unlike a typi
al su
h �eld, this one varies at half thesampling rate of the image, imposing the 
oarse stru
ture on its 
hildren atthe next level, whi
h adds details, espe
ially in the vi
inity of the boundaries.This is demonstrated in the following theorem:Proposition 1 Let P (!kj!k�1) de�ne a 
onditional Markov Random Fieldthrough the potential fun
tion in (5) above, where the indexes i=2; j=2 aretaken as integers and the potentials are, without loss of generality, zero if thetwo states are identi
al and satisfyVkjk�1(njm) � jNijkjmaxn 6=m Vk;k(m;n) > 0; m 6= n (7)Then the 
on�guration !�k whi
h maximises P (!kj!k�1), for a given 
on�gu-ration !k�1, is given by !�ijk = !i=2;j=2;k�1 (8)5



In other words, the most likely 
on�guration on level k; !�k, is just a 
opy ofthat on the level above.Proof: To prove the assertion, note that ea
h site (i; j; k � 1) on levelk � 1 has four 
hildren on level k, ea
h of whi
h has the same state in 
on-�guration !�k. Similarly, ea
h neighbour of ea
h of these sites will have astate equal to that of its father on level k � 1. Suppose that all of thesesites have the same state, m, say. Then any 
hange to another state at(2i + q; 2j + r; k); q; r 2 [0; 1℄ must in
rease the potential at that site, sin
eit will introdu
e a disagreement between itself and its father and neighbours.It follows that only sites on the boundary between two regions with di�er-ent states need be 
onsidered. Any su
h site (i; j; k � 1) 
an have at mostjNi;j;k�1j neighbours on level k � 1 in a di�erent 
lass. Similarly, ea
h 
hildof su
h a node 
an have at most jNi;j;kj � 2 neighbours in a di�erent 
lass,sin
e it will have at least 2 siblings whi
h are also in 
lass m. Hen
e themaximum redu
tion in potential from 
hanging su
h a site o

urs when allthe neighbours have the same state n 6= m and all 4 
hildren are 
hanged ton from m: 4U = 4Vkjk�1(njm)� X(s;t;k)2N sijk Vk;k(n;m) (9)where N sijk is the set of neighbours of (i; j; k) or any of its 3 siblings. But forany isotropi
 neighbourhood stru
ture on level kjN sijkj < 4jNijkj � 4 (10)Hen
e if the potentials satisfy (7), then4U > 4Vk;k(n;m) > 0 (11)So the 
hange in potential is positive and the state is less likely. Sin
e thisis the worst 
ase, in terms of 
hange in potential, it follows that the state !�kis indeed the most likely one, given !k�1. �Although the result is a simple one, its signi�
an
e should not be over-looked: it shows that the stru
ture obtained at 
oarse s
ales will be preservedas details are added. Without su
h stru
ture preservation, there would in-deed be little point in having the multiresolution model.With a tighter 
onstraint on the father-
hild potential, we 
an establisha stronger result, whi
h is summarised in the following:6



Theorem 1 Let P (!kj!k�1) de�ne a 
onditional Markov Random Field throughthe potential fun
tion in (5) above, where the indexes i=2; j=2 are taken as in-tegers and the potentials are, without loss of generality, zero if the two statesare identi
al and satisfyVkjk�1 � 2jNijkjVk;k > 2k log 2� (12)Then the 
opy 
on�guration !�k de�ned in (8) has a probabilityP (!�kj!k�1) > 1� � (13)Proof: To prove the result, it suÆ
es to note that any 
on�guration di�eringfrom !�k has a probability bounded below by that of a Bernouilli pro
ess,whose probabilities are de�ned by the potentials. This pro
ess is de�ned asfollows: �ijk = 0 if !ijk = !i=2;j=2;k�11 else (14)Now the asso
iated potentials are taken from the original pro
ess:V �kjk�1 = Vkjk�1; V �k;k = Vk;k: (15)With ea
h 
on�guration !k is a 
orresponding `error' 
on�guration �k. Ea
h 0in �k has a maximum potentialR Vk;k, where R = jNijkj is the neighbourhoodsize; this o

urs if all of its neighbours are di�erent, while ea
h 1 
arries a
ost no less than Vkjk�1 � jNijkjVkjk, sin
e it must at the very least disagreewith its father. It follows that the probabiltity of any 
on�guration havingm 0's is bounded below byPk(m) � 1Z e�mRVk;k�(22k�m)(Vkjk�1�RVk;k) (16)whi
h 
an be expressed as Pk(m) � pm q22k�m (17)where p = eVkjk�1�2RVk;k1 + eVkjk�1�2RVk;k (18)Hen
e the probability of the 
on�guration with 0 errors is justPk(0) � 1(1 + e2RVk;k�Vkjk�1)22k (19)7



so, if 22ke2RVk;k�Vkjk�1 > � (20)then Pk(0) > 1� �, from whi
h the result follows immediately.�It is perhaps obvious from the 
onstru
tion that this is a weak bound,sin
e the vast majority of error 
on�gurations a
tually in
rease the boundarylength. That has little impa
t, however, on the general 
on
lusion that thespread of the distribution around !�k 
an be tightly 
ontrolled by the 
hoi
eof intera
tion potentials.To illustrate how the father level a�e
ts the pro
ess, �gure 3(a) shows anarray of 4� 4 sample images generated from the same 16� 16 father imageusing di�erent 
ombinations of father-
hild and neighbour intera
tions. Ea
h32 � 32 image within this array is the result of 2000 iterations, more thansuÆ
ient for an array of this size to approa
h the stationary distribution.Note that the image at the top left shows 
omplete randomness, as bothintera
tions are 0 in this 
ase, while moving from top to bottom the neigh-bour intera
tion strength in
reases and from left to right the father-
hildintera
tion in
reases. This shows rather 
learly the e�e
t of the father overa wide range of intera
tion strengths: there is a doubling of the intera
tionpotential for ea
h step to the right or downwards. Note that in this andthe other sample images, the image boundary pixels are �xed as `bla
k' (0),so that, in the absen
e of father-
hild intera
tions, for the higher levels ofneighbour intera
tion, the stationary distribution will have a maximum whenall pixels are bla
k. It 
an also be seen that all of the images in the top rowhave random, isolated pixels. This is be
ause, in the absen
e of neighbourintera
tions, the pro
ess is Bernouilli, with ea
h pixel's 
olour being 
hosenindependently; as we move right along the row, however, the probability ofits 
olour being di�erent from its father's de
reases geometri
ally.Although the 4 � neighbour �eld is simple, it is rather limited in itsability to produ
e smooth boundaries and so we also examined the use ofthe 8� neighbourhood. Using the 8 � neighbours as 
onditioning elementsprodu
es the result shown in �gure 3(b). In 
omparison with 3(a), the regionsare noti
eably smoother, with the gaps in the non
onvex shape being �lled,but the same general trends 
an be observed as the intera
tion strengthsin
rease. For example, with greater potentials to the father level, smallregions tend to survive better. This is evident in the images on the right sideof the array. Another obvious defe
t of the above models is that boundariestend to align with the quadtree, whi
h introdu
es a `blo
kiness' into both8



the statisti
al stru
ture and the sample images. A simple way around thisproblem is to make the in
uen
e of the father level k � 1 zero for any siteat a boundary (ie. having a neighbour of a di�erent 
olour). This is simplya

omplished by setting the father-
hild potential to 0 whenever the fatherhas a neighbour in a di�erent 
lassVijkji=2;j=2;k�1(njm) = 0; if !i=2;j=2;k�1 6= !lmk�1; for some(l; m; k�1) 2 Ni=2;j=2;k�1(21)This is equivalent to extending the set of neighbours of (i; j; k) on level k� 1to a larger set of pixels. As a demonstration of the e�e
t of the two 
hanges,it is simple to show that the most likely 
on�guration on level k, !�k, tendsto remove 
orners propagated from level k � 1:Proposition 2 Let !k�1 be a 
on�guration of level k � 1 of a MMRF andlet !�k be the 
orresponding most likely 
on�guration on level k, based onpairwise potentials using 8�neighbours and su
h that fathers on boundarieshave intera
tion potential 0 with their 
hildren. Let (i; j; k� 1) be a pixel onlevel k � 1, su
h that!ijk�1 6= m; !pqk�1 = m; (p; q) 2 N 2ijk�1 (22)where m 2 [0; 1℄ and the neighbourhood N 2ijk�1 = f(i + d; j; k � 1); (i; j +e; k � 1); (i + d; j + e; k � 1), d = 1or d = �1 and e = 1or e = �1, areneighbours of (i; j; k� 1) within a blo
k of size 2� 2 pixels. Suppose that the
on�guration !�k has the property that!�2p+r;2q+s;k = m; r; s 2 [0; 1℄; (p; q; k � 1) 2 N 2ijk�1 (23)ie. the 
hildren of the 3 neighbours have the same 
lass as their fathers. Then!�2i+t;2j+u;k = m; t = 1 + d2 ; u = 1 + e2 (24)In other words, the `
orner' pixel (2i + t; 2j + u; k) is more likely to 
hangeits label than to retain its father's 
lass. The e�e
t is illustrated in �gure 1Proof: First, observe that sin
e ea
h of the pixels within the 2� 2 blo
k onlevel k�1 has a neighbour in a di�erent 
lass, the intera
tion potentials withtheir 
hildren are 0. It follows that only the intera
tions on level k need be
onsidered. 9
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Figure 1: The `
orner e�e
t' in an 8-neighbour MMRF with boundary e�e
t.The 
orner pixel at level k � 1 is re�ned at level k to redu
e the boundaryenergy.Next 
onsider the pixel (2i+ t; 2j + u; k) on level k. Of its 8 neighbours,at most 3 have a label other than m in 
on�guration !�k. It follows that theminimum energy label for (2i + t; 2j + u; k) must be m.�A noteworthy 
onsequen
e of this is that the approximation of a straightedge does be
ome less `jaggy' as the resolution in
reases. As an illustrationof the e�e
t of these modi�
ations, �gure 4 shows a sample from a binarypro
ess using the 8-neighbours on levels 5 � k � 8, but a quadtree on levels0 � k � 4. By 
hoosing the model parameters appropriately as fun
tionsof the level, di�erent 
ombinations of stru
ture 
an be obtained. In this
ase, the 
oarse stru
ture representing the bottom level of the pure quadtreepro
ess is re�ned by the 8�neighbour MMRF, resulting in a single, smooth`blob' representing the obje
t. Similar results were obtained after 10; 000iterations, indi
ating that 4 is in equilibrium. A se
ond example, using alower 
orrelation 
oeÆ
ient between neighbours, is shown in �gure 6. Notethat the large s
ale stru
ture in this 
ase is pun
tuated by some smaller`obje
ts'. In both 
ases, however, the parameters of the �eld are super-
riti
al and the boundary sites at ea
h level are �xed at 0, so the most likelyimage is bla
k. The sample auto
orrelation from a set of 20 images produ
edin a similar way is shown in �gure 7; not surprisingly, this re
e
ts the larges
ale stru
ture of these images.
10



Condition Level 8 Level 7 Level 6 Level 59 Neighbours 0.0093 0.0101 0.0178 0.0898Father 0.0092 0.0104 0.0171 0.0303Table 1: Predi
tion error rates from level k � 1 to k using all 9 neighboursor 
opying the father level, for �gure 4.2.1 Predi
tion and EstimationThe above observations suggest that a very high level of 
ompression 
ouldbe a
hieved in representing a sample from su
h a pro
ess. In e�e
t, the
on�guration !�k, whi
h depends only on the level above, is an ex
ellentpredi
tor for !k. This is illustrated by the di�eren
e pyramid in �gure 5,whi
h shows the absolute error�k = k!k � !�kk (25)Indeed, it follows from proposition 1 above that, under the 
onditions of theproposition, !�k is the Maximum Likelihood predi
ition of level k from levelk� 1. In more general 
ases, however, sampling will be ne
essary to �nd thebest predi
tor !̂kjk�1 = argmax!k P (!kj!k�1) (26)Figure 8 shows the result of simulated annealing over 200 iterations, witha logarithmi
 s
hedule, to predi
t ea
h level of the 8 � neighbour pyramidof �gure 4 from its father. While the result is visually quite 
onvin
ing, thetable of error rates 1 shows that there is no improvement over the `
opy' fromthe father.Apart from its importan
e in 
ommuni
ations appli
ations, the questionof predi
tability also relates dire
tly to the Gibbs distribution, whi
h is wellknown to maximise entropy for a given expe
ted energy [15℄. The appropriateentropy measure is the entropy 
onditioned on the neighboursHk(P ) = X!ijk ;!lmn;(l;m;n)2Nijk[Pijk P (!ijk; !lmn) log2 1P (!ijkj!lmn) (27)Table 2 shows the sample entropies from the bottom 5 levels of the pyramidin 4, 
onditioned both on the 8 neighbours and on only the father. Althoughall the entropies are small, representing the very high degree of predi
tabilityin this pro
ess, there is a signi�
ant bene�t in using the 
ontext on the same11



Condition Level 8 Level 7 Level 6 Level 5 Level 48 Neighbours 0.0026 0.0044 0.0037 0.0080 0.0293Father 0.0758 0.0816 0.1206 0.1967 0.3005Table 2: Conditional entropies in bits/pixel for various levels of the 8 �neighbour MMRF.level, over the predi
tion from the father. More signi�
antly, it should benoted that the entropy per pixel seems to be headed for 0 as the resolutionin
reases. The reason for this is 
lear from the predi
tion error images in�gure 5: the errors are 
on�ned to a narrow region around the edge of theregion. Sin
e the edge is tending to a smooth shape, it will be of lengthO(2N), as N in
reases, resulting in an entropy whi
h tends to zerolimk!1Hk(P ) = 0 (28)The other main appli
ation of the model is in estimation from noisy data.At its simplest, we might 
onsider the problem of estimating the image atone level, Xk, say, from noisy data Yk. If we know the image Xk�1, we 
anuse the Conditional Maximum A Posteriori (CMAP) estimatorX̂k = argmaxXk P (XkjYk; Xk�1) (29)where, from (6) above,P (XkjYk; Xk�1) = P (YkjXk)P (XkjXk�1)P (YkjXk�1) ; (30)the �rst term on the right being the likelihood. While the CMAP estimate issimple, there are few pra
ti
al appli
ations where the images Xk; 0 � k � Nare available. The obvious alternative is the un
onditioned MAP estimate ofall the levels fX̂i; i � kg = arg maxfXi;i�kgP (Xk; Xk�1; :::::; X0jYk) (31)and so on for Xi; i < k, whi
h 
an be expressed via (6) asP (Xk; Xk�1; ::::; X0jYk) = P (YkjXk)P (X0)P (Yk) kYi=1 P (XijXi�1) (32)12



whi
h avoids assumptions about Xk�1, but poses another problem: how tosele
t Xi; i < k to simultaneously maximise the posterior with respe
t toall k + 1 images. The obvious weakness of this approa
h is that the dataYk 
onstrain Xi; i < k quite strongly and this ought to be built into theestimation pro
edure. This is the goal of the multiresolution MAP (MMAP)estimator. For the above problem, we start again from the left side of (32),but now expand asP (Xk; Xk�1; ::::; XmjYk) = P (XmjYk) kYi=m+1 P (XijXi�1; Yk) (33)where we have used the Markov property of the sequen
e Xi and we maystart the estimation on a level other than 0. The interesting feature of thisestimator is that it has a sequential stru
ture: �rst estimate Xm, then Xm+1and so on, up to Xk, usingP (XijXi�1; Yk) = P (YkjXi)P (XijXi�1)P (YkjXi�1) (34)The denominator, for �xed Xi�1, is a 
onstant, but there is a gap between thedata Yk and Xi. A short 
ut to the solution is to use the 
opy 
on�gurationXkji, whi
h for parameters whi
h are super
riti
al and satisfy the 
onditionsof Theorem 1 represents a good predi
tor for Xk. This allows sampling tobe performed on Xi. In the binary 
ase, an equivalent pro
edure is to de�nedata Yi; i < k, by simply averaging over the blo
k of 2k�i � 2k�i pixels onlevel k 
orresponding to ea
h pixel (p; q; i) on level i. It is not hard to seethat in this 
ase, we 
an repla
e (33) byP (Xk; Xk�1; ::::; XmjYk; Yk�1; ::::; Ym) = P (XmjYm) kYi=m+1 P (XijXi�1; Yi)(35)As a simple example, 
onsider �gure 9, whi
h shows the pyramid obtainedfrom the image at the bottom level of �gure 4, 
orrupted by additive whiteGaussian noise of unit varian
e. The pyramid, whi
h represents the `raw'data for the estimator, was obtained using simple blo
k averaging, as in aquadtree: ea
h pixel on level k is the average of its 4 
hildren on level k + 1.The estimation problem is to re
onstru
t the original binary pyramid fromthese data. The data are 
onditionally normalp(Yijkjl) = N(l; vk); l 2 [0; 1℄ (36)13



where the varian
e on level k, vk = vk+1=4 and v8 = 1. The estimator weuse is an extension of the sto
hasti
 (Gibbs Sampling) methods des
ribed in[10℄, whi
h takes a

ount of the 
onditioning of level k by its father k � 1.Thus the MMAP estimate is de�ned byX̂ijk = argmaxm P (Xijk = mjYijk; X̂pqr; (p; q; r) 2 Nijk [ Pijk) (37)where Ylmn are the noisy data. There are two distin
t pro
edures for im-plementing the estimator, whi
h we have dubbed MMAP and sequential(SMMAP) in the sequel. The MMAP method visits ea
h level k on ea
h iter-ation, thus sampling di�erent s
ales `simultaneously'. The sequential methoditerates on one level at a time, with level k only being estimated after levelk � 1 
onverges, making it analogous to the 
onditional MAP pro
edure.The estimates were initialised by thresholding level 4 in the data pyra-mid and thereafter using 
onditioned Gibbs sampling. After 100 iterationsat ea
h level, the result in �gure 10 was obtained. The error rates at the var-ious levels for ea
h estimator are shown in Table 3 below. Although only fewiterations were used, the results at high resolutions are signi�
antly betterthan were obtained by simply 
opying the initial level or using a 
onventional8� neighbour MRF estimator. Of the MMAP estimators, the MMAP algo-rithm performed better than either CMAP or SMMAP. Closer examinationshows that the MMRF estimate gives a more or less 
onstant error rate of50% per boundary pixel, a
ross a range of s
ales. This is be
ause the dataare un
ertain in these areas - averaging a
ross the boundary does not im-prove this. Figure 11 shows the number of sites 
hanging on ea
h iteration,for ea
h of the 4 levels. It shows that after an initial burst at ea
h level,o

upying a few iterations, the sampler settles down to a steady state whereonly a handful of sites 
hange on any iteration. The next image 12 showsthat even with a random initial 
on�guration, the sampler qui
kly 
onvergesto a point where only a few sites 
hange on ea
h iteration. Note that oneiteration here refers to a s
an-order visit to every pixel on a given level.We 
on
lude this example by making the following observations:1. Both MMAP estimators perform well on this problem - better thanthose based on simple MRF or low-resolution thresholding.2. The relatively worse performan
e of the SMMAP algorithm shows thee�e
t of 
onstraining the estimate at level k by a single realisation atlevel k � 1, rather than sampling over the whole spa
e simultaneously.14



Estimator Level 8 Level 7 Level 6 Level 5 Level 4CMAP 0.0044 0.0084 0.0164 0.0332 0.0547MMAP 0.0036 0.0074 0.0149 0.0332 0.0547SMMAP 0.0047 0.0083 0.0156 0.0292 0.05478-neighbour MRF 0.0126 0.0094 0.0171 0.0332 0.0508Copy from lev. 3 0.0155 0.0128 0.0178 0.0302 0.0547Table 3: Error rates in MMAP estimates at various levels, 
ompared withrate from 8-neighbour MRF and from thresholding at level 4 and 
opying.3. Both are fast, requiring of the order of 20 iterations to obtain satisfa
-tory estimates.4. However, sin
e the 
ost of an iteration at high resolution far out-weighs that at low resolution, there is a 
omputational advantage tothe SMMAP approa
h be
ause it allows a tailoring of the annealings
hedule to ea
h level separately.5. A further advantage of SMMAP is that the estimate at level k 
an beused to initialise model parameter estimation at level k + 1, eg. usingthe sampling method des
ribed in [17℄.A more realisti
 
ase is the image shown in �gure 13, whi
h again is abinary image with added white Gaussian noise at a standard deviation of 1,ie. equal to the di�eren
e between bla
k and white. The estimation errorat the highest resolution, using the MMAP algorithm in this 
ase was 1:3%,better than most results reported on 
omparable problems in the literature[5℄,[17℄,[27℄. The resulting estimate is shown in �gure 14; apart from the
orners, where the model does not �t the data, the estimate is visually quitegood.In more general 
ases, the measurements are not all the result of averagingnoisy binary image data, of the form of �g. 9. Instead, let the data be givenby the pyramid fYi; m � i � kg, whereP (Yk; Yk�1; ::::; YmjXk; Xk�1; ::::; Xm) = kYi=m P (YijXi) (38)In other words, the data on level i are the result of applying an independentnoise pro
ess to the image at that level. We wish to preserve the sequential15



stru
ture in developing a solution to the MAP problemfX̂i; m � i � kg = arg maxfXi;m�i�kgP (Xk; Xk�1; ::::; XmjYk; Yk�1; ::::; Ym) (39)Now the posterior in this 
ase is easily obtained with the help of (6) and (38)P (Xk; Xk�1:::; XmjYk; Yk�1; :::; Ym) = P (Xm)P (YmjXm)Qki=m+1 P (XijXi�1)P (YijXi)P (Yk; Yk�1; :::; Ym) (40)where the denominator is a 
onstant. This has signi�
ant impli
ations forhow we may obtain a MAP estimate: it leads us dire
tly to the MMAP andSMMAP algorithms des
ribed above. Initialisation at level m is readily doneif we assume that the father-
hild potential Vmjm�1 = 0; alternatively, MLestimation 
an be used at that level (as in the binary example of �g. 9). Inthe MMAP estimate, (40) 
an be used to sample simultaneously from theposterior distribution, while in SMMAP, sampling at level k only starts whenthat on level k � 1 terminates. This implies that, while SMMAP may givean ex
ellent approximation to the MAP estimate, it is not MAP, but in this
ase, MAP=MMAP.2.2 Hidden ModelsWhile there are few segmentation tasks in whi
h this dis
rete model dire
tlyre
e
ts image intensity or 
olour, it is very useful as a hiddenmodel: the stateof the site (i; j; k) 
ontrols the parameters of a lo
al image model de�ningthe 
hara
teristi
s within the region of 2k � 2k pixels asso
iated with thatsite. In that 
ase, there will be a measurement ve
tor Y ijk asso
iated withthe site, whi
h depends on the label, iep(Y ijkjXijk = m) 6= p(Y ijkjXijk = n); if m 6= n (41)The measurement ve
tor might represent a histogram of intensity or 
olouror some suitable texture measure, for example. The Maximum Likelihood(ML) estimator for the label is thenX̂ijk = argmaxm p(Y ijkjXijk = m) (42)whi
h is simple, but ignores the prior probability. The MMAP estimator inthis 
ase is similar in spirit to the SMAP estimator of [5℄, but di�ers in one16



important respe
t: sampling is used to obtain the estimate at ea
h level. Asin SMAP, we 
ompute the estimates sequentially over s
ale, starting at some
oarse s
ale kmin, for whi
h we use the 
onventional MAP estimate, obtainedby a simulated annealing pro
essX̂ijk = argmaxm P (mjY ijk; fY pqk; X̂pqk; (p; q; k) 2 Nijkg) (43)In e�e
t, we are assuming independen
e of level kmin from level kmin� 1. Atsubsequent levels, the labelling X̂ijk is used to 
ondition that at level k + 1:X̂ijk = argmaxm P (mjY ijk; fY pqr; X̂pqr; (p; q; r) 2 Nijk [ Pijkg) (44)This gives the estimation a 
ausal dire
tion through s
ale, whilst using thenon-
ausal, iterative pro
ess of annealing at ea
h s
ale. Moreover, the `
opy'
on�guration is used as the initial labelling at level k.In many pra
ti
al appli
ations, using pairwise potentials and di�eren
emeasurements, we end up with a normal model for the likelihoods, of thegeneral formp(Y ijk�Y pqrj!k; !k�1) = N(�(!ijk; !pqr);�(!ijk; !pqr)); (p; q; r) 2 Nijk[Pijk(45)where the normal mean and 
ovarian
e parameters depend only on the 
lassesat the two sites. These parameters 
an be estimated on-line, given the 
ur-rent 
lassi�
ation at level k. This illustrates another advantage of using themultiresolution approa
h: although the equilibrium distribution will in prin-
iple be approa
hed from any initial 
on�guration, in pra
ti
e, it will happensooner if the initial 
on�guration is 
lose to equilibrium. As with the prior,the posterior distribution of !k will be a Gibbs distribution 
onditioned onthe 
on�guration on level k � 1 and so sampling methods 
an be used tolo
ate the maximum.2.3 Appli
ation to Texture SegmentationIn its appli
ation to texture segmentation, the model is hidden, with ea
h siteon level k representing a square region of nominal size 2N�k � 2N�k pixels,from whi
h texture measurements are taken, as in [9℄. In fa
t, windows witha 50% overlap are used to redu
e estimation artefa
ts. It is 
onvenient tospe
ify the model in terms of the Gibbs potentials. The intera
tion potentialde�ning the MRF at level k in the tree is based on pairwise intera
tions:Vijk(mjn) = a+ bkY ijk � Y pqrk2Æmn; (p; q; r) 2 Nijk [ Pijk (46)17



where k:k is a suitably 
hosen norm, su
h as the Eu
lidean norm. In otherwords, there is a 
ost based on feature similarity asso
iated with sites in thesame 
lass. Sampling is then based on the 
orresponding Gibbs distributionP (m) / e�U(m)T (47)where the position indi
es have been suppressed and T is the s
ale parameter,or temperature, whi
h is varied using a logarithmi
 annealing s
hedule [10℄From these de�nitions, the SMMAP algorithm be
omes:For level k � kmin; k � N1. Sample at every site on level k using measurements Y ijk and a loga-rithmi
 annealing s
hedule, until no 
hange is dete
ted over a numberIk of iterations over the image at that s
ale.2. Use labels on level k as the initial labelling on level k + 1, by 
opyinglabels from fathers to 
hildren in the quadtree and to 
ondition thesimulation on level k + 1.The initial labelling at level kmin is random.While the above algorithm provides a general framework for segmenta-tion, its e�e
tiveness depends 
riti
ally on the texture des
riptors used. Wehave four lo
al measurements, whi
h are based on the `deterministi
+sto
hasti
'de
omposition, whi
h is a generalisation of the Wold de
omposition of signals[13℄. The four 
omponents are:1. The di�eren
e between the average gray level in the blo
ks.2. Two measures asso
iated with the deterministi
 
omponent, based onan aÆne deformation modelfs(~�) = fs0(A�1(~� � ~�)) + �s(~�) (48)where fs(:) represents the pat
h of an image 
entred at site s, sites0 = (l; m; k) is a 4-neighbour of site s = (i; j; k), A is that 2 � 2nonsingular linear 
o-ordinate transform and ~� that translation whi
htogether give the best �t in terms of total deformation energy betweenthe two pat
hes. These are identi�ed using the method des
ribed in[13℄, whi
h makes use of lo
al Fourier spe
tra 
al
ulated at the appro-priate s
ale using the Multiresolution Fourier Transform (MFT) [26℄.The deformation energy 
onsists of:18



(a) The deformation term kA�Ik2 represents the amount of `warping'required to mat
h the given pat
h using its neighbour.(b) The error term k�s(~�)k2 is the average residual error in the ap-proximation.3. A measure for the sto
hasti
 
omponent, based on di�eren
es in thespe
tral energy densities estimated at ea
h site via the MFT, jf̂(~�; ~!; �)j2,where f̂(~�; ~!; �) = 1p� Z d~x f(~x)w(~x� ~�� ) e�| ~om:~x (49)is the (
ontinuous) MFT at spatial 
o-ordinate ~�, frequen
y ~! and s
ale� [26℄, whi
h is approximated by a sampled version in pra
ti
e. This issimilar to many texture 
lassi�
ation methods based on lo
al spe
tra,Gabor �lters or auto
ovarian
e estimates [27℄.Ea
h of these measures is s
aled by the 
orresponding (within-
lass or between-
lass) sample varian
e and the four are added with appropriately 
hosenweights to give the �nal intera
tion energy. Only the gray level di�eren
e isused for the father intera
tion, however.The neighbour 
onditional probabilities are estimated dire
tly from thedata during the sampling pro
ess, as are the within-
lass and between-
lassvarian
es. At levels k > kmin, the priors take into a

ount the 
lassi�
ationon the previous level, k � 1: the prior probability that a 
hild has the same
lass as its father is approximated byP (Xijk = Xi=2;j=2;k�1) = 1� �di=2;j=2;k�1 ; (50)where (i=2; j=2=k � 1) is the father site, � < 1 is a 
onstant and ds is theshortest distan
e between site s and a site having a di�erent 
lass, ie. itrepresents distan
e to the boundary. In the experiments reported below,� = 0:5, implying that fathers have no e�e
t at the boundary, whi
h ensuresthat boundaries are not biased by the quadtree.In addition , a line pro
ess has been introdu
ed to in
rease the a

ura
y ofthe segmentations using an assumption of smoothness of the boundary, sin
etexture measurements require a minimum sample size, whi
h we have foundin pra
ti
e to 
orrespond to a sampling interval of 4�4 pixels with the abovetexture measures. The line pro
ess is also based on pairwise intera
tionsbetween neighbouring boundary blo
ks, based on the oriented line joining19



the estimated positions of the putative boundary in ea
h blo
k. Boundarypro
essing is also a simulation designed to �nd the Bayesian estimate, buto

urs after the regions have been identi�ed on a given level. Only regionsites having neighbours whi
h belong to a di�erent 
lass are identi�ed aspotentially boundary-
ontaining and the pro
ess is run on those alone. Fromthese sites, a subset is sele
ted by sto
hasti
 labelling, using a potentialfun
tion whi
h penalises 
urvature in the line joining the estimated 
entroidsof the putative boundary segment in ea
h blo
k. The potential has the formV (Y ;Z) = (sinY3 + sinZ3) 2Xi=1(Yi � Zi)2 (51)where the �rst two ve
tor 
omponents represent the 
entroid position (X1; X2)and the third 
omponent is the angular di�eren
e between the boundary an-gle at (X1; X2) and the line joining the two 
entroids, as illustrated in �gure2. The 
entroid position and boundary angle at a site are estimated usingthe MFT-based te
hnique �rst des
ribed in [26℄. In this way, both textureand boundary features 
an be 
omputed within the same framework. Fulldetails 
an be found in [19℄. A summary of the boundary labelling algorithmfollows:At ea
h temperature T :1. For ea
h site i 2 B2. Cal
ulate the potential V (Y i;Y j); j 2 NB;i3. Sample from the Gibbs distribution to determine the label 
iA logarithmi
 annealing s
hedule is again followed for the boundary pro
ess-ing, whi
h runs after the region pro
essing is 
omplete at a given level. Inthe present s
heme, no information is propagated from `boundary fathers' totheir 
hildren and sites in the boundary set B are labelled as either B or �B.This is a signi�
antly di�erent model from the 
lassi
 line s
hemes based onpixel labelling (eg. [10℄, as it is designed to ful�l a di�erent role.The experiments we have used to test the model demonstrate its abilityto segment textured images of various types, as 
an be seen from �gures 15and 16. In �gure 15, the re�nement of the segmentation through the MMAPpro
edure is evident, as is the improvement due to the boundary pro
ess.Table 4 summarises the performan
e of the algorithm on this data. The20
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θ       lFigure 2: `Distan
e' between boundary segmentsTable 4: Segmentation error rates and number of iterations per pixel (# i/p) for image of �g. 15.level C Region Pro
ess Boundary Pro
essk Error rate (%) # i/p Error rate (%) # i/p3 8 7.053 0.189 3.079 0.0184 6 1.640 0.074 1.059 0.0095 4 1.265 0.349 0.485 0.0166 3 0.716 2.191 0.365 0.045Total # i/p 2.803 0.088error rate drops to less than 1% with the boundary pro
ess at the highestresolution and this is a
hieved at a normalised number of iterations per pixelof only 2. This �gure is the sum of 
ontributions from the various levels,ea
h weighted by the number of pixels on that level. Note that the algorithmterminates 2 levels above the image level be
ause this is the highest resolutionfor whi
h we 
an obtain meaningful texture and boundary estimates.In the se
ond �gure, a summary of the high resolution segmentations isshown, for several 
ombinations of two or more textures. It should be notedthat no additional information on the number of textured regions is requiredby the algorithm - it is 
ompletely unsupervised. These pi
tures illustrate thee�e
tiveness of the overall te
hnique and the utility of the boundary pro
ess,whi
h both improves the subje
tive quality and lowers the mis
lassi�
ationrates to be among the best reported in the literature - typi
ally of the orderof 1 � 2%. The test images were 256 � 256 pixels, with the textures takenfrom Brodatz's book. Be
ause of the multiresolution estimation, the overallnumber of iterations required to attain 
onvergen
e was low - in the examplesshown in �gure 16, the number of iterations/pixel was of the order of 4.We have 
ompared these results with those presented by a number ofauthors, in
luding [16℄ [4℄,[5℄, [17℄,[27℄ and [20℄. The results presented hereare superior in terms of error rates to those and 
ompare well with any we21



have seen in the literature on image segmentation.3 Con
lusionsIn this paper, we have presented a new model for image analysis, whi
h
ombines the notions of multiple resolutions and MRF's to provide a powerfulway of des
ribing image stru
ture statisti
ally. Correspondingly, a new formof MAP estimator - the Multiresolution MAP estimator - was presented. Themodel was illustrated with examples of image segmentation, in whi
h it hasbeen shown to be among the most e�e
tive methods yet des
ribed for thetask. The advantages of the new model may be summarised as:1. By 
onditioning the MRF at level k by that on level k� 1, uniform la-bellings are no longer the `ground' state of the model. This avoids oneof the most obvious weaknesses of 
onventional MRF models. By usingan appropriate neighbourhood and 
onditioning the father-
hild inter-a
tions on the presen
e of boundaries, it is possible to trade o� bound-ary smoothness against the degree of stru
ture preservation. This isa 
ompletely new feature of the model, whi
h it does not share withprevious image models.2. The �nal state at level k, as well as 
onditioning the MRF at level k+1,
an be used as an initial state at level k + 1, simply by 
opying labelsfrom fathers to their four quadtree 
hildren. Although the �nal MAPestimate should be independent of the initial state, the time taken toget there is a�e
ted by the initialisation. Using the labelling in thisway speeds up 
omputation.3. By appropriately 
ombining the spatially invariant MRF stru
ture withthe quadtree, the blo
king and non-stationarity artefa
ts of that modelare greatly redu
ed.4. The model parameters, whi
h generally are unknown, 
an be estimatedfor the higher resolutions by using the segmentation obtained at the
oarser s
ales.5. Again be
ause of the 
onditioning by 
oarse s
ales, the results are not
riti
ally dependent on the number of labels M .22



Although the work reported here is en
ouraging, mu
h remains to be donebefore it 
an be 
onsidered 
omplete. For example, the line pro
ess whi
hwas used to improve the estimate of the boundary, does not intera
t with theregion labelling. Similarly, the segmentation model has not been tested withother image features. Work is 
urrently under way to address these issues.A
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(a)

(b)Figure 3: Illustrating the e�e
t of father-
hild intera
tions. Ea
h of the 16sub-images is sampled at 32*32 pixels using (a) 4-neighbours and the fatheras the 
onditioning elements and (b) using 8-neighbours and father. Fromtop to bottom, the neighbour intera
tion energy in
reases, while from leftto right the father-
hild intera
tion in
reases. Ea
h image is the out
ome of2000 iterations using a 
ommon seed.



Figure 4: Sample from a MMRF pro
ess. The bottom level of the pyramid,k=8, is 256 by 256 pixels. 1000 iterations were used at ea
h level.
27



Figure 5: Illustrating the dependen
e between levels in the pro
ess: thedi�eren
e between ea
h level of the pyramid and the `
opy' from the levelabove. With super
riti
al parameters, the MRF a
ts to re�ne the existingstru
ture. 28



Figure 6: Sample a se
ond MMRF pro
ess with lower intera
tion potentials.The number of s
ales is 8, with the bottom level image being 128 by 128pixels. The neighbourhood size was 8 for the bottom 3 levels of the pyramidand 500 iterations were run at ea
h of these s
ales. The top 4 levels weregenerated with a pure quadtree model.29
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Figure 7: Sample auto
orrelation from 20 samples of a binary MMRF. Thenumber of s
ales is 8, with the bottom level image being 128 by 128 pixels.The neighbourhood size was 8 for the bottom 3 levels of the pyramid and 500iterations were run at ea
h of these s
ales. The top 4 levels were generatedwith a pure quadtree model. 30



Figure 8: Predi
tion of level k from level k� 1 in the image of �gure 4, usingsimulated annealing over 200 iterations.
31



Figure 9: Noisy data pyramid obtained by quadtree averaging of image atbottom level, whi
h has unit varian
e additive white Gaussian noise.
32



Figure 10: MMAP estimates of image in �gure 4 from the noisy data of �gure9.
33
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Figure 11: Plot of the number of 
hanges on ea
h iteration of the sampler,for levels 8 (top 
urve) up to 5(bottom 
urve).
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Figure 12: Number of 
hanges on ea
h iteration, for random initial 
on�gu-ration (top) and state 
opied from father (bottom) on level 8 of the pyramid.34



Figure 13: Noisy `shapes' image with SNR=0dB.

Figure 14: Full resolution MMAP estimate of image in �gure 13.35
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(a) (b)Figure 15: Segmentation results of Image I. (a) The results before the bound-ary pro
ess is exe
uted at level 3 to 6 respe
tively. (b) The results after theboundary pro
ess is exe
uted at level 3 to 6 .36



Figure 16: Summary of �nal segmentation results on various texture 
ombi-nations. Left images: without boundary pro
ess; right images: with bound-ary pro
ess. 37


